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Asymptotic Optimality of Speed-Aware JSQ for

Heterogeneous Service Systems

Sanidhay Bhambay and Arpan Mukhopadhyay
University of Warwick

Abstract

The Join-the-Shortest-Queue (JSQ) load-balancing scheme is known to minimise the
average delay of jobs in homogeneous systems consisting of identical servers. However, it
performs poorly in heterogeneous systems where servers have different processing rates.
Finding a delay optimal scheme remains an open problem for heterogeneous systems.
In this paper, we consider a speed-aware version of the JSQ scheme for heterogeneous
systems and show that it achieves delay optimality in the fluid limit. One of the key
issues in establishing this optimality result for heterogeneous systems is to show that
the sequence of steady-state distributions indexed by the system size is tight in an
appropriately defined space. The usual technique for showing tightness by coupling
with a suitably defined dominant system does not work for heterogeneous systems. To
prove tightness, we devise a new technique that uses the drift of exponential Lyapunov
functions. Using the non-negativity of the drift, we show that the stationary queue
length distribution has an exponentially decaying tail - a fact we use to prove tightness.
Another technical difficulty arises due to the complexity of the underlying state-space
and the separation of two time-scales in the fluid limit. Due to these factors, the fluid-
limit turns out to be a function of the invariant distribution of a multi-dimensional
Markov chain which is hard to characterise. By using some properties of this invariant
distribution and using the monotonicity of the system, we show that the fluid limit is
has a unique and globally attractive fixed point.

1 Introduction

The average response time of user requests is a key performance measure in modern large-
scale service systems such as web server farms and cloud data centers. How incoming user
requests or jobs are assigned to servers can significantly impact the performance of such
systems. The canonical model for studying the effect of job assignment schemes on the
mean response time of jobs consists of N servers each having its own queue, a stream of
incoming jobs arriving at rate Nλ, and a job dispatcher. The job dispatcher assigns every
incoming job to a server in the system according to a specific job assignment scheme. For
homogeneous systems consisting of identical servers, a natural job assignment scheme to
consider is the Join-the-Shortest-Queue (JSQ) scheme in which each incoming job is assigned
to the server with the minimum queue length. For finite N , this scheme is known to achieve
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the minimum average response time of jobs in a variety of settings [1–4]. Furthermore, in
the large system limit (N →∞) it has been shown that the average queuing delay of jobs
(average time a job spends in the queue before its processing starts) under JSQ approaches
to zero.

Variants of the JSQ scheme such as SQ(d) scheme and the Join-the-Idle-Queue (JIQ)
scheme have also been extensively studied in the literature [5–7]. In the SQ(d) scheme,
each job is assigned to the shortest of d randomly sampled queues; in the JIQ scheme,
each job is assigned to an idle queue if one is available and is otherwise sent to a randomly
sampled queue. These schemes require less messaging overhead than JSQ but achieve the
same asymptotic performance as JSQ in the large system limit.

The (asymptotic) optimality of JSQ and its variants crucially relies on the assumption
of homogeneity of server speeds. However, this assumption is not accurate in practice since
data centres typically contain multiple-generations of physical devices with different pro-
cessing capabilities [8]. Processing speeds of servers can vary also due to the presence of
various types of acceleration devices such as GPUs, FPGAs and ASICs [9,10]. Finding the
delay optimal scheme for such systems remains an open problem to this date. For such
systems, speed-unaware schemes such as JSQ and SQ(d), designed primarily for homoge-
neous systems, may perform very poorly [11–13]. Speed-aware schemes which assign jobs
based on both queue lengths and server speeds can significantly outperform speed-unaware
schemes. To see this, consider a speed-aware version of JSQ, henceforth referred to as the
Speed-Aware JSQ (SA-JSQ) scheme, in which each arrival is assigned to a server with the
highest speed among the ones with the minimum queue length. In Figure 1, we compare the
JSQ scheme with the SA-JSQ scheme for a system with two types of servers. Inter-arrival
and service times of jobs are assumed to be exponentially distributed with rates Nλ and 1,
respectively. We observe that the average response time of jobs is almost 60% lower under
the SA-JSQ scheme than under the JSQ scheme for loads (λ) less than 0.5. This example
clearly highlights the need to design speed-aware schemes which can lead to much improved
performance compared to speed-unaware schemes for heterogeneous systems.

There are various ways in which server speeds can be incorporated into job dispatching
decisions. A natural scheme is to send each job to the queue with the shortest expected
delay (SED), i.e., the queue where the ratio of the queue length to the server-speed is
minimum. As we shall see later, for finite N this scheme performs slightly better than
the SA-JSQ scheme discussed above but this difference vanishes quickly as the number of
servers increases. Thus, the key questions in the context of heterogeneous systems are the
following: what is the minimum achievable mean response time of jobs in heterogeneous
systems? and is it possible achieve this minimum with some simple speed-aware variants of
the JSQ scheme in the limit as the system size becomes large?

1.1 Contributions

To answer the questions above we need to find a lower bound on the mean-response time
of jobs in heterogeneous systems and analytically characterise the performance of speed-
aware dispatching schemes in the limit as N → ∞. These are the primary aims of this
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Figure 1: Comparison of mean response time of jobs under JSQ and SA-JSQ schemes. Both
schemes are applied to a heterogeneous system consisting of two types of servers: a fraction
γi of servers have rate µi. We choose γ1 = 1− γ2 = 1/5, and µ1 = 4µ2 = 20/8.

paper. Our key finding is that in the fluid limit the SA-JSQ scheme achieves the lowest
possible mean response time of jobs for heterogeneous systems. Note that to prove such
optimality results, it is essential to develop the necessary tools to analyse job assignment
schemes for heterogeneous systems. One would expect the fluid limit techniques applicable
to homogeneous systems would easily generalise to heterogeneous systems. However, this
turns out to be not the case. As explained later, the stochastic coupling technique, used
to obtain uniform bounds on the stationary queue lengths in homogeneous systems, is not
generalizable to heterogeneous systems. Consequently, we develop a new method based on
exponential Lyapunov functions to obtain similar uniform bounds for heterogeneous sys-
tems. This method is sufficiently general to be applicable to other systems where a direct
coupling is difficult to construct. Furthermore, the increased complexity of the underlying
state space for heterogeneous systems results in a fluid limit which depends on the invariant
distribution of a multi-dimensional birth-death process. Deriving exact analytical expres-
sions for this invariant distribution is difficult. We find properties that are sufficient to show
the existence, uniqueness and global stability of the fluid limit. From this point onward, we
use the term ‘optimality’ to refer to optimality in the fluid limit unless otherwise mentioned.
Our contributions are listed below:

1. Stochastic comparison and lower bound: Our first contribution is to compare the
heterogeneous system, which consists of separate queues, with a similar heterogeneous
system where all the servers serve a single central queue. We show that the system
with separate queues stochastically dominates the system with the central queue.
From this stochastic comparison result and the fluid limit of the system with central
queue, we obtain a lower bound on the mean response time of jobs that holds for any
dispatching scheme applied to the system with separate queues. It is important to note
that studying fluid limit of the system with a single central queue and heterogeneous
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servers can be of independent interest.

2. Stability and tightness: We next show that the heterogeneous system is stable under
the SA-JSQ policy and obtain uniform bounds (not depending on the system size)
on the tails of the stationary queue length distribution. The latter result is required
to show the tightness of the sequence of stationary distributions indexed by the sys-
tem size. The usual approach for proving tightness via coupling does not work in
the heterogeneous setting as it is difficult to construct a coupling that maintains the
desired stochastic dominance. Thus, we take a new approach and establish this result
by analysing the drift of an exponential Lyapunov function. This technique is suffi-
ciently general to be applicable to other systems where direct stochastic comparison
is difficult.

3. Fluid limit analysis: Our final contribution is the fluid limit analysis of the SA-JSQ
scheme in the heterogeneous system. This analysis turns out to be considerably more
challenging than conventional fluid analysis due to the increased complexity of the
underlying state space for heterogeneous systems and the separation of two time-scales
in the fluid limit. The main idea in establishing the fluid limit of SA-JSQ is to first use
the martingale functional central limit theorem (FCLT) and then characterise the limit
of any convergent subsequence using Lemma 2 and Theorem 3 of [14]. The fluid limit
in the heterogeneous setting turns out to be a function of the invariant distribution of
a multi-dimensional Markov process whose exact analysis seems intractable. However,
we are able to prove properties of the invariant distribution sufficient to characterise
the fluid limit and its unique fixed point. Using these properties and the monotonicity
of the system we also show that the fluid limit is globally stable. This final result
establishes the asymptotic optimality of the SA-JSQ policy for heterogeneous systems.

1.2 Related works

There exists a vast literature on load-balancing policies for multi-server systems. Here, we
only discuss the works that are most relevant to our paper. For a comprehensive review of
existing works, we refer the reader to [15].

The JSQ policy was first shown to minimise the average delay of jobs for finite systems
consisting of identical servers in [1] under the assumption of Poisson arrivals and exponential
service times. This optimality result was later extended to general stochastic arrival pro-
cesses and service-time distributions with non-decreasing hazard rates in [2], to queues with
state-dependent service rates in [3], and to systems with finite buffer-buffers and general
batch arrivals in [4]. Recent works [7, 16] have considered the fluid and diffusion limits of
the JSQ scheme. In the fluid limit, it has been shown in [7] that the fraction of servers with
two or more jobs converges to zero under the JSQ scheme. This implies that in the fluid
limit all jobs find an idle server to join. In the Halfin-Whitt regime, where the normalized
arrival rate λ varies with the system size N as λ = 1− β/

√
N for some β > 0, it has been

shown in [16] that the diffusion-scaled process approaches to a two-dimensional reflected

4



Ornstein-Ulhenbeck (OU) process as N →∞. The stationary distribution of this OU pro-
cess has been studied in [17] which establishes that the steady-state fraction of servers with
exactly two jobs scales as O(1/

√
N) and the fraction of servers with more than three jobs

scales as O(1/N).
Another line of works explores load balancing schemes which require less communication

between the servers and the job dispatcher. The SQ(d) scheme in which each arrival is
assigned to the shortest among d randomly sampled queues was first analyzed independently
in [18] and [19]. Using mean-field analysis, it was shown that for d ≥ 2 the stationary queue
length distribution has a super-exponentially decaying tail for large system sizes. Thus, by
querying only d ≥ 2 servers at every arrival instant a significant reduction in the average
delay can be obtained in comparison to d = 1. The Join-the-Idle-Queue (JIQ) further
reduces communication overhead by keeping track of only the idle servers in the system. At
each arrival instant it sends the incoming job to an idle server if one is available; otherwise,
the job is sent to a randomly sampled server. This scheme was first proposed and analyzed
by Lu et al. in [20] and it was shown that in the fluid limit the JIQ scheme achieves the
same performance as the JSQ scheme. Thus, the JIQ scheme is asymptotically optimal for
homogeneous systems in the fluid limit.

Relatively few works consider load balancing in heterogeneous systems. The SQ(d)
scheme for heterogeneous systems has been analyzed in [12, 21, 22]. While [22] and [21]
analyze the performance of the SQ(d) policy in light and heavy traffic regimes for finite
system sizes, respectively, [12] considers its performance in the mean-field regime. It has
been shown that the SQ(d) scheme suffers from a reduced stability region in heterogeneous
systems due to infrequent sampling of faster servers. Subsequent works [11, 23] have stud-
ied variations of the SQ(d) scheme, aimed at improving its performance in heterogeneous
systems while retaining the maximal stability region. Heterogeneity-aware load balancing
(HALO) schemes such Random, Round-Robin (RR), and SQ(d) have been analyzed in [24]
for heterogeneous processor sharing systems. In particular, the optimal load splitting has
been obtained for the Random scheme and then used for the other schemes. It has been
shown that these schemes result in good performance for all system sizes. The JIQ scheme
has been analyzed in the heterogeneous setting by Stolyar [25]; it has been shown that the
average waiting time of jobs under the JIQ scheme approaches to zero in the fluid limit.
From this result, it follows intuitively that a scheme which further distinguishes between
idle servers by their speeds can only result in a smaller processing time of jobs. However, to
establish this formally, it is necessary to construct a coupling that maintains the dominance
of speed-aware schemes over speed-unaware schemes for sufficiently large N . Constructing
such coupling in turn requires establishing the fluid limit for speed-aware schemes, which
brings us back to the problem considered in this paper.

Some recent works, e.g., [26, 27], study load balancing schemes for systems where jobs
are constrained to be served only by specific subsets of servers. In these works, the focus is
on finding conditions on the compatibility constraints such that the performance of classical
load balancing algorithms such as JSQ, JIQ and SQ(d) remain asymptotically the same as in
systems without compatibility constraints. In the work by Weng et al. [27], a scheme similar
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to the SA-JSQ scheme has been considered for constrained heterogeneous systems with finite
buffer sizes. They prove the asymptotic optimality of this scheme using Lyapunov drifts
methods. Although the scheme is technically the same as the SA-JSQ scheme for constrained
systems, their analysis crucially relies on the assumption that the queues have finite buffer
sizes. Hence, in their setting tightness and stability results follow immediately. In contrast,
in the setting considered in this paper, the queues have infinite buffer sizes and proving
optimality in this setting requires showing the tightness of the stationary distributions.
As discussed before, this is one of the key difficulties in our model and we employ a new
technique to establish tightness. Furthermore, the drift technique, applicable to finite-buffer
systems, is difficult to generalise to our setting. Instead, to prove asymptotic optimality,
we use martingale methods outlined in [28].

In this paper, the drift of the fluid-scaled Markov chain depends on the un-scaled state of
the system through an indicator function. This dependence ultimately gives rise to a time-
scale separation in the fluid limit. A similar drift structure involving indicator functions
was studied in [29]. Here, the challenge is to tackle the discontinuity of the drift at the
boundaries of the state-space. It has been shown in [29] that in such cases the finite system
can be viewed as a stochastic approximation of a differential inclusion. In [30], the author
study optimal scheduling schemes for users competing for a common resource. They show
that a tie-breaking rule similar to JSQ, where users with highest departure probability are
preferred, leads to asymptotic optimality.

1.3 General Notations

We use the following notations throughout the paper. The sets R,N,Z+ denote the set of
real numbers, natural numbers, and non-negative integers, respectively. We also use the set
Z̄+ to denote the extended set Z̄+ = Z+

⋃
{∞}. For x, y ∈ R, we use x∧ y, x∨ y, and (x)+

to denote max(x, y), min(x, y), and max(x, 0), respectively. For any n ∈ N, [n] denotes the
set {1, 2, . . . , n}. For any complete separable metric space E, we denote DE [0,∞) to be the
set of all cadlag functions from [0,∞) to E endowed with the Skorohod topology. Moreover,
the notation B(E) is used to denote the Borel sigma algebra generated by the set E. The
notation ⇒ is used for weak convergence. We use 1(A) to denote indicator function for set
A.

1.4 Organisation

The rest of the paper is organized as follows. In Section 2, we introduce the system model
and define the SA-JSQ policy. In Section 3, we obtain a lower bound on the mean response
time of jobs that holds for any scheme in the heterogeneous system by comparing the system
with a similar system having a central queue. In Section 4, we state our main results for
the SA-JSQ policy. We prove the stability of the SA-JSQ scheme in Section 5 and the
uniform bounds on the tails of the stationary queue lengths distribution in Section 6. The
monotonicity property for SA-JSQ for a finite N system is shown in Section 7. In Section 8,
we prove the process convergence result for SA-JSQ and characterise its fixed point in
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Section 9. The proof of resource pooled optimality is given in Section 10. Numerical studies
comparing different schemes under heterogeneous setting is given in Section 11. Finally, we
conclude the paper in Section 12.

2 System Model

We consider a system MN consisting of N parallel servers, each with its own queue of
infinite buffer size. The servers are assumed to be heterogeneous, i.e., they have different
service rates. Specifically, we assume that there are M different server types or pools. Each
type j ∈ [M ] server has a service rate of µj . The proportion of type j ∈ [M ] servers in
the system is assumed to be fixed at γj ∈ [0, 1] with

∑
j∈[M ] γj = 1. We further assume

without loss of generality that µ1 > µ2 > . . . > µM and
∑

j∈[M ] γjµj = 1 (normalised
system capacity is unity). For simplicity of exposition we also assume that there exists
N ∈ N such that Nγj ∈ N for all j ∈ [M ].1

Jobs are assumed to arrive at the system according to a Poisson process with a rate Nλ.
Each job requires a random amount of work, independent and exponentially distributed
with mean 1. The inter-arrival and service times are assumed to be independent of each
other. Upon arrival, each job is assigned to a server where it either immediately receives
service (if the server is idle at that instant) or joins the corresponding queue to be served
later. The queues are served according to the First-Come-First-Server (FCFS) scheduling
discipline. For this system, the term queue length will refer to the total number of jobs in
a queue including the current job in service.

Our main interest is to find a job assignment policy that minimises the steady state
mean response time of jobs in the system. To this end, we shall analyse a modified version
of the classical Join-the-Shortest-Queue (JSQ) policy which is known to be optimal for
homogeneous systems [2]. We shall refer to the modified policy as the Speed-Aware JSQ or
the SA-JSQ policy. It is defined as follows

Definition 1. Under the SA-JSQ policy, upon arrival of a job, it is sent to a server with
the minimum queue length among all the servers in the system. Ties among servers of
different types are broken by choosing the server type with the maximum speed and ties
among servers of the same type are broken uniformly at random.

Note that unlike the classical JSQ policy, which breaks ties uniformly at random, the
SA-JSQ policy breaks ties among servers of different types by choosing the server type with
the maximum service rate. Furthermore, unlike the classical JSQ policy, the SA-JSQ policy
is not optimal for the heterogeneous system for finite N : numerical simulations shown in
Figure 2 show that a scheme which assigns jobs to servers based on the shortest expected
delay (SED) (i.e., queue length divided by the service rate) performs marginally better than
the SA-JSQ policy for small system sizes. However, as we show later in the paper, the gap

1Our asymptotic results do not depend on this assumption. However, the results for finite systems need
to be modified slightly if this is not the case.
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vanishes as N → ∞. More specifically, we show that in the limit as N → ∞ there is no
better scheme than SA-JSQ for heterogeneous systems.
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Figure 2: Comparison of mean response time of jobs between SED and SA-JSQ schemes
under heterogeneous system with N = 50. We choose γ1 = 1 − γ2 = 1/5, and µ1 = 4µ2 =
20/8.

3 Lower Bound on the Mean Response Time

A key ingredient in establishing the optimality of the SA-JSQ policy is finding a uniform
lower bound on the steady state mean response time of jobs in systemMN for all N under
any stationary job assignment policy Π. We later show that this lower bound is achieved
by the SA-JSQ policy as N →∞.

To obtain this lower bound, we show that the total number of jobs in systemMN under
any stationary policy Π stochastically dominates the total number of jobs in a similar
heterogeneous system M′N working under a specific policy, referred to as the Join-the-
Fastest-Free-Server (JFFS) policy.

Description of system M′N : In system M′N , the servers remain the same as in system
MN , i.e., there are N servers in total with Nγj of them having service rate µj for j ∈ [M ].
However, unlike system MN , we have a central queue for the whole system. Upon arrival,
a job joins the central queue if all the servers are busy. Otherwise, the job is assigned to an
idle server. Here, the central queue consists of only those jobs that are waiting for service
and it excludes the jobs already in service.

JFFS policy: If multiple servers are idle and the queue is non-empty, a decision needs
to be made on which server the next job should be assigned to. To this end, we consider
the following job assignment policy referred to as the Join-the-Fastest-Free-Server (JFFS)
policy.

Definition 2. Under the JFFS policy, if idle servers are available and there are jobs waiting
in the central queue, then the head-of-the-line (HOL) job is assigned to the idle server with
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the highest service rate. Ties within the same server type are broken uniformly at random.

Hence, unlike systemMN where each server only serves its own queue, in systemM′N ,
the central queue is served by all the servers. This system is, therefore, referred to as the
resource pooled system [31].

The evolution of the resource pooled systemM′N under the JFFS policy can be described
by the Markov chain Z(N) = (Z(N)(t), t ≥ 0), where Z(N)(t) ∈ Z+ denotes the total number
of jobs in system M′N at time t under the JFFS policy. Clearly, under the JFFS policy,

the number of busy type j servers at time t ≥ 0 is given by (Z(N)(t)−
∑j−1

i=1 Nγi)+ ∧Nγj .
Hence, the transition rate qZ

(N)
(k, l) of Z(N) from state k to state l is given by

qZ
(N)

(k, l) =


Nλ, if l = k + 1,∑

j∈[M ] µj((k −
∑j−1

i=1 Nγi)+ ∧Nγj), if l = k − 1,

0, otherwise.

(1)

The following two propositions characterise the stationary behaviour of the chain Z(N) for
finite N and for N →∞, respectively.

Proposition 3. For λ < 1, the Markov chain Z(N) is positive recurrent. Furthermore, if
Z(N)(∞) denotes the stationary number of jobs in the system, then

sup
N

E
[
Z(N)(∞)

]
N

≤ λ+
λ

1− λ
. (2)

Proposition 4. If λ < 1, then for system M′N operating under the JFFS policy we have
as N →∞

Z(N)(∞)

N
⇒ z∗ , max

j∈[M ]

(
j−1∑
i=1

γi +
λ−

∑j−1
i=1 µiγi
µj

)
(3)

Proposition 3 implies that the resource pooled system is stable for λ < 1. It also provides
a uniform upper bound on the steady-state expected (scaled) number of jobs in the system
for all N . These results are utilised to prove Proposition 4 which shows that the steady-state
(scaled) number of jobs in the resource pooled system converges weakly to z∗ as N → ∞,
where z∗ is as defined in (3).

In (3), the expression within the brackets on the RHS is maximised for j = j∗ ∈ [M ]

iff λ ∈
[∑j∗−1

i=1 γiµi,
∑j∗

i=1 γiµi

)
. Note that the existence of such a j∗ is guaranteed because

λ < 1 =
∑

j∈[M ] γjµj . For j∗ as defined above, it is easy to see that the fraction of busy
type j servers is one for all j ∈ [j∗− 1] and zero for all j ≥ j∗+ 1. Furthermore, in pool j∗,

the fraction of busy servers is given by

(
λ−
∑j∗−1
i=1 γiµi

)
+

γj∗µj∗
. Since z∗ < 1, the central queue in

the limiting system is empty in the steady-state.
To show that the system MN operating under any stationary policy Π stochastically

dominates the system M′N operating under the JFFS policy, we describe the state of the
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system MN under a stationary policy Π by the Markov chain X(N,Π) = (X
(N,Π)
i,j (t), t ≥ 0),

where X
(N,Π)
i,j (t) denotes the number of type j servers with at least i jobs. Let R(N,Π)(t) =∑

i,j X
(N,Π)
i,j (t) denote the total number of jobs in system MN at time t ≥ 0 under policy

Π. We have the following stochastic comparison result.

Theorem 5. For any stationary policy Π if Z(N)(0) ≤ R(N,Π)(0), then the processes Z(N)

and X(N,Π) can be constructed on the same probability space such that Z(N)(t) ≤ R(N,Π)(t)
for all t ≥ 0, i.e., Z(N)(t) ≤st R(N,Π)(t), where ≤st implies stochastic dominance.

The above theorem implies that if both Z(N) and R(N,Π) are ergodic chains, then
Z(N)(∞) ≤st R(N,Π)(∞), where Z(N)(∞) = limt→∞ Z

(N)(t) andR(N,Π)(∞) = limt→∞R
(N,Π)(t)

denote the stationary number of jobs in M′N and MN , respectively. This further implies
that E

[
Z(N)(∞)

]
≤ E

[
R(N,Π)(∞)

]
which by Little’s law gives the desired lower bound on

the stationary mean response time of jobs in MN under any policy Π.
By Little’s law, the steady-state mean response time, T̄ ′N , of jobs inM′N under the JFFS

policy is given by T̄ ′N = E
[
Z(N)(∞)

]
/Nλ. Hence, Proposition 4 implies limN→∞ T̄

′
N = z∗

λ .
Combining the above result with the stochastic comparison result in Theorem 5, we can
conclude the following.

Corollary 6. The steady-state mean response time, T̄N,Π, of jobs in systemMN under any
stationary policy Π satisfies

lim inf
N→∞

T̄N,Π ≥
z∗

λ
(4)

In subsequent sections, we establish that the above lower bound is achieved with equal-
ity when SA-JSQ is employed as the job assignment policy in MN . This will imply the
asymptotic optimality of the SA-JSQ policy for MN .

4 Analysis setup and main results

In this section, we introduce the key ingredients and notations for our analysis of the SA-
JSQ policy. In particular, we discuss the different state-descriptors used in the analysis and
discuss some key properties of the space they belong to. We also state our main results for
the SA-JSQ policy and discuss their implications.

The state of the systemMN at any time t ≥ 0 under the SA-JSQ policy can be described
in two different ways. These are as defined below:

1. Queue-length descriptor: We define the queue-length vector at time t ≥ 0 as

Q(N)(t) = (Q
(N)
k,j (t), k ∈ [Nγj ], j ∈ [M ]),

where Q
(N)
k,j (t) denotes the queue length of the kth server of type j at time t.
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2. Empirical measure descriptor: We define the empirical tail measure on the queue
lengths at time t as

x(N)(t) = (x
(N)
i,j (t), i ≥ 1, j ∈ [M ]),

where x
(N)
i,j (t) denotes the fraction of type j servers with at least i jobs at time t. For

completeness, we set x
(N)
0,j (t) = 1 for all j ∈ [M ] and all t ≥ 0.

It follows from the Poisson arrival and exponential job size assumptions that both processes
Q(N) = (Q(N)(t), t ≥ 0) and x(N) = (x(N)(t), t ≥ 0) are Markov. It is possible to switch
from first descriptor to the second by noting the following

x
(N)
i,j (t) =

1

Nγj

∑
k∈[Nγj ]

1

(
Q

(N)
k,j (t) ≥ i

)
, ∀i ≥ 1, j ∈ [M ]. (5)

We use both descriptors above to state and prove our results.
One important observation to make is that the SA-JSQ policy does not distinguish be-

tween servers of the same type. Hence, if the distribution ν of the initial state of the system
is exchangeable within each server type, i.e., if for each j we have Pν(Qkl,j(0) = rl, l ∈ [r]) =
Pν(Qσ(kl),j(0) = rl, l ∈ [r]) for all permutations σ of the numbers k1, k2, . . . , kr ∈ [Nγj ], then
for any time t ≥ 0, we must have Pν(Qkl,j(t) = rl, l ∈ [r]) = Pν(Qσ(kl),j(t) = rl, l ∈ [r]),
where Pν is the probability measure conditional on the initial state being distributed ac-
cording to ν. This property is crucial in connecting the distribution of Q(N) to that of x(N).
In particular, by taking expectation on both sides of (5) we have

Eν [x
(N)
i,j (t)] =

1

Nγj

∑
k∈[Nγj ]

Pν(Qk,j(t) ≥ i) = Pν(Qk,j(t) ≥ i), (6)

where in the second equality we employ the exhangeability property discussed above.
Clearly, the process Q(N) takes values in ZN+ and the process x(N) takes values in the
space S(N) defined as

S(N) , {s = (si,j) : Nγjsi,j ∈ Z+, 1 ≥ si,j ≥ si+1,j ≥ 0 ∀i ≥ 1, j ∈ [M ]}. (7)

Note that for finite N , the space S(N) is countable since each x
(N)
i,j can only take finitely

many values. We further define the space S as follows

S ,{s = (si,j) : 1 ≥ si,j ≥ si+1,j ≥ 0,∀i ≥ 1, j ∈ [M ], ‖s‖1 <∞}, (8)

where the `1-norm, denoted by ‖·‖1, is defined as ‖s‖1 , maxj∈[M ]

∑
i≥1|si,j | for any s ∈

S. It is easy to verify that the space S is complete and separable under the `1-norm.
Furthermore, if the system’s state x(N) belongs to S(N) ∩ S, then there are finitely many
jobs in the system. Starting with a state in S(N)∩S we can ensure that chain x(N) remains
in S∩S(N) for all t ≥ 0 only if the process x(N), or equivalently the process Q(N), is positive
recurrent. Our first main result states that this is indeed the case when λ < 1.
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Theorem 7. The process Q(N) or equivalently x(N) is positive recurrent for each λ < 1
and each N .

The theorem above implies that for λ < 1 the stationary distributions of Q(N) and
x(N) exist and they are unique. Let Q(N)(∞) = limt→∞Q(N)(t) (resp. x(N)(∞) =
limt→∞ x(N)(t)) denote the state of the system distributed according to the stationary
distribution of Q(N) (resp. x(N)). The stability of the system guarantees that the steady-
state expected number of jobs in the system is finite, i.e., x(N)(∞) belongs to S almost
surely. However, to establish the asymptotic optimality of the SA-JSQ policy, we require
the stronger result that the sequence (x(N)(∞))N of stationary states indexed by the system
size is tight in S. Here, it is important to observe that S is not a compact space. The rela-
tively compact subsets of S and the tightness criterion for sequences in S are stated in E.

The tightness criterion essentially requires the expected tail sums E[
∑

j∈[M ]

∑
i≥l x

(N)
i,j (∞)]

approach to zero as l→∞ uniformly in N . To show that (x(N)(∞))N satisfies this criterion,
we need the following important result which states that the stationary tail probabilities of
the queue lengths decay exponentially and the decay rate is uniform in N .

Theorem 8. If λ < 1, then under the SA-JSQ scheme, for each j ∈ [M ], each k ∈ [Nγj ],
and each l ≥ 1 the following bound holds for all θ ∈ [0,− log λ)

sup
N

P(Q
(N)
k,j (∞) ≥ l) ≤ Cj(λ, θ)e−lθ, (9)

where Cj(λ, θ) = (1− λ)/(µjγj(1− λeθ)) > 0.

Our next main result establishes a key monotonicity property of the system for finite
N . For two states q and q̃ in ZN+ we say q ≤ q̃ if qk,j ≤ q̃k,j for each k ∈ [Nγj ], j ∈ [M ].
The inequality s ≤ s̃ is similarly defined for s, s̃ ∈ S. We have the following result.

Theorem 9. Consider two systems with initial states Q(N)(0) and Q̃(N)(0) (resp. xN (0)
and x̃N (0)) satisfying Q(N)(0) ≤ Q̃(N)(0) (resp. xN (0) ≤ x̃N (0)). Let Q(N) and Q̃(N)

(resp. xN and x̃N ) denote the corresponding processes describing the two systems under the
SA-JSQ policy. Then, the processes Q(N) and Q̃(N) (resp. xN and x̃N ) can be constructed
on the same probability space such that Q(N)(t) ≤ Q̃(N)(t) (resp. xN (t) ≤ x̃N (t)) for all
t ≥ 0.

The monotonicity property stated above implies that if two systems, both working under
the SA-JSQ policy, start at two different initial states such that the queue lengths in the
first system are dominated by the corresponding queue lengths in the second system, then
this dominance is maintained for all t ≥ 0. This property turns out to be essential in
establishing the global asymptotic stability of the fluid limit process.

Our next set of results characterise the asymptotic properties of the process x(N) as
N → ∞. The first result states that the sequence (x(N))N of processes indexed by N
converges weakly to a deterministic process x = (x(t), t ≥ 0) defined on S. To describe
the limiting process, we define lj(s) = min{i : si+1,j < 1} for any state s ∈ S to be the
minimum queue length in pool j ∈ [M ] in state s.
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Theorem 10. (Process Convergence): Assume x(N)(0) ∈ S∩S(N) for each N and x(N)(0)⇒
x(0) ∈ S as N →∞. Then, the sequence (x(N))N≥1 is relatively compact in DS [0,∞) and
any limit x = (x(t) = (xi,j(t), i ≥ 1, j ∈ [M ]), t ≥ 0) of a convergent sub-sequence of
(x(N))N≥1 satisfies the following set of equations for all t ≥ 0, i ≥ 1 and j ∈ [M ]

xi,j(t) = xi,j(0) +
λ

γj

∫ t

0
pi−1,j(x(u))du−

∫ t

0
µj(xi,j(u)− xi+1,j(u))du, (10)

where pi−1,j(s) ∈ [0, 1] is uniquely determined for each state s ∈ S. Furthermore, p(s) =
(pi−1,j(s), i ≥ 1, j ∈ [M ]) for each s ∈ S satisfies the following properties

P1.
∑

j∈[M ]

∑
i≥1 pi−1,j(s) = 1 for all s ∈ S,

P2. pi−1,j(s) = 0 for all i ≥ lj(s) + 2 and for all j ∈ [M ],

P3. If lj(s) > 0 for some j ∈ [M ], then pi−1,j(s) = 0 for all 1 ≤ i ≤ lj(s)− 1.

P4. If l1(s) = 0, then p0,1(s) = 1.

P5. For some j ∈ {2, . . . ,M}. If lk(s) ≥ 1 for all k ∈ [j − 1] and lj(s) = 0, then
p0,j(s) = 1.

In the theorem above, pi−1,j(s) can be interpreted as the limiting probability of an
incoming arrival being assigned to a type j server with queue length i− 1 when the system
is in state s ∈ S. With this interpretation, the properties of pi,j(s) listed above follow
intuitively from the assignment rule under the SA-JSQ policy. Indeed, properties P4 and
P5 state that if in state s ∈ S pool j ∈ [M ] is the pool with the highest speed containing
idle servers, then with probability 1, incoming jobs are assigned to idle servers in pool j
in state s. Similarly, properties P2 and P3 imply that for any state s ∈ S and any pool
j ∈ [M ] with minimum queue-length lj(s), jobs can only be assigned to queues with lengths
lj(s)− 1 and lj(s) in the limiting system.

The exact expressions for pi,j(s) are complicated as they depend on the stationary
probabilities of a multi-dimensional Markov chain (we explain this more in Section 8). In
Theorem 10, we only list the properties essential to characterise the fixed point x∗ = (x∗i,j)
of the fluid limit x. In our final result stated below, we show that the fixed point x∗ is
unique and globally attractive.

Theorem 11. (i) For λ < 1, there exists a unique fixed point x∗ = (x∗i,j , i ≥ 1, j ∈
[M ]) ∈ S of the fluid limit x described by (10), i.e., if x(0) = x∗ then x(t) = x∗ for all
t ≥ 0. Furthermore, the fixed point x∗ is given by

x∗1,j =
(

1 ∧
(λ−

∑j−1
k=1 µkγk)+

µjγj

)
∀j ∈ [M ], x∗i,j = 0 ∀ i ≥ 2, j ∈ [M ]. (11)

(ii) (Global Stability): If λ < 1, then for any solution x of (10) with x(0) ∈ S converges
to x∗ component-wise, i.e., xi,j(t)→ x∗i,j as t→∞ for all i ≥ 1 and for all j ∈ [M ].
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(iii) (Interchange of Limits): Let λ < 1. Then, the sequence (x(N)(∞))N converges
weakly to x∗, i.e., x(N)(∞)⇒ x∗ as N →∞.

Note that the last statement of the theorem implies that the sequence of stationary
distributions indexed by the system size concentrates on the point x∗. Furthermore, the
first statement of the theorem implies that in state x∗ ∈ S the fraction of servers with two
or more jobs is zero. This is similar to the classical JSQ result except that in this case if
λ ∈ [

∑j−1
k=1 µkγk,

∑j
k=1 µkγk), then all servers in pools k ∈ [j − 1] have exactly one job and

in pool j a fraction (λ −
∑j−1

k=1 µkγk)/µjγj of servers have exactly one job; all remaining
servers are idle. Thus, the total (scaled) number of jobs in state x∗ is equal to z∗ as defined
by (3). Thus, by Little’s law, the mean response time of jobs T̄N under the SA-JSQ policy
converges to z∗/λ as N → ∞, which by Corollary 6 implies the asymptotic optimality of
the SA-JSQ policy.

5 Stability

To show that the process Q(N) is positive recurrent for all λ < 1, we use an appropriately
defined Lyapunov function and show that its drift along any trajectory of Q(N) is negative
outside a compact subset of the state space. For any function f : ZN+ → R, defined on the
state space of the process Q(N), the drift evaluated at a state Q ∈ ZN+ is given by

GQ(N)f(Q) =
∑
j∈[M ]

∑
k∈[Nγj ]

[r+,N
k,j (Q)(f(Q + e

(N)
k,j )− f(Q))

+ r−,Nk,j (Q)(f(Q− e
(N)
k,j )− f(Q))], (12)

where GQ(N) is the generator of Q(N); e
(N)
k,j denotes the N-dimensional unit vector with

one in the (k, j)th position; r±,Nk,j (Q) are the transition rates from the state Q to the states

Q ± e
(N)
k,j . Intuitively, the drift, defined above, represents the expected infinitesimal rate

at which f(Q(N)(t)) changes when Q(N)(t) = Q. Under the SA-JSQ policy, for each state
Q ∈ ZN+ and each k ∈ [Nγj ], j ∈ [M ] we have

r+,N
k,j (Q) =

{
Nλ

|Imin,j(Q)| , if j = j†(Q) and k ∈ Imin,j(Q)

0, otherwise
(13)

r−,Nk,j (Q) = µj1(Qk,j > 0), (14)

where Imin,j(Q) denotes the set of servers with the minimum queue length in pool j in state
Q and j†(Q) denotes the fastest pool that contains a server with the minimum queue length
in state Q. The upward transition rate r+,N

k,j (Q) is obtained by multiplying the total arrival

rate with the probability that the kth server in the jth pool receives an arrival. Similarly,
the downward transition rate r−,Nk,j (Q) is simply the service rate of the kth server in the jth

pool if the server is busy.
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Proof of Theorem 7: To prove Theorem 7, we compute the drift of the Lyapunov
function Φ : ZN+ → [0,∞) defined as follows

Φ(Q) =
∑
j∈[M ]

∑
k∈[Nγj ]

Q2
k,j . (15)

From (12) we have that for any Q ∈ ZN+

GQ(N)Φ(Q) =
∑
j∈[M ]

∑
k∈[Nγj ]

r+,N
k,j (Q)(2Qk,j + 1) + r−,Nk,j (Q)(−2Qk,j + 1)

= 2
∑
j∈[M ]

∑
k∈[Nγj ]

r+,N
k,j (Q)Qk,j +Nλ− 2

∑
j∈[M ]

∑
k∈[Nγj ]

r−,Nk,j (Q)Qk,j

+
∑
j∈[M ]

µjBj(Q), (16)

where Bj(Q) denotes the number of busy servers in pool j in state Q. In the second

equality, we have used the facts that
∑

j,k r
+,N
k,j (Q) = Nλ and

∑
k r
−,N
k,j (Q) = µjBj(Q)

which follow easily from (13) and (14), respectively. We further note from (13) and (14)
that

∑
k,j r

+,N
k,j (Q)Qk,j = NλQmin and

∑
k r
−,N
k (Q)Qk,j = µj

∑
kQk,j , where Qmin denotes

the minimum queue length in state Q. Hence, from (16) we have

GQ(N)Φ(Q) = 2NλQmin − 2
∑
j

µj
∑
k

Qk,j +Nλ+
∑
j

µjBj(Q) (17)

≤ −2(1− λ)
∑
j

µj
∑
k

Qk,j +Nλ+N. (18)

In the second line, we have used the facts that
∑

j µj
∑

kQk,j ≥
∑

j µj
∑

kQmin = NQmin

and Bj(Q) ≤ Nγj . Hence, it follows from the above that if λ < 1, then the drift is

strictly negative whenever
∑

j µj
∑

kQk,j >
N(1+λ)

1−λ , and is bounded by N(1 +λ) otherwise.
Thus, using the Foster-Lyapunov criterion for positive recurrence (see, e.g., Proposition D.3
of [32]) we conclude that Q(N) is positive recurrent. �

6 Uniform bounds and tightness

In this section, we first prove Theorem 8 which shows that the stationary queue length
distribution has a uniformly decaying tail for all system sizes. We then use this uniform
bound to establish the tightness of the sequence (x(N)(∞))N in S.

For homogeneous systems working under the classical JSQ policy, uniform bounds, sim-
ilar to (9) can be obtained by coupling the system with another similar system working
under a ‘worse performing’ policy such as the random policy in which the destination server
for each job is chosen uniformly at random from the set of all servers. A coupling similar to
the one described in [33] ensures that the total number of jobs in the first system is always
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smaller than that in the second system. However, in the heterogeneous setting, it is difficult
to construct a similar coupling since the arrival of a job to a given pool in one system does
not guarantee that the job will join the same pool in the other system.

To overcome this difficulty, we use a completely different approach based on analysing
the drift of an exponential Lyapunov function. In particular, we analyse the drift of the
Lyapunov function Ψθ : ZN+ → R+ defined as

Ψθ(Q) ,
∑
j∈[M ]

∑
k∈[Nγj ]

exp(θQk,j), (19)

for some θ > 0. They key idea we employ to prove Theorem 8 is the following: we show that
for some positive values of θ the steady-state expected drift E[GQ(N)Ψθ(Q

(N)(∞))] of Ψθ is
non-negative. From this, we obtain bounds on the weighted sum of moment generating func-

tions of the stationary queue lengths of different pools, i.e., on E[
∑

j∈[M ] µjγj exp(θQ
(N)
k,j (∞))]

for some positive θ. Using Chernoff bounds, we then obtain the bounds on the tail proba-
bilities as in Theorem 8.

Note that although we would normally expect the steady-state expected drift to satisfy

E[GQ(N)Ψθ(Q
(N)(∞))] = 0,

proving this requires showing E[Ψθ(Q
(N)(∞))] < ∞ which is only true for some θ > 0 if

all moments of the stationary queue lengths exist. However, the stability condition only
guarantees the existence of the first moment, but it does not guarantee the existence of
higher moments of the queue lengths. Thus, to prove Theorem 8, we use a weaker condition
given by Proposition 1 of [34] which states that for any non-negative function f : ZN+ → R+,
if supQ∈ZN+

GQ(N)f(Q) <∞ then E[GQ(N)f(Q(N)(∞))] ≥ 0. However, to use this result we

first need to show that the function Ψθ satisfies the above condition for some positive θ.
This is shown in the following lemma.

Lemma 12. For Ψθ as defined in (19) and θ ≥ 0, we have

GQ(N)Ψθ(Q) ≤ (1− e−θ)

(λeθ − 1)
∑
j∈[M ]

∑
k∈[Nγj ]

µj exp(θQk,j) +
∑
j∈[M ]

µjIj(Q)

 , (20)

where Ij(Q) denotes the number of idle servers in pool j ∈ [M ] in state Q. In particular,
for all θ ∈ [0,− log λ) we have

sup
Q∈ZN+

GQ(N)Ψθ(Q) <∞, (21)

and the steady-state drift of Ψθ satisfies

E[GQ(N)Ψθ(Q
(N)(∞))] ≥ 0. (22)
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Proof. From (12) and (19), we have that for any Q ∈ ZN+

GQ(N)Ψθ(Q) =
∑
j∈[M ]

∑
k∈[Nγj ]

[
r+,N
k,j (Q)

(
exp(θQk,j)(e

θ − 1)
)

+ r−,Nk,j (Q)
(

exp(θQk,j)(e
−θ − 1)

)]
. (23)

First, note that from (13), we can write∑
j∈[M ]

∑
k∈[Nγ

j†(Q)
]

r+,N
k,j (Q) exp(θQk,j)

=
∑

k∈[Nγ
j†(Q)

]

Nλ1
(
k ∈ Imin,j†(Q)(Q)

)
exp(θQk,j†(Q))

|Imin,j†(Q)(Q)|
,

= Nλ
∑

k∈[Nγ
j†(Q)

]

1

(
k ∈ Imin,j†(Q)(Q)

)
exp(θQmin)

|Imin,j†(Q)(Q)|
,

= Nλ exp(θQmin), (24)

where Qmin denotes the minimum queue length in state Q and the equality on the second
line follows from the fact that for k ∈ Imin,j†(Q)(Q) the queue length at the kth server of

type j†(Q) is Qmin. Furthermore, using (14), we can write∑
j∈[M ]

∑
k∈[Nγj ]

r−,Nk,j (Q) exp(θQk,j) =
∑
j∈[M ]

∑
k∈[Nγj ]

µj1(Qk,j > 0) exp(θQk,j),

=
∑
j∈[M ]

µj
∑

k∈[Nγj ]

(
1− 1(Qk,j = 0)

)
exp(θQk,j),

=
∑
j∈[M ]

µj
∑

k∈[Nγj ]

exp(θQk,j)−
∑
j

µjIj(Q). (25)

Hence, using (24) and (25), we can write

GQ(N)Ψθ(Q) = (eθ − 1)
[
Nλ exp(θQmin)− 1

eθ

∑
j∈[M ]

µj
∑

k∈[Nγj ]

exp(θQk,j)

+
1

eθ

∑
j

µjIj(Q)
]
. (26)

We further note that for any θ > 0 we have∑
j

µj
∑
k

exp(θQk,j) ≥
∑
j

µj
∑
k

exp(θQmin)

= N exp(θQmin)
∑
j

µjγj

= N exp(θQmin).
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Using this fact in (26), we have that for any θ ≥ 0

GQ(N)Ψθ(Q) ≤ (1− e−θ)

(λeθ − 1
) ∑
j∈[M ]

µj
∑

k∈[Nγj ]

exp(θQk,j) +
∑
j∈[M ]

µjIj(Q)

 .
This proves the first statement of the lemma. In order to prove the next statement, note
that for all θ ∈ [0,− log λ), we have λeθ − 1 < 0. Therefore, from (20) it follows that for all
θ ∈ [0,− log λ) we have

GQ(N)Ψθ(Q) ≤ (1− e−θ)
∑
j∈[M ]

µjIj(Q) ≤ (1− e−θ)N, (27)

where in the second inequality we have used the fact that Ij(Q) ≤ Nγj . Hence, for all
θ ∈ [0,− log λ) we have supQ∈ZN+

GQ(N)Ψθ(Q) < ∞ The last statement of the lemma now

follows from the application of Proposition 1 of [34]. �

Proof of Theorem 8: We are now equipped to prove Theorem 8 using the result of
the lemma above. Taking expectation of (20) with respect to the stationary distribution
and applying (22) we obtain

(
1− λeθ

)
E

∑
j

µj
∑
k

exp(θQ
(N)
k,j (∞))

 ≤ E

∑
j

µj(Nγj −Bj(Q(N)(∞)))


= N(1− λ), (28)

where Bj(Q) = Nγj − Ij(Q) denotes the number of busy servers in pool j in state Q. In
the last inequality we have used the fact that due to erogodicity of the process Q(N), the
steady state rate of departure from the system E[

∑
j µjBj(Q)] is equal to the arrival rate

Nλ. Hence, from (28) we have that for all θ ∈ [0,− log λ)

N(1− λ)

1− λeθ
≥ E

 ∑
j∈[M ]

µj
∑

k∈[Nγj ]

exp(θQ
(N)
k,j (∞))


= NE

 ∑
j∈[M ]

µjγj exp(θQ
(N)
k,j (∞))


≥ NE

[
µjγj exp(θQ

(N)
k,j (∞))

]
where the second equality follows from the exchangeability of the stationary measure. Thus,
for each j ∈ [M ] and θ ∈ [0,− log λ) we have

E
[
exp(θQ

(N)
k,j (∞))

]
≤ 1

µjγj

1− λ
1− λeθ

. (29)
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Now, for each positive θ we have

P(Q
(N)
k,j (∞) ≥ l) = P(exp(θQ

(N)
k,j (∞)) ≥ exp(θl)) ≤

E
[
exp (θQ

(N)
k,j (∞))

]
exp(θl)

.

The statement of the theorem now follows by using (29) on the above inequality. �
Using Theorem 8, we now show that the sequence of stationary states (x(N)(∞))N is

tight in the space S under the `1-norm. According to Prohorov’s theorem [35] the tightness
of this sequence will imply that the sequence has convergent subsequences with limits in S.
We shall show later that all convergent subsequences of (x(N)(∞))N have the same limit,
thereby establishing the convergence of the original sequence (x(N)(∞))N to the same limit.

Proposition 13. The sequence (x(N)(∞))N of stationary states is tight in S under the
`1-norm.

The necessary and sufficient criterion for tightness of the sequence (x(N)(∞))N in S
under the `1-norm is derived in Lemma 22 of E and is given by

lim
l→∞

lim sup
N→∞

P
(

max
j∈[M ]

∑
i≥l

x
(N)
i,j (∞) > ε

)
= 0, ∀ε > 0. (30)

The proof of Proposition 13 consists of verifying this condition using the uniform bounds
derived in Theorem 8. The formal proof is given in B.

7 Monotonicity

In this section, we prove the monotonicity property stated in Theorem 9. The key idea here
is to couple the arrivals and the departures of the two systems such that if the inequality
Q(N)(t−) ≤ Q̃(N)(t−) is satisfied just before the arrival or departure event at time t then it
is also satisfied after the event has taken place.

Proof of Theorem 9: We refer to the systems corresponding to the processes Q(N)

and Q̃(N) as the smaller and larger systems, respectively. Furthermore, in both systems,
we call the kth server in the jth pool as the server with index (k, j).

To couple the departures, we first generate a sequence of potential departure instants at
the points of a Poisson process with rate N . At each potential departure instant, a server
index (k, j) is chosen as follows: First, a server type j ∈ [M ] is chosen with probability
µjγj (recall that

∑
j∈[M ] µjγj = 1). Then, any server k ∈ [Nγj ] within the chosen type j

is selected uniformly at random. Once the server index (k, j) is chosen as described above,
the server with the index (k, j) is selected for departure in both systems. In each system,
an actual departure occurs from the selected server if the selected server is busy; otherwise,
no departure occurs from the selected server (this is why the term potential departure is
used to describe the event). Let (k, j) denote the index of the chosen server and D denote

the potential departure instant. Assume that the inequality Q
(N)
k,j (D−) ≤ Q̃

(N)
k,j (D−) holds
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just before the departure. Then, we must have Q
(N)
k,j (D) ≤ Q̃

(N)
k,j (D). This is because

Q
(N)
k,j (D−) > 0 only if Q̃

(N)
k,j (D−) > 0 in which case a departure occurs from both systems.

To couple the arrivals, we generate a common Poisson arrival stream with rate Nλ for
both systems. At each arrival instant A, the job assignment decision is made following the
SA-JSQ policy in each system independently of the other system, unless the pool containing
the destination server is the same for both systems. If j†(Q(N)(A−)) = j†(Q̃(N)(A−)) = j,
then we perform the following steps sequentially: (1) In the smaller system, the destination
server is chosen uniformly at random from the servers having the minimum queue length
in pool j. Let the index of this chosen server be (k, j). (2) We check if the server having
the same index (k, j) in the larger system has the minimum queue length. If so, then this
server is chosen as the destination server in the larger system. (3) Otherwise, the destination
server in the larger system is chosen uniformly at random (and independently of the smaller
system) from the servers having the minimum queue length in pool j in the larger system.
Let (ks, js) and (kl, jl) be the indices of the destination servers in the smaller and the larger

systems, respectively, at an arrival instant A. Let S = Q
(N)
ks,js

(A−) and L = Q̃
(N)
kl,jl

(A−).

Assume that Q(N)(t) ≤ Q̃(N)(t) holds for all t < A. Hence, S ≤ L. It is sufficient to show
that the inequality

Q(N)(t) ≤ Q̃(N)(t) holds at t = A. (31)

If (ks, js) = (kl, jl), then the inequality trivially holds at t = A. If (ks, js) 6= (kl, jl), then
we have the following possibilities:

1. If js < jl: In the larger system, the incoming arrival joins the server with index (kl, jl)
and there is no arrival to the server with index (kl, jl) in smaller system. Hence, after
the arrival we have

Q
(N)
kl,jl

(A) = Q
(N)
kl,jl

(A−) < Q̃
(N)
kl,jl

(A−) + 1 = Q̃
(N)
kl,jl

(A).

Thus, for (31) to be violated we must have Q
(N)
ks,js

(A−) = Q̃
(N)
ks,js

(A−) = S. But since

S ≤ L, we must have Q̃
(N)
ks,js

(A−) ≤ Q̃
(N)
kl,jl

(A−) which contradicts with the fact that
the server with index (kl, jl) is the destination server in the larger system, i.e., it is the
fastest server with the minimum queue length in the larger system, because a faster
server of type js(< jl) has smaller queue length. Hence, (31) must hold in this case.

2. If js = jl = j, ks 6= kl: Similarly as before, the inequality Q
(N)
kl,j

(A) < Q̃
(N)
kl,j

(A)

holds after the arrival. For violation of (31), we therefore must have Q
(N)
ks,j

(A−) =

Q̃
(N)
ks,j

(A−) = S before the arrival. Since the arrival is assigned to the server with index

(kl, j) in the larger system, we must have L = Q̃
(N)
kl,j

(A−) ≤ Q̃(N)
ks,j

(A−) = S. Hence, we

must have S = L. Also, since S = Q
(N)
ks,j

(A−) ≤ Q(N)
kl,j

(A−) ≤ Q̃(N)
kl,j

(A−) = L, we must

have Q
(N)
kl,j

(A−) = S = L. Thus, we have S = Q
(N)
ks,j

(A−) = Q
(N)
kl,j

(A−) = Q̃
(N)
ks,j

(A−) =

Q̃
(N)
kl,j

(A−) = L. In this case, our coupling rule dictates that if we have chosen the
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index (ks, j) as the destination server for the smaller system, then we must also choose
the same indexed server in the larger system as the destination server. This leads to
a contradiction because ks 6= kl. Hence, (31) must hold in this case.

3. If js > jl: Similar to the first two cases, the inequality Q
(N)
kl,jl

(A) < Q̃
(N)
kl,jl

(A) holds.
For violation of (31), we must have

Q
(N)
ks,js

(A−) = Q̃
(N)
ks,js

(A−) = S

just before the arrival. Since L = Q̃
(N)
kl,jl

(A−) ≤ Q̃
(N)
ks,js

(A−) = S, this implies S = L.

Furthermore, since S = Q
(N)
ks,js

(A−) ≤ Q(N)
kl,jl

(A−) ≤ Q̃(N)
kl,jl

(A−) = L, we must have

S = Q
(N)
ks,js

(A−) = Q
(N)
kl,jl

(A−) = Q̃
(N)
ks,js

(A−) = Q̃
(N)
kl,jl

(A−) = L.

Hence, there must be a tie between the servers of indices (ks, js) and (kl, jl) in both
systems. Therefore, according to the SA-JSQ policy the incoming arrival should be
assigned to the server having index (il, jl) in smaller system because jl < js. This
leads to the contradiction because job has been assigned to the server having index
(is, js) in the smaller system. Hence, (31) must hold in this case.

This completes the proof of the theorem. �

8 Process convergence

In this section, we outline the proof of Theorem 10 using the martingale approach of [28]
and the time-scale separation technique of [14]. Here, we discuss the main steps of the proof
and characterise the fluid limit process x. The proof consists of the following three steps

Step 1: Martingale representation: The first step is to express the evolution of
each component of the process x(N) in terms of suitably defined martingales and a process
V(N) which evolves at a faster time scale than the components of x(N). In particular,

the process V(N) = (V(N)(t) = (V
(N)
i,j (t), i ≥ 1, j ∈ [M ]), t ≥ 0) is defined as V

(N)
i,j (t) =

Nγj −Nγjx(N)
i,j (t). Thus, V

(N)
i,j (t) counts the number of type j servers with at most i − 1

jobs at time t. It is easy to see that V(N) is a Markov process defined on E = (Z̄∞+ )M with
transition rates

V(N) →

{
V(N) + ei,j , at rate Nγjµj(x

(N)
i,j − x

(N)
i+1,j)

V(N) − ei,j , at rate Nλ1
(
V(N) ∈ Ri,j

) , i ≥ 1, j ∈ [M ], (32)

where Ri,j for all i ≥ 1 and j ∈ [M ] is defined as

Ri,j =
{

v = (vi,j) ∈ E : vi,k = 0 ∀k ∈ [j − 1], vi−1,l = 0 ∀l ∈ {j + 1, . . . ,M} ,

0 = vi−1,j < vi,j ,
}
. (33)
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The set Ri,j represents the set of states where the minimum queue length is at least i for
the pools in {1, . . . , j − 1}, exactly i − 1 for pool j, and at least i − 1 for the pools in
{j + 1, . . . ,M}. Thus, when V (N)(t) ∈ Ri,j , an incoming job under the SA-JSQ scheme will

be assigned to a type j server with queue length i − 1. We can therefore express x
(N)
i,j for

each i ≥ 1 and j ∈ [M ] as follows

x
(N)
i,j (t) = x

(N)
i,j (0) +

λ

γj

∫ t

0
1{V(N)(s)∈Ri,j}ds− µj

∫ t

0
(x

(N)
i,j (s)− x(N)

i+1,j(s))ds

+
1

Nγj
(M

(A,N)
i,j (t)−M (D,N)

i,j (t)), (34)

where M
(A,N)
i,j and M

(D,N)
i,j are martingales corresponding to the arrivals and departures at

the component x
(N)
i,j . The precise definitions of these martingales in terms of the counting

processes are given in are given in C. It is important to note the difference in the time-scale
for the processes x(N) and V(N). In a small interval [t, t+ δ], the process V(N) experiences
O(Nδ) transitions whereas the x(N) changes only by O(δ). Hence, for large N the process
V(N) reaches its steady-state while x(N) remains almost constant in this interval. This
separation of the two time-scales becomes crucial in characterising the limit of the indicator
function 1

(
V(N)(s) ∈ Ri,j

)
appearing in (34).

Since the time-scales of V(N) and x(N) are different, they have different limits asN →∞.
To treat them as a single object and characterise its limit, we define the joint process
(x(N), β(N)) where β(N) is a random measure defined on [0,∞)×E as

β(N)(A1 ×A2) =

∫
A1

1

(
V (N)(s) ∈ A2

)
ds.

for any A1 ∈ B([0,∞)) and A2 ∈ B(E). Hence, (34) can be rewritten in terms of β(N) for
i ≥ 1 and j ∈ [M ] as follows

x
(N)
i,j (t) = x

(N)
i,j (0) +

λ

γj
β(N)([0, t]×Ri,j)− µj

∫ t

0
(x

(N)
i,j (s)− x(N)

i+1,j(s))ds

+
1

Nγj
(M

(A,N)
i,j (t)−M (D,N)

i,j (t)). (35)

Step 2: Relative compactness: The second step in proving Theorem 10 consists of
showing that the sequence of processes ((x(N), β(N)))N is relatively compact inDS [0,∞)×L0

where L0 is defined as the space of measures on [0,∞)×E satisfying β([0, t]×E) = t for each
t ≥ 0 and each β ∈ L0. We equip L0 with the topology of weak convergence of measures
restricted to [0, t] × E for each t. In the next lemma, we show that ((x(N), β(N)))N is a
relatively compact sequence in DS [0,∞)× L0 and characterise the limit of any convergent
subsequence.
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Lemma 14. If xN (0)⇒ x(0) ∈ S as N →∞, then the sequence ((x(N), β(N)))N is relatively
compact in DS [0,∞) × L0 and the limit (x, β) of any convergent subsequence satisfies for
all t ≥ 0, i ≥ 1, j ∈ [M ]

xi,j(t) = xi,j(0) +
λ

γj
β([0, t]×Ri,j)− µj

∫ t

0
(xi,j(s)− xi+1,j(s))ds. (36)

The proof of Lemma 14 consists of verifying standard conditions of relative compactness
in DS [0,∞) given in Proposition 3.2.4 of [36]. This is achieved using an approach similar
to [7]. The details are given in F.

Step 3: Characterisation of the limit: The final step in proving Theorem 10 is the
characterisation the limit β([0, t], Ri,j) appearing in (36). To do so, we define for any x ∈ S
a Markov process Vx on E with transition rates

Vx →

{
Vx + ei,j , at rate γjµj(xi,j − xi+1,j)

Vx − ei,j , at rate λ1(Vx ∈ Ri,j)
, i ≥ 1, j ∈ [M ]. (37)

From Lemma 2 and Theorem 3 of [14], it follows that the limit β([0, t]×Ri,j) satisfies

β([0, t]×Ri,j) =

∫ t

0
πx(s)(Ri,j)ds, i ≥ 1, j ∈ [M ],

where πx is a stationary measure of the process Vx and πx satisfies the following for all
j ∈ [M ]

πx({V ∈ E : Vi,j =∞}) = 1, if xi,j < 1. (38)

Hence, we can write (36) in terms of πx as

xi,j(t) = xi,j(0) +
λ

γj

∫ t

0
πx(s)(Ri,j)ds− µj

∫ t

0
(xi,j(s)− xi+1,j(s))ds, i > 1, j ∈ [M ]. (39)

We set pi−1,j(x) = πx(Ri,j). Hence, to complete the proof of Theorem 10, it remains to
show that x uniquely determines the stationary measure πx and it satisfies the properties
P1-P5 listed in Theorem 10.

First note from (33) that the sets Ri,j for i ≥ 1, j ∈ [M ] form a partition of E. Since πx is
a probability measure on E, it follows that

∑
i≥1,j∈[M ] pi−1,j(x) =

∑
i≥1,j∈[M ] πx(Ri,j) = 1.

This proves P1. Since ‖x‖1 <∞ for each x ∈ S, there exists lj(x) = min{i : xi+1,j < 1} for
all j ∈ [M ] and x ∈ S. Observe that for each j ∈ [M ] we have xi,j = 1 for all 0 ≤ i ≤ lj(x),
and xi,j < 1 for all i ≥ lj(x) + 1. Therefore, from (38), it follows that

πx

(
{Vlj(x)+1,j = Vlj(x)+2,j = · · · =∞ : ∀j ∈ [M ]}

)
= 1. (40)

Hence, from the definition of the set Ri,j in (33) it follows that pi−1,j(x) = πx(Ri,j) = 0 for
all i ≥ lj(x) + 2 and j ∈ [M ]. This proves the property P2.

23



To prove P3, we note that if xi,j = 1 for some i ≥ 1, j ∈ [M ], then dxi,j/dt ≤ 0. Using
this fact in (39) we conclude that λπx(Ri,j) ≤ µjγj(xi,j − xi+1,j) for all (i, j) for which
xi,j = 1. The definition lj(x) implies if lj(x) > 0 for some x and some j, then that xi,j = 1
for all i ≤ lj(x). Hence, pi−1,j(x) = πx(Ri,j) = 0 for i ∈ [lj(x) − 1]. This shows P3. If
lj(x) > 0 for some j ∈ [M ], then it can be verified using property P3 and the definition of
Ri,j that

πx

(
{V1,j = V2,j = · · · = Vlj(x)−1,j = 0}

)
= 1. (41)

Now suppose l1(x) = 0. From (33), it follows that p0,1(x) = πx(R1,1) = πx({0 <
V1,1}) = 1 since πx({V1,1 = ∞}) = 1 according to (38). This proves the P4. The proof of
P5 follows similarly using (33), (38), and P2.

Hence, the only part left to prove Theorem 10 is to show that πx is uniquely determined
by x for all x ∈ S. To show this, it is sufficient to prove that the stationary distribution
of (Vlj(x),j : j ∈ [M ]) is uniquely determined by x because the stationary distribution of
all other components of Vx has already been uniquely characterised by (40) and (41). The
transition rates of the individual components of the chain (Vl1(x),1, Vl2(x),2, . . . , VlM (x),M ) are
given by

Vlk(x),k →

{
Vlk(x),k + 1, at rate γkµk(xlk(x),k − xlk(x)+1,k)

Vlk(x),k − 1, at rate λ1
(
V ∈ Rlk(x),k

) , ∀k ∈ [M ]. (42)

Note that the Markov chain given by (42) is defined on Z̄M+ and has 2M communicating
classes since each component of the chain can be either finite or infinite. To show the
uniqueness πx we need to show that πx is concentrated only on a single communicating
class among these 2M classes. This is equivalent to showing πx(Vlj(x),j = ∞) = 0 or 1 for
each j ∈ [M ]. To show the above, we use the result of the next lemma which characterises
the stationary distribution of a finite dimensional Markov chain whose transition rates have
a form similar to (42).

Lemma 15. For K ∈ N, let U = (U(t) = (Uj(t), j ∈ [K]) ∈ ZK+ : t ≥ 0) be a Markov chain
with transition rates

U→

{
U + ei, at rate νi

U− ei, at rate λ1(0 = U1 = · · · = Ui−1 < Ui)
,∀i ∈ [K], (43)

where ei denotes the K-dimensional unit vector with entry 1 at ith position. The Markov
chain U is positive recurrent if and only if

∑
i∈[K]

νi
λ < 1. Furthermore, if π denotes the

stationary distribution of the chain U, then we have

π {0 = U1 = · · · = Ui−1 < Ui} =
νi
λ
, ∀i ∈ [K]. (44)

Using Lemma 15, we show that πx(Vlj(x),j =∞) = 0 or 1 for each j ∈ [M ] in I.
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9 Fixed Point Characterisation

In this section, we prove Theorem 11 which characterises the fixed point x∗ of the fluid
limit x and shows that the fixed point is globally attractive. For the proof of uniqueness
of the fixed point, we explicitly use properties P1-P5 listed in Theorem 10. Moreover, to
prove global stability we use the monotonicity of the process x(N) proved in Theorem 9.

Proof of Theorem 11.(i): From (10) it follows that for x∗ ∈ S to be a fixed point of
the fluid limit x, we must have

λ

γj
pi−1,j(x

∗) = µj(x
∗
i,j − x∗i+1,j), i > 1, j ∈ [M ]. (45)

Summing (45) over all i ≥ 1 and for all j ∈ [M ], we get λ
∑

i≥1

∑
j∈[M ] pi−1,j(x

∗) =∑
j∈[M ] µjγjx

∗
1,j . Using P1, this implies that

λ =
∑
j∈[M ]

µjγjx
∗
1,j . (46)

Thus, x∗1,j = 1 for all j ∈ [M ] is not possible because the stability condition requires λ < 1.
Hence, we must have x∗1,j < 1 for at least one j ∈ [M ]. In the following, we consider different
cases based on the interval in which λ belongs

If 0 < λ < µ1γ1: For λ ∈ (0, µ1γ1), we show that x∗1,1 = λ/µ1γ1 and x∗i,j = 0 for all
(i, j) 6= (1, 1). Suppose x∗1,1 < 1, this means that l1(x∗) = 0. Therefore, from property
P4, we have p0,1(x∗) = 1. Hence, summing (45) over all i ≥ 1 and for j = 1, we get
x∗1,1 = λ/µ1γ1. Similarly, summing (45) for all i ≥ m and for j = 1, we get x∗m,1 = 0 for
any m ≥ 2. By similar line of arguments as above, we can easily verify that x∗i,j = 0 for all
i ≥ 1 and for all j ∈ {2, . . . ,M}. Now, suppose x∗1,1 = 1. Then from (46), with x∗1,1 = 1

implies that
∑M

j=2 µjγjx
∗
1,j = λ− µ1γ1 < 0, which leads to a contradiction as x∗ ∈ S.

If
∑j−1

i=1 µiγi ≤ λ <
∑j

i=1 µiγi, for j ∈ {2, . . . ,M}: For this case we show that x∗1,k = 1

for all k ∈ [j−1], x∗1,j = (λ−
∑j−1

i=1 µiγi)/µjγj , x1,k = 0 for all k ≥ j+1, and x∗l,k = 0 for all
k ∈ [M ] and for all l ≥ 2. First, we use induction to prove that x∗1,k = 1 for all k ∈ [j − 1].
Suppose x∗1,1 < 1. This means that l1(x∗) = 0. Therefore, using P4 and summing (45)
for all i ≥ 1 and j = 1, we get x∗1,1 = λ/µ1γ1 ≥ 1, which contradicts the assumption that
x∗1,1 < 1. Therefore, x∗1,1 = 1 and l1(x) ≥ 1. This proves base case for the induction.
Now assume x∗1,k = 1 for all k ∈ [j − 2], which implies that lk(x

∗) ≥ 1 for all k ∈ [j − 2].
Using the assumption that x∗1,k = 1 for all k ∈ [j − 2], we show that x∗1,j−1 = 1. Suppose
x∗1,j−1 < 1, which implies that lj−1(x∗) = 0. Hence, using property P5 and using (45) we

get λ
γj−1µj−1

∑
i≥1 pi−1,j−1(x∗) = x1,j−1 = λ

γj−1µj−1
≥ 1, which contradicts the assumption

that x∗1,j−1 < 1. Therefore, we must have x∗1,j−1 = 1 and lj−1(x∗) ≥ 1. Next, we prove that

x∗1,j = (λ −
∑j−1

i=1 µiγi)/µjγj . Suppose lj(x
∗) ≥ 1. This implies that x∗1,j = 1. Therefore,

using (46), we have
∑M

i=j+1 γiµix
∗
1,i = λ −

∑j
i=1 γiµi < 0, which is not possible as x∗ ∈ S.

Hence, we have lj(x
∗) = 0. So far we have proved that lk(x

∗) ≥ 1 for all k ∈ [j−1], lj(x
∗) = 0
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and lk(x
∗) ≥ 0 for all k ≥ j + 1. Therefore, using property P5 and equation (45), we can

easily get x∗1,k = 0 for all k ≥ j + 1. Now using (46), we obtain x∗1,j = (λ−
∑j−1

i=1 µiγi)µjγj .
Similarly, using property P5 and (45), we can easily verify that x∗l,k = 0 for all k ∈ [M ] and
for all l ≥ 2. �

The proofs of global stability and limit interchange are given in H.

10 Optimality of the Resource Pooled System

In this section, we prove Theorem 5. We use the following lemma which establishes that
when both M′N and MN have the same total number of jobs i, the rate of departure

qZ
(N)

(i, i− 1) inM′N is higher than the rate of departure inMN . Note that the departure

rate in MN at any time t ≥ 0 under a policy Π is
∑

j∈[M ] µjX
(N,Π)
1,j .

Lemma 16. For any stationary policy Π, if Z(N)(t) = R(N,Π)(t) = i for some t ≥ 0, then

∑
j∈[M ]

µjX
(N,Π)
1,j (t) ≤ qZ(N)

(i, i− 1) =

M∑
j=1

µj

(i− j−1∑
i=1

Nγi

)
+

∧Nγj

 . (47)

Proof of Theorem 5: We construct a coupling between the processes Z(N) and X(N,Π)

such that if Z(N)(0) ≤ R(N,Π)(0) then Z(N)(t) ≤ R(N,Π)(t) for all t ≥ 0. Let the current
instant be t and assume that Z(N)(t) ≤ R(N,Π)(t). We shall describe a way of generating the
next event and the time for the next event s such that Z(N)(s) ≤ R(N,Π)(s) is maintained
right after the event has taken place.

We generate the time until the next potential arrival for both systems as an exponentially
distributed random variable with mean Nλ. Hence, for both systems, arrivals occur at the
same instants.

If Z(N)(t) < R(N,Π)(t) then the time until the next potential departure is generated inde-

pendently for each system as exponential random variables with means qZ
(N)

(Z(N)(t), Z(N)(t)−
1) and

∑
j µjX

(N,Π)
1,j (t) for systems M′N and MN , respectively. If Z(N)(t) = R(N,Π)(t) = i,

then we generate the time D until the next potential departure for MN as an exponential

random variable with mean
∑

j µjX
(N,Π)
1,j (t). We also generate another independent expo-

nential random variable C with mean qZ
(N)

(i, i − 1) −
∑

j µjX
(N,Π)
1,j (t) ≥ 0. Note that we

can do so by Lemma 16. Now we generate the time until the next potential departure for
M′N as D′ = min(D,C). Therefore, D′ ≤ D and D′ is exponentially distributed with mean

qZ
(N)

(i, i− 1).
Once all the potential arrival and departures are generated as described above, the next

true event is taken to be the potential event which occurs the earliest; all other potential
events are discarded (which is possible because of the memoryless property of the exponen-
tial distribution). Due to the construction above, it is clear that Z(N)(s) ≤ R(N,Π)(s) is
maintained right after the next true event. This completes the proof. �

26



(a) Mean response time as a function of nor-
malized arrival rate λ with N = 1000 servers.
We set µ1 = 4µ2 = 20/8, γ1 = 1 − γ2 = 1/5,
and d1 = d2 = 2.

(b) d(x(N)(∞),x∗) =
∑
i,j |x

(N)
i,j (∞)−x∗i,j | as a

function of system size N . We set µ1 = 2µ2 =
4/3, γ1 = 1− γ2 = 1/2.

Figure 3: Simulation plots

11 Numerical Studies

In this section, we present simulation results for different load balancing schemes. For all
simulations, we have assumed M = 2 and taken the number of arrivals to be 3 × 105. In
Figure 3(a), we have plotted the mean response time of jobs for different schemes as a
function of the normalised arrival rate λ. For performance comparison we also simulated
a scheme proposed in [37] and referred to as the SQ(d1, d2) scheme. For the SQ(d1, d2)
scheme, upon job arrival dj servers of type j are sampled uniformly at random from the
set of Nγj servers for j ∈ [2]. The job is then sent to the server with the minimum
queue length among the sampled servers. Ties within different types servers are broken
by selecting the type with the maximum rate. We see that with SA-JSQ we obtain upto
60% reduction in average response time of jobs compared to classical JSQ. As expected,
the performance of SQ(2, 2) lies in between classical JSQ and SA-JSQ. To investigate the
convergence rate to the fixed point of the fluid limit, in Figure 3(b), we have plotted the

distance d(x(N)(∞),x∗) =
∑

i,j |x
(N)
i,j (∞) − x∗i,j | as a function of N for λ ∈ {0.5, 0.7, 0.9}.

We note that for large values of λ the distance is higher than that for smaller values of λ.

12 Conclusion and Future Works

In this paper, we have investigated speed-aware JSQ-type load balancing schemes for het-
erogeneous systems. We obtained a lower bound on the mean response time of jobs under
any load balancing scheme by comparing the system with an appropriate resource pooled
system. We showed that the lower bound is achieved by the SA-JSQ scheme in the fluid
limit, thereby establishing the asymptotic optimality of SA-JSQ. Moreover, in establishing
the fluid limit of SA-JSQ, we have proved uniform bounds on the stationary measures of
queue lengths which are required to prove tightness. Using coupling, we have also shown
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that any stationary load balancing scheme in a system of parallel queues stochastically dom-
inates the JFFS scheme in the resource pooled system. There are many interesting avenues
for future work. Characterising the performance of the SA-JSQ scheme in the Halfin-Whitt
regime remains as an open problem. It is also interesting to analytically characterise the
distance between x(N)(∞) and the fixed point x∗ as a function of the system size N .

References

[1] W. Winston, “Optimality of the shortest line discipline,” Journal of applied probability,
vol. 14, no. 1, pp. 181–189, 1977.

[2] R. R. Weber, “On the optimal assignment of customers to parallel servers,” Journal of
Applied Probability, vol. 15, no. 2, pp. 406–413, 1978.

[3] P. K. Johri, “Optimality of the shortest line discipline with state-dependent service
rates,” European Journal of Operational Research, vol. 41, no. 2, pp. 157–161, 1989.

[4] A. Hordijk and G. Koole, “On the optimality of the generalized shortest queue policy,”
Probability in the Engineering and Informational Sciences, vol. 4, no. 4, pp. 477–487,
1990.

[5] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg, “Join-idle-queue:
A novel load balancing algorithm for dynamically scalable web services,” Performance
Evaluation, vol. 68, no. 11, pp. 1056–1071, 2011.

[6] D. Gamarnik, J. N. Tsitsiklis, and M. Zubeldia, “Delay, memory, and messaging trade-
offs in distributed service systems,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 44, no. 1, pp. 1–12, 2016.

[7] D. Mukherjee, S. C. Borst, J. S. Van Leeuwaarden, and P. A. Whiting, “Universality of
power-of-d load balancing in many-server systems,” Stochastic Systems, vol. 8, no. 4,
pp. 265–292, 2018.

[8] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve or die:
High-availability design principles drawn from googles network infrastructure,” in
Proceedings of the 2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p. 58–72. [Online].
Available: https://doi.org/10.1145/2934872.2934891

[9] J. Duato, A. J. Peña, F. Silla, R. Mayo, and E. S. Quintana-Ort́ı, “rCUDA: Reducing
the number of gpu-based accelerators in high performance clusters,” in 2010 Interna-
tional Conference on High Performance Computing Simulation, 2010, pp. 224–231.

[10] M. Huang, D. Wu, C. H. Yu, Z. Fang, M. Interlandi, T. Condie, and J. Cong,
“Programming and runtime support to blaze fpga accelerator deployment at datacenter

28

https://doi.org/10.1145/2934872.2934891


scale,” in Proceedings of the Seventh ACM Symposium on Cloud Computing, ser.
SoCC ’16. New York, NY, USA: Association for Computing Machinery, 2016, p.
456–469. [Online]. Available: https://doi.org/10.1145/2987550.2987569

[11] K. Gardner, J. A. Jaleel, A. Wickeham, and S. Doroudi, “Scalable load balancing in
the presence of heterogeneous servers,” Performance Evaluation, vol. 145, p. 102151,
2021.

[12] A. Mukhopadhyay and R. R. Mazumdar, “Analysis of randomized join-the-shortest-
queue (jsq) schemes in large heterogeneous processor-sharing systems,” IEEE Trans-
actions on Control of Network Systems, vol. 3, no. 2, pp. 116–126, 2015.

[13] M. Bramson, Y. Lu, and B. Prabhakar, “Asymptotic independence of queues under
randomized load balancing,” Queueing Systems, vol. 71, no. 3, pp. 247–292, 2012.

[14] P. Hunt and T. Kurtz, “Large loss networks,” Stochastic Processes and their Applica-
tions, vol. 53, no. 2, pp. 363–378, 1994.

[15] M. van der Boor, S. C. Borst, J. S. van Leeuwaarden, and D. Mukherjee, “Scalable
load balancing in networked systems: A survey of recent advances,” arXiv preprint
arXiv:1806.05444, 2018.

[16] P. Eschenfeldt and D. Gamarnik, “Join the shortest queue with many servers. the
heavy-traffic asymptotics,” Mathematics of Operations Research, vol. 43, no. 3, pp.
867–886, 2018.

[17] A. Braverman, “Steady-state analysis of the join-the-shortest-queue model in the
halfin–whitt regime,” Mathematics of Operations Research, vol. 45, no. 3, pp. 1069–
1103, 2020.

[18] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich, “Queueing system with
selection of the shortest of two queues: An asymptotic approach,” Problemy Peredachi
Informatsii, vol. 32, no. 1, pp. 20–34, 1996.

[19] M. Mitzenmacher, “The power of two choices in randomized load balancing,” PhD
thesis, University of California at Berkeley, 1996.

[20] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg, “Join-idle-
queue: A novel load balancing algorithm for dynamically scalable web services,”
Perform. Eval., vol. 68, no. 11, p. 1056–1071, nov 2011. [Online]. Available:
https://doi.org/10.1016/j.peva.2011.07.015

[21] X. Zhou, F. Wu, J. Tan, Y. Sun, and N. Shroff, “Designing low-complexity
heavy-traffic delay-optimal load balancing schemes: Theory to algorithms,” Proc.
ACM Meas. Anal. Comput. Syst., vol. 1, no. 2, dec 2017. [Online]. Available:
https://doi.org/10.1145/3154498

29

https://doi.org/10.1145/2987550.2987569
https://doi.org/10.1016/j.peva.2011.07.015
https://doi.org/10.1145/3154498


[22] A. Izagirre and A. M. Makowski, “Light traffic performance under the power of
two load balancing strategy: The case of server heterogeneity,” SIGMETRICS
Perform. Eval. Rev., vol. 42, no. 2, p. 18–20, sep 2014. [Online]. Available:
https://doi.org/10.1145/2667522.2667527

[23] A. Mukhopadhyay, A. Karthik, and R. R. Mazumdar, “Randomized assignment of jobs
to servers in heterogeneous clusters of shared servers for low delay,” Stochastic Systems,
vol. 6, no. 1, pp. 90–131, 2016. [Online]. Available: https://doi.org/10.1287/15-SSY179

[24] A. Gandhi, X. Zhang, and N. Mittal, “Halo: heterogeneity-aware load balancing,” in
2015 IEEE 23rd International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems. IEEE, 2015, pp. 242–251.

[25] A. L. Stolyar, “Pull-based load distribution in large-scale heterogeneous service sys-
tems,” Queueing Systems, vol. 80, no. 4, pp. 341–361, 2015.

[26] D. Rutten and D. Mukherjee, “Load balancing under strict compatibility constraints,”
ser. SIGMETRICS ’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 51–52. [Online]. Available: https://doi.org/10.1145/3410220.3456275

[27] W. Weng, X. Zhou, and R. Srikant, “Optimal load balancing with locality constraints,”
Proc. ACM Meas. Anal. Comput. Syst., vol. 4, no. 3, nov 2020. [Online]. Available:
https://doi.org/10.1145/3428330

[28] W. Whitt et al., “Proofs of the martingale FCLT,” Probability Surveys, vol. 4, pp.
268–302, 2007.

[29] N. Gast and B. Gaujal, “Markov chains with discontinuous drifts have differential
inclusion limits,” Performance Evaluation, vol. 69, no. 12, pp. 623–642, 2012.

[30] U. Ayesta, M. Erausquin, M. Jonckheere, and I. M. Verloop, “Scheduling in a ran-
dom environment: Stability and asymptotic optimality,” IEEE/ACM Transactions on
networking, vol. 21, no. 1, pp. 258–271, 2012.

[31] H. Song, A. L. Tucker, and K. L. Murrell, “The diseconomies of queue pooling: An
empirical investigation of emergency department length of stay,” Management Science,
vol. 61, no. 12, pp. 3032–3053, 2015.

[32] F. Kelly and E. Yudovina, Stochastic Networks. Cambridge University Press, 2014.

[33] S. R. Turner, “The effect of increasing routing choice on resource pooling,” Probability
in the Engineering and Informational Sciences, vol. 12, no. 1, pp. 109–124, 1998.

[34] P. W. Glynn and A. Zeevi, “Bounding stationary expectations of markov processes,”
in Markov processes and related topics: a Festschrift for Thomas G. Kurtz. Institute
of Mathematical Statistics, 2008, pp. 195–214.

30

https://doi.org/10.1145/2667522.2667527
https://doi.org/10.1287/15-SSY179
https://doi.org/10.1145/3410220.3456275
https://doi.org/10.1145/3428330


[35] P. Billingsley, Convergence of probability measures. John Wiley & Sons, 2013.

[36] S. N. Ethier and T. G. Kurtz, Markov processes: characterization and convergence.
John Wiley & Sons, 2009, vol. 282.

[37] A. Mukhopadhyay, A. Karthik, and R. R. Mazumdar, “Randomized assignment of jobs
to servers in heterogeneous clusters of shared servers for low delay,” Stochastic Systems,
vol. 6, no. 1, pp. 90–131, 2016.

[38] G. Pang, R. Talreja, W. Whitt et al., “Martingale proofs of many-server heavy-traffic
limits for markovian queues,” Probability Surveys, vol. 4, pp. 193–267, 2007.

A Resource Pooled System under JFFS: Proofs of Proposi-
tion 3 and Proposition 4

In this section, we analyse the resource pooled systemM′N as described in Section 3 under
the JFFS policy and prove the results stated in Propositions 3 and 4.

A.1 Proof of Proposition 3

To prove the proposition, we construct a coupling between the resource pooled systemM′N
and an M/M/1/N system with Poisson arrival rate Nλ and N identical serves, each with
rate 1. Let Y (N)(t) denote the number of jobs in the M/M/1/N system at time t ≥ 0. The

transition rates qY
(N)

(k, l), for k, l ∈ Z+, of the chain Y (N) = (Y (N)(t), t ≥ 0) are given by

qY
(N)

(k, l) =


Nλ, if l = k + 1,

k ∧N, if l = k − 1,

0, otherwise.

(48)

From the standard results on M/M/1/N queues, it follows that the process Y (N) = (Y (N)(t), t ≥
0) is positive recurrent for λ < 1. Furthermore, if Y (N)(∞) denotes the stationary number
of jobs in the system, then from the standard results on M/M/1/N queues we have

E
[
Y (N)(∞)

]
N

= λ+
λ

1− λ
P
[
Y (N)(∞) ≥ N

]
N

≤ λ+
λ

1− λ
. (49)

Hence, to prove the proposition it suffices to construct a coupling between Z(N) and Y (N)

such that Z(N)(0) ≤ Y (N)(0) implies Z(N)(t) ≤ Y (N)(t) for all t ≥ 0. First, note that for
each Markov chain, the transition rate out of any state is bounded above by the constant
B = N(λ+ 1). Hence, we can generate both Z(N) and Y (N) processes by constructing the
corresponding uniformized discrete-time Markov chains Z̃(N) = (Z̃(N)(m),m ∈ Z+) and
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Ỹ (N) = (Ỹ (N)(m),m ∈ Z+). The one-step transition probabilities of these two chains from
state k to state l are respectively given by

pZ̃
(N)

(k, l) =

{
qZ

(N)
(k,l)

B , for l 6= k

1−
∑

l′ 6=k p
Z̃(N)

(k, l′), for l = k,

pỸ
(N)

(k, l) =

{
qY

(N)
(k,l)

B , for j 6= i

1−
∑

l′ 6=k p
Ỹ (N)

(k, l′), for l = k.

where qZ
(N)

and qY
(N)

denote the transition rates for Z(N) and Y (N), respectively. To
construct the continuous-time sample paths of the original chains Z(N) and Y (N) on the
same probability space, we generate a common Poisson process with rate B and embed the
time-steps of both Z̃(N) and Ỹ (N) into the points of the Poisson process.

It is easy to see from the transition rates that pZ̃
(N)

(k, k − 1) ≥ pỸ
(N)

(k, k − 1) for all
k ∈ Z+. We let the chains Z̃(N) and Ỹ (N) evolve independently of each other except at
instants when they become equal. If Z̃(N)(m) = Ỹ (N)(m) = k ∈ Z+ for some time step

m ∈ Z+, we first construct Ỹ (N)(m + 1) according to the transition probabilities pỸ
(N)

.
Then we generate Z̃(N)(m+ 1) as follows:

Z̃(N)(m+ 1) =

{
Ỹ (N)(m+ 1), if Ỹ (N)(m+ 1) ∈ {i+ 1, i− 1}
Ỹ (N)(m)− θ, otherwise ,

where θ ∈ {0, 1} is a Bernoulli random variable with

P[θ = 1|Z̃(N)(m) = Ỹ (N)(m) = k] =
pZ̃

(N)
(k, k − 1)− pỸ (N)

(k, k − 1)

pỸ
(N)

(k, k)
≥ 0.

Clearly, under the coupling described above Z̃(N)(m) ≤ Ỹ (N)(m) for allm ∈ Z+ if Z(N)(0) =
Z̃(N)(0) ≤ Ỹ (N)(0) = Y (N)(0). Hence, we have Z(N)(t) ≤ Y (N)(t) for all t ≥ 0. �

A.2 Proof of Proposition 4

To prove Proposition 4, we study the limit of the process z(N) =
(
z(N)(t), t ≥ 0

)
defined as

z(N)(t) =
Z(N)(t)

N
, t ≥ 0.

Thus, z(N)(t) denotes the scaled number of jobs in M′N under the JFFS scheme at time t.
We first characterise the limit of the sequence of processes (z(N))N in the lemma below.

Lemma 17. If z(N)(0) ⇒ z(0) ∈ R as N → ∞, then z(N) ⇒ z as N → ∞, where
z = (z(t), t ≥ 0) is the unique deterministic process satisfying the following integral equation

z(t) = z(0) + λt−
∫ t

0

M∑
j=1

µj

(z(s)− j−1∑
i=1

γi

)
+

∧ γj

 ds. (50)
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Furthermore, the process z satisfying (50) has a unique fixed point z∗ given by

z∗ = max
j∈[M ]

(
j−1∑
i=1

γi +
λ−

∑j−1
i=1 µiγi
µj

)
. (51)

Proof. Let (A(t) : t ≥ 0) and (D(t) : t ≥ 0) be independent unit-rate Poisson processes. We
can express the evolution of the total number Z(N)(t) of jobs in the systemM′N as follows:

Z(N)(t) = Z(N)(0) +A(Nλt)−D(

∫ t

0
T (Z(N)(s)) ds), t ≥ 0, (52)

where Z(N)(0) = Nz(N)(0) and T : R+ → R+ is defined as

T (Z) =
M∑
j=1

µj

(Z − j−1∑
i=1

Nγi

)
+

∧Nγj

 .

Hence, for Z ∈ Z+, T (Z) represents the total rate at which jobs depart the system in state
Z. Dividing (52) by N , we have

z(N)(t) = z(N)(0) +M
(N)
A (t)−M (N)

D (t) + λt−
∫ t

0
T ′(z(N)(s)) ds, ∀t ≥ 0, (53)

where

M
(N)
A (t) =

A(Nλt)−Nλt
N

,

M
(N)
D (t) =

D(
∫ t

0 T (Z(N)(s)) ds)−
∫ t

0 T (Z(N)(s)) ds

N
,

T ′(z) =
T (Z)

N
=

M∑
j=1

µj((z −
j−1∑
i=1

γi)+ ∧ γj).

Using Lemma 3.2 from [38], it can be easily verified that M
(N)
A and M

(N)
D are square-

integrable martingales with respect to the filtration F(N) = (FN,t, t ≥ 0), where

FN,t =σ
[
Z(N)(0), A(Nλs), D

(∫ s

0
T (Z(N)(u))du

)
, 0 ≤ s ≤ t

]
.

Moreover, quadratic variation process for M
(N)
A and M

(N)
D are given by

[M
(N)
A ](t) =

A(Nλt)

N2
, t ≥ 0

[M
(N)
D ](t) =

1

N2
D(

∫ t

0
T (Z(N)(s)) ds), t ≥ 0.
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Using the martingale functional central limit theorem [28], we have

M
(N)
A ⇒ 0, M

(N)
D ⇒ 0 as N →∞.

From (53) and (50), we see that both z(N) and z can be expressed as z(N) = f(z(N)(0),M
(N)
A −

M
(N)
D ) and z = f(z(0), 0), where f : R × D[0,∞) → D[0,∞) is defined as the mapping

that takes (b, y) to x determined by the following integral equation

x(t) = b+ y(t) + λt−
∫ t

0
T ′(x(s))ds.

Hence, if f is well-defined and continuous, then the continuous mapping theorem proves the
first statement of the lemma. From Theorem 4.1 of [38]), it follows that to show that f is
well-defined and continuous, it is sufficient to show that T ′ is Lipschitz continuous. Since,
µj((z−

∑j−1
i=1 γi)+ ∧ γj) is Lipschitz with constant µj for all j ∈ [M ]. Therefore, the sum of

Lipschitz functions is again Lipschitz with constant (µ1 ∨ µ2 ∨ . . . ∨ µM ). This establishes
the first statement of the lemma.

To prove the second statement of the lemma, note that we can can express (50) in its
differential form as follows

d

dt
z(t) = λ− T ′(z(t)).

Hence, any fixed point z∗ of the process z must satisfy the equation λ− T ′(z∗) = 0. Since
T ′ is a piecewise-linear map, it is easy to solve the above equation in closed form and find
the unique solution to be (51). �

Lemma 18. Let z(u, t) denote the solution to (50) for z(0) = u. Then for any u ∈
R, z(u, t) → z∗ as t → ∞. Furthermore, the sequence (z(N)(∞))N of stationary states
converges weakly to z∗ as N →∞.

Proof. We prove the first statement of the lemma by considering the following two cases
(i) u ≥ z∗ and (ii) u < z∗. We only provide the proof for the first case as the proof of the
second case is similar.

If u ≥ z∗ then z(u, t) ≥ z∗ for all t ≥ 0. To see this, assume on the contrary that
z(u, t) < z∗ for some t > 0. Since z(0, u) = u ≥ z∗ and z(u, ·) is continuous, there must
exist a t1 ∈ (0, t) such that z(u, t1) = z∗. But since z∗ is a fixed point, this implies that
z(t) = z∗ for all t ≥ t1 which leads to a contradiction.

Now consider the Lypunov function V : R+ → R+ defined as V (z(u, t)) = z(u, t)− z∗ ≥
0. Using (50) we have

d

dt
V (z(u, t)) = λ− T ′(z(u, t)), (54)

where T ′(z) =
∑M

j=1 µj((z−
∑j−1

i=1 γi)+∧γj). Since the fixed point z∗ solves λ−T ′(z∗) = 0,
we have

d

dt
V (z(u, t)) = −(T ′(z(u, t))− T ′(z∗)).
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We further note that T ′ is a strictly increasing function of its argument. Hence, V̇ (z(u, t)) <
0 when z(u, t) > z∗. This implies that V (z(u, t)) → 0 as t → ∞, thereby proving the first
part of the lemma.

To prove the second part of the lemma, we first show that the sequence
(
z(N)(∞)

)
N

is
tight. By the application of Markov inequality and the bound in (2), we have

sup
N≥1

P(z(N)(∞) > a) ≤ sup
N≥1

E[z(N)(∞)]

a
≤ 1

a

(
λ+

λ

1− λ

)
,

This shows that to make supN≥1 P(z(N)(∞) > a) < ε for any ε > 0, there exists appropriate

choice a(ε) not dependent on N . This shows that the sequence
(
z(N)(∞)

)
N

is tight. The
rest of the lemma now follows from the same line of arguments as in the proof of the second
statement of Theorem 11. �

The proof of Proposiion 4 follows directly from Lemma 18 by noting that z(N)(∞) =
Z(N)(∞)/N . �

B Proof of Proposition 13

Fix any ε > 0 and l ≥ 1. Using Markov inequality, we obtain

P
(

max
j∈[M ]

∑
i≥l

x
(N)
i,j (∞) > ε

)
≤

E
[
maxj∈[M ]

∑
i≥l x

(N)
i,j (∞)

]
ε

≤ 1

ε
E

 ∑
j∈[M ]

∑
i≥l

x
(N)
i,j (∞)

 .
Since

(
x

(N)
i,j (∞)

)
i

is a sequence non-negative random variables for each j ∈ [M ], using

monotone convergence theorem we can interchange the sum and the expectation on the
RHS. Hence, we have

P
(

max
j∈[M ]

∑
i≥l

x
(N)
i,j (∞) > ε

)
≤ 1

ε

∑
j∈[M ]

∑
i≥l

E
[
x

(N)
i,j (∞)

]
=

1

ε

∑
j∈[M ]

∑
i≥l

P
[
Q

(N)
k,j (∞) ≥ i

]
, (55)

where the last equality follows from (5). Now, from Theorem 8 we know that for any
θ ∈ [0,− log λ) we have

∑
j∈[M ]

∑
i≥l

P
[
Q

(N)
k,j (∞) ≥ i

]
≤
∑
j∈[M ]

∑
i≥l

Cj(λ, θ)e
−iθ = C(θ)e−lθ,

where C(θ) = (1−λ)
(1−λeθ)(1−e−θ)

∑
j∈[M ]

1
µjγj

. Since the RHS of the above inequality is not

dependent on N , using (55) we have

lim sup
N→∞

P
(

max
j∈[M ]

∑
i≥l

x
(N)
i,j (∞) > ε

)
≤ C(θ)e−lθ (56)

for all θ ∈ [0,− log λ) and all l ≥ 1. Hence, the condition of tightness given by (30) is
verified by fixing some θ ∈ (0,− log λ) and letting l→∞. �
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C Martingale Representation and Its Convergence

We first write the evolution of x
(N)
i,j (t) for all t ≥ 0 in terms of number of arrivals and

departures from system till time t, for i ≥ 1 and j ∈ [M ] as

x
(N)
i,j (t) = x

(N)
i,j (0)+

1

Nγj
Ai,j

(
Nλ

∫ t

0
p

(N)
i−1,j(x

(N)(s))ds
)
− 1

Nγj
Di,j

(
Nγjµj

∫ t

0
(x

(N)
i,j (s)−x(N)

i+1,j(s))ds
)
,

(57)

whereAi,j andDi,j are mutually independent unit-rate Poisson processes and p
(N)
i−1,j(x

(N)(s)) =
1{V(N)(s)∈Ri,j}. Define for all i ≥ 1 and for all j ∈ [M ]

M
(A,N)
i,j (t) = Ai,j

(
Nλ

∫ t

0
p

(N)
i−1,j(x

(N)(s))ds
)
−Nλ

∫ t

0
p

(N)
i−1,j(x

(N)(s))ds,

M
(D,N)
i,j (t) = Di,j

(
Nγjµj

∫ t

0
(x

(N)
i,j (s)− x(N)

i+1,j(s))ds
)
−Nγjµj

∫ t

0
(x

(N)
i,j (s)− x(N)

i+1,j(s))ds.

We next show that the processes M
(A,N)
i,j = (M

(A,N)
i,j (t) : t ≥ 0) and M

(D,N)
i,j = (M

(D,N)
i,j (t) :

t ≥ 0) are martingales with respect to the filtration F(N) =
{
F

(N)
t : t ≥ 0

}
augmented with

all null sets, where FNt =
⋃
j∈[M ]G

(N)
t,j with

G
(N)
t,j =

⋃
i≥1

σ
(
x

(N)
i,j (0),Ai,j

(
Nλ

∫ s

0
p

(N)
i−1,j(x

(N)(u))du
)
,

Di,j

(
Nγjµj

∫ s

0
(x

(N)
i,j (u)− x(N)

i+1,j(u))du
)
, 0 6 s 6 t

)
.

Lemma 19. The processes M
(A,N)
i,j and M

(D,N)
i,j , are square integrable F(N)-martingales for

all i > 1 and for all j ∈ [M ]. Moreover, the predictable quadratic variation processes are
given by

〈M (A,N)
i,j 〉(t) = Nλ

∫ t

0
p

(N)
i−1,j(x

(N)(s))ds, i ≥ 1, j ∈ [M ], t ≥ 0,

〈M (D,N)
i,j 〉(t) = Nγjµj

∫ t

0
(x

(N)
i,j (s)− x(N)

i+1,j(s))ds, i ≥ 1, j ∈ [M ], t ≥ 0.

Proof. Let Ii,j(t) = Nµjγj
∫ t

0 (x
(N)
i,j (s) − x(N)

i+1,j(s))ds and Li,j(t) = Nλ
∫ t

0 p
(N)
i−1,j(x

(N)(s))ds.
Next, we prove that

E(Ii,j(t)) <∞, E
(
Di,j(Ii,j(t))

)
<∞, i ≥ 1, j ∈ [M ],

E(Li,j(t)) <∞, E
(
Ai,j(Li,j(t))

)
<∞, i ≥ 1, j ∈ [M ].

36



The proof of square-integarble martingales and its corresponding predictable quadratic vari-
ation processes then follows immediately using Lemma 3.2 from [38]. Note that using crude
inequality we can write

E(Ii,j(t)) ≤ µjt
(
NγjE(x

(N)
i,j (0)) + E

(
Ai,j(Li,j(t))

))
≤ µjγjNt+ µjNλt

2 <∞, t ≥ 0, i ≥ 1, j ∈ [M ],

and

E
[
Di,j(Ii,j(t))

]
≤ E

[
Di,j

(
µjt
(
Nγjx

(N)
i,j (0) +Ai,j(Li,j(t))

))]
= E

{
E
[
Di,j

(
µjt
(
Nγjx

(N)
i,j (0) +Ai,j(Li,j(t))

))
|Ai,j(Li,j(t))

]}
≤ µjt(Nγj +Nλt) <∞, t ≥ 0, i ≥ 1, j ∈ [M ].

Similarly, we can show E(Li,j(t)) <∞ and E
(
Ai,j(Li,j(t))

)
<∞. �

Now we can write the martingale representation of equation (57) for all t ≥ 0, i ≥ 1,
and j ∈ [M ] as

x
(N)
i,j (t) = x

(N)
i,j (0) +

λ

γj

∫ t

0
1{V(N)(s)∈Ri,j}ds− µj

∫ t

0
(x

(N)
i,j (s)− x(N)

i+1,j(s))ds

+
1

Nγj
(M

(A,N)
i,j (t)−M (D,N)

i,j (t)). (58)

In below lemma, we prove that the martingale part in (58) converges to 0 with respect to
`1.

Lemma 20. Following convergence holds as N →∞max
j∈[M ]

1

Nγj

∑
i≥1

(|M (A,N)
i,j (t)|+|M (D,N)

i,j (t)|)


t≥0

⇒ 0.

Proof. The proof is similar to the proof of Proposition 4.3 in [7] using Doob’s inequality. �

D Proof of Lemma 16

To prove (47), we consider the following linear optimisation problem

max
∑
j∈[M ]

µjX
(N,Π)
1,j (t),

s.t.
∑
j∈[M ]

X
(N,Π)
1,j (t) ≤ i,

0 ≤ X(N,Π)
1,j (t) ≤ Nγj ∀j ∈ [M ].

(59)
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The first constraint in (59) is true as the total number of busy servers
∑

j∈[M ]X
(N,Π)
1,j (t) at

time t in MN is always less than equal to the total number of customers in system that is
i. The above optimisation problem has a unique maximum which is obtained in following

way. First, note that the objective function is given as the weighted sum of X
(N,Π)
1,j (t) with

weight µj for j ∈ [M ]. We know that the maximum weight is µ1. Therefore, the maximum

value that X
(N,Π)
1,1 (t) takes is (i∧Nγ1). Moreover, the second maximum weight is µ2, hence

the maximum value that X
(N,Π)
1,2 (t) takes is ((i − Nγ1)+ ∧ Nγ2). Proceeding in this way

the maximum value that X
(N,Π)
1,j (t) takes is

((
i−
∑j−1

i=1 Nγi

)
+
∧Nγj

)
for j ∈ [M ], which

completes the proof. �

E Characterisation of Compact Sets and Tightness Criteria

In the lemma below, we characterise compact sets in the space S.

Lemma 21. A set B ⊆ S is relative compact in S if and only if

lim
l→∞

sup
y∈B

max
j∈[M ]

∑
i≥l

yi,j = 0. (60)

Proof. Suppose any B ⊆ S satisfying (60). To show B is relatively compact in S, we need
to show that any sequence (y(N))N≥1 in B has a Cauchy subsequence. Since S is complete
under `1, therefore the sequence (y(N))N≥1 has a convergent subsequence whose limit lies
in B̄ which will complete the proof.

Next we show that the sequence (y(N))N≥1 has a Cauchy subsequence. Fix any ε > 0
and choose l ≥ 1 such that

max
j∈[M ]

∑
i≥l
|y(N)
i,j |<

ε

4
, ∀N ≥ 1. (61)

Now consider the sequence of first coordinates (y
(N)
1,j )N≥1 for each j ∈ [M ]. The sequence

(y
(N)
1,j )N≥1 lies in [0, 1]. Therefore, by Bolzano-Wiestrass theorem it has a convergent sub-

sequence (y
(Nk)
1,j )k≥1. Moreover, along the indices (Nk)k≥1, the sequence (y

(Nk)
2,j )k≥1 has a

further convergent subsequence. Proceeding this way, we get a sequence of indices (Nm)m≥1

along which all first l − 1 coordinates converges. This implies that there exists a N ε ∈ N
such that

max
j∈[M ]

∑
i<l

|y(N)
i,j − y

(R)
i,j |<

ε

2
, ∀R,N ≥ N ε. (62)
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Using (61), and (62), for all R,N ≥ N ε and for y(N),y(R) ∈ B we have∥∥∥y(N) − y(R)
∥∥∥

1
= max

j∈[M ]

∑
i≥1

|y(N)
i,j − y

(R)
i,j |

≤ max
j∈[M ]

∑
i<l

|y(N)
i,j − y

(R)
i,j |+ max

j∈[M ]

∑
i≥l
|y(N)
i,j |+ max

j∈[M ]

∑
i≥l
|y(R)
i,j |

< ε,

along the sequence of indices (Nm)m≥1. This shows the existence of a Cauchy subsequence.
Moreover, the limit point lies in S follows from the completeness of `1 space and the fact
that S is a closed subset of `1.

Now for the only if part, let B be a relatively compact set in S. Assume that there
exists a ε > 0 such that

lim
l→∞

sup
y∈B

max
j∈[M ]

∑
i≥l

yi,j > ε. (63)

This implies that for each k ≥ 1, there exists a y(k) ∈ B, such that maxj∈[M ]

∑
i≥l y

(k)
i,j ≥

ε
2 .

Therefore, if y∗ be the limit of the sequence (y(k))k≥1, then (63) implies that maxj∈[M ]

∑
i≥l y

∗
i,j ≥

ε
2 for all l ≥ 1, this leads to the contradiction that y∗ ∈ `1.

�

Next, we prove the criteria for a sequence to be tight in S.

Lemma 22. A sequence (y(N))N≥1 of random elements in S is tight iff for all ε > 0 we
have

lim
l→∞

lim sup
N→∞

P
(

max
j∈[M ]

∑
i≥l

y
(N)
i,j > ε

)
= 0. (64)

Proof. For if part, we construct a relatively compact set Bε for any ε > 0 such that

P
(
y(N) 6∈ Bε

)
< ε, ∀N ∈ N.

As (y(N))N≥1 satisfies (64), therefore there exists a l(ε) ≥ 1 for all ε > 0 such that

lim sup
N→∞

P
(

max
j∈[M ]

∑
i≥l(ε)

y
(N)
i,j > ε

)
< ε,

and there exists a N ε ≥ 1 such that

P
(

max
j∈[M ]

∑
i≥l(ε)

y
(N)
i,j > ε

)
< ε, ∀N > N ε.
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Moreover, since y(1), . . . ,y(Nε) are random elements of S, there exists k(ε) = max {l1(ε), . . . , lNε(ε)}
such that

P
(

max
j∈[M ]

∑
i≥k(ε)

y
(N)
i,j > ε

)
< ε, ∀N ∈ N.

This implies that there exists an increasing sequence (l(n))n≥1 such that

P
(

max
j∈[M ]

∑
i≥l(n)

y
(N)
i,j >

ε

2n

)
<

ε

2n
, ∀N ∈ N.

Define

Bε =

y ∈ S : max
j∈[M ]

∑
i≥l(n)

yi,j ≤
ε

2n
, ∀n ≥ 1

 .

From Lemma 21, the set Bε is relatively compact in S. Therefore, we have

P
(
y(N) 6∈ Bε

)
= P

( ⋃
n≥1

max
j∈[M ]

∑
i≥l(n)

y
(N)
i,j >

ε

2n

) ≤∑
n≥1

P
(

max
j∈[M ]

∑
i≥l(n)

y
(N)
i,j >

ε

2n

)
< ε,

where the first inequality follows from union bound. For only if part, assume that there
exists a ε > 0 such that

lim
l→∞

lim sup
N→∞

P
(

max
j∈[M ]

∑
i≥l

y
(N)
i,j > ε

)
> ε. (65)

Since (y(N))N≥1 is tight in S, therefore there exists a convergent subsequence (y(Nk))k≥1

with limit y∗. From (65), we can write

ε < lim
l→∞

lim sup
k→∞

P
(

max
j∈[M ]

∑
i≥l

y
(Nk)
i,j > ε

)
≤ lim

l→∞
lim sup
k→∞

P
(

max
j∈[M ]

∑
i≥l

y
(Nk)
i,j ≥ ε

)
≤ lim

l→∞
P
(

max
j∈[M ]

∑
i≥l

y∗i,j ≥ ε
)
,

where the last inequality follows from Portmanteau’s theorem for closed set. This leads to
the contradiction that y∗ ∈ `1.

�

F Proof of Lemma 14

To prove relative compactness of the sequence ((x(N), β(N)))N≥1, we start with proving that
for all finite time t the system occupancy state lies in some compact set.

40



Lemma 23. Assume x(N)(0)⇒ x(0) ∈ S, as N →∞. Then for any T ≥ 0, there exists a
L(T,x(0)) > 2 such that under the SA-JSQ policy, the probability that an arriving job joins
a server with at-least L(T,x(0))− 1 active jobs upto time T tends to 0 as N →∞.

Proof. Let A(N)(t) denote the total number of arrivals up to time t. Arrivals are happening
with rate Nλ. Then for any ε > 0 we have

P
(
A(N)(t) ≥ (λt+ ε)N

)
→ 0, as N →∞.

Let m(N)(t) = minj∈[M ]m
(N)
j (t), where m

(N)
j (t) is the minimum queue length in the jth pool

at time t for N th system. The probability at which an arrival joins a server with at-least
L(T,x(0))− 1 jobs during the time interval [0, T ] is given by

P
({

m(N)(t) ≥ L(T,x(0))− 1, t ∈ [0, T ]
}
∩ {an arrival occur at t}

)
≤ P

(
m(N)(t) ≥ L(T,x(0))− 1, t ∈ [0, T ]

)
= P

(
X(N)(t) ≥ N(L(T,x(0))− 1), t ∈ [0, T ]

)
, (66)

where X(N)(t)the is the total number of jobs in system at time t. From conservation of flow,
we can write X(N)(t) = X(N)(0) +A(N)(t)−D(N)(t), where D(N)(t) is the total number of
departures from system till time t. Therefore, from (66), we can write

P
(
X(N)(t) ≥ N(L(T,x(0))− 1), t ∈ [0, T ]

)
= P

(
X(N)(0) +A(N)(t)−D(N)(t) ≥ N(L(T,x(0))− 1), t ∈ [0, T ]

)
≤ P

(
X(N)(0) +A(N)(t) ≥ N(L(T,x(0))− 1), t ∈ [0, T ]

)
= P

(
M (N)(t) ≥ (L(T,x(0))− 1)− x(N)(0)− λt, t ∈ [0, T ]

)
,

(67)

where M (N)(t) = A(N)(t)−Nλt
N , and x(N)(0) = X(N)(0)

N . Now observer that for all ε > 0
we have

P
(

sup
t∈[0,T ]

|M (N)(t)|> ε
)
→ 0, as N →∞.

Therefore, we have

P
(
|M (N)(t)|> 1, t ∈ [0, T ]

)
→ 0, as N →∞. (68)

From (66), (67), (68) and choosing L(T,x(0)) > 2+x(0)+λT , where x(0) =
∑

j∈[M ]

∑
i≥1 γjxi,j(0),

we have

P
({

m(N)(t) ≥ L(T,x(0))− 1, t ∈ [0, T ]
}
∩ {an arrival occur at t}

)
→ 0, as N →∞.

�
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We now prove the relative compactness of the sequence ((x(N), β(N)))N≥1 by showing the
relative compactness of individual component. Note that the space E is compact. Therefore,
relative compactness of the sequence (β(N))N≥1 follows from Prohorov’s theorem [35]. To
prove relative compactness of the sequence (x(N))N≥1, we need to verify following conditions.

1. For every η > 0 and rational t ≥ 0, there exists a compact set Bη,t ⊂ S such that

lim inf
N→∞

P(x(N)(t) ∈ Bη,t) ≥ 1− η (69)

2. For every η > 0 and for T > 0 there exists a δ > 0 and a finite partition {t1, t2, . . . , tn}
of [0, T ] with minl∈[n]|tl − tl−1|> δ such that

lim sup
N→∞

P
(

max
l∈[n]

sup
s,t∈[tl−1,tl)

∥∥∥x(N)(s)− x(N)(t)
∥∥∥

1
≥ η

)
< η. (70)

We first prove condition (69). From Lemma 23, for any fix t ≥ 0 we have

lim
N→∞

P
(
x

(N)
i,j (t) ≤ x(N)

i,j (0), ∀i ≥ L(t,x(0)), j ∈ [M ]
)

= 1.

Now it can be easily verified that the sequence (x(N)(0))N≥1 is tight in S. Therefore, using
previous condition we can write for any ε > 0

lim
l→∞

lim sup
N→∞

P
(

max
j∈[M ]

∑
i≥l

x
(N)
i,j (t) > ε

)
≤ lim

l→∞
lim sup
N→∞

P
(

max
j∈[M ]

∑
i≥l

x
(N)
i,j (0) > ε

)
= 0. (71)

Hence, from Lemma 22 the sequence (x(N)(t))N≥1 is tight in S. This implies that the
condition (69) is satisfied. Next for any t1 < t2, we consider

|x(N)
i,j (t1)− x(N)

i,j (t2)|≤ λ

γj
β(N)([t1, t2]×Ri,j) + µj

∫ t2

t1

(x
(N)
i,j (s)− x(N)

i+1,j(s))ds

+
1

Nγj
|M (A,N)

i,j (t1)−M (D,N)
i,j (t1)−M (A,N)

i,j (t2) +M
(D,N)
i,j (t2)|+o(1), i ≥ 1, j ∈ [M ].
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Using the above equation we can write `1 distance between x(N)(t1) and x(N)(t2) as∥∥∥x(N)(t1)− x(N)(t2)
∥∥∥

1

≤ max
j∈[M ]

∑
i≥1

λ

γj
β(N)([t1, t2]×Ri,j) + max

j∈[M ]

∑
i≥1

∫ t2

t1

µj(x
(N)
i,j (s)− x(N)

i+1,j(s))ds

+ max
j∈[M ]

1

Nγj

∑
i≥1

|M (A,N)
i,j (t1)−M (D,N)

i,j (t1)−M (A,N)
i,j (t2) +M

(D,N)
i,j (t2)|+o(1)

≤ λ

γmin
(t2 − t1) + max

j∈[M ]

∫ t2

t1

µjx
(N)
1,j (s)ds+ max

j∈[M ]

1

Nγj

∑
i≥1

|M (A,N)
i,j (t1)−M (D,N)

i,j (t1)(s)ds

−M (A,N)
i,j (t2) +M

(D,N)
i,j (t2)|+o(1)

≤ (
λ

γmin
+ µ1)(t2 − t1) + max

j∈[M ]

1

Nγj

∑
i≥1

|M (A,N)
i,j (t1)−M (D,N)

i,j (t1)−M (A,N)
i,j (t2) +M

(D,N)
i,j (t2)|+o(1),

(72)

where γmin = minj∈[M ] γj . From Lemma 20, the martingale part in (72) converges to 0 as
N →∞. Moreover, from (72), it implies that for any finite partition {t1, t2, . . . , tn} of [0, T ]
with minl∈[n]|tl − tl−1|> δ, we have

max
l∈[n]

sup
s,t∈[tl−1,tl)

∥∥∥x(N)(s)− x(N)(t)
∥∥∥

1
≤ (

λ

γmin
+ µ1) max

l∈[n]
(tl − tl−1) + ζ(N),

where P(ζ(N) > η
2 ) < η for all sufficiently large N . Take δ = η/(4( λ

γmin
+ µ1)) and any

partition with maxl∈[n](tl − tl−1) < η/(2( λ
γmin

+ µ1)) and minl∈[n]|tl − tl−1|> δ, we have

max
l∈[n]

sup
s,t∈[tl−1,tl)

∥∥∥x(N)(s)− x(N)(t)
∥∥∥

1
≤ η,

on the event {ζ(N) ≤ η
2}. Therefore, for sufficiently large N we obtain

P
(

max
l∈[n]

sup
s,t∈[tl−1,tl)

∥∥∥x(N)(s)− x(N)(t)
∥∥∥

1
≥ η

)
≤ P(ζ(N) >

η

2
) < η.

Hence the condition (70) is satisfied. Next, we show that the limit (x, β) of any convergent
subsequence of the sequence ((x(N), β(N)))N≥1 satisfies (36). We first show that the right
side of (35) is a continuous map and then the result follows from an application of continuous
mapping theorem. Consider,

Wi,j

(
x(N)(t), β(N),x(N)(0),m(N)

)
(t) = x

(N)
i,j (0) +

λ

γj
β(N)([0, t]×Ri,j)

− µj
∫ t

0
(x

(N)
i,j (s)− x(N)

i+1,j(s))ds+m
(N)
i,j (t) i ≥ 1, j ∈ [M ],
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where m
(N)
i,j (t) = 1

Nγj
(M

(A,N)
i,j (t) −M

(D,N)
i,j (t)). Now we next prove that the map W =

(Wi,j)i,j is continuous. First, assume that the sequence ((x(N),mN ))N≥1 converges to
(x,m), then there exists a N1 ∈ N such that supt∈[0,T ]

∥∥x(N)(t)− x(t)
∥∥

1
< ε/(4T ) for

all N ≥ N1. Therefore, we can write

sup
t∈[0,T ]

∫ t

0
|x(N)

1,j (t)− x1,j(t)|ds ≤ T sup
t∈[0,T ]

∥∥∥x(N)(t)− x(t)
∥∥∥

1
< ε/4.

Also, there exists a N2 ∈ N such that supt∈[0,T ]

∥∥m(N)(t)−m(t)
∥∥

1
< ε/4. Second, assume

that the sequence (x(N)(0)) converges to x(0) with respect to `1. Therefore, there exists a
N3 ∈ N such that

∥∥x(N)(0)− x(0)
∥∥

1
< ε/4. Now we claim that there exists a N4 ∈ N such

that

λ

γj
max
j∈[M ]

∑
i≥1

|β(N)([0, T ]×Ri,j)− β([0, T ]×Ri,j)|≤ ε/4. (73)

The equation (73) implies that the convergence of the sequence ((β(N)([0, t]×Ri,j))i,j)N≥1

for any t ≥ 0 is `1 convergence. However, we know only the weak convergence of the
sequence of measures (β(N))N≥1, which does not directly implies (73). Therefore, we show
using weak convergence of the sequence (β(N))N≥1 that (73) is indeed true in our case. Since
x(0) ∈ S, there exists a m′j(x(0)) for all j ∈ [M ] such that xi,j(0) < 1 for all i ≥ m′j(x(0)).
Furthermore, from Lemma 23 we can write

lim
N→∞

P
(

sup
t∈[0,T ]

x
(N)
i,j (t) ≤ x(N)

i,j (0), ∀i ≥ L(T,x(0)), j ∈ [M ]
)

= 1.

Therefore, for N ′ = max
{
m′j(x(0)), L(T,x(0))

}
we have

lim
N→∞

P
(

sup
t∈[0,T ]

x
(N)
i,j (t) ≤ 1, ∀i ≥ N ′, j ∈ [M ]

)
= 1. (74)

Using (74) and (33) we get

lim
N→∞

max
j∈[M ]

∑
i≥N ′

β(N)([0, T ]×Ri,j) = max
j∈[M ]

∑
i≥N ′

β([0, T ]×Ri,j) = 0. (75)

Also, weak convergence of (β(N))N implies that

lim
N→∞

max
j∈[M ]

∑
i<N ′

β(N)([0, T ]×Ri,j) = max
j∈[M ]

∑
i<N ′

β([0, T ]×Ri,j). (76)

Hence, using (75) and (76) we get the desired result that is (73). Let N̄ = max {N1, N2, N3, N4},
then we have

sup
t∈[0,T ]

∥∥∥W(
x(N)(t), β(N),x(N)(0),m(N)

)
−W

(
x(t), β,x(0),m

)∥∥∥
1

(t) < ε.

This shows that the map W is continuous, which completes the proof.
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G Proof of Lemma 15

To prove positive recurrent of the Markov chain U, we consider the Lyapunov function
f : ZK+ → [0,∞) as

f(R) =
∑
j∈[K]

Rj , R ∈ ZK+ .

Moreover, from (43) we can write the generator GU acting on the function f for a state
R ∈ ZK+ as

GUf(R) =
∑
j∈[K]

νj − λ
∑
j∈[K]

1(0 = R1 = · · · = Rj−1 < Rj).

Define the set B =
{
S ∈ ZK+ : Si = 0∀i ∈ [K]

}
. Observe that if

∑
j∈[K] νj < λ, then

GUf(R) < 0 for all R ∈ Bc, where Bc is the compliment of the set B and is given
by

Bc =

{
S ∈ ZK+ : S ∈

K⋃
i=1

{0 = S1 = · · · = Si−1 < Si}

}
.

Otherwise GUf(R) <
∑

j∈[K] νj for R ∈ B. Hence, using the Foster-Lyapunov criterion
for positive recurrence from [32], we conclude that the chain U is positive recurrent if∑

j∈[K] νj < λ.
Next, we proceed to prove that the unique stationary distribution π of the chain U

satisfies (44). We prove this using induction on K. First observer that π(U1 > 0) = ν1/λ
if the birth-death process corresponding to the component U1 is stable. This proves the
base case, i.e., K = 1. Now for the induction hypothesis assume that (44) is true for all
j ∈ [K − 1]. Note that the positive recurrence of the chain U implies that Ef(U) < ∞,
where the expectation is with respect to the stationary distribution π. Therefore, we can
set the steady-state expected drift to 0 which gives

E[GUf(U)] =
∑
j∈[K]

νj − λ
∑
j∈[K]

π(0 = U1 = · · · = Uj−1 < Uj) = 0. (77)

Hence, using the induction hypothesis for all j ∈ [K − 1] in the above expression we get

π(0 = U1 = · · · = UK−1 < UK) =
νK
λ
,

which completes the proof for (44).
Now we show that the condition

∑
j∈[K] νj < λ is necessary for the chain U to be

positive recurrent. Suppose the chain U is positive recurrent and, therefore, it has a unique
stationary measure π. From (77) it is clear that π must satisfy (44). Therefore, we can
write

π {Ui = 0 ∀i ∈ [K]} = 1−
K∑
i=1

π {0 = U1 = · · · = Ui−1 < Ui} = 1−
K∑
i=1

νi
λ
> 0,

where the last inequality follows since the chain U is positive recurrent. �
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H Proof of Theorem 11

Proof of Theorem 11.(ii): To prove this, we need the following lemma which extends the
monotonicity of the process x(N) for finite N to the monotonicity of the limiting process x.

Lemma 24. Let x(·,u) = (x(t,u), t ≥ 0) denote a solution to (10) with x(0) = u ∈ S.
Then, for any u,v ∈ S satisfying u ≤ v we have x(t,u) ≤ x(t,v) for all t ≥ 0.

Proof. First, note that for any u ∈ S, there exists a sequence
(
u(N)

)
N≥1

with u(N) =

(u
(N)
i,j , i ≥ 1, j ∈ [M ]) ∈ S ∩ S(N) such that

∥∥u(N) − u
∥∥

1
→ 0 as N → ∞. We can simply

construct such a sequence by setting u
(N)
i,j =

bui,jNγjc
Nγj

for each i ≥ 1 and j ∈ [M ]. This

construction also satisfies the property that if u,v ∈ S are such that u ≤ v and if the
sequences (u(N))N and (v(N))N are constructed from their corresponding limits u and v as
described above, then u(N) ≤ v(N) for all N .

Let x(N)(·,u(N)) = (x(N)(t,u(N)), t ≥ 0) denote the process x(N) started at x(N)(0) =
u(N). Then by Theorem 9 we have that

x(N)(t,u(N)) ≤ x(N)(t,v(N)), ∀t ≥ 0. (78)

Now letting N →∞ and applying Theorem 10 gives the desired result. �

For u ∈ S, we define vn,j(t,u) =
∑

i≥n xi,j(t,u) and vn,j(u) =
∑

i≥n ui,j for each n ≥ 1
and j ∈ [M ]. Furthermore, let vn(t,u) =

∑
j∈[M ] γjvn,j(t,u) and vn(u) =

∑
j∈[M ] γjvn,j(u)

for each n ≥ 1 and u ∈ S.

Lemma 25. For u ∈ S let x(u, ·) denote a solution of (10) in S. Then for all t ≥ 0 we
have

dvn(t,u)

dt
= λ

∑
j∈[M ]

∑
i≥n

pi−1,j(x(t,u))−
∑
j∈[M ]

µjγjxn,j(t,u), ∀n ≥ 1. (79)

In particular, we have
dv1(t,u)

dt
= λ−

∑
j∈[M ]

µjγjx1,j(t,u). (80)

Proof. We can write the differential form of (10) as

dxi,j(t,u)

dt
=

λ

γj
pi−1,j(x(t,u))− µj(xi,j(t,u)− xi+1,j(t,u)). (81)

Multiplying the above by γj and summing first over i ≥ n and then over j ∈ [M ] we
obtain (79). Equation (80) follows from (79) by using P1. �

From Lemma 24 it follows that for any x(0) ∈ S and any t ≥ 0 we have

x(t,min(x(0),x∗)) ≤ x(t,x(0)) ≤ x(t,max(x(0),x∗)), (82)
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where min(u,v) with u,v ∈ S is defined by taking the component-wise minimum. Hence,
to prove global stability it is sufficient to show that the (component-wise) convergence
x(t,x(0)) → x∗ holds for initial states satisfying either of the following two conditions: (i)
x(0) ≥ x∗ and (ii) x(0) ≤ x∗.

To prove the above, we first show that for any solution x(·,x(0)) ∈ S, vn(t,x(0)) is
uniformly bounded in t for all n ≥ 1. Consider the case when x(0) ≥ x∗. From Lemma 24
it follows that for x(0) ≥ x∗, we have x(t,x(0)) ≥ x∗ for all t ≥ 0. Therefore, we can write∑

j∈[M ]

γjµjx1,j(t,x(0)) ≥
∑
j∈[M ]

γjµjx
∗
1,j = λ,

where the last equality follows from (46). Hence, from (80) we have dv1(t,x(0))
dt ≤ 0 from which

it follows that 0 ≤ v1(t,x(0)) ≤ v1(x(0)) for all t ≥ 0. Since the sequence (vn(t,x(0)))n≥1

is non-increasing, we have 0 ≤ vn(t,x(0)) ≤ v1(x(0)) for all n ≥ 1 and for all t ≥ 0. This
proves that vn(t,x(0)) is uniformly bounded in t for each n ≥ 1 if x(0) ≥ x∗. Now consider
the case x(0) ≤ x∗. From Lemma 24 it follows that for x(0) ≤ x∗, we have x(t,x(0)) ≤ x∗

for all t ≥ 0. Therefore, we have v1(t,x(0)) ≤ v1(x∗) for all t ≥ 0. This shows that the
component vn(t,x(0)) is uniformly bounded in t for each n ≥ 1 for x(0) ≤ x∗.

Since vn(t,x(0)) is uniformly bounded in t, the convergence xi,j(t,x(0)) → x∗i,j for all
i ≥ 1 and for all j ∈ [M ] will follow from∫ ∞

0
(xi,j(t,x(0))− x∗i,j)dt <∞, ∀j ∈ [M ], ∀i ≥ 1, (83)

for the case x(0) ≥ x∗ and from∫ ∞
0

(x∗i,j − xi,j(t,x(0)))dt <∞, j ∈ [M ], i ≥ 1, (84)

for the case x(0) ≤ x∗. We now prove (83) to show convergence for the case x(0) ≥ x∗; the
proof of other case follows similarly. To show (83) it is sufficient to prove that∫ ∞

0

∑
j∈[M ]

µjγj(xi,j(t,x(0))− x∗i,j)dt <∞, ∀i ≥ 1. (85)

For i = 1, we can write (85) as∫ τ

0
(
∑
j∈[M ]

µjγjx1,j(t,x(0))−
∑
j∈[M ]

µjγjx
∗
1,j)dt =

∫ τ

0
(
∑
j∈[M ]

µjγjx1,j(t,x(0))− λ)

= −
∫ τ

0

dv1(t,x(0))

dt
dt

= v1(x(0))− v1(τ,x(0))

≤ v1(x(0)),
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where the first equality follows from (46), second equality follows from (80), and the last
inequality follows as v1(t,x(0)) is uniformly bounded in t. Since the right hand side is
bounded by a constant for all τ , the integral on the left hand side must converge as
τ →∞. This shows that x1,j(t,x(0))→ x∗1,j for all j ∈ [M ] as t→∞.

Now for i = 2, we can write (85) as∫ τ

0
(
∑
j∈[M ]

µjγjx2,j(t,x(0))−
∑
j∈[M ]

µjγjx
∗
2,j)dt =

∫ τ

0

∑
j∈[M ]

µjγjx2,j(t,x(0))dt

= −
∫ τ

0

(dv2(t,x(0))

dt
− λ

∑
j∈[M ]

∑
i≥2

pi−1,j(x(t,x(0)))
)
dt,

= λ

∫ τ

0

∑
j∈[M ]

∑
i≥2

pi−1,j(x(t,x(0)))dt+ v1(x(0))− v1(τ,x(0))

≤ λ
∫ τ

0

∑
j∈[M ]

∑
i≥2

pi−1,j(x(t,x(0)))dt+ v1(x(0)),

(86)

where the first equality follows as x∗2,j = 0 for all j ∈ [M ] and the second equality follows
from (79) for n = 2. From the convergence x1,j(t,x(0)) → x∗1,j for all j ∈ [M ], we know
that for all ε > 0 there exists a tε > 0 such that (x1,j(t,x(0)) − x∗1,j) < ε for all t ≥ tε and
for all j ∈ [M ]. Furthermore, from (11) it follows that for λ < 1 there exists j ∈ [M ] such
that x∗1,j < 1. Hence, we can choose ε < 1− x∗1,j which yields

x1,j(t,x(0)) < ε+ x∗1,j < 1, ∀t ≥ tε0.

Hence, by properties P1, P4, and P5 of the fluid limit we have
∑

j∈[M ]

∑
i≥2 pi−1,j(x(t,x(0))) =

0 for all t ≥ tε0. Therefore, for all τ ≥ tε, we can write (86) as∫ τ

0

∑
j∈[M ]

µjγjx2,j(t,x(0))dt ≤ λ
∫ tε

0

∑
j∈[M ]

∑
i≥2

pi−1,j(x(t,x(0)))dt+ v1(x(0)) ≤ λtε + v1(x(0)),

where in the last inequality we have used the fact that
∑

j∈[M ]

∑
i≥2 pi−1,j(x(t,x(0))) ≤ 1

from P1. Since the right hand side of the above expression is independent of τ , the left
hand side must converge as τ →∞. This shows that x2,j(t,x(0))→ x∗2,j = 0 as t→∞ for
all j ∈ [M ].

Finally, since x(t,x(0)) ∈ S we have x2,j(t,x(0)) ≥ xi,j(t,x(0)) ≥ 0 for all i ≥ 3, j ∈ [M ]
and for all t ≥ 0. Hence, xi,j(t,x(0))→ 0 as t→∞ for all i ≥ 3 and j ∈ [M ].

Proof of Theorem 11.(iii): We first recall from Proposition 13 that the sequence
(x(N)(∞))N is tight in S under the `1-norm. Hence, by Prohorov’s theorem, the sequence
has convergent subsequences with limits in S. Thus, it suffices to show that all convergent
subsequences has the same limit point x∗. Let (x(Nk)(∞))k be any such convergent sub-
sequence of the sequence (x(N)(∞))N with limit point x∗∗ ∈ S. Now, from Theorem 10,
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we have that the distribution of x∗∗ must be invariant under the map u 7→ x(t,u). By the
global stability result proved earlier it follows that the only measure invariant under the
map u 7→ x(t,u) is δx∗ . Hence, we must have x∗∗ = x∗.

I Unique Characterisation of Stationary Distribution from
Given State

The main idea of the proof is to show that the transition rates of the chain (Vl1(x),1, Vl2(x),2, . . . , VlM (x),M )
defined in (42) have a form similar to that of the transition rates of the Markov chain defined
in (43). The proof then follows by the application of Lemma 15.

Consider the chain
C = (Vl1(x),1, Vl2(x),2, . . . , VlM (x),M ).

We first reduce the dimension of the chain above and then rearrange the remaining compo-
nents by performing the following steps sequentially:

1. Step 1: We first note from (42) that the stationary rate of the transition Vlj(x),j →
Vlj(x),j − 1 is zero (whereas the rate of the transition Vlj(x),j → Vlj(x),j + 1 is strictly
positive) for any component j ∈ [M ] for which either (i) lj(x) > li(x) for some i < j
or (ii) lj(x)− 1 > li(x) for some i 6= j. This is because for pairs i, j ∈ [M ] satisfying
any of the above two conditions we have πx(Vlj(x),i =∞) = 1 and if Vlj(x),i =∞, then

from the definition of Ri,j we have 1
(
V ∈ Rlj(x),j

)
= 0. Therefore, for each j ∈ [M ]

which satisfies one of the above two conditions we have πx(Vlj(x),j =∞) = 1. Hence,
in the first step, we remove all these components from the chain C.

2. Step 2: Next, we arrange the remaining components of the chain C in the increasing
order of their corresponding minimum queue lengths (i.e., increasing order of lj(x)).
The components having the same minimum queue length (i.e., the same value of lj(x))
are then arranged in the decreasing order of their service rates. It can then be easily
verified from the definition of Ri,j that the remaining components have transition
rates of the form given by (43).

Let Y = (Ym′1,p1 , Ym′2,p2 , . . . , Ym′H ,pH ) denote the chain obtained after performing the steps
mentioned above, where for each i ∈ [H], Ym′i,pi is the leftover component of the chain
C with minimum queue length m′i in pool pi. Note that m′i ≤ m′i+1 and pi ≤ pi+1

for all i ∈ [H]. Moreover, the transition rate from Ym′i,pi → Ym′i,pi + 1 is given by
νi = γpiµpi(xm′i,pi − xm′i+1,pi) and the rate of transition from Ym′i,pi → Ym′i,pi − 1 is

λ1
(

0 = Ym′1,p1 = · · · = Ym′i−1,pi−1
< Ym′i,pi

)
. Now it remains to verify that πx(Vm′i,pi =

∞) = 1 or 0 for each i ∈ [H] using Lemma 15.
Define ρi = νi

λ for each i ∈ [H] and ρH+1 = 0. To show that πx(Vm′i,pi =∞) = 1 or 0 for

each i ∈ [H] it is suffices to show that for each 0 ≤ L ≤ H if
∑L

i=1 ρi < 1 and
∑L+1

i=1 ρi ≥ 1
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then we have

πx(Vm′1,p1 =∞) = · · · = πx(Vm′L,pL =∞) = 0,

πx(Vm′L+1,pL+1
=∞) = · · · = πx(Vm′H ,pH =∞) = 1.

Suppose
∑L

i=1 ρi < 1 and
∑L+1

i=1 ρi ≥ 1. Now we use contradiction to prove that πx(Ym′i,pi =
∞) = 0 for all i ∈ [L]. Assume πx(Ym′i,pi = ∞) = ε ∈ (0, 1] for i ∈ [L]. Also, assume π̄x
to be the unique stationary distribution of (Ym′1,p1 , . . . , Ym′i,pi) given that Ym′r,pr is finite for
all r ∈ [i]. Note that the stationary measure π̄x is same as the stationary measure π given
in Lemma 15. Therefore, we can write

πx(Rm′i,pi) = (1− ε)π̄x(0 = Ym′1,p1 = · · · = Ym′i−1,pi−1
< Ym′i,pi) + ε

= (1− ε)νi
λ

+ ε,

where we use π̄x(0 = Ym′1,p1 = · · · = Ym′i−1,pi−1
< Ym′i,pi) = νi

λ from (44). Now substituting

the above in the differential form of (10) we obtain

dxm′i,pi(t)

dt
=

λ

γp1

(
(1− ε)νi

λ
+ ε
)
− µpi(xm′1,p1(t)− xm′i+1,pi(t))

= ε
( λ

γpi
− µp1(xm′i,pi(t)− xm′i+1,pi(t))

)
> 0,

where the last step follows as νi
λ < 1. Now, since xm′i,pi(t) = 1 as m′i is the min-

imum queue length in pool pi, we must have
dxm′

i
,pi

(t)

dt < 0 which leads to a contra-
diction. Therefore, we have πx(Ym′i,pi = ∞) = 0 for all i ∈ [L]. Now observe that∑L+1

i=1 ρi ≥ 1 implies ρL+1 ≥ 1 −
∑L

i=1 ρi. Therefore, using Lemma 15, we know that the

chain (Ym′1,p1 , . . . , Ym′L+1,pL+1
) is unstable. Moreover, again from Lemma 15,

∑L
i=1 ρi < 1

insures that the chain (Ym′1,p1 , . . . , Ym′L,pL) is stable. Hence, we have π̄x(Ym′L+1,pL+1
≥ l) = 1

for all l ≥ 0. This shows that πx(Ym′L+1,pL+1
=∞) = 1. Now observe that the rate of tran-

sition from Ym′i,pi → Ym′i,pi − 1 is λ1
(

0 = Ym′1,p1 = · · · = Ym′i−1,pi−1
< Ym′i,pi

)
= 0 for each

i ∈ {L+ 2, . . . ,H}. Hence, with only non-zero rate of transition from Ym′i,pi → Ym′i,pi + 1
we have πx(Ym′i,pi =∞) = 1 for each i ∈ {L+ 2, . . . ,H}.
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