

Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/169772

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

© 2022, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

Hybrid ensemble artificial intelligence algorithms for predicting peak shear strength of clayey soil-geomembrane interfaces and

experimental validation

Zhiming Chao^{1,2,3,4#}, Danda Shi^{1#}, Gary Fowmes⁴*, Xu Xu⁵, Wenhan Yue⁵, Peng Cui³, Tianxiang Hu¹, Chuanxin Yang¹

¹ Shanghai Maritime University, Shanghai, China, 200135

² Failure Mechanics and Engineering Disaster Prevention, Key Laboratory of Sichuan Province,

Sichuan University, Chengdu, China, 610065

³ School of Civil Engineering, Nanjing Forestry University, Nanjing, China, 210037

⁴ School of Engineering, University of Warwick, Coventry, UK, CV4 7AL

⁵Anhui Provincial Port and Shipping Group Co.,LTD,

* Corresponding author, E-mail: zmchao@shmtu.edu.cn

[#] The authors contribute equally to this paper

Abstract

The peak shear strength of clayey soil-geomembrane interfaces is a vital parameter for the design of relevant engineering infrastructure. However, due to the large number of influence factors and the complex action mechanism, accurate prediction of the peak shear strength for clayey soil-geomembrane interfaces is always a challenge. In this paper, a novel machine learning model was established by combining Mind Evolutionary Algorithm (MEA) and the ensemble algorithm of Adaptive Boosting Algorithm (ADA)-Back Propagation Artificial Neural Network (BPANN) to predict the peak shear strength of clayey soil-geomembrane interfaces based on the results of 623 laboratory interface direct shear experiments. By comparing with the conventional machine learning algorithms, including Particle Swarm Optimisation Algorithm (PSO) and Genetic Algorithm (GA) tuned ADA-BPANN, MEA tuned Support Vector Machine (SVM) and Random Forest (RF), the superior performance of MEA tuned ADA-BPANN has been validated, with higher predicting precision, shorter training time, and the avoidance of local optimum and overfitting. By adopting the proposed novel model, sensitivity analysis was carried out, which indicates that normal pressure has the largest influence on the peak shear strength, followed by geomembrane roughness. Furthermore, an analytical equation was proposed to assess the peak shear strength that allows the usage of machine learning skills for the practitioners with limited machine learning knowledge. The present research highlights the potential of the MEA tuned ADA-BPANN model as a useful tool to assist in preciously estimating the peak shear strength of clayey soil-geomembrane interfaces, which can provide benefits for the design of relevant engineering applications.

Keywords: Clayey Soil; Geomembrane; Interfaces; Peak shear strength

1 **1. Introduction**

2 Geomembranes are widely applied in hydraulic engineering, civil engineering and other 3 engineering fields(Biabani and Indraratna, 2015; Cazzuffi and Gioffrè, 2020; Koerner and Koerner, 2006; Yu and Rowe, 2018), and in order for them to operate effectively they 4 5 must interact with surrounding materials, such as soil, etc. through interfaces (Abdelaal et al., 2019; Eldesouky and Brachman, 2018; Rowe et al., 2009; Rowe and Shoaib, 2017). 6 7 For the engineering applications installed with geomembranes, soil-geomembrane 8 interfaces are often their weakest component, and the peak shear strength of soil-9 geomembrane interfaces decides the stability of the engineering facilities (Chao and 10 Fowmes, 2021; Chen et al., 2021; Eldesouky and Brachman, 2020). For example, the peak shear strength for clayey soil-geomembrane interfaces in landfill cover systems 11 12 determines the stability of landfills (Mirzababaei et al., 2017). Thus, a correct assessment 13 of the peak shear strength for soil-geomembrane interfaces is vital for the reasonable 14 design and safe operation of relevant engineering applications.

15

16 Conducting direct shear tests is the primary method to determine the peak shear strength of soil-geomembrane interfaces (Abdelaal and Solanki, 2022; Punetha et al., 2017). Many 17 18 scholars have measured the peak shear strength of soil-geomembrane interfaces based on 19 direct shear experiments (Ghazizadeh and Bareither, 2018; Lopes et al., 2014; Makkar et 20 al., 2017; Mehrjardi and Motarjemi, 2018; Sharma et al., 2007; Suzuki et al., 2017). The 21 studies show that the properties of soil such as mean particle size, density, etc., and the 22 characteristics of geomembrane such as roughness, density, etc. as well as normal stress have relatively large impacts on the peak shear strength of soil-geomembrane 23 24 interfaces(Biabani and Indraratna, 2015; Chao and Fowmes, 2022; Rowe and Jabin, 2021; Vangla and Gali, 2016). However, geosynthetics interface testing is expensive and time 25

26 consuming, and the exact materials to be deployed on site are often chosen well after the 27 design stage, thus, there is a clear need to develop an effective method to predict the peak 28 shear strength of soil-geomembrane according to the typical charaterics of soil and geomembrane. Hence, based on the results of direct shear tests, a number of researchers 29 30 have attempted to develop prediction models to evaluate the peak shear strength of soilgeomembrane interfaces by taking the aforementioned important parameters of soil and 31 32 geomembrane as the input parameters (Ghazavi and Bavandpouri, 2022; Pant and 33 Ramana, 2022; Raja and Shukla, 2021). However, due to the complicated action 34 mechanism between soil and geomembrane as well as the large number of influence 35 factors, most of the forecasting models established by adopting traditional function fitting or analytical methods cannot comprehensively reflect the impacts of multiple factors on 36 37 the peak shear strength along soil-geomembrane interfaces (Chao et al., 2021). For 38 example, Liu et al. (2009) proposed an analytical model to forecast the interface shear 39 resistance between soil and geogrid, which considers the influence of three variables including the opening area of geogrid ribs and shear strength of soil, etc. on the interface 40 41 shear resistance. He et al. (2021) established an empirical model to estimate the peak shear strength of clayey soil-concrete interfaces, with taking two variables about the 42 43 material properties of the interface as the input parameters. He et al. (2019) used an analytical model that takes two experimental variables into account to foretell the peak 44 45 shear strength of soil-geogrid interfaces. Based on the above analysis, the peak shear 46 strength predictive models that are established by using the traditional function fitting or analytical methods only can consider the influence of a small number of variables, which 47 cannot establish the complex relationship between a large number of variables. 48

49

50 Artificial intelligence techniques can model the complex relationship between multi-

parameters, with a high precision and efficiency. Therefore, in recent years, an increasing 51 52 number of researchers have utilised machine learning techniques to solve various geotechnical issues (Al-Mudhafar, 2017; Chao et al., 2022; Debnath and Dey, 2017; 53 Erofeev et al., 2019; Kumar and Basudhar, 2018; Sudakov et al., 2019). The effectiveness 54 55 of machine learning algorithms in modelling complex geotechnical issues between many variables have been extensively validated (Abad et al., 2022; Çalışkan et al., 2022; 56 57 Choubineh et al., 2017; Erofeev et al., 2019; Ghorbani et al., 2017; Sudakov et al., 2019). 58 For example, Asteris et al. (2021) firstly used the machine learning algorithms of 59 AdaBoost and Random Forestry (RF) to predict the compressive strength of cementbased mortars, which has better assessing accuracy than that of traditional methods. 60 Sathyan et al. (2020) modelled the shear flow behaviour of cement paste by combining 61 machine learning techniques (XGBoostas) and physical experiments, and the research 62 63 indicates that the model developed by using XGBoost is a promising tool for solving 64 highly complex and heterogeneous geotechnical engineering problems. However, due to 65 the lack of modelling data, reports containing the application of machine learning 66 methods in predicting the peak shear strength of interfaces between soil and geosynthetics are rare. In the limited research, the authors adopted machine learning techniques to 67 establish models for assessing the peak shear strength of clayey soil-geocomposite 68 drainage layer interfaces (Chao et al., 2021). However, the existing research about the 69 modelling of peak shear strength for soil-geosynthetics interfaces has two main 70 71 deficiencies. Firstly, the studies do not involve machine learning modelling of the peak 72 shear strength along soil-geomembrane interfaces. Secondly, the existing investigation 73 mainly utilised some common and straightforward machine learning algorithms, and the 74 applicability of more advanced and sophisticated machine learning algorithms, such as the ensemble algorithms of Adaptive Boosting Algorithm-Back-propagation Artificial 75

Neural Network (ADA-BPANN) and Random Forest (RF) in evaluating the peak shear
strength of interfaces has not been explored.

78

In general, the machine learning models without combining optimization algorithms are 79 80 inefficient, with slow convergence speed, overtraining, or prone to converging to local 81 optima, and often pose a convergence problem (Ebrahimi et al., 2016; Raja and Shukla, 82 2020; Saghatforoush et al., 2016; Yao et al., 2010). More importantly, there is subjectivity 83 in the artificially determining of initial model parameters, which causes low predictive 84 accuracy (Hasanipanah et al., 2018). Hence, the optimised algorithms, such as, Genetic 85 Algorithm (GA) and Particle Swarm Optimisation Algorithm (PSO) were applied by some researchers to optimise the initial parameters of machine learning models for 86 87 evaluating the properties of geotechnical materials, and the increase in both of predictive 88 accuracy and convergence speed of the constructed machine learning models after 89 combining optimisation algorithms has been demonstrated (Ahmadi and Chen, 2019; Al 90 Khalifah et al., 2020). However, GA and PSO still have some inherent drawbacks. For 91 example, their computational efficiency is low with long operational time, and they cannot guarantee the gained result is globally optimum, causing detrimental impacts on 92 their optimisation effects (Liu et al., 2015; Wang and Shen, 2018). To solve the 93 94 shortcomings, many works have been carried out by scholars, among of which is, Sun et al. (2000) proposed Mind Evolutionary Algorithm (MEA) to overcome the 95 96 aforementioned defects of GA and PSO and improve the optimisation effects (Jie et al., 97 2004; Xie et al., 2000). The better performance of MEA than that of GA and PSO on increasing the estimating accuracy of machine learning models has been proved by 98 researchers in engineering field (Liu et al., 2015; Wang et al., 2018; Xu et al., 2018). For 99 example, Zhang et al. (2022) integrated BPANN and MEA to conduct back analysis of 100

101 the surrounding rock parameters, which presented superior predictive performance than 102 that of traditional machine learning algorithms. Wang et al. (2019) combined the 103 ecological restoration experiment for soil contamination and MEA tuned ANN to 104 estimate the heavy metal content of soil, and the research indicates that the MEA tuned 105 algorithm has satisfying precision. Wang et al. (2018) compared the prediction performance and generalization capabilities of MEA-BPANN with the GA-BPANN 106 107 model in estimating the height of ocean waves. The study results demonstrate that the 108 MEA-BPANN model performs better than the GA-BPANN model and BPANN model, 109 with faster running time and higher prediction accuracy. However, to the best knowledge 110 of the authors, currently, the application of MEA in improving the performance of machine learning models for predicting the peak shear strength of soil-geosynthetics 111 112 interfaces has not been reported, let alone assessing the peak shear strength along soil-113 geomembrane interfaces.

114

115 In this paper, based on the database constructed upon the 623 large direct shear 116 experiments on clayey soil-geomembrane interfaces, a novel machine learning model for forecasting the peak shear strength of clayey soil-geomembrane interfaces was proposed 117 by combining MEA and ADABPANN. To justify the superior performance of the novel 118 119 model compared to the conventional machine learning algorithms, the GA and PSO tuned 120 BPANN, MEA tuned SVM and RF models were constructed and compared with the MEA tuned ADABPANN. Furthermore, the sensitivity analysis was conducted and an 121 122 analytical equation was built to facilitate the peak shear strength evaluation for geotechnical engineers with limited machine learning learnings. The novel machine 123 learning model established in this research aims to provide more accurate, efficient and 124

reliable predictions of peak shear strength for clayey soil-geomembrane interfaces, which is also the key to improve the design quality of relevant buildings.

127

128 **2. Machine learning algorithms**

There are four types of machine learning algorithms including BPANN, SVM, ADABPANN and RF, that were adopted in this paper. A brief introduction of the used machine
learning algorithms was conducted in the following.

132

133 2.1 BPANN

BPANN is a multi-layer feed-forward neural network based on error back propagation 134 algorithm, the typical structure of BPANN model. The BPANN model utilized in this 135 study is comprised of three layers: input layer, hidden layer, and output layer. The input 136 137 and output layers of the model is composed of five joints and one joint, respectively. The number of hidden-layer joints in the model was determined by a loop program. In this 138 139 program, firstly, BPANN models with a hidden joint size ranging from 1 to 1000 were 140 established by the training dataset. Then, the predictive accuracies of models with different hidden-layer sizes were evaluated using the testing dataset according to the 141 assessment indicator of Root-Mean-Square Error (RMSE), as expressed in Equation (1). 142 143 Subsequently, the hidden layer joint size of the model with the least RMSE was selected as the optimal hidden layer joint size. In this case, the optimal hidden layer joint size was 144 145 nine. The activation function and network training algorithm in the proposed BPANN model are Logarithmic Sigmoid Function and Levenberg-Marquardt Backpropagation 146 Algorithm, respectively, with the initial weights and thresholds of joints in the BPANN 147 model being optimized. 148

149
$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(y_i - f_i)^2}{n}}$$
(1)

150 Where, n is the number of sample data, y_i is measured value, f_i is predictive value.

151

152 2.2 SVM

SVM is a binary predictive model, which is able to divide and predict sample data to achieve structural risk minimization according to maximum margin principles. SVM can achieve high forecasting accuracy based on few data sample. In this case, the radial basis function was selected as the kernel function of the SVM model, with penalty parameter c and g of the kernel function being optimized.

158

159 2.3 ADA-BPANN

ADA-BPANN is one type of robust ensemble algorithms that consists of many "weak" 160 base learners (BPANN models) to form a "strong" predictive model with a better 161 162 forecasting performance (Shen et al., 2020). The training process of ADA-BPANN, as 163 follows: (1) Establish single BPANN model (base leaner) based on original training data 164 (2) allocate more weight on the training data with wrong predictive value depending on the predictive performance of the base learners (3) establish new base learners according 165 166 to the adjusted training data (4) repeat Step (2) and Step (3) until the predetermined number of base learners are established (5) calculate predictive results of the established 167 168 base learners adopting weighed average method to obtain the final predictive results. The BPANN models in ADA-BPANN has the same structure and parameter specification 169 170 with 5 input layer joints, 9 hidden layer joints and 1 output layer joint, taking Logarithmic 171 Sigmoid Function as the activation function and Levenberg-Marquardt Backpropagation Algorithm as the network training algorithm, with the number of BPANN models in the 172

ADA-BPANN model and the initial weights/thresholds of joints in the BPANN modelsbeing optimised, respectively.

175

176 2.4 RF

177 RF is another ensemble algorithm that is constituted of a group of Decision Tree (DT) models based on Bootstrap aggregating technique (Liaw and Wiener, 2002). The training 178 179 process of RF as follows: (1) Generate a number of different training datasets and testing 180 datasets using Bootstrap method (2) establish DT models according to the training 181 datasets, respectively (3) input corresponding testing datasets into the constructed DT 182 models to obtain the predictive results, respectively (4) calculate the average value of 183 predictive results from the established DT models as the final predictive values of RF model. The main advantages of adopting RF include: (i) simple operation method (ii) low 184 185 computational cost (iii) high predictive accuracy and generalised ability (Kohestani et al., 186 2015). Two parameters were optimised in the RF model: the number of DT models and 187 the minimum number of samples in the leaf node of DT models, respectively.

188

189 **3. Hyperparameters optimization**

All machine learning algorithms have several crucial hyper-parameters that can influence 190 191 their predictive performance significantly. Hence, it is necessary to optimise the hyperparameters of machine learning algorithms before training of them. In this research, MEA 192 was adopted to optimise the hyperparameters of the constructed machine learning models, 193 194 with RMSE as the fitness function. MEA is a new heuristically evolutionary intelligence algorithm, which was proposed by Sun et al.(2000). MEA can overcome the inherent 195 defects of traditional evolutionary intelligence algorithms of GA and PSO, such as low 196 computational efficiency, long operational time, obtaining local optimum (Jie et al., 2004; 197

198 Xie et al., 2000), which has been proved by researchers in engineering fields (Liu et al., 199 2015; Wang and Shen, 2018; Wang et al., 2018; Xu et al., 2018; Zhao et al., 2016). MEA 200 has several main advantages: (i) The computational efficiency is high due to the parallel 201 computation of similartaxis and dissimilation operations. (ii) The evolutionary 202 information that MEA can retain is more than one generation, which provides beneficial guidance on the operational directions of similartaxis and dissimilation operations. (iii) 203 204 The similartaxis and dissimilation operations in MEA can avoid the damage of original 205 information for individuals. Similartaxis refers to that firstly, the fitness value of 206 individuals is evaluated, and based on the evaluated fitness value, the individuals are 207 divided as superior individuals and temporary individuals. Then, new individuals are generated around the superior individuals and temporary individuals. After that, the 208 fitness value of new individuals is evaluated, and based on the fitness value, all the 209 210 individuals are divided as superior individuals and temporary individuals again.

211

212 The specific operation of adopting MEA to optimise machine learning models as follows: 213 (1) Randomly generate individuals that are composed of different hyperparameter values in the solution space (2) score the individuals based on fitness values (RMSE) obtained 214 by calling the corresponding machine learning model, and divide the individuals with low 215 216 RMSE value as superior individuals and other individuals with high RMSE value as 217 temporary individuals (3) assign the superior individuals and temporary individuals as 218 centres, respectively, then generate new individuals around each centre individual to 219 obtain superior subgroups and temporary subgroups, respectively (4) perform similartaxis operations in each subgroup until the subgroup is mature (the RMSE value of the 220 subgroup keeps unchangeable during continuous 6 times iteration), and take the RMSE 221 value of the optimal individual (centre individual) in each subgroup as the RMSE value 222

223 of corresponding subgroups (5) when the subgroups are all mature, post the RMSE value 224 of each subgroup on the global bulletin board, and conduct dissimilation operations 225 between the superior subgroups and temporary subgroups, including replacing or 226 abandoning subgroups, releasing individuals in abandoned subgroups, and supplying new 227 subgroups (6) carry out similartaxis operations in the new supplying subgroups, and repeat Step (4) to Step (5) until the RMSE value of new supplying subgroups is lower 228 229 than those of superior subgroups, respectively (6) take the centre individual in the superior 230 subgroup with the lowest RMSE as the global superior individual, and assign the 231 hyperparameter values of the global superior individual as the initial hyperparameter 232 values of the established machine learning model (7) train the built machine learning 233 model, and conduct prediction, the detailed optimising process as shown in Figure 1.

234

235 In this case, the population size was set as 300, and the number of superior subgroups and temporary subgroups was the same, with being set as 3. The size of subgroup is 30, and 236 237 the maximum iteration number is 20. Additionally, the fitness function value (RMSE) of 238 individuals in MEA was obtained using k-fold cross-validation method (k-CV) on the corresponding machine learning model during the process of hyperparameter 239 optimisation. k-CV is an extensively adopted method to validate the performance of 240 241 machine learning models, which refers to that the original data are divided into equal kgroups. The training of machine learning models is based on k-1 groups, while the 242 validation is conducted on the remaining 1 group. The training and validating process is 243 repeated k times with different groups as the training dataset and testing dataset, 244 respectively. The average value of k times predicted accuracies is finally used as the 245 evaluation indicator of forecasting performance. In this paper, the training dataset of the 246 247 established database was utilised as the original data to conduct the k-CV operation on 248 the machine learning models to obtain the evaluation indicator value (RMSE), with k249 being taken as 10 considering the size of database and the recommendation in literatures 250 (Rodriguez et al., 2009). To compare the optimisation effects between MEA and 251 traditional optimisation algorithms, the BPANN models with hyperparameters optimised 252 by GA and PSO were constructed, respectively, and the predictive results of GA and PSO-BPANN model were compared with that of MEA-BPANN, respectively. The detailed 253 254 introduction about the optimised hyperparameters of the built machine learning models 255 and their optimising range is provided in Table 1.

256

257 **4.Database and pre-processing**

The research compiled the experimental data from about 4000 direct shear tests on clayey 258 soil-geomembrane interfaces from the following sources: literature, internal database, 259 260 repeatability testing, inter-laboratory comparison, own-laboratory experiments (Criley and Saint John, 1997; Dixon et al., 2006; Dixon et al., 2000; Sia and Dixon, 2007). The 261 262 repeatability testing uses the same material in the same laboratory whereas the interlaboratory testing uses the same material in different laboratories, and the internal 263 database has both material and laboratory variability. The typical properties, such as 264 density, mean particle size of clayey soil and roughness, density of geomembranes used 265 266 in the tests were also complied. For other experimental conditions, the tests were the 267 same, with a shearing rate of 1mm/min and being conducted in the consolidated undrained condition. 268

269

Among the 4000 direct shear tests, the tests that lack a complete set of information were excluded. The information of the remaining tests was compiled and arranged to construct the database with 623 data groups by combining the general soil classification standards 273 and product data sheets of geomembrane manufacturers. The data groups were divided 274 randomly into 498 groups of training data (80%) for training the machine-learning models 275 and 125 groups of testing data (20%) for testing the trained machine-learning models by using a MATLAB program. In this program, each data group was randomly assigned a 276 277 unique number ranging from 1 to 623. The data groups with number ranging from 1 to 498 were selected as the training dataset, and the data groups with number ranging from 278 279 498 to 623 were selected as the testing dataset. In each data group, soil density (D), soil 280 mean particle size (M), geomembrane roughness (R), geomembrane density (G), normal 281 stress (N) were adopted as the input parameters for machine learning modelling, and the 282 corresponding peak shear strength (S) of clayey soil-geomembrane interfaces was taken as the output parameter. The statistics parameters and data type of the input and output 283 284 parameters were tabulated in Table 2.

285

The input parameters for the machine learning models had different dimensions, which may affect the training time and prediction accuracy of the models. To improve the forecasting accuracy and operational efficiency of the machine learning models, the input and output parameters were normalized to the range of 0–1 using Equation. (2).

290
$$x_{\text{Normalized}} = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$
(2)

Where, $x_{\text{Normalized}}$ represents the normalized value, x represents the original value, x_{\min} represents the minimum value, and x_{\max} represents the maximum value.

293

294 **5. Quality assessment**

Predictive precision of the established machine-learning models was assessed using three
evaluation indicators: Correlation Coefficient R, RMSE, and Mean Absolute Percentage
Error (MAPE), as expressed in Equation (3)~(5), respectively.

298

R is a statistic parameter that can measure the correlation between two variables, ranging
from -1 to 1. A value of 1 means totally positive correlation, 0 means no correlation, and
-1 means totally negative correlation.

302
$$R(f_i, y_i) = \frac{\operatorname{cov}(f_i, y_i)}{\sqrt{\operatorname{var}[f_i]\operatorname{var}[y_i]}}$$
(3)

Where, cov(,) represents covariance, var[] represents variance, y_i represents the measured value (The value obtained in physical shear tests), \bar{y} represents the average measured value, and f_i represents the predicted value.

306

RMSE is the standard deviation of estimation errors, which indicates how concentration
the data is around the best fitting line. MAPE can measure the prediction accuracy as the
form of percentage, and can be calculated as shown in Equation (4). The lower the RMSE
and MAPE indicate the more precise the machine learning models.

311
$$MSE = \frac{|y_i - f_i|}{n}$$
(4)

312 Where, *n* represents the number of sample data.

313
$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \frac{|y_i - f_i|}{y_i}$$
(5)

314

315 6.Results and analysis

316 6.1Results of hyperparameter optimisation

As aforementioned, MEA was utilised to optimise the hyperparameters of machine learning algorithms, with RMSE as fitness function. For each machine learning algorithm, three initial superior subgroups and three initial temporary subgroups were generated. The optimising process of the subgroups during the simillartaxis and dissimilation operations was recorded, as shown in Figure 2.

322

323 Based on Figure 2, for the initial superior subgroups and temporary subgroups, after 324 serval similartaxis operations, the RMSE of each subgroup tends to be steady, which 325 indicates the subgroups are mature. Then, the dissimilation operations are conducted. In 326 the dissimilation operation, the RMSE of temporary subgroups and superior subgroups is 327 compared, and the superior subgroups are replaced by the temporary subgroups with lower RMSE. The rest of temporary subgroups with high RMSE are abandoned, and 328 329 individuals in them are released. After that, the released individuals are regrouped to form new temporary groups, and the similartaxis operations are performed again on the 330 331 subgroups, as shown in Figure 2 (d). For the new superior subgroups, the RMSE of them 332 remains stable because they are already mature, as shown in Figure 2 (c). By comparing 333 the RMSE of new temporary subgroups and new superior subgroups, it can be seen that 334 the RMSE of each superior subgroup is lower than that of temporary subgroup, which 335 meets the ending criterion. Therefore, the subgroups do not need to be performed dissimilation operations again, and the corresponding hyperparameters of the center 336 individual in the superior subgroup with the lowest RMSE are assigned as the initial 337 parameters of the corresponding machine learning model. 338

339

Based on the aforementioned analysis, for most of subgroups, their RMSE reduces
obviously and becomes stable within 15 iteration times. It indicates that MEA is efficient

in the hyperparameters optimisation of the established machine learning models, which
can enhance the predictive accuracy of established machine learning models remarkably
with high efficiency.

345

To compare the optimisation effects between MEA and GA, PSO, the optimised processes of BPANN model using GA and PSO are shown in Figure 3, respectively.

348

As shown in Figure 2 and Figure 3, when MEA is adopted to optimise BPANN model, RMSE becomes stable within 18 times iterations, which is obviously lower than those of GA (80 times) and PSO (70 times), respectively. Additionally, after the optimisation of MEA, RMSE of BPANN model reduces to 4.69, while, for GA and PSO, they are 8.52 and 7.99, respectively. It demonstrates that, the optimisation performance of MEA on BPANN model is better than those of GA and PSO in the both aspects of optimising efficiency and increasing magnitude in predictive accuracy.

356

357 6.2 The performance of the developed machine learning models

358 The predictive performance of the established machine learning models on the training 359 dataset and testing dataset is presented in Figure 4 to Figure 9, respectively.

360

Figure 4 to Figure 7 show that, for the training dataset, the forecasting performance of the ADABPANN model with hyperparameters optimized by MEA is the best among the constructed models in terms of the statistics parameters of R, RMSE and MAPE. More specifically, the MEA-ADABPANN model achieved the lowest RMSE (1.1) and MAPE (5.06%), and the highest R (0.99), among the models, followed by MEA-RF, MEA-BPANN and MEA-SVM, with GA-BPANN and PSO-BPANN having poor predictive 367 accuracy.

368

The results indicate that, for both of testing dataset and training dataset, the ensemble algorithms of ADABPANN and RF have higher precision in estimating the peak shear strength of clayey soil-geomembrane interfaces than those of BPANN and SVM, respectively. Additionally, the models with hyperparameters optimized by MEA are more accurate to evaluate the peak shear strength than the models optimized by GA and PSO, respectively.

381

382 **7. Sensitivity analysis of the influence factors**

Sensitivity analysis was carried out to investigate the relative importance of the input 383 parameters of the built machine learning models to the peak shear strength along clayey 384 385 soil-geomembrane interfaces. Since the ADABPANN model with hyperparameters optimized by MEA was considered as the model with the highest predictive accuracy, the 386 387 MEA-ADABPANN model was used to carried out the sensitivity analysis. Garson's Algorithm was utilized to calculate the relative importance of the input parameters for per 388 BPANN model that composes the MEA-ADABPANN model (Goh, 1995), which has 389 been extensively applied in geotechnical engineering to estimate the parameter 390 391 contribution (Das and Basudhar, 2006; Goh, 1995; Kanungo et al., 2014). Garson's

Algorithm was proposed by Garson, later modified by Goh (1995), to determine the relative importance of the input parameters to the output parameter based on the connection weights of BPANN models, as shown in Equation (6). The average relative importance of the input parameters for each BPANN model in the MEA-ADABPANN model was calculated as the final relative importance, as presented in Figure 10.

$$R_{ij} = \frac{\sum_{j=1}^{L} \left(\left| W_{ij} W_{jk} \right| / \sum_{r=1}^{N} \left| W_{rj} \right| \right)}{\sum_{i=1}^{N} \sum_{j=1}^{L} \left(\left| W_{ij} W_{jk} \right| / \sum_{r=1}^{N} \left| W_{rj} \right| \right)}$$
(6)

397

where R_{ij} is the relative importance of input parameters, W_{ij} , W_{jk} are the connection weights of the input layer-hidden layer and the hidden-output layer, i= 1,2....N, k=1,2....M (N and M are the numbers of the input parameters and output parameters).

Based on Figure 10, normal stress has the largest relative importance among the input
parameters, accounting for 26.85 %, followed by soil density, geomembrane roughness
and soil mean particle size. In comparison, geomembrane density has small influence on
the peak shear strength.

406

407 **8. Establishment of an analytical equation for estimating the peak shear strength**

Based on the aforementioned analysis, the constructed ADABPANN model with hyperparameters optimized by MEA has been validated as a reliable tool to foretell the peak shear strength of clayey soil-geomembrane interfaces. However, owing to the complex modelling process, it is difficult for engineers with limited knowledge of machine learning to utilize the model. To facilitate the usage for geotechnical practitioners, an analytical equation based on the average weights and biases of the 414 BPANN models that compose the MEA-ADABPANN model was proposed by using 415 Equation 7, with considering the predictive mechanism of MEA-ADABPANN model 416 (Goh et al., 2005). The BPANN models in MEA-ADABPANN model have the same 417 structure, with the average weights and biases of joints in the BPANN models are 418 tabulated in Table 3. To be specific, the values in Table 3 include the average connection weights between the input layer joints and hidden layer joints, the average connection 419 420 weights between the hidden layer joints and output layer joints, the biases of all joints. 421 The similar equations established based on the same mechanism have been extensively 422 adopted by researchers in the geotechnical area (Das and Basudhar, 2006; Goh, 1995; 423 Kanungo et al., 2014), which has sufficiently validated the reliability of the equation.

424
$$Y_n = f_{sig} \{ b_0 + \sum_{k=1}^h [w_k \times f_{sig} (b_{hk} + \sum_{i=1}^m w_{ik} X_i)] \}$$
(7)

Where, Y_{a} is the normalised predictive values in [-1,1]; b_{b} is the average bias of output layer joints; w_{k} is the average connection weight between the *k*th hidden layer joint and the output layer joint; b_{nk} is the average bias of the *k*th hidden layer joint; *h* is the number of hidden layer joints; w_{ik} is the average connection weight between the *i*th input layer joint and the *k*th hidden layer joint; X_{i} is the *i*th normalised input parameter, ranging from -1 to 1; f_{sig} is the Sigmoid Transfer Activation Function; *m* is the number of input layer joints.

432

The detailed calculation process is follows, with the input parameters and outputparameter represented by their corresponding symbols, respectively:

435
$$A_1 = 2.22 + 3.37R + 0.11D - 2.26M + 2.2G + 0.19N$$
 (8)

436
$$A_2 = -1.55 + 0.08R + 0.06D - 0.01M + 2.32G + 1.12N$$
(9)

437
$$A_3 = -1.94 - 2.94R - 0.09D + 2.18M + 2.21G - 0.65N$$
(10)

438
$$A_4 = -0.6 - 0.09R - 0.05D + 0.1M + 0.19G + 0.06N$$
(11)

439
$$A_{5} = -3.48 - 0.04R - 0.0004D + 0.018M + 0.01G - 1.29N$$
(12)

440
$$A_6 = 2.08 - 2.34R - 0.35D + 0.72M - 0.14G - 0.02N \tag{13}$$

441
$$A_7 = -0.29 - 1.43R - 2.02D - 2.81M + 1.16G + 0.07N$$
(14)

442
$$A_8 = -0.09 - 2.26R + 0.52D - 0.01M - 0.09G - 2.91N$$
(15)

443
$$A_{9} = 1.56 - 1.61R - 0.29D + 0.47M - 1.19G + 2.19N$$
(16)

444
$$B_1 = 1.1 \times \frac{e^{A_1} - e^{-A_1}}{e^{A_1} + e^{-A_1}}$$
(17)

445
$$B_2 = -5.38 \times \frac{e^{A_2} - e^{-A_2}}{e^{A_2} + e^{-A_2}}$$
(18)

$$B_3 = 1.19 \times \frac{e^{A_3} - e^{-A_3}}{e^{A_3} + e^{-A_3}}$$
(19)

447
$$B_4 = 0.95 \times \frac{e^{A_4} - e^{-A_4}}{e^{A_4} + e^{-A_4}}$$
(20)

448
$$B_5 = 2.56 \times \frac{e^{A_5} - e^{-A_5}}{e^{A_5} + e^{-A_5}}$$
(21)

 $B_6 = 0.79 \times \frac{e^{A_6} - e^{-A_6}}{e^{A_6} + e^{-A_6}}$ (22)

$$B_{7} = 0.05 \times \frac{e^{A_{7}} - e^{-A_{7}}}{e^{A_{7}} + e^{-A_{7}}}$$
(23)

 $B_8 = 0.08 \times \frac{e^{A_8} - e^{-A_8}}{e^{A_8} + e^{-A_8}}$ (24)

$$B_9 = -1.22 \times \frac{e^{A_9} - e^{-A_9}}{e^{A_9} + e^{-A_9}}$$
(25)

453
$$C_1 = -2.3 + B_1 + B_2 + B_3 + B_4 + B_5 + B_6 + B_7 + B_8 + B_9$$
(26)

$$Y_n = \frac{e^{C_1} - e^{-C_1}}{e^{C_1} + e^{-C_1}}$$
(27)

455 Among the above equations, A, B, C, Yn are just a symbol, which represents the 456 corresponding equations. The relationship between Equation (8)~(27) is as follows: 457 Equation (8)~(16) indicate the definition of A_1 to A_9 . Then, A_1 to A_9 are substituted into 458 Equation (17)~(25) to definite B_1 to B_9 , respectively. After that, B_1 to B_9 are substituted into Equation (26) to definite C_1 . Followed that, C_1 is substituted into Equation (27) to 459 definite Yn. Finally, since the obtained Y_n value from Equation (27) is in the range of [-460 1,1], Yn is substituted into Equation (28) to conduct denormalization to obtain the 461 462 forecasting peak shear strength of clayey soil-geomembrane interfaces.

463

$$\tau = 0.5(Y_n + 1)(Y_{\max} - Y_{\min}) + Y_{\min}$$
(28)

464 Where, Y_{max} and Y_{min} are the maximum and minimum values of the peak shear strength 465 in the database, respectively, in this research, $Y_{\text{max}} = 90kPa$ and $Y_{\text{min}} = 5kPa$.

466

467 Therefore, Equation (28) is transformed to Equation (29) to obtain the empirical equation 468 for calculating the peak shear strength. By using Equation (29) can achieve the prediction 469 of the peak shear strength of clayey soil-geomembrane interfaces without conducting the 470 MEA-ADABPANN modelling steps. The relevant practitioners can apply Equation (29) 471 in forecasting the peak shear strength based on the parameters listed in Table 2.

472

473
$$\tau = 42.5kPa \times Y_n + 47.5kPa$$
(29)

474

475 9. Validation by conducting physical experiments

476 To validate the effectiveness of the developed analytical equation, physical direct shear 477 tests on clayey soil-geomembrane interfaces were conducted by using the bespoke soil-478 geosynthetics interface large direct shear apparatus in the geotechnical laboratory at 479 Shanghai Maritime University, China, as shown in Figure 11. In the tests, two types of 480 clayey soil and 6 types of geomembranes, with different properties, were adopted, as listed in Table 4 and Table 5. The normal pressure was set as 50 kPa, 100 kPa and 150 kPa, 481 482 respectively, and the shearing was implemented in the consolidated undrained condition, 483 with shearing rate of 1 mm/min. In total, 36 tests were carried out. According to the 484 experimental results, the peak shear strength along the interfaces between different types 485 of clayey soil and geomembrane was obtained. Also, the developed empirical equation (Equation (28)) was adopted to predict the peak shear strength along the interfaces 486 between clayey soil and geomembranes with different properties. By comparing the 487 488 measured peak shear strength and the predicted value, the applicability of the developed equation is verified. The comparison results are shown in Figure 12. 489

490

491 As shown in Figure 12, the predicted peak shear strength is close to the peak shear 492 strength measured by laboratory tests, with R of 0.98, RMSE of 1,20 and MAPE of 4.5%. 493 This indicates that the developed equation has high accuracy to predict the peak shear 494 strength of clayey soil-geomembrane interfaces. It provides convenience for the 495 geotechnical engineering personnel with limited knowledge of machine learning 496 technique to forecast the peak shear strength of clayey soil-geomembrane interfaces.

497

498 **10. Discussion**

In practical engineering, the moisture content of soil has relatively large influence on thepeak shear strength of clayey soil-geomembrane interfaces. Due to the lack of relevant

501 information about the moisture content of clayey soil in the compiled database, the 502 proposed machine learning models in this research do not employ the soil moisture 503 content as one of input parameters. However, the developed machine learning models 504 without the input parameter of soil moisture content still have satisfactory predictive 505 results. The possible explanation is that, based on the standard procedure of conducting large direct shear tests on soil-geosynthetics interfaces (ASTM, 2014), the direct shear 506 507 tests are normally carried out on the interfaces between clayey soil with the optimum 508 moisture content and geomembrane. For clayey soil, their optimum moisture content is 509 close. Thus, it is supposed that, in the compiled database, the moisture content of clayey 510 soil adopted in different direct shear tests is similar, which leads to that the presented machine learning models can have good forecasting outcomes without the input 511 512 parameter of soil moisture content.

513

In this research, the forecasting performance of the MEA tuned ADABPANN model is 514 515 the best among the established models. It can be attributed to the four reasons. (i) MEA 516 can divide the subgroups into superior and temporary subgroups, with the similartaxis and dissimilation operations being conducted independently, which can significantly 517 increase the search efficiency for the optimal solution. (ii) MEA can record more than 518 519 one generation of evolutionary information, which can provide correct guidance on the 520 direction of similartaxis and dissimilation operations. (iii) Similartaxis and dissimilation operations in MEA can avoid the destruction of original individual caused by the 521 522 crossover and mutation operations in GA. (iv) MEA tuned ADABPANN can achieve both of the strong local and global searching capability to determine the optimal solution, 523 which can avoid premature convergence and poor prediction effect to obtain better 524 525 forecasting precision.

527 **11. Limitations**

528 Although some significant discoveries have been revealed in this paper, the limitation of 529 the investigation should not be ignored. Firstly, the predictive precision and reliability of 530 the constructed machine learning models can be improved further when a larger database is available. Secondly, the established machine learning models were based on the 531 532 database developed from the large direct shear tests on the interfaces between clayey soil 533 and geomembrane. In the future, it is worthy expanding the database to include the data 534 from the tests on the interfaces between different types of soil and geomembrane. Thirdly, 535 the value ranges of some input parameters, such as soil mean particle size and geomembrane density, are not very large, Hence, an attempt to expand the value ranges 536 of the input parameters is deserved to carry out, to improve the generalisation ability of 537 538 the established machine learning models.

539

540 **12 Conclusion**

541 In the present research, based on the database constructed upon the 623 large direct shear 542 tests on clayey soil-geomembrane interfaces, a novel machine learning model was established by combining MEA and ADA-BPANN to estimate the peak shear strength of 543 544 clayey soil-geomembrane interfaces according to the 5 input variables of soil density (D), 545 soil mean particle size (M), geomembrane roughness (R), geomembrane density (G) and 546 normal stress (N). To validate the performance of the novel machine learning model, the 547 conventional machine learning algorithms including GA and PSO tuned ADA-BPANN, 548 MEA tuned ELM and RF models were established to compare with the MEA tuned ADA-549 BPANN model. Also, the sensitivity analysis was implemented to determine the influence 550 degree of input variables to the peak shear strength, and an analytical equation was

proposed to facilitate the prediction of peak shear strength for geotechnical engineeringpractitioners with limited machine learning knowledge.

553

554 The research outcomes indicate that the proposed novel machine learning combined by 555 MEA and ADA-BPANN has better prediction performance than the others machine learning models. To be specific, the MEA tuned ADA-BPANN model has higher 556 557 predicting accuracy and efficiency, less iteration times to reach the optimal solution, less 558 possibility of over-fitting and trapping into local optima, compared to the conventional 559 algorithms. Also, the sensitivity analysis upon the proposed model manifests that the 560 impact of normal stress on the peak shear strength is the highest, being followed by soil density and geomembrane roughness. It provides a guidance for the relevant practitioners 561 562 to pay more attention on the factors that have more significant influence on the peak shear 563 strength of clayey soil-geomembrane interfaces.

564

565 Overall, although evaluating the peak shear strength of clayey soil-geomembrane 566 interfaces is always a large challenge due to the multiple influence factors and 567 complicated action mechanism, the novel machine learning model presented in this 568 research provides a possibility to preciously forecast the peak shear strength, with a high 569 efficiency. It also acts as a key solution to overcome the deficiencies and uncertainties 570 about the design of building that requires the correct estimation of the peak shear strength 571 for clayey soil-geomembrane interfaces.

572

573 Acknowledgements

574 The authors would like to acknowledge the consistent support of 2022 Open Project 575 of Failure Mechanics and Engineering Disaster Prevention, Key Lab of Sichuan Province, 576 No FMEDP202209. The paper is also sponsored by Shanghai Sailing Program, No

- 577 22YF1415800
- 578

579 **Reference**

- Abad, A.R.B., Ghorbani, H., Mohamadian, N., Davoodi, S., Mehrad, M., Aghdam,
 S.K.Y., Nasriani, H.R., 2022. Robust hybrid machine learning algorithms for gas
 flow rates prediction through wellhead chokes in gas condensate fields. Fuel 308,
 121872.
- Abdelaal, F., Morsy, M., Rowe, R.K., 2019. Long-term performance of a HDPE
 geomembrane stabilized with HALS in chlorinated water. Geotextiles and
 Geomembranes 47 (6), 815-830.
- Abdelaal, F., Solanki, R., 2022. Effect of geotextile ageing and geomembrane surface
 roughness on the geomembrane-geotextile interfaces for heap leaching applications.
 Geotextiles and Geomembranes 50 (1), 55-68.
- Ahmadi, M.A., Chen, Z., 2019. Comparison of machine learning methods for estimating
 permeability and porosity of oil reservoirs via petro-physical logs. Petroleum 5 (3),
 271-284.
- Al-Mudhafar, W.J., 2017. Integrating well log interpretations for lithofacies classification
 and permeability modeling through advanced machine learning algorithms. Journal
 of Petroleum Exploration and Production Technology 7 (4), 1023-1033.
- Al Khalifah, H., Glover, P., Lorinczi, P., 2020. Permeability prediction and diagenesis in
 tight carbonates using machine learning techniques. Marine and Petroleum Geology
 112, 104096.
- Asteris, P.G., Koopialipoor, M., Armaghani, D.J., Kotsonis, E.A., Lourenço, P.B., 2021.
 Prediction of cement-based mortars compressive strength using machine learning techniques. Neural Computing and Applications 33 (19), 13089-13121.
- ASTM, 2014. Standard test method for determining the shear strength of soil geosynthetic and geosynthetic-geosynthetic interfaces by direct shear. Annual Book
 of ASTM Standards. ASTM D5321, West Conshohocken, PA.
- Biabani, M.M., Indraratna, B., 2015. An evaluation of the interface behaviour of rail
 subballast stabilised with geogrids and geomembranes. Geotextiles and
 Geomembranes 43 (3), 240-249.
- 608 Çalışkan, A., Demirhan, S., Tekin, R., 2022. Comparison of different machine learning
 609 methods for estimating compressive strength of mortars. Construction and Building
 610 Materials 335, 127490.
- Cazzuffi, D., Gioffrè, D., 2020. Lifetime assessment of exposed PVC-P geomembranes
 installed on Italian dams. Geotextiles and Geomembranes 48 (2), 130-136.
- Chao, Z., Fowmes, G., 2021. Modified stress and temperature-controlled direct shear
 apparatus on soil-geosynthetics interfaces. Geotextiles and Geomembranes 49 (3),
 825-841.
- 616 Chao, Z., Fowmes, G., 2022. The short-term and creep mechanical behaviour of clayey
 617 soil-geocomposite drainage layer interfaces subjected to environmental loadings.
 618 Geotextiles and Geomembranes 50 (2), 238-248.
- Chao, Z., Fowmes, G., Dassanayake, S., 2021. Comparative study of hybrid artificial
 intelligence approaches for predicting peak shear strength along soil-geocomposite
 drainage layer interfaces. International Journal of Geosynthetics and Ground
 Engineering 7 (3), 1-19.
- 623 Chao, Z., Wang, M., Sun, Y., Xu, X., Yue, W., Yang, C., Hu, T., 2022. Predicting stress-

- dependent gas permeability of cement mortar with different relative moisture
 contents based on hybrid ensemble artificial intelligence algorithms. Construction
 and Building Materials 348, 128660.
- 627 Chen, W.B., Xu, T., Zhou, W.H., 2021. Microanalysis of smooth geomembrane–sand
 628 interface using FDM–DEM coupling simulation. Geotextiles and Geomembranes 49
 629 (1), 276-288.
- Choubineh, A., Ghorbani, H., Wood, D.A., Moosavi, S.R., Khalafi, E., Sadatshojaei, E.,
 2017. Improved predictions of wellhead choke liquid critical-flow rates: modelling
 based on hybrid neural network training learning based optimization. Fuel 207, 547560.
- 634 Criley, K., Saint, J.D., 1997. Variability analysis of soil vs. geosynthetic interface friction
 635 characteristics by multiple direct shear testing. In: Proceedings of Geosynthetics.
 636 Long Beach, USA, pp. 885-897.
- Das, S.K., Basudhar, P.K., 2006. Undrained lateral load capacity of piles in clay using
 artificial neural network. Computers and Geotechnics 33 (8), 454-459.
- Debnath, P., Dey, A.K., 2017. Prediction of laboratory peak shear stress along the
 cohesive soil–geosynthetic interface using artificial neural network. Geotechnical
 and Geological Engineering 35 (1), 445-461.
- Dixon, N., Jones, D.R.V., Fowmes, G.J., 2006. Interface shear strength variability and its
 use in reliability-based landfill stability analysis. Geosynthetics International 13 (1),
 1-14.
- Dixon, N., Kamugisha, P., Jones, D., 2000. Geosynthetic interface testing at low normal
 stresses: design implications. In: Proceedings of the Second European Geosynthetics
 Conference. Bologna, Italy, pp. 535-540.
- Ebrahimi, E., Monjezi, M., Khalesi, M.R., Armaghani, D.J., 2016. Prediction and
 optimization of back-break and rock fragmentation using an artificial neural network
 and a bee colony algorithm. Bulletin of Engineering Geology and the Environment
 75 (1), 27-36.
- Eldesouky, H., Brachman, R., 2018. Calculating local geomembrane strains from a single
 gravel particle with thin plate theory. Geotextiles and Geomembranes 46 (1), 101110.
- Eldesouky, H., Brachman, R., 2020. Viscoplastic modelling of HDPE geomembrane local
 stresses and strains. Geotextiles and Geomembranes 48 (1), 41-51.
- Erofeev, A., Orlov, D., Ryzhov, A., Koroteev, D., 2019. Prediction of porosity and
 permeability alteration based on machine learning algorithms. Transport in Porous
 Media 128 (2), 677-700.
- Ghazavi, M., Bavandpouri, O., 2022. Analytical solution for calculation of pull out forcedeformation of geosynthetics reinforcing unsaturated soils. Geotextiles and
 Geomembranes 50 (2), 357-369.
- Ghazizadeh, S., Bareither, C.A., 2018. Stress-controlled direct shear testing of
 geosynthetic clay liners II: assessment of shear behavior. Geotextiles and
 Geomembranes 46 (5), 667-677.
- Ghorbani, H., Moghadasi, J., Wood, D.A., 2017. Prediction of gas flow rates from gas
 condensate reservoirs through wellhead chokes using a firefly optimization
 algorithm. Journal of Natural Gas Science and Engineering 45, 256-271.
- Goh, A.T., 1995. Back-propagation neural networks for modeling complex systems.
 Artificial Intelligence in Engineering 9 (3), 143-151.
- 671 Goh, A.T., Kulhawy, F.H., Chua, C., 2005. Bayesian neural network analysis of 672 undrained side resistance of drilled shafts. Journal of geotechnical and

- 673 geoenvironmental engineering 131 (1), 84-93.
- Hasanipanah, M., Amnieh, H.B., Arab, H., Zamzam, M.S., 2018. Feasibility of PSO–
 ANFIS model to estimate rock fragmentation produced by mine blasting. Neural
 Computing and Applications 30 (4), 1015-1024.
- He, P.F., Mu, Y.H., Ma, W., Huang, Y.T., Dong, J.H., 2021. Testing and modeling of
 frozen clay–concrete interface behavior based on large-scale shear tests. Advances
 in Climate Change Research 12 (1), 83-94.
- He, Z., Mo, H., Siga, A., Zou, J., 2019. Research on the parameters of nonlinear hyperbolic model for clay-geogrid interfaces based on large scale direct shear tests.
 Transportation Geotechnics 18, 39-45.
- Jie, J., Zeng, J., Ren, Y., 2004. Improved mind evolutionary computation for
 optimizations. In: Fifth World Congress on Intelligent Control and Automation (Cat.
 No. 04EX788). Hangzhou, China, pp. 2200-2204.
- Kanungo, D., Sharma, S., Pain, A., 2014. Artificial neural network (ANN) and regression
 tree (CART) applications for the indirect estimation of unsaturated soil shear
 strength parameters. Frontiers of Earth Science 8 (3), 439-456.
- Koerner, G., Koerner, R., 2006. Long-term temperature monitoring of geomembranes at
 dry and wet landfills. Geotextiles and Geomembranes 24 (1), 72-77.
- Kohestani, V., Hassanlourad, M., Ardakani, A., 2015. Evaluation of liquefaction potential
 based on CPT data using random forest. Natural Hazards 79 (2), 1079-1089.
- Kumar, S., Basudhar, P.K., 2018. A neural network model for slope stability
 computations. Géotechnique Letters 8 (2), 149-154.
- Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R news 2 (3),
 18-22.
- Liu, C.N., Ho, Y.H., Huang, J.W., 2009. Large scale direct shear tests of soil/PET-yarn geogrid interfaces. Geotextiles and Geomembranes 27 (1), 19-30.
- Liu, H., Tian, H., Liang, X., Li, Y., 2015. New wind speed forecasting approaches using
 fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary
 algorithm and artificial neural networks. Renewable Energy 83, 1066-1075.
- Lopes, M.L., Ferreira, F., Carneiro, J.R., Vieira, C.S., 2014. Soil–geosynthetic inclined
 plane shear behavior: influence of soil moisture content and geosynthetic type.
 International Journal of Geotechnical Engineering 8 (3), 335-342.
- Makkar, F.M., Chandrakaran, S., Sankar, N., 2017. Performance of 3-D geogrid reinforced sand under direct shear mode. International Journal of Geotechnical
 Engineering, 1-9.
- Mehrjardi, G.T., Motarjemi, F., 2018. Interfacial properties of geocell-reinforced granular
 soils. Geotextiles and Geomembranes 46 (4), 384-395.
- Mirzababaei, M., Arulrajah, A., Horpibulsuk, S., Aldava, M., 2017. Shear strength of a
 fibre-reinforced clay at large shear displacement when subjected to different stress
 histories. Geotextiles and Geomembranes 45 (5), 422-429.
- Pant, A., Ramana, G., 2022. Prediction of pullout interaction coefficient of geogrids by
 extreme gradient boosting model. Geotextiles and Geomembranes.
- Punetha, P., Mohanty, P., Samanta, M., 2017. Microstructural investigation on
 mechanical behavior of soil-geosynthetic interface in direct shear test. Geotextiles
 and Geomembranes 45 (3), 197-210.
- Raja, M.N.A., Shukla, S.K., 2020. Ultimate bearing capacity of strip footing resting on
 soil bed strengthened by wraparound geosynthetic reinforcement technique.
 Geotextiles and Geomembranes 48 (6), 867-874.
- Raja, M.N.A., Shukla, S.K., 2021. Predicting the settlement of geosynthetic-reinforced

- soil foundations using evolutionary artificial intelligence technique. Geotextiles and
 Geomembranes 49 (5), 1280-1293.
- Rodriguez, J.D., Perez, A., Lozano, J.A., 2009. Sensitivity analysis of k-fold cross
 validation in prediction error estimation. IEEE transactions on pattern analysis and
 machine intelligence 32 (3), 569-575.
- Rowe, R., Rimal, S., Sangam, H., 2009. Ageing of HDPE geomembrane exposed to air,
 water and leachate at different temperatures. Geotextiles and Geomembranes 27 (2),
 137-151.
- Rowe, R.K., Jabin, F., 2021. Effect of prehydration, permeant, and desiccation on
 GCL/Geomembrane interface transmissivity. Geotextiles and Geomembranes 49 (6),
 1451-1469.
- Rowe, R.K., Shoaib, M., 2017. Long-term performance of high-density polyethylene
 (HDPE) geomembrane seams in municipal solid waste (MSW) leachate. Canadian
 Geotechnical Journal 54 (12), 1623-1636.
- Saghatforoush, A., Monjezi, M., Faradonbeh, R.S., Armaghani, D.J., 2016. Combination
 of neural network and ant colony optimization algorithms for prediction and
 optimization of flyrock and back-break induced by blasting. Engineering with
 Computers 32 (2), 255-266.
- Sathyan, D., Govind, D., Rajesh, C., Gopikrishnan, K., Kannan, G.A., Mahadevan, J.,
 2020. Modelling the shear flow behaviour of cement paste using machine learningXGBoost. In: Journal of Physics: Conference Series. Telangana, India, 1451 (1), pp.
 012026.
- Sharma, J., Fleming, I., Jogi, M., 2007. Measurement of unsaturated soil–geomembrane
 interface shear-strength parameters. Canadian Geotechnical Journal 44 (1), 78-88.
- Shen, J., Li, L., Lin, D., 2020. Prediction of engineering parameters based on improved
 artificial neural network. In: IE&EM 2019. Springer, Singapore, pp. 21-27.
- Sia, A., Dixon, N., 2007. Distribution and variability of interface shear strength and
 derived parameters. Geotextiles and Geomembranes 25 (3), 139-154.
- Sudakov, O., Burnaev, E., Koroteev, D., 2019. Driving digital rock towards machine
 learning: predicting permeability with gradient boosting and deep neural networks.
 Computers & geosciences 127, 91-98.
- Sun, C., Yan, S., Xie, K., 2000. Mind-evolution-based machine learning and applications.
 In: Proceedings of the 3rd World Congress on Intelligent Control and Automation (Cat. No. 00EX393). Hefei, China, pp. 112-117.
- Suzuki, M., Koyama, A., Kochi, Y., Urabe, T., 2017. Interface shear strength between
 geosynthetic clay liner and covering soil on the embankment of an irrigation pond
 and stability evaluation of its widened sections. Soils and Foundations 57 (2), 301314.
- Vangla, P., Gali, M.L., 2016. Shear behavior of sand-smooth geomembrane interfaces
 through micro-topographical analysis. Geotextiles and Geomembranes 44 (4), 592603.
- Wang, H., Shen, J., 2018. An improved model combining evolutionary algorithm and
 neural networks for PV maximum power point tracking. IEEE Access 7, 2823-2827.
- Wang, W., Tang, R., Li, C., Liu, P., Luo, L., 2018. A BP neural network model optimized
 by mind evolutionary algorithm for predicting the ocean wave heights. Ocean
 Engineering 162, 98-107.
- Wang, X., An, S., Xu, Y., Hou, H., Chen, F., Yang, Y., Zhang, S., Liu, R., 2019. A back
 propagation neural network model optimized by mind evolutionary algorithm for
 estimating Cd, Cr, and Pb concentrations in soils using Vis-NIR diffuse reflectance

- spectroscopy. Applied Sciences 10 (1), 51.
- Xie, K., Du, Y., Sun, C., 2000. Application of the mind-evolution-based machine learning
 in mixture-ratio calculation of raw materials cement. In: Proceedings of the 3rd
 World Congress on Intelligent Control and Automation (Cat. No. 00EX393). Hefei,
 China, pp. 132-134.
- Xu, L., Du, X., Wang, B., 2018. Short-term traffic flow prediction model of wavelet
 neural network based on mind evolutionary algorithm. International Journal of
 Pattern Recognition and Artificial Intelligence 32 (12), 1850041.
- Yao, B.Z., Yang, C.Y., Yao, J.B., Sun, J., 2010. Tunnel surrounding rock displacement
 prediction using support vector machine. International Journal of Computational
 Intelligence Systems 3 (6), 843-852.
- Yu, Y., Rowe, R.K., 2018. Development of geomembrane strains in waste containment
 facility liners with waste settlement. Geotextiles and Geomembranes 46 (2), 226242.
- Zhang, J., Li, P., Yin, X., Wang, S., Zhu, Y., 2022. Back analysis of surrounding rock
 parameters in pingdingshan mine based on bp neural network integrated mind
 evolutionary algorithm. Mathematics 10 (10), 1746.
- Zhao, Y., Ren, X., Hu, Y., Wang, J., Bao, X., 2016. CNC thermal compensation based on
 mind evolutionary algorithm optimized BP neural network. World Journal of
 Engineering and Technology 4 (01), 38.

791	
792	List of tables
793	
794	Table.1 The optimised hyperparameters in the machine learning models
795	Table.2 The statistical parameters of the input and output parameters
796	Table.3 Average connection weights and biases of the MEA-ADABPNN models
797	Table.4 The basic properties of clayey soil
798	Table.5 The basic properties of geomembranes
799	
800	
801	
802	
803	
804	
805	
806	
807	
808	
809	
810	
811	
812	
813	
814	
815	

Machine learning models	Hyperparameter	Optimising range
DDANN	The initial weights of joints	-5-5
DF AININ	The initial thresholds of joints	-10-10
SVM	Penalty parameter c of kernel function	2 ⁻⁵ -2 ⁵
	Penalty parameter g of kernel function	4 ⁻⁵ -4 ⁵
	The number of base learners	1-20
ADA-BPANN	The initial weights of joints in base learners	-5-5
	The initial threshold of joints in base learners	-10-10
DE	The maximum number of DT in the ensemble model	1-1000
Кľ	The minimum number of samples at the leaf node	1-10

Table.1 The optimised hyperparameters in the machine learning models

Parameters	Categorise	Data type	Minimum	Maximum	Mean
Soil mean particle size /mm	Input parameter	Numeric	0.001	0.05	0.02
Soil density/ g/cm ³	Input parameter	Numeric	1	1.7	1.4
Geomembrane roughness	Input parameter	Nominal	Sn	nooth, Textured	
Geomembrane density/g/cm ³	Input parameter	Numeric	0.5	4	2
Normal pressure/kPa	Input parameter	Numeric	10	200	100
Peak shear strength/kPa	Output parameter	Numeric	5	90	50

Table. 2 The statistical characteristics of the established database

Hidde	Weight	Weights						
n Joint	_							
numb					Input	Output	Hidde	Outp
er					input	paramet	muue	ut
CI	parame	eters				er	n	Ŧ
							Layer	Laye
	R	D	М	G	Ν	S		r
1	3.37	0.11	-2.26	2.2	0.19	1.10	2.22	
2	0.08	0.06	-0.01	2.32	1.12	-5.38	-1.55	
3	-2.94	-0.09	2.18	2.21	-0.65	1.19	-1.94	
4	-0.09	-0.05	0.10	0.19	0.06	0.95	-0.60	
		-						
5	-0.04	0.000	0.018	0.01	-1.29	2.56	-3.48	-2.30
-		Λ						
		4						
6	-2.34	-0.35	0.72	-0.14	-0.02	0.79	2.08	
7	-1.43	-2.02	-2.81	1.16	0.07	0.05	-0.29	
8	-2.26	0.52	-0.01	-0.09	-2.91	0.08	-0.09	
9	-1.61	-0.29	0.47	-1.19	2.19	-1.22	1.56	

Table.3 Average connection weights and biases of the MEA-ADABPNN models

834	Table 4. The basic properties of clayey soil						
	Soil type	Soil density	Soil mean particle size/mm				
	Kaolin Clay	1.5	0.006				
	Bentonite Clay	1.2	0.04				
835							
836							
837							
838	Table	5. The basic properties of	of geomembranes				
	Geomembrane type	Geomembrane	Geomembrane density/g/cm3				
		roughness					
	Geomembrane A	Smooth	1				
	Geomembrane B	Smooth	1.5				
	Geomembrane C	Smooth	3.9				
	Geomembrane D	Textured	1.5				
	Geomembrane E	Textured	2.9				
	Geomembrane F	Textured	4				
839							
840							
841							
842							
843							
844							
845							
846							
847							

List of figures Figure.1 The flow chart of machine learning modelling with MEA optimised Figure.2 The evolution of RMSE during similartaxis process Figure.3 The optimised processes of BPANN models using GA and PSO Figure.4 Predictive performance of the models for training dataset Figure.5 The R values of the models for training dataset Figure.6 The RMSE of the models Figure.7 The MAPE of the models Figure.8 Predictive performance of the models for testing dataset Figure.9 The R values of the established models for testing dataset Figure.10 The relative importance of the input parameters for the model Figure.11 The bespoke large direct shear apparatus Figure.12 The comparison between the predictive value and measured value

(c) Superior subgroups after dissimilation operation (d) Temporary subgroups after dissimilation operation
 Figure.2 The evolution of RMSE during similartaxis process

200 300 Sample number 884 (c) MEA-RF (d) MEA-SVM

200 300 Sample number

0 L

Figure.5 The R values of the models for training dataset

Figure.9 The R values of the established models for testing dataset

Figure.10 The relative importance of the input parameters for the model

Figure 11 The bespoke large direct shear apparatus

934 Appendix

935Table 1 The measured and forecasting (MEA tuned ADABPANN model) peak shear

strength based on training dataset

Sample	Measured	Predictive	Sample	Measured	Predictive
number	value/kPa	value/kPa	number	value/kPa	value/kPa
1	4.98963	5.07802	248	17.80523	17.72443
2	5.0045	5.0492	249	18.12017	18.40374
3	5.0045	4.84397	250	19.51123	18.90518
4	5.00467	4.93271	251	19.5468	19.27911
5	5.00467	4.95652	252	19.66293	20.25903
6	5.00467	5.09454	253	19.72097	19.46617
7	5.00467	5.2539	254	20.34617	19.99806
8	5.00507	5.00692	255	20.7342	20.70795
9	5.00507	5.09665	256	21.12613	20.88166
10	5.00533	4.91534	257	21.28817	21.33389
11	5.00533	4.89768	258	21.37983	21.40164
12	5.007	4.8383	259	21.37983	21.5139
13	5.00923	4.97298	260	21.4101	21.17619
14	5.0103	5.00663	261	21.81087	21.42961
15	5.0106	5.05668	262	21.81887	22.01384
16	5.01093	5.03141	263	21.8735	21.98134

⁹³⁶

21.92697 22.07677 22.34013 22.50703 22.58887 22.9223 22.9429 22.94877	22.0788 22.03291 22.33551 22.23603 22.68524 22.38097 23.14558
22.07677 22.34013 22.50703 22.58887 22.9223 22.9429 22.94877	 22.03291 22.33551 22.23603 22.68524 22.38097 23.14558
22.34013 22.50703 22.58887 22.9223 22.9429 22.94877	 22.33551 22.23603 22.68524 22.38097 23.14558
22.50703 22.58887 22.9223 22.9429 22.94877	22.2360322.6852422.3809723.14558
22.58887 22.9223 22.9429 22.94877	22.68524 22.38097 23.14558
22.9223 22.9429 22.94877	22.38097 23.14558
22.9429 22.94877	23.14558
22.94877	
	22.87615
23.09927	23.93126
23.12083	22.80502
23.2603	23.49023
23.4073	23.48387
23.43353	23.48377
23.6395	23.73335
23.65047	23.34193
23.80277	24.23564
24.11237	23.89553
24.456	24.52083
24.64353	24.07854
24.81677	24.45243
	22.94877 23.09927 23.12083 23.2603 23.4073 23.43353 23.6395 23.65047 23.80277 24.11237 24.11237 24.456 24.64353 24.81677

-	37	5.0174	4.81351	284	25.03057	25.12287
	38	5.01837	5.04202	285	25.15917	25.45124
	39	5.0189	5.114	286	25.4101	25.18061
	40	5.02053	5.03654	287	25.91103	26.14373
	41	5.02067	5.06551	288	25.9897	25.89893
	42	5.02067	5.20021	289	26.01123	26.28924
	43	5.0208	4.98198	290	26.05283	26.10484
	44	5.0218	5.07275	291	26.30017	26.51344
	45	5.0218	5.06584	292	26.42603	25.54996
	46	5.02237	5.32235	293	26.51257	26.73967
	47	5.02237	5.02325	294	26.58823	26.09942
	48	5.031	4.8872	295	26.62177	26.19805
	49	5.0334	5.03977	296	26.69823	26.50799
	50	5.04093	5.06984	297	27.3689	27.23663
	51	5.0434	5.01287	298	27.37453	27.40524
	52	5.05707	4.92696	299	27.63683	27.32531
	53	5.0794	5.19343	300	27.67417	27.39376
	54	5.08113	5.26429	301	27.70037	27.68739
	55	5.0851	5.14057	302	27.73193	27.97006
	56	5.1032	5.01462	303	28.26457	28.05176

57	5.1032	5.08458	304	28.2884	28.68302
58	5.10437	5.25259	305	28.65633	28.09557
59	5.10783	5.21874	306	28.6728	28.40381
60	5.10783	5.1247	307	29.00937	29.77309
61	5.1114	5.30736	308	29.00973	28.96724
62	5.11427	4.88713	309	29.17603	28.31221
63	5.1179	5.0337	310	29.68633	29.68087
64	5.12013	5.1014	311	29.7254	29.39671
65	5.12527	5.06046	312	29.87927	29.80073
66	5.13073	4.88604	313	29.90637	30.37584
67	5.1326	5.27099	314	30.09703	30.27619
68	5.133	5.11708	315	30.12733	30.1202
69	5.14487	5.06434	316	30.26353	30.64537
70	5.16443	5.24242	317	30.3338	30.16687
71	5.16443	5.17223	318	30.33817	30.21384
72	5.1645	5.04707	319	30.69857	31.69109
73	5.17767	5.19027	320	30.77997	30.32424
74	5.2037	5.27955	321	31.11687	31.08049
75	5.2037	5.21016	322	31.16663	30.42662
76	5.245	5.00929	323	31.32127	31.06946

_	77	5.32653	5.24908	324	31.4833	31.71479
	78	5.3427	5.6351	325	31.63737	31.72278
	79	5.3607	5.47333	326	31.70173	31.69352
	80	5.36353	5.31869	327	31.74587	31.76302
	81	5.36397	5.62912	328	32.0227	32.35325
	82	5.38203	5.11909	329	32.02433	32.35315
	83	5.38983	5.28917	330	32.0281	32.14293
	84	5.38983	5.23898	331	32.61193	32.53223
	85	5.38983	5.20127	332	32.66667	32.8655
	86	5.3914	5.57458	333	32.82073	32.67271
	87	5.3952	5.37235	334	32.88243	33.40878
	88	5.40263	5.31916	335	33.05787	33.66386
	89	5.40527	5.2945	336	33.38763	33.14109
	90	5.40917	5.358	337	33.46067	33.75001
	91	5.41573	5.61987	338	33.67243	33.5604
	92	5.41953	5.69533	339	33.6806	33.89067
	93	5.4204	5.28449	340	33.9719	33.65009
	94	5.4284	5.71246	341	33.97283	34.24466
	95	5.4285	5.45992	342	34.04763	34.29186
	96	5.43237	5.25915	343	34.08897	33.94024

-	97	5.44397	5.56081	344	34.16153	33.7672
	98	5.4616	5.61706	345	34.46377	35.4418
	99	5.4616	5.27269	346	34.8914	35.14616
	100	5.47103	5.5425	347	34.9307	34.96779
	101	5.47467	5.46305	348	35.01303	34.91844
	102	5.54667	5.57498	349	35.59813	35.77878
	103	5.57727	5.62197	350	35.62567	35.84006
	104	5.61597	5.21574	351	35.8008	35.95788
	105	5.62253	5.65073	352	35.9204	35.83796
	106	5.6227	5.6862	353	35.95323	35.75037
	107	5.65307	5.64172	354	36.17027	36.41214
	108	5.65823	5.70763	355	36.51683	36.4906
	109	5.68353	5.37265	356	36.71787	36.51876
	110	5.71723	5.76076	357	37.01953	36.20828
	111	5.7456	5.65065	358	37.02227	36.96472
	112	5.7534	5.97745	359	37.09927	36.63357
	113	5.75937	5.59294	360	37.25693	37.08615
	114	5.79587	5.99137	361	37.54457	37.74418
	115	5.8029	6.08486	362	37.63053	37.37945
	116	5.91387	5.86617	363	37.82507	39.14103

117	5.9301	5.83733	364	37.86237	36.91003
118	5.95393	5.97267	365	37.8914	37.85298
119	5.95393	5.40554	366	38.54187	38.20868
120	5.97283	5.92433	367	38.5764	38.69053
121	6.005	6.35331	368	38.76217	38.82801
122	6.0119	6.1584	369	39.1442	39.10988
123	6.0487	5.78564	370	39.25557	40.75041
124	6.0515	6.08281	371	39.82833	39.80208
125	6.08903	6.01	372	40.088	40.08694
126	6.1367	6.61967	373	40.3617	40.50813
127	6.1367	5.66329	374	40.3633	40.26878
128	6.1675	6.27352	375	40.7665	41.37611
129	6.16947	6.17734	376	41.2302	41.37385
130	6.2388	6.18426	377	41.3971	41.74049
131	6.2406	6.39717	378	41.97417	42.093
132	6.2515	6.3385	379	42.2347	42.32597
133	6.26933	6.25964	380	42.30193	42.05932
134	6.3399	6.60174	381	42.3124	42.83674
135	6.4425	6.07212	382	42.58743	42.91668
136	6.4655	6.40768	383	42.91947	42.95701

137	6.48837	7.18974	384	43.2354	41.8651
138	6.56273	6.8693	385	43.70713	43.21928
139	6.63153	6.43624	386	43.78763	43.83929
140	6.6776	6.90931	387	44.43353	44.37035
141	6.7743	6.5724	388	44.6174	44.62862
142	6.79263	6.99635	389	45.1007	45.75384
143	6.81837	6.57984	390	45.16647	45.2411
144	6.8223	6.88225	391	45.567	45.73883
145	6.8323	6.82422	392	45.99813	45.65391
146	6.86577	7.0084	393	46.2425	46.34851
147	6.89587	7.14564	394	46.31343	46.38831
148	6.92013	6.91942	395	46.69023	46.52116
149	6.9204	7.00884	396	46.79063	46.69371
150	6.9253	6.67673	397	47.0226	46.82201
151	6.9253	6.85014	398	47.62307	47.07797
152	6.967	7.12431	399	48.72677	48.7121
153	7.00057	7.02298	400	48.8169	48.78101
154	7.04113	7.03075	401	49.28463	49.38233
155	7.04547	6.7516	402	49.53247	49.89743
156	7.06477	6.84282	403	49.9227	49.9743

157	7.14593	6.97156	404	50.0571	50.07712
158	7.2425	7.06854	405	50.2472	50.22192
159	7.2928	7.04531	406	50.49793	50.40154
160	7.32323	7.30035	407	50.49793	50.46894
161	7.3296	7.46737	408	51.26487	52.23906
162	7.35937	7.41881	409	51.41367	51.55574
163	7.41017	6.8707	410	51.4827	51.11751
164	7.4201	7.5335	411	51.9779	52.35609
165	7.42397	7.25342	412	52.0298	51.99041
166	7.4452	7.5043	413	52.0298	52.09067
167	7.46237	7.57266	414	52.06563	51.97341
168	7.47463	7.3393	415	52.63147	52.86024
169	7.47463	7.52335	416	52.63147	52.66028
170	7.48933	7.31126	417	52.92577	53.07435
171	7.48933	7.55272	418	53.3268	53.10408
172	7.50897	7.56226	419	53.37797	52.92729
173	7.51123	6.98844	420	53.3998	53.47349
174	7.5455	7.3651	421	53.4136	53.53974
175	7.58373	7.85638	422	53.59363	53.76704
176	7.62837	7.63078	423	53.7397	53.70204

1	77	7.6311	7.83514	424	53.76377	53.66007
1	78	7.69433	7.71038	425	54.6648	54.40681
1	79	8.0234	8.00109	426	54.67433	55.03933
1	80	8.2266	8.40791	427	55.75047	56.04385
1	81	8.5996	8.53534	428	55.95453	55.96601
1	82	8.74543	8.75723	429	56.00373	56.08052
1	83	9.03563	9.63425	430	56.4176	56.35413
1	84	9.06817	9.0528	431	57.06563	57.05669
1	85	9.2209	9.68442	432	57.20887	57.99208
1	86	9.31187	9.5828	433	57.2591	57.36418
1	87	9.3586	9.11948	434	57.716	57.59712
1	88	9.54703	9.73771	435	57.74533	57.69828
1	89	9.92877	9.94077	436	58.14607	57.53362
1	90	10.3117	9.63577	437	58.94803	58.64316
1	91	10.5033	10.55595	438	59.31757	59.32445
1	92	10.58423	10.79138	439	59.3998	58.16892
1	93	10.59403	10.8676	440	59.42883	59.39274
1	94	10.60383	10.54618	441	60.09643	60.17598
1	95	10.60877	10.66475	442	60.8483	60.99863
1	96	11.37983	10.95636	443	60.92223	60.22003

197	11.63577	11.6561	444	60.96723	61.3774
198	11.92323	12.432	445	61.17263	59.71476
199	12.02867	11.8618	446	61.5125	61.09872
200	12.05563	12.21936	447	61.5125	61.90787
201	12.08507	12.18683	448	61.66383	62.24597
202	12.09243	12.11599	449	62.23907	62.26768
203	12.10713	12.10037	450	63.3128	63.35639
204	12.11207	11.84367	451	63.45197	63.87651
205	12.147	12.63159	452	63.86987	63.34053
206	12.3012	12.67595	453	63.94803	63.75331
207	12.32397	12.15499	454	63.94803	64.19416
208	12.34013	12.42336	455	64.73047	63.99272
209	12.34013	12.27191	456	64.89647	64.74089
210	12.3532	12.1027	457	64.9074	64.94939
211	12.52133	12.37929	458	65.21837	65.06786
212	12.83763	12.63931	459	65.5955	65.92826
213	13.25467	13.02222	460	66.33277	66.29877
214	13.34643	13.11184	461	66.34213	66.04879
215	13.44313	13.27385	462	66.94663	67.33235
216	13.80277	13.56122	463	67.00953	66.61835

_	217	13.80277	13.74861	464	67.13693	68.13141
	218	13.80967	14.13999	465	67.73033	68.34478
	219	14.00307	13.86526	466	68.50547	68.94726
	220	14.48877	14.89029	467	68.50547	68.49647
	221	14.5206	14.37714	468	68.74627	68.77332
	222	14.54843	14.63085	469	69.79853	70.11479
	223	14.88013	14.59482	470	70.662	70.28036
	224	14.9621	14.82797	471	70.97567	70.84823
	225	14.96603	15.43531	472	71.48847	72.44146
	226	15.01873	15.05842	473	71.48847	70.96544
	227	15.06937	14.95706	474	72.48727	72.18602
	228	15.07357	15.48237	475	73.6517	73.33734
	229	15.13017	14.94777	476	74.52247	74.82406
	230	15.15193	15.11312	477	74.9563	74.88234
	231	15.24337	15.5998	478	75.6814	76.07491
	232	15.338	15.33021	479	76.0589	74.79237
	233	15.3668	15.54132	480	76.0589	76.13051
	234	15.72567	15.94605	481	78.2088	78.53151
	235	15.73383	15.93981	482	78.6147	79.03132
	236	15.90337	15.82833	483	79.68913	79.59337

237	16.02997	16.54653	484	79.73807	79.7459
238	16.41387	16.01572	485	81.4	81.55158
239	16.58283	16.50846	486	83.0852	83.33479
240	16.77137	16.5493	487	83.2013	82.71408
241	16.7923	16.73105	488	83.7864	83.77879
242	16.8657	17.26988	489	85.17213	84.51494
243	17.02153	17.44643	490	85.26403	85.05255
244	17.18637	17.01505	491	88.9224	89.27866
245	17.22473	17.40464	492	90	91.72707
246	17.43633	17.3824	493	90	93
247	17.6854	17.46771			

938 Table 2 The measured and forecasting (MEA tuned ADABPANN model) peak shear

strength based on testing dataset

Sample	Measured	Predictive	Sample	Measured	Predictive
Sumple	Wiedsured	Trealettve	Bumple	Wiedsuied	Treateuve
number	value/kPa	value/kPa	number	value/kPa	value/kPa
1	5.0045	5.01671	63	17.80523	15.54409
2	5.00467	5.01312	64	19.66293	19.79633
3	5.00467	5.17053	65	20.34617	17.08303
4	5.00533	5.47349	66	22.9429	19.79633
5	5.01093	5.01671	67	23.12083	22.00805

6	5.01107	5.14725	68	23.43353	27.85485
7	5.01107	5.15521	69	23.6395	19.79633
8	5.01157	5.47349	70	24.37733	27.85485
9	5.01197	5.08162	71	25.4101	24.87685
10	5.01197	5.01312	72	26.05283	29.71089
11	5.01387	5.87492	73	26.42603	21.31825
12	5.0174	5.5447	74	27.3689	26.44658
13	5.0218	5.87492	75	27.63683	31.28891
14	5.08603	5.0667	76	28.26457	31.28891
15	5.1032	5.0667	77	28.2884	31.28891
16	5.10783	5.38427	78	29.00973	27.85485
17	5.14487	5.16805	79	29.90637	27.85485
18	5.245	5.16805	80	30.26353	35.56025
19	5.40263	5.41844	81	30.33817	25.38823
20	5.40527	6.96774	82	31.4833	29.71089
21	5.41953	5.41844	83	32.0227	25.38823
22	5.47103	5.72903	84	32.02433	37.29152
23	5.7456	6.2094	85	32.82073	35.07781
24	5.7534	5.47349	86	33.05787	25.38823
25	5.8029	5.38427	87	33.67243	40.50028

-	26	5.82017	5.61752	88	33.6806	29.71089
	27	5.91387	5.08162	89	36.51683	47.42909
	28	5.95393	5.0667	90	36.52903	39.57714
	29	6.005	5.38427	91	37.25693	39.59725
	30	6.0515	6.86249	92	37.8914	39.59725
	31	6.2406	5.87492	93	40.088	47.42909
	32	6.3399	5.41844	94	42.30193	47.42909
	33	6.48837	5.38427	95	42.3124	46.34628
	34	6.8223	7.4201	96	42.72283	47.08162
	35	6.9253	7.4201	97	42.91947	47.42909
	36	6.92753	7.47898	98	43.70713	46.34628
	37	7.0304	7.24752	99	44.43353	50.15926
	38	7.04547	6.86249	100	44.6174	47.42909
	39	7.42397	7.58427	101	45.16647	47.42909
	40	7.48933	7.58427	102	45.567	47.42909
	41	8.2266	7.4201	103	49.28463	52.38813
	42	8.5996	7.58427	104	50.49793	56.50637
	43	9.2209	9.2818	105	52.0298	50.15926
	44	9.92877	7.47898	106	52.52247	61.54773
	45	10.5033	10.60262	107	52.63147	56.50637

46	10.59403	10.60262	108	53.3268	50.15926
47	12.09243	12.0818	109	53.3268	50.15926
48	12.11207	12.0818	110	53.37797	46.26868
49	12.147	15.0002	111	55.75047	50.15926
50	12.3532	13.1151	112	55.95453	46.34628
51	12.83763	13.1151	113	56.0618	61.89379
52	13.01737	11.96599	114	58.94803	56.50637
53	13.09263	13.1151	115	59.31757	59.38752
54	13.80277	13.63866	116	59.3998	52.38813
55	13.80967	11.96599	117	61.17263	62.78907
56	14.88013	17.08303	118	61.95413	59.38752
57	15.07357	13.63866	119	63.94803	56.50637
58	15.24337	17.08303	120	67.13693	62.78907
59	15.338	15.54409	121	70.662	76.4683
60	16.41387	19.79633	122	71.48847	63.62928
61	16.77137	15.0002	123	72.48727	61.89379
62	17.6854	19.79633			