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Abstract  

The peak shear strength of clayey soil-geomembrane interfaces is a vital parameter for 

the design of relevant engineering infrastructure. However, due to the large number of 

influence factors and the complex action mechanism, accurate prediction of the peak 

shear strength for clayey soil-geomembrane interfaces is always a challenge. In this 

paper, a novel machine learning model was established by combining Mind 

Evolutionary Algorithm (MEA) and the ensemble algorithm of Adaptive Boosting 

Algorithm (ADA)-Back Propagation Artificial Neural Network (BPANN) to predict 

the peak shear strength of clayey soil-geomembrane interfaces based on the results of 

623 laboratory interface direct shear experiments. By comparing with the conventional 

machine learning algorithms, including Particle Swarm Optimisation Algorithm (PSO) 

and Genetic Algorithm (GA) tuned ADA-BPANN, MEA tuned Support Vector 

Machine (SVM) and Random Forest (RF), the superior performance of MEA tuned 

ADA-BPANN has been validated, with higher predicting precision, shorter training 

time, and the avoidance of local optimum and overfitting. By adopting the proposed 

novel model, sensitivity analysis was carried out, which indicates that normal pressure 

has the largest influence on the peak shear strength, followed by geomembrane 

roughness. Furthermore, an analytical equation was proposed to assess the peak shear 

strength that allows the usage of machine learning skills for the practitioners with 

limited machine learning knowledge. The present research highlights the potential of 

the MEA tuned ADA-BPANN model as a useful tool to assist in preciously estimating 

the peak shear strength of clayey soil-geomembrane interfaces, which can provide 

benefits for the design of relevant engineering applications. 
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1. Introduction 1 

Geomembranes are widely applied in hydraulic engineering, civil engineering and other 2 

engineering fields(Biabani and Indraratna, 2015; Cazzuffi and Gioffrè, 2020; Koerner 3 

and Koerner, 2006; Yu and Rowe, 2018), and in order for them to operate effectively they 4 

must interact with surrounding materials, such as soil, etc. through interfaces (Abdelaal 5 

et al., 2019; Eldesouky and Brachman, 2018; Rowe et al., 2009; Rowe and Shoaib, 2017). 6 

For the engineering applications installed with geomembranes, soil-geomembrane 7 

interfaces are often their weakest component, and the peak shear strength of soil-8 

geomembrane interfaces decides the stability of the engineering facilities (Chao and 9 

Fowmes, 2021; Chen et al., 2021; Eldesouky and Brachman, 2020). For example, the 10 

peak shear strength for clayey soil-geomembrane interfaces in landfill cover systems 11 

determines the stability of landfills (Mirzababaei et al., 2017). Thus, a correct assessment 12 

of the peak shear strength for soil-geomembrane interfaces is vital for the reasonable 13 

design and safe operation of relevant engineering applications.  14 

15 

Conducting direct shear tests is the primary method to determine the peak shear strength 16 

of soil-geomembrane interfaces (Abdelaal and Solanki, 2022; Punetha et al., 2017). Many 17 

scholars have measured the peak shear strength of soil-geomembrane interfaces based on 18 

direct shear experiments (Ghazizadeh and Bareither, 2018; Lopes et al., 2014; Makkar et 19 

al., 2017; Mehrjardi and Motarjemi, 2018; Sharma et al., 2007; Suzuki et al., 2017). The 20 

studies show that the properties of soil such as mean particle size, density, etc., and the 21 

characteristics of geomembrane such as roughness, density, etc. as well as normal stress 22 

have relatively large impacts on the peak shear strength of soil-geomembrane 23 

interfaces(Biabani and Indraratna, 2015; Chao and Fowmes, 2022; Rowe and Jabin, 2021; 24 

Vangla and Gali, 2016). However, geosynthetics interface testing is expensive and time 25 



consuming, and the exact materials to be deployed on site are often chosen well after the 26 

design stage, thus, there is a clear need to develop an effective method to predict the peak 27 

shear strength of soil-geomembrane according to the typical charaterics of soil and 28 

geomembrane. Hence, based on the results of direct shear tests, a number of researchers 29 

have attempted to develop prediction models to evaluate the peak shear strength of soil-30 

geomembrane interfaces by taking the aforementioned important parameters of soil and 31 

geomembrane as the input parameters (Ghazavi and Bavandpouri, 2022; Pant and 32 

Ramana, 2022; Raja and Shukla, 2021). However, due to the complicated action 33 

mechanism between soil and geomembrane as well as the large number of influence 34 

factors, most of the forecasting models established by adopting traditional function fitting 35 

or analytical methods cannot comprehensively reflect the impacts of multiple factors on 36 

the peak shear strength along soil-geomembrane interfaces (Chao et al., 2021). For 37 

example, Liu et al. (2009) proposed an analytical model to forecast the interface shear 38 

resistance between soil and geogrid, which considers the influence of three variables 39 

including the opening area of geogrid ribs and shear strength of soil, etc. on the interface 40 

shear resistance. He et al. (2021) established an empirical model to estimate the peak 41 

shear strength of clayey soil-concrete interfaces, with taking two variables about the 42 

material properties of the interface as the input parameters. He et al. (2019) used an 43 

analytical model that takes two experimental variables into account to foretell the peak 44 

shear strength of soil-geogrid interfaces. Based on the above analysis, the peak shear 45 

strength predictive models that are established by using the traditional function fitting or 46 

analytical methods only can consider the influence of a small number of variables, which 47 

cannot establish the complex relationship between a large number of variables.  48 

49 

Artificial intelligence techniques can model the complex relationship between multi-50 



parameters, with a high precision and efficiency. Therefore, in recent years, an increasing 51 

number of researchers have utilised machine learning techniques to solve various 52 

geotechnical issues (Al-Mudhafar, 2017; Chao et al., 2022; Debnath and Dey, 2017; 53 

Erofeev et al., 2019; Kumar and Basudhar, 2018; Sudakov et al., 2019). The effectiveness 54 

of machine learning algorithms in modelling complex geotechnical issues between many 55 

variables have been extensively validated (Abad et al., 2022; Çalışkan et al., 2022; 56 

Choubineh et al., 2017; Erofeev et al., 2019; Ghorbani et al., 2017; Sudakov et al., 2019). 57 

For example, Asteris et al. (2021) firstly used the machine learning algorithms of 58 

AdaBoost and Random Forestry (RF) to predict the compressive strength of cement-59 

based mortars, which has better assessing accuracy than that of traditional methods. 60 

Sathyan et al. (2020) modelled the shear flow behaviour of cement paste by combining 61 

machine learning techniques (XGBoostas) and physical experiments, and the research 62 

indicates that the model developed by using XGBoost is a promising tool for solving 63 

highly complex and heterogeneous geotechnical engineering problems. However, due to 64 

the lack of modelling data, reports containing the application of machine learning 65 

methods in predicting the peak shear strength of interfaces between soil and geosynthetics 66 

are rare. In the limited research, the authors adopted machine learning techniques to 67 

establish models for assessing the peak shear strength of clayey soil-geocomposite 68 

drainage layer interfaces (Chao et al., 2021). However, the existing research about the 69 

modelling of peak shear strength for soil-geosynthetics interfaces has two main 70 

deficiencies. Firstly, the studies do not involve machine learning modelling of the peak 71 

shear strength along soil-geomembrane interfaces. Secondly, the existing investigation 72 

mainly utilised some common and straightforward machine learning algorithms, and the 73 

applicability of more advanced and sophisticated machine learning algorithms, such as 74 

the ensemble algorithms of Adaptive Boosting Algorithm-Back-propagation Artificial 75 



Neural Network (ADA-BPANN) and Random Forest (RF) in evaluating the peak shear 76 

strength of interfaces has not been explored.  77 

78 

In general, the machine learning models without combining optimization algorithms are 79 

inefficient, with slow convergence speed, overtraining, or prone to converging to local 80 

optima, and often pose a convergence problem (Ebrahimi et al., 2016; Raja and Shukla, 81 

2020; Saghatforoush et al., 2016; Yao et al., 2010). More importantly, there is subjectivity 82 

in the artificially determining of initial model parameters, which causes low predictive 83 

accuracy (Hasanipanah et al., 2018). Hence, the optimised algorithms, such as, Genetic 84 

Algorithm (GA) and Particle Swarm Optimisation Algorithm (PSO) were applied by 85 

some researchers to optimise the initial parameters of machine learning models for 86 

evaluating the properties of geotechnical materials, and the increase in both of predictive 87 

accuracy and convergence speed of the constructed machine learning models after 88 

combining optimisation algorithms has been demonstrated (Ahmadi and Chen, 2019; Al 89 

Khalifah et al., 2020). However, GA and PSO still have some inherent drawbacks. For 90 

example, their computational efficiency is low with long operational time, and they 91 

cannot guarantee the gained result is globally optimum, causing detrimental impacts on 92 

their optimisation effects (Liu et al., 2015; Wang and Shen, 2018). To solve the 93 

shortcomings, many works have been carried out by scholars, among of which is, Sun et 94 

al. (2000) proposed Mind Evolutionary Algorithm (MEA) to overcome the 95 

aforementioned defects of GA and PSO and improve the optimisation effects (Jie et al., 96 

2004; Xie et al., 2000). The better performance of MEA than that of GA and PSO on 97 

increasing the estimating accuracy of machine learning models has been proved by 98 

researchers in engineering field (Liu et al., 2015; Wang et al., 2018; Xu et al., 2018). For 99 

example, Zhang et al. (2022) integrated BPANN and MEA to conduct back analysis of 100 



the surrounding rock parameters, which presented superior predictive performance than 101 

that of traditional machine learning algorithms. Wang et al. (2019) combined the 102 

ecological restoration experiment for soil contamination and MEA tuned ANN to 103 

estimate the heavy metal content of soil, and the research indicates that the MEA tuned 104 

algorithm has satisfying precision. Wang et al. (2018) compared the prediction 105 

performance and generalization capabilities of MEA-BPANN with the GA-BPANN 106 

model in estimating the height of ocean waves. The study results demonstrate that the 107 

MEA-BPANN model performs better than the GA-BPANN model and BPANN model, 108 

with faster running time and higher prediction accuracy. However, to the best knowledge 109 

of the authors, currently, the application of MEA in improving the performance of 110 

machine learning models for predicting the peak shear strength of soil-geosynthetics 111 

interfaces has not been reported, let alone assessing the peak shear strength along soil-112 

geomembrane interfaces.  113 

114 

In this paper, based on the database constructed upon the 623 large direct shear 115 

experiments on clayey soil-geomembrane interfaces, a novel machine learning model for 116 

forecasting the peak shear strength of clayey soil-geomembrane interfaces was proposed 117 

by combining MEA and ADABPANN. To justify the superior performance of the novel 118 

model compared to the conventional machine learning algorithms, the GA and PSO tuned 119 

BPANN, MEA tuned SVM and RF models were constructed and compared with the MEA 120 

tuned ADABPANN. Furthermore, the sensitivity analysis was conducted and an 121 

analytical equation was built to facilitate the peak shear strength evaluation for 122 

geotechnical engineers with limited machine learning learnings. The novel machine 123 

learning model established in this research aims to provide more accurate, efficient and 124 



reliable predictions of peak shear strength for clayey soil-geomembrane interfaces, which 125 

is also the key to improve the design quality of relevant buildings.  126 

127 

2. Machine learning algorithms  128 

There are four types of machine learning algorithms including BPANN, SVM, ADA-129 

BPANN and RF, that were adopted in this paper. A brief introduction of the used machine 130 

learning algorithms was conducted in the following.  131 

132 

2.1 BPANN 133 

BPANN is a multi-layer feed-forward neural network based on error back propagation 134 

algorithm, the typical structure of BPANN model. The BPANN model utilized in this 135 

study is comprised of three layers: input layer, hidden layer, and output layer. The input 136 

and output layers of the model is composed of five joints and one joint, respectively. The 137 

number of hidden-layer joints in the model was determined by a loop program. In this 138 

program, firstly, BPANN models with a hidden joint size ranging from 1 to 1000 were 139 

established by the training dataset. Then, the predictive accuracies of models with 140 

different hidden-layer sizes were evaluated using the testing dataset according to the 141 

assessment indicator of Root-Mean-Square Error (RMSE), as expressed in Equation (1). 142 

Subsequently, the hidden layer joint size of the model with the least RMSE was selected 143 

as the optimal hidden layer joint size. In this case, the optimal hidden layer joint size was 144 

nine. The activation function and network training algorithm in the proposed BPANN 145 

model are Logarithmic Sigmoid Function and Levenberg-Marquardt Backpropagation 146 

Algorithm, respectively, with the initial weights and thresholds of joints in the BPANN 147 

model being optimized. 148 
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Where, n is the number of sample data, iy  is measured value, 
if is predictive value.  150 

151 

2.2 SVM 152 

SVM is a binary predictive model, which is able to divide and predict sample data to 153 

achieve structural risk minimization according to maximum margin principles. SVM can 154 

achieve high forecasting accuracy based on few data sample. In this case, the radial basis 155 

function was selected as the kernel function of the SVM model, with penalty parameter c 156 

and g of the kernel function being optimized. 157 

158 

2.3 ADA-BPANN 159 

ADA-BPANN is one type of robust ensemble algorithms that consists of many “weak” 160 

base learners (BPANN models) to form a “strong” predictive model with a better 161 

forecasting performance (Shen et al., 2020). The training process of ADA-BPANN, as 162 

follows: (1) Establish single BPANN model (base leaner) based on original training data 163 

(2) allocate more weight on the training data with wrong predictive value depending on 164 

the predictive performance of the base learners (3) establish new base learners according 165 

to the adjusted training data (4) repeat Step (2) and Step (3) until the predetermined 166 

number of base learners are established (5) calculate predictive results of the established 167 

base learners adopting weighed average method to obtain the final predictive results. The 168 

BPANN models in ADA-BPANN has the same structure and parameter specification 169 

with 5 input layer joints, 9 hidden layer joints and 1 output layer joint, taking Logarithmic 170 

Sigmoid Function as the activation function and Levenberg-Marquardt Backpropagation 171 

Algorithm as the network training algorithm, with the number of BPANN models in the 172 



ADA-BPANN model and the initial weights/thresholds of joints in the BPANN models 173 

being optimised, respectively.  174 

175 

2.4 RF  176 

RF is another ensemble algorithm that is constituted of a group of Decision Tree (DT) 177 

models based on Bootstrap aggregating technique (Liaw and Wiener, 2002). The training 178 

process of RF as follows: (1) Generate a number of different training datasets and testing 179 

datasets using Bootstrap method (2) establish DT models according to the training 180 

datasets, respectively (3) input corresponding testing datasets into the constructed DT 181 

models to obtain the predictive results, respectively (4) calculate the average value of 182 

predictive results from the established DT models as the final predictive values of RF 183 

model. The main advantages of adopting RF include: (i) simple operation method (ii) low 184 

computational cost (iii) high predictive accuracy and generalised ability (Kohestani et al., 185 

2015). Two parameters were optimised in the RF model: the number of DT models and 186 

the minimum number of samples in the leaf node of DT models, respectively.   187 

188 

3. Hyperparameters optimization 189 

All machine learning algorithms have several crucial hyper-parameters that can influence 190 

their predictive performance significantly. Hence, it is necessary to optimise the hyper-191 

parameters of machine learning algorithms before training of them. In this research, MEA 192 

was adopted to optimise the hyperparameters of the constructed machine learning models, 193 

with RMSE as the fitness function. MEA is a new heuristically evolutionary intelligence 194 

algorithm, which was proposed by Sun et al.(2000). MEA can overcome the inherent 195 

defects of traditional evolutionary intelligence algorithms of GA and PSO, such as low 196 

computational efficiency, long operational time, obtaining local optimum (Jie et al., 2004; 197 



Xie et al., 2000), which has been proved by researchers in engineering fields (Liu et al., 198 

2015; Wang and Shen, 2018; Wang et al., 2018; Xu et al., 2018; Zhao et al., 2016). MEA 199 

has several main advantages: (i) The computational efficiency is high due to the parallel 200 

computation of similartaxis and dissimilation operations. (ii) The evolutionary 201 

information that MEA can retain is more than one generation, which provides beneficial 202 

guidance on the operational directions of similartaxis and dissimilation operations. (iii) 203 

The similartaxis and dissimilation operations in MEA can avoid the damage of original 204 

information for individuals.  Similartaxis refers to that firstly, the fitness value of 205 

individuals is evaluated, and based on the evaluated fitness value, the individuals are 206 

divided as superior individuals and temporary individuals. Then, new individuals are 207 

generated around the superior individuals and temporary individuals. After that, the 208 

fitness value of new individuals is evaluated, and based on the fitness value, all the 209 

individuals are divided as superior individuals and temporary individuals again.  210 

211 

The specific operation of adopting MEA to optimise machine learning models as follows: 212 

(1) Randomly generate individuals that are composed of different hyperparameter values 213 

in the solution space (2) score the individuals based on fitness values (RMSE) obtained 214 

by calling the corresponding machine learning model, and divide the individuals with low 215 

RMSE value as superior individuals and other individuals with high RMSE value as 216 

temporary individuals (3) assign the superior individuals and temporary individuals as 217 

centres, respectively, then generate new individuals around each centre individual to 218 

obtain superior subgroups and temporary subgroups, respectively (4) perform similartaxis 219 

operations in each subgroup until the subgroup is mature (the RMSE value of the 220 

subgroup keeps unchangeable during continuous 6 times iteration), and take the RMSE 221 

value of the optimal individual (centre individual) in each subgroup as the RMSE value 222 



of corresponding subgroups (5) when the subgroups are all mature, post the RMSE value 223 

of each subgroup on the global bulletin board, and conduct dissimilation operations 224 

between the superior subgroups and temporary subgroups, including replacing or 225 

abandoning subgroups, releasing individuals in abandoned subgroups, and supplying new 226 

subgroups (6) carry out similartaxis operations in the new supplying subgroups, and 227 

repeat Step (4) to Step (5) until the RMSE value of new supplying subgroups is lower 228 

than those of superior subgroups, respectively (6) take the centre individual in the superior 229 

subgroup with the lowest RMSE as the global superior individual, and assign the 230 

hyperparameter values of the global superior individual as the initial hyperparameter 231 

values of the established machine learning model (7) train the built machine learning 232 

model, and conduct prediction, the detailed optimising process as shown in Figure 1.   233 

234 

In this case, the population size was set as 300, and the number of superior subgroups and 235 

temporary subgroups was the same, with being set as 3. The size of subgroup is 30, and 236 

the maximum iteration number is 20. Additionally, the fitness function value (RMSE) of 237 

individuals in MEA was obtained using k-fold cross-validation method (k-CV) on the 238 

corresponding machine learning model during the process of hyperparameter 239 

optimisation. k-CV is an extensively adopted method to validate the performance of 240 

machine learning models, which refers to that the original data are divided into equal k 241 

groups. The training of machine learning models is based on k-1 groups, while the 242 

validation is conducted on the remaining 1 group. The training and validating process is 243 

repeated k times with different groups as the training dataset and testing dataset, 244 

respectively. The average value of k times predicted accuracies is finally used as the 245 

evaluation indicator of forecasting performance. In this paper, the training dataset of the 246 

established database was utilised as the original data to conduct the k-CV operation on 247 



the machine learning models to obtain the evaluation indicator value (RMSE), with k248 

being taken as 10 considering the size of database and the recommendation in literatures 249 

(Rodriguez et al., 2009). To compare the optimisation effects between MEA and 250 

traditional optimisation algorithms, the BPANN models with hyperparameters optimised 251 

by GA and PSO were constructed, respectively, and the predictive results of GA and PSO-252 

BPANN model were compared with that of MEA-BPANN, respectively. The detailed 253 

introduction about the optimised hyperparameters of the built machine learning models 254 

and their optimising range is provided in Table 1. 255 

256 

4.Database and pre-processing  257 

The research compiled the experimental data from about 4000 direct shear tests on clayey 258 

soil-geomembrane interfaces from the following sources: literature, internal database, 259 

repeatability testing, inter-laboratory comparison, own-laboratory experiments (Criley 260 

and Saint John, 1997; Dixon et al., 2006; Dixon et al., 2000; Sia and Dixon, 2007). The 261 

repeatability testing uses the same material in the same laboratory whereas the inter-262 

laboratory testing uses the same material in different laboratories, and the internal 263 

database has both material and laboratory variability. The typical properties, such as 264 

density, mean particle size of clayey soil and roughness, density of geomembranes used 265 

in the tests were also complied.  For other experimental conditions, the tests were the 266 

same, with a shearing rate of 1mm/min and being conducted in the consolidated undrained 267 

condition.  268 

269 

Among the 4000 direct shear tests, the tests that lack a complete set of information were 270 

excluded. The information of the remaining tests was compiled and arranged to construct 271 

the database with 623 data groups by combining the general soil classification standards 272 



and product data sheets of geomembrane manufacturers. The data groups were divided 273 

randomly into 498 groups of training data (80%) for training the machine-learning models 274 

and 125 groups of testing data (20%) for testing the trained machine-learning models by 275 

using a MATLAB program. In this program, each data group was randomly assigned a 276 

unique number ranging from 1 to 623. The data groups with number ranging from 1 to 277 

498 were selected as the training dataset, and the data groups with number ranging from 278 

498 to 623 were selected as the testing dataset. In each data group, soil density (D), soil 279 

mean particle size (M), geomembrane roughness (R), geomembrane density (G) , normal 280 

stress (N) were adopted as the input parameters for machine learning modelling, and the 281 

corresponding peak shear strength (S) of clayey soil-geomembrane interfaces was taken 282 

as the output parameter. The statistics parameters and data type of the input and output 283 

parameters were tabulated in Table 2.  284 

285 

The input parameters for the machine learning models had different dimensions, which 286 

may affect the training time and prediction accuracy of the models. To improve the 287 

forecasting accuracy and operational efficiency of the machine learning models, the input 288 

and output parameters were normalized to the range of 0–1 using Equation. (2).  289 

min
Normalized

max min

x x
x

x x





                             (2) 290 

Where, Normalizedx  represents the normalized value, x represents the original value, minx291 

represents the minimum value, and maxx represents the maximum value.  292 

293 

5. Quality assessment 294 



Predictive precision of the established machine-learning models was assessed using three 295 

evaluation indicators: Correlation Coefficient R, RMSE, and Mean Absolute Percentage 296 

Error (MAPE), as expressed in Equation (3)~(5), respectively. 297 

298 

R is a statistic parameter that can measure the correlation between two variables, ranging 299 

from -1 to 1. A value of 1 means totally positive correlation, 0 means no correlation, and 300 

-1 means totally negative correlation. 301 

   

cov( , )
( , )

var var

i i
i i

i i

f y
R f y

f y
                             (3) 302 

Where, cov(, ) represents covariance,  var represents variance, iy  represents the 303 

measured value (The value obtained in physical shear tests), 
_

y  represents the average 304 

measured value, and if  represents the predicted value.  305 

306 

RMSE is the standard deviation of estimation errors, which indicates how concentration 307 

the data is around the best fitting line. MAPE can measure the prediction accuracy as the 308 

form of percentage, and can be calculated as shown in Equation (4). The lower the RMSE 309 

and MAPE indicate the more precise the machine learning models.  310 

MSE i iy f

n


                                    (4) 311 

Where, n represents the number of sample data. 312 

1

100% n
i i

i i

y f
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n y


                             (5) 313 

314 

6.Results and analysis  315 

6.1Results of hyperparameter optimisation  316 



As aforementioned, MEA was utilised to optimise the hyperparameters of machine 317 

learning algorithms, with RMSE as fitness function. For each machine learning algorithm, 318 

three initial superior subgroups and three initial temporary subgroups were generated. 319 

The optimising process of the subgroups during the simillartaxis and dissimilation 320 

operations was recorded, as shown in Figure 2.  321 

322 

Based on Figure 2, for the initial superior subgroups and temporary subgroups, after 323 

serval similartaxis operations, the RMSE of each subgroup tends to be steady, which 324 

indicates the subgroups are mature. Then, the dissimilation operations are conducted. In 325 

the dissimilation operation, the RMSE of temporary subgroups and superior subgroups is 326 

compared, and the superior subgroups are replaced by the temporary subgroups with 327 

lower RMSE. The rest of temporary subgroups with high RMSE are abandoned, and 328 

individuals in them are released. After that, the released individuals are regrouped to form 329 

new temporary groups, and the similartaxis operations are performed again on the 330 

subgroups, as shown in Figure 2 (d). For the new superior subgroups, the RMSE of them 331 

remains stable because they are already mature, as shown in Figure 2 (c). By comparing 332 

the RMSE of new temporary subgroups and new superior subgroups, it can be seen that 333 

the RMSE of each superior subgroup is lower than that of temporary subgroup, which 334 

meets the ending criterion. Therefore, the subgroups do not need to be performed 335 

dissimilation operations again, and the corresponding hyperparameters of the center 336 

individual in the superior subgroup with the lowest RMSE are assigned as the initial 337 

parameters of the corresponding machine learning model.  338 

339 

Based on the aforementioned analysis, for most of subgroups, their RMSE reduces 340 

obviously and becomes stable within 15 iteration times. It indicates that MEA is efficient 341 



in the hyperparameters optimisation of the established machine learning models, which 342 

can enhance the predictive accuracy of established machine learning models remarkably 343 

with high efficiency. 344 

345 

To compare the optimisation effects between MEA and GA, PSO, the optimised 346 

processes of BPANN model using GA and PSO are shown in Figure 3, respectively.  347 

348 

As shown in Figure 2 and Figure 3, when MEA is adopted to optimise BPANN model, 349 

RMSE becomes stable within 18 times iterations, which is obviously lower than those of 350 

GA (80 times) and PSO (70 times), respectively. Additionally, after the optimisation of 351 

MEA, RMSE of BPANN model reduces to 4.69, while, for GA and PSO, they are 8.52 352 

and 7.99, respectively. It demonstrates that, the optimisation performance of MEA on 353 

BPANN model is better than those of GA and PSO in the both aspects of optimising 354 

efficiency and increasing magnitude in predictive accuracy.  355 

356 

6.2 The performance of the developed machine learning models  357 

The predictive performance of the established machine learning models on the training 358 

dataset and testing dataset is presented in Figure 4 to Figure 9, respectively. 359 

360 

Figure 4 to Figure 7 show that, for the training dataset, the forecasting performance of the 361 

ADABPANN model with hyperparameters optimized by MEA is the best among the 362 

constructed models in terms of the statistics parameters of R, RMSE and MAPE. More 363 

specifically, the MEA-ADABPANN model achieved the lowest RMSE (1.1) and MAPE 364 

(5.06%), and the highest R (0.99), among the models, followed by MEA-RF, MEA-365 

BPANN and MEA-SVM, with GA-BPANN and PSO-BPANN having poor predictive 366 



accuracy.  367 

368 

As shown in Figure 6 to Figure 9, for the testing dataset, the ADABPANN model with 369 

hyperparameters optimized by MEA still has the highest foretelling precision among the 370 

models, with the lowest RMSE (1.26) and MAPE (6.56%), and the highest R (0.99), 371 

followed by MEA-RF, MEA-SVM and MEA-BPANN. The predictive performance of 372 

the GA-BPANN and PSO-BPANN are the worst among them.  373 

374 

The results indicate that, for both of testing dataset and training dataset, the ensemble 375 

algorithms of ADABPANN and RF have higher precision in estimating the peak shear 376 

strength of clayey soil-geomembrane interfaces than those of BPANN and SVM, 377 

respectively. Additionally, the models with hyperparameters optimized by MEA are more 378 

accurate to evaluate the peak shear strength than the models optimized by GA and PSO, 379 

respectively.   380 

381 

7. Sensitivity analysis of the influence factors  382 

Sensitivity analysis was carried out to investigate the relative importance of the input 383 

parameters of the built machine learning models to the peak shear strength along clayey 384 

soil-geomembrane interfaces. Since the ADABPANN model with hyperparameters 385 

optimized by MEA was considered as the model with the highest predictive accuracy, the 386 

MEA-ADABPANN model was used to carried out the sensitivity analysis. Garson’s 387 

Algorithm was utilized to calculate the relative importance of the input parameters for per 388 

BPANN model that composes the MEA-ADABPANN model (Goh, 1995), which has 389 

been extensively applied in geotechnical engineering to estimate the parameter 390 

contribution (Das and Basudhar, 2006; Goh, 1995; Kanungo et al., 2014). Garson’s 391 



Algorithm was proposed by Garson, later modified by Goh (1995), to determine the 392 

relative importance of the input parameters to the output parameter based on the 393 

connection weights of BPANN models, as shown in Equation (6). The average relative 394 

importance of the input parameters for each BPANN model in the MEA-ADABPANN 395 

model was calculated as the final relative importance, as presented in Figure 10. 396 
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                        (6) 397 

where ijR is the relative importance of input parameters, ijW , jkW are the connection 398 

weights of the input layer-hidden layer and the hidden-output layer, i= 1,2….N，399 

k=1,2….M (N and M are the numbers of the input parameters and output parameters).  400 

401 

Based on Figure 10, normal stress has the largest relative importance among the input 402 

parameters, accounting for 26.85 %, followed by soil density, geomembrane roughness 403 

and soil mean particle size. In comparison, geomembrane density has small influence on 404 

the peak shear strength.  405 

406 

8. Establishment of an analytical equation for estimating the peak shear strength  407 

Based on the aforementioned analysis, the constructed ADABPANN model with 408 

hyperparameters optimized by MEA has been validated as a reliable tool to foretell the 409 

peak shear strength of clayey soil-geomembrane interfaces. However, owing to the 410 

complex modelling process, it is difficult for engineers with limited knowledge of 411 

machine learning to utilize the model. To facilitate the usage for geotechnical 412 

practitioners, an analytical equation based on the average weights and biases of the 413 



BPANN models that compose the MEA-ADABPANN model was proposed by using 414 

Equation 7, with considering the predictive mechanism of MEA-ADABPANN model 415 

(Goh et al., 2005). The BPANN models in MEA-ADABPANN model have the same 416 

structure, with the average weights and biases of joints in the BPANN models are 417 

tabulated in Table 3. To be specific, the values in Table 3 include the average connection 418 

weights between the input layer joints and hidden layer joints, the average connection 419 

weights between the hidden layer joints and output layer joints, the biases of all joints.420 

The similar equations established based on the same mechanism have been extensively 421 

adopted by researchers in the geotechnical area (Das and Basudhar, 2006; Goh, 1995; 422 

Kanungo et al., 2014), which has sufficiently validated the reliability of the equation.423 
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                   (7) 424 

Where, nY is the normalised predictive values in [-1,1]; 0b is the average bias of output 425 

layer joints; kw is the average connection weight between the kth hidden layer joint and 426 

the output layer joint; hkb is the average bias of the kth hidden layer joint; h is the number 427 

of hidden layer joints; ikw is the average connection weight between the ith input layer 428 

joint and the kth hidden layer joint; iX is the ith normalised input parameter, ranging from 429 

-1 to 1; sigf is the Sigmoid Transfer Activation Function; m is the number of input layer 430 

joints. 431 

432 

The detailed calculation process is follows, with the input parameters and output 433 

parameter represented by their corresponding symbols, respectively:   434 

1 2.22 3.37 0.11 2.26 2.2 0.19A R D M G N                  (8) 435 

2 1.55 0.08 0.06 0.01 2.32 1.12A R D M G N                  (9)  436 



3 1.94 2.94 0.09 2.18 2.21 0.65A R D M G N                  (10) 437 

4 0.6 0.09 0.05 0.1 0.19 0.06A R D M G N                  (11) 438 

5 3.48 0.04 0.0004 0.018 0.01 1.29A R D M G N                  (12) 439 

6 2.08 2.34 0.35 0.72 0.14 0.02A R D M G N                  (13) 440 

7 0.29 1.43 2.02 2.81 1.16 0.07A R D M G N                   (14) 441 

8 0.09 2.26 0.52 0.01 0.09 2.91A R D M G N               (15) 442 

9 1.56 1.61 0.29 0.47 1.19 2.19A R D M G N                (16) 443 
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Among the above equations, A, B, C, Yn are just a symbol, which represents the 455 

corresponding equations. The relationship between Equation (8)~(27) is as follows: 456 

Equation (8)~(16) indicate the definition of A1 to A9. Then, A1 to A9 are substituted into 457 

Equation (17)~(25) to definite B1 to B9, respectively. After that, B1 to B9 are substituted 458 

into Equation (26) to definite C1. Followed that, C1 is substituted into Equation (27) to 459 

definite Yn. Finally, since the obtained nY value from Equation (27) is in the range of [-460 

1,1], Yn is substituted into Equation (28) to conduct denormalization to obtain the 461 

forecasting peak shear strength of clayey soil-geomembrane interfaces. 462 

max min min0.5( 1)( )nY Y Y Y    
                  (28) 463 

Where, maxY and  minY are the maximum and minimum values of the peak shear strength 464 

in the database, respectively, in this research, 
max 90Y kPa and 

min 5Y kPa .  465 

466 

Therefore, Equation (28) is transformed to Equation (29) to obtain the empirical equation 467 

for calculating the peak shear strength. By using Equation (29) can achieve the prediction 468 

of the peak shear strength of clayey soil-geomembrane interfaces without conducting the 469 

MEA-ADABPANN modelling steps. The relevant practitioners can apply Equation (29) 470 

in forecasting the peak shear strength based on the parameters listed in Table 2. 471 

472 

42.5 47.5nkPa Y kPa                      (29) 473 

474 

9. Validation by conducting physical experiments  475 



To validate the effectiveness of the developed analytical equation, physical direct shear 476 

tests on clayey soil-geomembrane interfaces were conducted by using the bespoke soil-477 

geosynthetics interface large direct shear apparatus in the geotechnical laboratory at 478 

Shanghai Maritime University, China, as shown in Figure 11. In the tests, two types of 479 

clayey soil and 6 types of geomembranes, with different properties, were adopted, as 480 

listed in Table 4 and Table 5. The normal pressure was set as 50 kPa, 100 kPa and 150kPa, 481 

respectively, and the shearing was implemented in the consolidated undrained condition, 482 

with shearing rate of 1 mm/min. In total, 36 tests were carried out. According to the 483 

experimental results, the peak shear strength along the interfaces between different types 484 

of clayey soil and geomembrane was obtained. Also, the developed empirical equation 485 

(Equation (28)) was adopted to predict the peak shear strength along the interfaces 486 

between clayey soil and geomembranes with different properties. By comparing the 487 

measured peak shear strength and the predicted value, the applicability of the developed 488 

equation is verified. The comparison results are shown in Figure 12.  489 

490 

As shown in Figure 12, the predicted peak shear strength is close to the peak shear 491 

strength measured by laboratory tests, with R of 0.98, RMSE of 1,20 and MAPE of 4.5%. 492 

This indicates that the developed equation has high accuracy to predict the peak shear 493 

strength of clayey soil-geomembrane interfaces. It provides convenience for the 494 

geotechnical engineering personnel with limited knowledge of machine learning 495 

technique to forecast the peak shear strength of clayey soil-geomembrane interfaces.  496 

497 

10. Discussion  498 

In practical engineering, the moisture content of soil has relatively large influence on the 499 

peak shear strength of clayey soil-geomembrane interfaces. Due to the lack of relevant 500 



information about the moisture content of clayey soil in the compiled database, the 501 

proposed machine learning models in this research do not employ the soil moisture 502 

content as one of input parameters. However, the developed machine learning models 503 

without the input parameter of soil moisture content still have satisfactory predictive 504 

results. The possible explanation is that, based on the standard procedure of conducting 505 

large direct shear tests on soil-geosynthetics interfaces (ASTM, 2014), the direct shear 506 

tests are normally carried out on the interfaces between clayey soil with the optimum 507 

moisture content and geomembrane. For clayey soil, their optimum moisture content is 508 

close. Thus, it is supposed that, in the compiled database, the moisture content of clayey 509 

soil adopted in different direct shear tests is similar, which leads to that the presented 510 

machine learning models can have good forecasting outcomes without the input 511 

parameter of soil moisture content.  512 

513 

In this research, the forecasting performance of the MEA tuned ADABPANN model is 514 

the best among the established models. It can be attributed to the four reasons. (i) MEA 515 

can divide the subgroups into superior and temporary subgroups, with the similartaxis 516 

and dissimilation operations being conducted independently, which can significantly 517 

increase the search efficiency for the optimal solution. (ii) MEA can record more than 518 

one generation of evolutionary information, which can provide correct guidance on the 519 

direction of similartaxis and dissimilation operations. (iii) Similartaxis and dissimilation 520 

operations in MEA can avoid the destruction of original individual caused by the 521 

crossover and mutation operations in GA. (iv) MEA tuned ADABPANN can achieve both 522 

of the strong local and global searching capability to determine the optimal solution, 523 

which can avoid premature convergence and poor prediction effect to obtain better 524 

forecasting precision. 525 



526 

11. Limitations527 

Although some significant discoveries have been revealed in this paper, the limitation of 528 

the investigation should not be ignored. Firstly, the predictive precision and reliability of 529 

the constructed machine learning models can be improved further when a larger database 530 

is available. Secondly, the established machine learning models were based on the 531 

database developed from the large direct shear tests on the interfaces between clayey soil 532 

and geomembrane. In the future, it is worthy expanding the database to include the data 533 

from the tests on the interfaces between different types of soil and geomembrane. Thirdly, 534 

the value ranges of some input parameters, such as soil mean particle size and 535 

geomembrane density, are not very large, Hence, an attempt to expand the value ranges 536 

of the input parameters is deserved to carry out, to improve the generalisation ability of 537 

the established machine learning models.  538 

539 

12 Conclusion 540 

In the present research, based on the database constructed upon the 623 large direct shear 541 

tests on clayey soil-geomembrane interfaces, a novel machine learning model was 542 

established by combining MEA and ADA-BPANN to estimate the peak shear strength of 543 

clayey soil-geomembrane interfaces according to the 5 input variables of soil density (D), 544 

soil mean particle size (M), geomembrane roughness (R), geomembrane density (G) and 545 

normal stress (N). To validate the performance of the novel machine learning model, the 546 

conventional machine learning algorithms including GA and PSO tuned ADA-BPANN, 547 

MEA tuned ELM and RF models were established to compare with the MEA tuned ADA-548 

BPANN model. Also, the sensitivity analysis was implemented to determine the influence 549 

degree of input variables to the peak shear strength, and an analytical equation was 550 



proposed to facilitate the prediction of peak shear strength for geotechnical engineering 551 

practitioners with limited machine learning knowledge.  552 

553 

The research outcomes indicate that the proposed novel machine learning combined by 554 

MEA and ADA-BPANN has better prediction performance than the others machine 555 

learning models. To be specific, the MEA tuned ADA-BPANN model has higher 556 

predicting accuracy and efficiency, less iteration times to reach the optimal solution, less 557 

possibility of over-fitting and trapping into local optima, compared to the conventional 558 

algorithms. Also, the sensitivity analysis upon the proposed model manifests that the 559 

impact of normal stress on the peak shear strength is the highest, being followed by soil 560 

density and geomembrane roughness. It provides a guidance for the relevant practitioners 561 

to pay more attention on the factors that have more significant influence on the peak shear 562 

strength of clayey soil-geomembrane interfaces. 563 

564 

Overall, although evaluating the peak shear strength of clayey soil-geomembrane 565 

interfaces is always a large challenge due to the multiple influence factors and 566 

complicated action mechanism, the novel machine learning model presented in this 567 

research provides a possibility to preciously forecast the peak shear strength, with a high 568 

efficiency. It also acts as a key solution to overcome the deficiencies and uncertainties 569 

about the design of building that requires the correct estimation of the peak shear strength 570 

for clayey soil-geomembrane interfaces.   571 
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 Table.1 The optimised hyperparameters in the machine learning models 817 

Machine learning 

models 
Hyperparameter Optimising range 

BPANN 

The initial weights of joints -5-5 

The initial thresholds of joints -10-10 

SVM 

Penalty parameter c of kernel 

function 

2-5 -25

Penalty parameter g of kernel 

function 
4-5-45

ADA-BPANN 

The number of base learners 1-20 

The initial weights of joints in 

base learners 
-5-5 

The initial threshold of joints 

in base learners 
-10-10 

RF 

The maximum number of DT 

in the ensemble model 
1-1000 

The minimum number of 

samples at the leaf node 
1-10 

818 



819 

Table. 2 The statistical characteristics of the established database 820 

Parameters Categorise Data type Minimum Maximum Mean 

Soil mean 

particle size 

/mm 

Input 

parameter 
Numeric 0.001 0.05 0.02 

Soil density/ 

g/cm3

Input 

parameter 
Numeric 1 1.7 1.4 

Geomembrane 

roughness 

Input 

parameter 
Nominal Smooth, Textured 

Geomembrane 

density/g/cm3

Input 

parameter 
Numeric 0.5 4 2 

Normal 

pressure/kPa 

Input 

parameter 
Numeric 10 200 100 

Peak shear 

strength/kPa 

Output 

parameter 
Numeric 5 90 50 
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825 

826 

827 

828 
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830 

Table.3 Average connection weights and biases of the MEA-ADABPNN models 831 

Hidde

n Joint 

numb

er 

Weights 
Biases 

                                 Input 

parameters 

Output 

paramet

er 

Hidde

n 

Layer 

Outp

ut 

Laye

r R D M G N      S 

1 3.37 0.11 -2.26 2.2 0.19 1.10 2.22 

-2.30 

2 0.08 0.06 -0.01 2.32 1.12 -5.38 -1.55 

3 -2.94 -0.09 2.18 2.21 -0.65 1.19 -1.94 

4 -0.09 -0.05 0.10 0.19 0.06 0.95 -0.60 

5 -0.04 

-

0.000

4 

0.018 0.01 -1.29 2.56 -3.48 

6 -2.34 -0.35 0.72 -0.14 -0.02 0.79 2.08 

7 -1.43 -2.02 -2.81 1.16 0.07 0.05 -0.29 

8 -2.26 0.52 -0.01 -0.09 -2.91 0.08 -0.09 

9 -1.61 -0.29 0.47 -1.19 2.19 -1.22 1.56 

832 

833 



Table 4. The basic properties of clayey soil  834 

Soil type Soil density Soil mean particle size/mm 

Kaolin Clay 1.5 0.006 

Bentonite  Clay 1.2 0.04 

835 

836 

837 

Table 5. The basic properties of geomembranes  838 

Geomembrane type Geomembrane 

roughness 

Geomembrane density/g/cm3 

Geomembrane A Smooth 1 

Geomembrane B Smooth 1.5 

Geomembrane C Smooth 3.9 

Geomembrane D Textured 1.5 

Geomembrane E Textured 2.9 

Geomembrane F Textured 4 

839 

840 

841 

842 

843 

844 

845 

846 

847 



List of figures 848 

849 

Figure.1 The flow chart of machine learning modelling with MEA optimised 850 

Figure.2 The evolution of RMSE during similartaxis process 851 

Figure.3 The optimised processes of BPANN models using GA and PSO                            852 

Figure.4 Predictive performance of the models for training dataset                      853 

Figure.5 The R values of the models for training dataset 854 

Figure.6 The RMSE of the models  855 

Figure.7 The MAPE of the models                     856 

Figure.8 Predictive performance of the models for testing dataset 857 

Figure.9 The R values of the established models for testing dataset 858 

Figure.10 The relative importance of the input parameters for the model 859 

Figure.11 The bespoke large direct shear apparatus  860 

Figure.12 The comparison between the predictive value and measured value 861 

862 

863 

864 

865 

866 

867 



868 

Figure.1 The flow chart of machine learning modelling with MEA optimised 869 
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Figure.3 The optimised processes of BPANN models using GA and PSO 879 
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(e)GA-BPNN                         (f) PSO-BPNN 886 

Figure.4 Predictive performance of the models for training dataset 887 
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             (e)GA-BPNN                      (f) PSO-BPNN 894 

Figure.5 The R values of the models for training dataset 895 
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Figure.6 The RMSE of the models 898 
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Figure.7 The MAPE of the models 901 
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             (e)GA-BPANN                       (f) PSO-BPANN 908 

Figure.8 Predictive performance of the models for testing dataset 909 
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          (e) GA-BPANN                    (f) PSO-BPANN 916 

Figure.9 The R values of the established models for testing dataset 917 
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Figure.10 The relative importance of the input parameters for the model 920 
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Figure 11 The bespoke large direct shear apparatus  923 
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                         (b) The R values  928 
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(c) The measured value and predictive value 930 

Figure.12 The comparison between the predictive value and measured value 931 
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Appendix  934 

Table 1 The measured and forecasting (MEA tuned ADABPANN model) peak shear 935 

strength based on training dataset 936 

Sample 

number 

Measured 

value/kPa 

Predictive 

value/kPa 

Sample 

number  

Measured 

value/kPa 

Predictive 

value/kPa 

1 4.98963 5.07802 248 17.80523 17.72443

2 5.0045 5.0492 249 18.12017 18.40374

3 5.0045 4.84397 250 19.51123 18.90518

4 5.00467 4.93271 251 19.5468 19.27911

5 5.00467 4.95652 252 19.66293 20.25903

6 5.00467 5.09454 253 19.72097 19.46617

7 5.00467 5.2539 254 20.34617 19.99806

8 5.00507 5.00692 255 20.7342 20.70795

9 5.00507 5.09665 256 21.12613 20.88166

10 5.00533 4.91534 257 21.28817 21.33389

11 5.00533 4.89768 258 21.37983 21.40164

12 5.007 4.8383 259 21.37983 21.5139

13 5.00923 4.97298 260 21.4101 21.17619

14 5.0103 5.00663 261 21.81087 21.42961

15 5.0106 5.05668 262 21.81887 22.01384

16 5.01093 5.03141 263 21.8735 21.98134



17 5.01107 5.32606 264 21.92697 22.0788

18 5.01107 4.89651 265 22.07677 22.03291

19 5.01107 4.71498 266 22.34013 22.33551

20 5.01107 5.03137 267 22.50703 22.23603

21 5.01107 5.03295 268 22.58887 22.68524

22 5.01157 5.02131 269 22.9223 22.38097

23 5.01163 4.97625 270 22.9429 23.14558

24 5.01163 4.9925 271 22.94877 22.87615

25 5.01197 4.80726 272 23.09927 23.93126

26 5.01197 5.24233 273 23.12083 22.80502

27 5.01197 4.93095 274 23.2603 23.49023

28 5.01197 4.88095 275 23.4073 23.48387

29 5.01387 5.05977 276 23.43353 23.48377

30 5.0144 5.09428 277 23.6395 23.73335

31 5.01543 4.74563 278 23.65047 23.34193

32 5.0174 5.32093 279 23.80277 24.23564

33 5.0174 4.92562 280 24.11237 23.89553

34 5.0174 4.95219 281 24.456 24.52083

35 5.0174 5.16903 282 24.64353 24.07854

36 5.0174 5.08576 283 24.81677 24.45243



37 5.0174 4.81351 284 25.03057 25.12287

38 5.01837 5.04202 285 25.15917 25.45124

39 5.0189 5.114 286 25.4101 25.18061

40 5.02053 5.03654 287 25.91103 26.14373

41 5.02067 5.06551 288 25.9897 25.89893

42 5.02067 5.20021 289 26.01123 26.28924

43 5.0208 4.98198 290 26.05283 26.10484

44 5.0218 5.07275 291 26.30017 26.51344

45 5.0218 5.06584 292 26.42603 25.54996

46 5.02237 5.32235 293 26.51257 26.73967

47 5.02237 5.02325 294 26.58823 26.09942

48 5.031 4.8872 295 26.62177 26.19805

49 5.0334 5.03977 296 26.69823 26.50799

50 5.04093 5.06984 297 27.3689 27.23663

51 5.0434 5.01287 298 27.37453 27.40524

52 5.05707 4.92696 299 27.63683 27.32531

53 5.0794 5.19343 300 27.67417 27.39376

54 5.08113 5.26429 301 27.70037 27.68739

55 5.0851 5.14057 302 27.73193 27.97006

56 5.1032 5.01462 303 28.26457 28.05176



57 5.1032 5.08458 304 28.2884 28.68302

58 5.10437 5.25259 305 28.65633 28.09557

59 5.10783 5.21874 306 28.6728 28.40381

60 5.10783 5.1247 307 29.00937 29.77309

61 5.1114 5.30736 308 29.00973 28.96724

62 5.11427 4.88713 309 29.17603 28.31221

63 5.1179 5.0337 310 29.68633 29.68087

64 5.12013 5.1014 311 29.7254 29.39671

65 5.12527 5.06046 312 29.87927 29.80073

66 5.13073 4.88604 313 29.90637 30.37584

67 5.1326 5.27099 314 30.09703 30.27619

68 5.133 5.11708 315 30.12733 30.1202

69 5.14487 5.06434 316 30.26353 30.64537

70 5.16443 5.24242 317 30.3338 30.16687

71 5.16443 5.17223 318 30.33817 30.21384

72 5.1645 5.04707 319 30.69857 31.69109

73 5.17767 5.19027 320 30.77997 30.32424

74 5.2037 5.27955 321 31.11687 31.08049

75 5.2037 5.21016 322 31.16663 30.42662

76 5.245 5.00929 323 31.32127 31.06946



77 5.32653 5.24908 324 31.4833 31.71479

78 5.3427 5.6351 325 31.63737 31.72278

79 5.3607 5.47333 326 31.70173 31.69352

80 5.36353 5.31869 327 31.74587 31.76302

81 5.36397 5.62912 328 32.0227 32.35325

82 5.38203 5.11909 329 32.02433 32.35315

83 5.38983 5.28917 330 32.0281 32.14293

84 5.38983 5.23898 331 32.61193 32.53223

85 5.38983 5.20127 332 32.66667 32.8655

86 5.3914 5.57458 333 32.82073 32.67271

87 5.3952 5.37235 334 32.88243 33.40878

88 5.40263 5.31916 335 33.05787 33.66386

89 5.40527 5.2945 336 33.38763 33.14109

90 5.40917 5.358 337 33.46067 33.75001

91 5.41573 5.61987 338 33.67243 33.5604

92 5.41953 5.69533 339 33.6806 33.89067

93 5.4204 5.28449 340 33.9719 33.65009

94 5.4284 5.71246 341 33.97283 34.24466

95 5.4285 5.45992 342 34.04763 34.29186

96 5.43237 5.25915 343 34.08897 33.94024



97 5.44397 5.56081 344 34.16153 33.7672

98 5.4616 5.61706 345 34.46377 35.4418

99 5.4616 5.27269 346 34.8914 35.14616

100 5.47103 5.5425 347 34.9307 34.96779

101 5.47467 5.46305 348 35.01303 34.91844

102 5.54667 5.57498 349 35.59813 35.77878

103 5.57727 5.62197 350 35.62567 35.84006

104 5.61597 5.21574 351 35.8008 35.95788

105 5.62253 5.65073 352 35.9204 35.83796

106 5.6227 5.6862 353 35.95323 35.75037

107 5.65307 5.64172 354 36.17027 36.41214

108 5.65823 5.70763 355 36.51683 36.4906

109 5.68353 5.37265 356 36.71787 36.51876

110 5.71723 5.76076 357 37.01953 36.20828

111 5.7456 5.65065 358 37.02227 36.96472

112 5.7534 5.97745 359 37.09927 36.63357

113 5.75937 5.59294 360 37.25693 37.08615

114 5.79587 5.99137 361 37.54457 37.74418

115 5.8029 6.08486 362 37.63053 37.37945

116 5.91387 5.86617 363 37.82507 39.14103



117 5.9301 5.83733 364 37.86237 36.91003

118 5.95393 5.97267 365 37.8914 37.85298

119 5.95393 5.40554 366 38.54187 38.20868

120 5.97283 5.92433 367 38.5764 38.69053

121 6.005 6.35331 368 38.76217 38.82801

122 6.0119 6.1584 369 39.1442 39.10988

123 6.0487 5.78564 370 39.25557 40.75041

124 6.0515 6.08281 371 39.82833 39.80208

125 6.08903 6.01 372 40.088 40.08694

126 6.1367 6.61967 373 40.3617 40.50813

127 6.1367 5.66329 374 40.3633 40.26878

128 6.1675 6.27352 375 40.7665 41.37611

129 6.16947 6.17734 376 41.2302 41.37385

130 6.2388 6.18426 377 41.3971 41.74049

131 6.2406 6.39717 378 41.97417 42.093

132 6.2515 6.3385 379 42.2347 42.32597

133 6.26933 6.25964 380 42.30193 42.05932

134 6.3399 6.60174 381 42.3124 42.83674

135 6.4425 6.07212 382 42.58743 42.91668

136 6.4655 6.40768 383 42.91947 42.95701



137 6.48837 7.18974 384 43.2354 41.8651

138 6.56273 6.8693 385 43.70713 43.21928

139 6.63153 6.43624 386 43.78763 43.83929

140 6.6776 6.90931 387 44.43353 44.37035

141 6.7743 6.5724 388 44.6174 44.62862

142 6.79263 6.99635 389 45.1007 45.75384

143 6.81837 6.57984 390 45.16647 45.2411

144 6.8223 6.88225 391 45.567 45.73883

145 6.8323 6.82422 392 45.99813 45.65391

146 6.86577 7.0084 393 46.2425 46.34851

147 6.89587 7.14564 394 46.31343 46.38831

148 6.92013 6.91942 395 46.69023 46.52116

149 6.9204 7.00884 396 46.79063 46.69371

150 6.9253 6.67673 397 47.0226 46.82201

151 6.9253 6.85014 398 47.62307 47.07797

152 6.967 7.12431 399 48.72677 48.7121

153 7.00057 7.02298 400 48.8169 48.78101

154 7.04113 7.03075 401 49.28463 49.38233

155 7.04547 6.7516 402 49.53247 49.89743

156 7.06477 6.84282 403 49.9227 49.9743



157 7.14593 6.97156 404 50.0571 50.07712

158 7.2425 7.06854 405 50.2472 50.22192

159 7.2928 7.04531 406 50.49793 50.40154

160 7.32323 7.30035 407 50.49793 50.46894

161 7.3296 7.46737 408 51.26487 52.23906

162 7.35937 7.41881 409 51.41367 51.55574

163 7.41017 6.8707 410 51.4827 51.11751

164 7.4201 7.5335 411 51.9779 52.35609

165 7.42397 7.25342 412 52.0298 51.99041

166 7.4452 7.5043 413 52.0298 52.09067

167 7.46237 7.57266 414 52.06563 51.97341

168 7.47463 7.3393 415 52.63147 52.86024

169 7.47463 7.52335 416 52.63147 52.66028

170 7.48933 7.31126 417 52.92577 53.07435

171 7.48933 7.55272 418 53.3268 53.10408

172 7.50897 7.56226 419 53.37797 52.92729

173 7.51123 6.98844 420 53.3998 53.47349

174 7.5455 7.3651 421 53.4136 53.53974

175 7.58373 7.85638 422 53.59363 53.76704

176 7.62837 7.63078 423 53.7397 53.70204



177 7.6311 7.83514 424 53.76377 53.66007

178 7.69433 7.71038 425 54.6648 54.40681

179 8.0234 8.00109 426 54.67433 55.03933

180 8.2266 8.40791 427 55.75047 56.04385

181 8.5996 8.53534 428 55.95453 55.96601

182 8.74543 8.75723 429 56.00373 56.08052

183 9.03563 9.63425 430 56.4176 56.35413

184 9.06817 9.0528 431 57.06563 57.05669

185 9.2209 9.68442 432 57.20887 57.99208

186 9.31187 9.5828 433 57.2591 57.36418

187 9.3586 9.11948 434 57.716 57.59712

188 9.54703 9.73771 435 57.74533 57.69828

189 9.92877 9.94077 436 58.14607 57.53362

190 10.3117 9.63577 437 58.94803 58.64316

191 10.5033 10.55595 438 59.31757 59.32445

192 10.58423 10.79138 439 59.3998 58.16892

193 10.59403 10.8676 440 59.42883 59.39274

194 10.60383 10.54618 441 60.09643 60.17598

195 10.60877 10.66475 442 60.8483 60.99863

196 11.37983 10.95636 443 60.92223 60.22003



197 11.63577 11.6561 444 60.96723 61.3774

198 11.92323 12.432 445 61.17263 59.71476

199 12.02867 11.8618 446 61.5125 61.09872

200 12.05563 12.21936 447 61.5125 61.90787

201 12.08507 12.18683 448 61.66383 62.24597

202 12.09243 12.11599 449 62.23907 62.26768

203 12.10713 12.10037 450 63.3128 63.35639

204 12.11207 11.84367 451 63.45197 63.87651

205 12.147 12.63159 452 63.86987 63.34053

206 12.3012 12.67595 453 63.94803 63.75331

207 12.32397 12.15499 454 63.94803 64.19416

208 12.34013 12.42336 455 64.73047 63.99272

209 12.34013 12.27191 456 64.89647 64.74089

210 12.3532 12.1027 457 64.9074 64.94939

211 12.52133 12.37929 458 65.21837 65.06786

212 12.83763 12.63931 459 65.5955 65.92826

213 13.25467 13.02222 460 66.33277 66.29877

214 13.34643 13.11184 461 66.34213 66.04879

215 13.44313 13.27385 462 66.94663 67.33235

216 13.80277 13.56122 463 67.00953 66.61835



217 13.80277 13.74861 464 67.13693 68.13141

218 13.80967 14.13999 465 67.73033 68.34478

219 14.00307 13.86526 466 68.50547 68.94726

220 14.48877 14.89029 467 68.50547 68.49647

221 14.5206 14.37714 468 68.74627 68.77332

222 14.54843 14.63085 469 69.79853 70.11479

223 14.88013 14.59482 470 70.662 70.28036

224 14.9621 14.82797 471 70.97567 70.84823

225 14.96603 15.43531 472 71.48847 72.44146

226 15.01873 15.05842 473 71.48847 70.96544

227 15.06937 14.95706 474 72.48727 72.18602

228 15.07357 15.48237 475 73.6517 73.33734

229 15.13017 14.94777 476 74.52247 74.82406

230 15.15193 15.11312 477 74.9563 74.88234

231 15.24337 15.5998 478 75.6814 76.07491

232 15.338 15.33021 479 76.0589 74.79237

233 15.3668 15.54132 480 76.0589 76.13051

234 15.72567 15.94605 481 78.2088 78.53151

235 15.73383 15.93981 482 78.6147 79.03132

236 15.90337 15.82833 483 79.68913 79.59337



237 16.02997 16.54653 484 79.73807 79.7459

238 16.41387 16.01572 485 81.4 81.55158

239 16.58283 16.50846 486 83.0852 83.33479

240 16.77137 16.5493 487 83.2013 82.71408

241 16.7923 16.73105 488 83.7864 83.77879

242 16.8657 17.26988 489 85.17213 84.51494

243 17.02153 17.44643 490 85.26403 85.05255

244 17.18637 17.01505 491 88.9224 89.27866

245 17.22473 17.40464 492 90 91.72707

246 17.43633 17.3824 493 90 93

247 17.6854 17.46771

937 

Table 2 The measured and forecasting (MEA tuned ADABPANN model) peak shear 938 

strength based on testing dataset 939 

Sample 

number

Measured 

value/kPa

Predictive 

value/kPa

Sample 

number 

Measured 

value/kPa

Predictive 

value/kPa

1 5.0045 5.01671 63 17.80523 15.54409

2 5.00467 5.01312 64 19.66293 19.79633

3 5.00467 5.17053 65 20.34617 17.08303

4 5.00533 5.47349 66 22.9429 19.79633

5 5.01093 5.01671 67 23.12083 22.00805



6 5.01107 5.14725 68 23.43353 27.85485

7 5.01107 5.15521 69 23.6395 19.79633

8 5.01157 5.47349 70 24.37733 27.85485

9 5.01197 5.08162 71 25.4101 24.87685

10 5.01197 5.01312 72 26.05283 29.71089

11 5.01387 5.87492 73 26.42603 21.31825

12 5.0174 5.5447 74 27.3689 26.44658

13 5.0218 5.87492 75 27.63683 31.28891

14 5.08603 5.0667 76 28.26457 31.28891

15 5.1032 5.0667 77 28.2884 31.28891

16 5.10783 5.38427 78 29.00973 27.85485

17 5.14487 5.16805 79 29.90637 27.85485

18 5.245 5.16805 80 30.26353 35.56025

19 5.40263 5.41844 81 30.33817 25.38823

20 5.40527 6.96774 82 31.4833 29.71089

21 5.41953 5.41844 83 32.0227 25.38823

22 5.47103 5.72903 84 32.02433 37.29152

23 5.7456 6.2094 85 32.82073 35.07781

24 5.7534 5.47349 86 33.05787 25.38823

25 5.8029 5.38427 87 33.67243 40.50028



26 5.82017 5.61752 88 33.6806 29.71089

27 5.91387 5.08162 89 36.51683 47.42909

28 5.95393 5.0667 90 36.52903 39.57714

29 6.005 5.38427 91 37.25693 39.59725

30 6.0515 6.86249 92 37.8914 39.59725

31 6.2406 5.87492 93 40.088 47.42909

32 6.3399 5.41844 94 42.30193 47.42909

33 6.48837 5.38427 95 42.3124 46.34628

34 6.8223 7.4201 96 42.72283 47.08162

35 6.9253 7.4201 97 42.91947 47.42909

36 6.92753 7.47898 98 43.70713 46.34628

37 7.0304 7.24752 99 44.43353 50.15926

38 7.04547 6.86249 100 44.6174 47.42909

39 7.42397 7.58427 101 45.16647 47.42909

40 7.48933 7.58427 102 45.567 47.42909

41 8.2266 7.4201 103 49.28463 52.38813

42 8.5996 7.58427 104 50.49793 56.50637

43 9.2209 9.2818 105 52.0298 50.15926

44 9.92877 7.47898 106 52.52247 61.54773

45 10.5033 10.60262 107 52.63147 56.50637



46 10.59403 10.60262 108 53.3268 50.15926

47 12.09243 12.0818 109 53.3268 50.15926

48 12.11207 12.0818 110 53.37797 46.26868

49 12.147 15.0002 111 55.75047 50.15926

50 12.3532 13.1151 112 55.95453 46.34628

51 12.83763 13.1151 113 56.0618 61.89379

52 13.01737 11.96599 114 58.94803 56.50637

53 13.09263 13.1151 115 59.31757 59.38752

54 13.80277 13.63866 116 59.3998 52.38813

55 13.80967 11.96599 117 61.17263 62.78907

56 14.88013 17.08303 118 61.95413 59.38752

57 15.07357 13.63866 119 63.94803 56.50637

58 15.24337 17.08303 120 67.13693 62.78907

59 15.338 15.54409 121 70.662 76.4683

60 16.41387 19.79633 122 71.48847 63.62928

61 16.77137 15.0002 123 72.48727 61.89379

62 17.6854 19.79633

940 
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