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We study the problem of change-point detection and localisation for functional
data sequentially observed on a general d-dimensional space, where we allow
the functional curves to be either sparsely or densely sampled. Data of this form
naturally arise in a wide range of applications such as biology, neuroscience, clima-
tology and finance. To achieve such a task, we propose a kernel-based algorithm
namely functional seeded binary segmentation (FSBS). FSBS is computationally
efficient, can handle discretely observed functional data, and is theoretically sound
for heavy-tailed and temporally-dependent observations. Moreover, FSBS works
for a general d-dimensional domain, which is the first in the literature of change-
point estimation for functional data. We show the consistency of FSBS for multiple
change-point estimation and further provide a sharp localisation error rate, which
reveals an interesting phase transition phenomenon depending on the number of
functional curves observed and the sampling frequency for each curve. Extensive
numerical experiments illustrate the effectiveness of FSBS and its advantage over
existing methods in the literature under various settings. A real data application is
further conducted, where FSBS localises change-points of sea surface temperature
patterns in the south Pacific attributed to El Niño. The code to replicate all of our
experiments can be found at https://github.com/cmadridp/FSBS.

1 Introduction

Recent technological advancement has boosted the emergence of functional data in various application
areas, including neuroscience [e.g. 11, 28], finance [e.g. 13], transportation [e.g. 10], climatology
[e.g. 7, 14] and others. We refer the readers to [37] - a comprehensive review, for recent development
of statistical research in functional data analysis.

In this paper, we study the problem of change-point detection and localisation for functional data,
where the data are observed sequentially as a time series and the mean functions are piecewise
stationary, with abrupt changes occurring at unknown time points. To be specific, denote D as a
general d-dimensional space that is homeomorphic to [0, 1]d, where d ∈ N+ is considered as arbitrary
but fixed. We assume that the observations {(xt,i, yt,i)}T,n

t=1,i=1 ⊆ D × R are generated based on

yt,i = f∗t (xt,i) + ξt(xt,i) + δt,i, for t = 1, . . . , T and i = 1, . . . , n. (1)
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In this model, {xt,i}T,n
t=1,i=1 ⊆ D denotes the discrete grids where the (noisy) functional data

{yt,i}T,n
t=1,i=1 ⊆ R are observed, {f∗t : D → R}Tt=1 denotes the deterministic mean functions,

{ξt : D → R}Tt=1 denotes the functional noise and {δt,i}T,n
t=1,i=1 ⊆ R denotes the measurement error.

We refer to Assumption 1 below for detailed technical conditions on the model.

To model the unstationarity of sequentially observed functional data which commonly exists in real
world applications, we assume that there exist K ∈ N change-points, namely 0 = η0 < η1 < · · · <
ηK < ηK+1 = T , satisfying that f∗t ̸= f∗t+1, if and only if t ∈ {ηk}Kk=1. Our primary interest is to
accurately estimate {ηk}Kk=1.

Due to the importance of modelling unstationary functional data in various scientific fields, this
problem has received extensive attention in the statistical change-point literature, see e.g. [3], [6],
[18], [40], [4] and [12]. Despite the popularity, we identify a few limitations in the existing works.
Firstly, both the methodological validity and theoretical guarantees of all these papers require fully
observed functional data without measurement error, which may not be realistic in practice. Secondly,
most existing works focus on the single change-point setting and to our best knowledge, there
is no consistency result of multiple change-point estimation for functional data. Lastly but most
importantly, existing algorithms only consider functional data with support on [0, 1] and thus are not
applicable to functional data with multi-dimensional domain, a type of data frequently encountered
in neuroscience and climatology.

In view of the aforementioned three limitations, in this paper, we make several theoretical and
methodological contributions, summarized below.

• In terms of methodology, our proposed kernel-based change-point detection algorithm, functional
seeded binary segmentation (FSBS), is computationally efficient, can handle discretely observed
functional data contaminated with measurement error, and allows for temporally-dependent and
heavy-tailed data. FSBS, in particular, works for a general d-dimensional domain with arbitrary but
fixed d ∈ N+. This level of generality is the first time seen in the literature.

• In terms of theory, we show that under standard regularity conditions, FSBS is consistent in
detecting and localising multiple change-points. We also provide a sharp localisation error rate,
which reveals an interesting phase transition phenomenon depending on the number of functional
curves observed T and the sampling frequency for each curve n. To the best of our knowledge, the
theoretical results we provide in this paper are the sharpest in the existing literature.

• A striking case we handle in this paper is that each curve is only sampled at one point, i.e. n = 1.
To the best of our knowledge, all the existing functional data change-point analysis papers assume
full curves are observed. We not only allow for discrete observation, but carefully study this most
extreme sparse case n = 1 and provide consistent localisation of the change-points.

•We conduct extensive numerical experiments on simulated and real data. The result further supports
our theoretical findings, showcases the advantages of FSBS over existing methods and illustrates the
practicality of FSBS.

• A byproduct of our theoretical analysis is new theoretical results on kernel estimation for functional
data under temporal dependence and heavy-tailedness. This set of new results per se are novel,
enlarging the toolboxes of functional data analysis.

Notation and definition. For any function f : [0, 1]d → R and for 1 ≤ p < ∞, define ∥f∥p =

(
∫
[0,1]d

|f(x)|p dx)1/p and for p = ∞, define ∥f∥∞ = supx∈[0,1]d |f(x)|. Define Lp = {f :

[0, 1]d → R, ∥f∥p < ∞}. For any vector s = (s1, . . . , sd)
⊤ ∈ Nd, define |s| =

∑d
i=1 si,

s! = s1! · · · sd! and the associated partial differential operator Ds = ∂|s|

∂x
s1
1 ···∂xsd

d

. For α > 0, denote

⌊α⌋ to be the largest integer smaller than α. For any function f : [0, 1]d → R that is ⌊α⌋-times
continuously differentiable at point x0, denote by fαx0

its Taylor polynomial of degree ⌊α⌋ at x0,
which is defined as fαx0

(x) =
∑ (x−x0)

s

|s|≤⌊α⌋ s! Dsf(x0). For a constant L > 0, let Hα(L) be the
set of functions f : [0, 1]d → R such that f is ⌊α⌋-times differentiable for all x ∈ [0, 1]d and satisfy
|f(x) − fαx0

(x)| ≤ L|x − x0|α, for all x, x0 ∈ [0, 1]d. Here |x − x0| is the Euclidean distance
between x, x0 ∈ Rd. In non-parametric statistical literature,Hα(L) are often referred to as the class
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of Hölder smooth functions. We refer the interested readers to [30] for more detailed discussion on
Hölder smooth functions.

For two positive sequences {an}n∈N+ and {bn}n∈N+ , we write an = O(bn) or an ≲ bn if an ≤ Cbn
with some constant C > 0 that does not depend on n, and an = Θ(bn) or an ≍ bn if an = O(bn)
and bn = O(an).

2 Functional seeded binary segmentation

2.1 Problem formulation

Detailed model assumptions imposed on model (1) are collected in Assumption 1. For notational
simplicity, without loss of generality, we set the general d-dimensional domain D to be [0, 1]d, as the
results apply to any D that is homeomorphic to [0, 1]d.

Assumption 1. The data {(xt,i, yt,i)}T,n
t=1,i=1 ⊆ [0, 1]d × R are generated based on model (1).

a. (Discrete grids) The grids {xt,i}T,n
t=1,i=1 ⊆ [0, 1]d are independently sampled from a common

density function u : [0, 1]d → R. In addition, there exist constants r > 0 and L > 0 such that
u ∈ Hr(L) and that infx∈[0,1]d u(x) ≥ c̃ with an absolute constant c̃ > 0.

b. (Mean functions) For r > 0 and L > 0, we have f∗t ∈ Hr(L). The minimal spacing between two
consecutive change-points ∆ = minK+1

k=1 (ηk − ηk−1) satisfies that ∆ = Θ(T ).

c. (Functional noise) Let {εi, ε′0}i∈Z be i.i.d. random elements taking values in a measurable space
Sξ and g be a measurable function g : S∞

ξ → L2. The functional noise {ξt}Tt=1 ⊆ L2 takes the form

ξt = g(Gt), with Gt = (. . . , ε−1, ε0, ε1, . . . , εt−1, εt).

There exists an absolute constant q ≥ 3, such that E(∥ξt∥q∞) < Cξ,1 for some absolute constant Cξ,1.
Define a coupled process

ξ∗t = g(G∗t ), with G∗t = (. . . , ε−1, ε
′
0, ε1, . . . , εt−1, εt).

We have
∑∞

t=1 t
1/2−1/q{E∥ξt − ξ∗t ∥q∞}1/q < Cξ,2 for some absolute constant Cξ,2 > 0.

d. (Measurement error) Let {ϵi, ϵ′0}i∈Z be i.i.d. random elements taking values in a measurable
space Sδ and g̃n be a measurable function g̃n : S∞

δ → Rn. The measurement error {δt}Tt=1 ⊆ Rn

takes the form
δt = g̃n(Ft), with Ft = (. . . , ϵ−1, ϵ0, ϵ1, . . . , ϵt−1, ϵt).

There exists an absolute constant q ≥ 3, such that maxni=1 E(|δt,i|q) < Cδ,1 for some absolute
constant Cδ,1. Define a coupled process

δ∗t = g̃n(F∗
t ), with F∗

t = (. . . , ϵ−1, ϵ
′
0, ϵ1, . . . , ϵt−1, ϵt).

We have maxn
∑∞

t=1 t
1/2−1/q{E|δt,i − δ∗i=1 t,i|q}1/q < Cδ,2 for some absolute constant Cδ,2 > 0.

Assumption 1a allows the functional data to be observed on discrete grids and moreover, we allow for
different grids at different time points. The sampling distribution µ is required to be lower bounded
on the support [0, 1]d, which is a standard assumption widely used in the nonparametric literature
[e.g. 33]. Here, different functional curves are assumed to have the same number of grid points n.
We remark that this is made for presentation simplicity only. It can indeed be further relaxed and the
main results below will then depend on both the minimum and maximum numbers of grid points.

Note that Assumption 1a does not impose any restriction between the sampling frequency n and the
number of functional curves T , and indeed our method can handle both the dense case where n≫ T
and the sparse case where n can be upper bounded by a constant. Besides the random sampling
scheme studied here, another commonly studied scenario is the fixed design, where it usually assumes
that the sampling locations {xi}ni=1 are common to all functional curves across time. We remark that
while we focus on the random design here, our proposed algorithm can be directly applied to the
fixed design case without any modification. Furthermore, its theoretical justification under the fixed
design case can be established similarly with minor modifications, which is omitted.
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The observed functional data have mean functions {f∗t }Tt=1, which are assumed to be Hölder continu-
ous in Assumption 1b. Note that the Hölder parameters in Assumption 1a and b are both denoted
by r. We remark that different smoothness are allowed and we use the same r here for notational
simplicity. This sequence of mean functions is our primary interest and is assumed to possess a piece-
wise constant pattern, with the minimal spacing ∆ being of the same order as T . This assumption
essentially requires that the number of change-points is upper bounded. It can also be further relaxed
and we will have more elaborated discussions on this matter in Section 5.

Our model allows for two sources of noise - functional noise and measurement error, which are
detailed in Assumption 1c and d, respectively. Both the functional noise and the measurement error
are allowed to possess temporal dependence and heavy-tailedness. For temporal dependence, we
adopt the physical dependence framework by [39], which covers a wide range of time series models,
such as ARMA and vector AR models. It further covers popular functional time series models such as
functional AR and MA models [18]. We also remark that Assumption 1c and d impose a short range
dependence, which is characterized by the absolute upper bounds Cξ,2 and Cδ,2. Further relaxation is
possible by allowing the upper bounds Cξ,2 and Cδ,2 to vary with the sample size T .

The heavy-tail behavior is encoded in the parameter q. In Assumption 1c and d, we adopt the
same quantity q for presentational simplicity and remark that different heavy-tailedness levels
are allowed. An extreme example is that when q = ∞, the noise is essentially sub-Gaussian.
Importantly, Assumption 1d does not impose any restriction on the cross-sectional dependence
among measurement errors observed on the same time t, which can be even perfectly correlated.

2.2 Kernel-based change-point detection

To estimate the change-point {ηk}Kk=1 in the mean functions {f∗t }Tt=1, we propose a kernel-based
cumulative sum (CUSUM) statistic, which is simple, intuitive and computationally efficient. The
key idea is to recover the unobserved {f∗t }Tt=1 from the observations {(xt,i, yt,i)}T,n

t=1,i=1 based on
kernel estimation.

Given a kernel function K(·) : Rd → R+ and a bandwidth parameter h > 0, we define Kh(x) =

h−dK(x/h) for x ∈ Rd. Given the random grids {xt,i}T,n
t=1,i=1 and a bandwidth parameter h̄, we

define the density estimator of the sampling distribution u(x) as

p̂(x) = p̂h̄(x) =
1

nT

T∑
t=1

n∑
i=1

Kh̄(x− xt,i), x ∈ [0, 1]d.

Given p̂(x) and a bandwidth parameter h > 0, for any time t = 1, 2, · · · , T , we define the kernel-
based estimation for f∗t (x) as ∑n

i=1 yt,iKh(x− xt,i)
Ft,h(x) =

np̂(x)
, x ∈ [0, 1]d. (2)

Based on the kernel estimation Ft,h(x), for any integer pair 0 ≤ s < e ≤ T , we define the CUSUM
statistic as √
F̃

(s,e]
t,h (x) =

e− t t∑ √
Fl,h(x)−

(e− s)(t− s)
l=s+1

t− s e∑
Fl,h(x), x ∈ [0, 1]d. (3)

(e− s)(e− t)
l=t+1

The CUSUM statistic defined in (3) is the cornerstone of our algorithm and is based on two kernel
estimators p̂(·) and Ft,h(·). At a high level, the CUSUM statistic F̃ (s,e]

t,h (·) estimates the difference in
mean between the functional data in the time intervals (s, t] and (t, e]. In the functional data analysis
literature, other popular approaches for mean function estimation are reproducing kernel Hilbert space
based methods and local polynomial regression. However, to our best knowledge, existing works
based on the two approaches typically require that the functional data are temporally independent
and it is not obvious how to extend their theoretical guarantees to the temporal dependence case. We
therefore choose the kernel estimation method owing to its flexibility in terms of both methodology
and theory and we derive new theoretical results on kernel estimation for functional data under
temporal dependence and heavy-tailedness. We would like to point out that in the existing literature,
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kernel-based change-point estimation methods are used in detecting change-points in nonparametric
models [e.g. 23, 1, 24, 27].

For multiple change-point estimation, a key ingredient is to isolate each single change-point with
well-designed intervals in [0, T ]. To achieve this, we combine the CUSUM statistic in (3) with a
modified version of the seeded binary segmentation (SBS) proposed in [22]. SBS is based on a
collection of deterministic intervals defined in Definition 1.
Definition 1 (Seeded intervals). Let K = ⌈CK log log(T )⌉, with some sufficiently large absolute
constant CK > 0. For k ∈ {1, . . . ,K}, let Jk be the collection of 2k − 1 intervals of length
lk = T2−k+1 that are evenly shifted by lk/2 = T2−k, i.e.

Jk = {(⌊(i− 1)T2−k⌋, ⌈(i− 1)T2−k + T2−k+1⌉], i = 1, . . . , 2k − 1}.
The overall collection of seeded intervals is denoted as J = ∪Kk=1Jk.

The essential idea of the seeded intervals defined in Definition 1 is to provide a multi-scale system of
searching regions for multiple change-points. SBS is computationally efficient with a computational
cost of the order O(T log(T )) [22].

Based on the CUSUM statistic and seeded intervals, Algorithm 1 summarises the proposed functional
seeded binary segmentation algorithm (FSBS) for multiple change-point estimation in sequentially
observed functional data. There are three main tuning parameters involved in Algorithm 1, the kernel
bandwidth h̄ in the estimation of the sampling distribution, the kernel bandwidth h in the estimation
of the mean function and the threshold parameter τ for declaring change-points. Their theoretical
and numerical guidance will be presented in Sections 3.1 and 4, respectively.

¯Algorithm 1 Functional Seeded Binary Segmentation. FSBS ((s, e], h, h, τ)

INPUT: Data {xt,i, yt,i}T,n
t=1,i=1, seeded intervals J , tuning parameters h̄, h, τ > 0.

Initialization: If (s, e] = (0, n], set S ← ∅ and set ρ ← log(T )n−1h−d. Furthermore, sample
⌈log(T )⌉ points from {xt,i}T,n

t=1,i=1 uniformly at random without replacement and denote them as

{um}⌈log(T )⌉
m=1 . Estimate the sampling distribution evaluated at {p̂h̄(um)}⌈log(T )⌉

m=1 .
for I = (α, β] ∈ J and m ∈ {1, . . . , ⌈log(T )⌉} do

if I = (α, β] ⊆ (s, e] and β − α > 2ρ then
AI

m ← maxα+ρ≤t≤β−ρ |F̃ (α,β]
t,h (um)|, DI

m ← argmaxα+ρ≤t≤β−ρ |F̃
(α,β]
t,h (um)|

else
(AI

m, D
I
m)← (−1, 0)

end if
end for
(m∗, I∗)← argmaxm=1,...,⌈log(T )⌉,I∈J A

I
m.

if AI∗

m∗ > τ then
S← S ∪DI∗

m∗

FSBS ((s,DI∗

m∗ ], h̄, h, τ)
FSBS ((DI∗

m∗ , e], h̄, h, τ)
end if

OUTPUT: The set of estimated change-points S.

Algorithm 1 is conducted in an iterative way, starting with the whole time course, using the multi-scale
seeded intervals to search for the point according to the largest CUSUM value. A change-point is
declared if the corresponding maximum CUSUM value exceeds a pre-specified threshold τ and the
whole sequence is then split into two with the procedure being carried on in the sub-intervals.

Algorithm 1 utilizes a collection of random grid points {um}⌈log(T )⌉
m=1 ⊆ {xt,i}T,n

t=1,i=1 to detect
changes in the functional data. For a change of mean functions at the time point η with ∥f∗η+1 −
f∗η ∥∞ > 0, we show in the appendix that, as long as ⌈log(T )⌉ grid points are sampled, with high

probability, there is at least one point um′ ∈ {um}⌈log(T )⌉
m=1 such that |f∗η+1(um′) − f∗η (um′)| ≍

∥f∗η+1 − f∗η ∥∞. Thus, this procedure allows FSBS to detect changes in the mean functions without
evaluating functions on a dense lattice grid and thus improves computational efficiency.
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3 Main Results

3.1 Assumptions and theory

We begin by imposing assumptions on the kernel function K(·) used in FSBS.

Assumption 2 (Kernel function). Let K(·) : Rd → R+ be compactly supported and satisfy the
following conditions.

a. The kernel function K(·) is adaptive to the Hölder classHr(L), i.e. for any f ∈ Hr(L), it holds∣∣ ∫that supx∈[0,1]d [0,1]d
Kh (x− z) f(z) dz − f(x)

∣∣ ≤ C̃hr, where C̃ > 0 is a constant that only
depends on L.

b. The class of functions FK = {K(x− ·)/h : Rd → R+, h > 0} is separable in L∞(Rd) and is a
uniformly bounded VC-class. This means that there exist constantsA, ν > 0 such that for every proba-
bility measure Q on Rd and every u ∈ (0, ∥K∥∞), it holds thatN (FK ,L2(Q), u) ≤ (A∥K∥∞/u)v ,
where N (FK ,L2(Q), u) denotes the u-covering number of the metric space (FK ,L2(Q)).

Assumption 2 is a standard assumption in the nonparametric literature, see [15, 16], [20], [35]
among many others. These assumptions hold for most commonly used kernels, including uniform,
polynomial and Gaussian kernels.

Recall the minimal spacing ∆ = minK+1
k=1 (ηk − ηk−1) defined in Assumption 1b. We further define

the jump size at the kth change-point as κk = ∥f∗ηk+1 − f∗ηk
∥∞ and define κ = minKk=1 as the

minimal jump size. Assumption 3 below details how strong the signal needs to be in terms of κ and
∆, given the grid size n, the number of functional curves T , smoothness parameter r, dimensionality
d and moment condition q.
Assumption 3 (Signal-to-noise ratio, SNR). There exists an arbitrarily-slow diverging sequence
CSNR = CSNR(T ) such that

√
κ

(
∆ > CSNR logmax{1/2,5/q}(T ) 1 + T

d
2r+dn

−2r
)1/2

2r+d .

We are now ready to present the main theorem, showing the consistency of FSBS.

Theorem 1. Under Assumptions 1, 2 and 3, let {η̂k}K̂k=1 be the estimated change-points by FSBS
detailed in Algorithm 1 with data {xt,i, yt,i}T,n

t=1,i=1, bandwidth parameters h̄ = Ch̄(Tn)
− 1

2r+d ,

h = Ch(Tn)
−1

2r+d and threshold parameter τ = Cτ log
max{1/2,5/q}(T )

(
1 + T

d
2r+dn

−2r
)1/2

2r+d , for
some absolute constants Ch̄, Ch, Cτ > 0. It holds that

P
{
K̂ = K; |η̂k − ηk| ≤ CFSBS log

max{1,10/q}(T )
(
1 + T

d
2r+dn

−2r
) }

2r+d κ−2
k , ∀k = 1, . . . ,K

≥ 1− 3 log−1(T ),

where CFSBS > 0 is an absolute constant.

In view of Assumption 3 and Theorem 1, we see that with properly chosen tuning parameters and
with probability tending to one as the sample size T grows, the output of FSBS estimates the correct
number of change-points and (

K
max |η̂k − ηk|/∆ ≲ 1 + T

d

k=1
2r+dn

−2r
)

2r+d logmax{1,10/q}(

where the last inequality follows from Assumption 3. The above inequality shows that there exists a
one-to-one mapping from {η̂k}Kk=1 to {ηk}Kk=1, assigning by the smallest distance.

T )/(κ2∆) = o(1),

3.2 Discussions on functional seeded binary segmentation (FSBS)

From sparse to dense regimes. In our setup, each curve is only observed at n discrete points and we
allow the full range of choices of n, representing from sparse to dense scenarios, all accompanied√
with consistency results. In the most sparse case n = 1, Assumption 3 reads as κ ∆ ≳ T d/(4r+2d)×
a logarithmic factor, under which the localisation error is upper bounded by T d/(2r+d)κ−2, up to
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a logarithmic factor. To the best of our knowledge, this challenging case has not been dealt in
the existing change-point detection literature for functional data. In the most dense case, we can
heuristically let n = ∞ and for simplicity let q = ∞ representing the sub-Gaussian noise case.√
Assumption 3 reads as κ ∆ ≍ log1/2(T ) and the localisation error is upper bounded by κ−2 log(T ).
Both the SNR ratio and localisation error are the optimal rate in the univariate mean change-point
localisation problem [36], implying the optimality of FSBS in the dense situation.

Tuning parameters. There are three tuning parameters involved. In the CUSUM statistic (3), we
specify that the density estimator of the sampling distribution is a kernel estimator with bandwidth
h̄ ≍ (Tn)−1/(2r+d). Due to the independence of the observation grids, such a choice of the bandwidth
follows from the classical nonparametric literature [e.g. 33] and is minimax-rate optimal in terms
of the estimation error. For completeness, we include the study of p̂(·)’s theoretical properties in

¯Appendix B. In practice, there exist different default methods for the selection of h , see for example
the function Hpi from the R package ks ([9]).

The other bandwidth tuning parameter h is also required to be h ≍ (Tn)−1/(2r+d). Despite that we
allow for physical dependence in both functional noise and measurement error, we show that the
same order of bandwidth (as h̄) is required under Assumption 1. This is an interesting finding, if not
surprising. This particular choice of h is due to the fact that the physical dependence put forward by
[39] is a short range dependence condition and does not change the rate of the sample size.

The threshold tuning parameter τ is set to be a high-probability upper bound on the CUSUM statistics√
when there is no change-point and is in fact of the form τ = Cτ log

max{1/2,5/q}(T ) n−1h−d + 1.√
This also reflects the requirement on the SNR detailed in Assumption 3, that κ ∆ ≳ τ .

Phase transition. Recall that the number of curves is T and the number of observations on each
curve is n. The asymptotic regime we discuss is to let T diverge, while allowing all other parameters,
including n, to be functions of T . In Theorem 1, we allow a full range of cases in terms of the
relationship between n and T . As a concrete example, when the smooth parameter r = 2, the jump
size κ ≍ 1 and in the one-dimensional case d = 1, with high probability (ignoring logarithmic factors
for simplicity),

K
max |η̂k − ηk| = Op(T

1

k=1
5n−

4
5 + 1) =

{
Op(1),

1

n ≥ T 1/4;

Op(T
4

5n− 1/4.5 ), n ≤ T

This relationship between n and T was previously demonstrated in the mean function estimation lit-
erature [e.g. 8, 41], where the observations are discretely sampled from independently and identically
distributed functional data. It is shown that the minimax estimation error rate also possesses the same
phase transition between n and T , i.e. with the transition boundary n ≍ T 1/4, which agrees with our
finding under the change-point setting.

Physical dependence and heavy-tailedness In Assumption 1c and d, we allow for physical depen-
dence type temporal dependence and heavy-tailed additive noise. As we have discussed, since the
physical dependence is in fact a short range dependence, all the rates involved are the same as those in
the independence cases, up to logarithmic factors. Having said this, the technical details required in
dealing with this short range dependence are fundamentally different from those in the independence
cases. From the result, it might be more interesting to discuss the effect of the heavy-tail behaviours,
which are characterised by the parameter q. It can be seen from the rates in Assumption 3 and
Theorem 1 that the effect of q disappears and it behaves the same as if the noise is sub-Gaussian
when q ≥ 10.

4 Numerical Experiments

4.1 Simulated data analysis

We compare the proposed FSBS with state-of-the-art methods for change-point detection in functional
data across a wide range of simulation settings. Specifically, we compare with three competitors:
BGHK in [6], HK in [18] and SN in [40]. All three methods estimate change-points via examining
mean change in the leading functional principal components of the observed functional data. BGHK
is designed for temporally independent data while HK and SN can handle temporal dependence via
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the estimation of long-run variance and the use of self-normalization principle, respectively. All three
methods require fully observed functional data. In practice, they convert discrete data to functional
observations by using B-splines with 20 basis functions.

For the implementation of FSBS, we adopt the Gaussian kernel. Following the standard practice in
¯kernel density estimation, the bandwidth h is selected by the function Hpi in the R package ks ([9]).

The tuning parameter τ and the bandwidth h are chosen by cross-validation, with evenly-indexed
data being the training set and oddly-indexed data being the validation set. For each pair of candidate
(h, τ), we obtain change-point estimators {η̂k}K̂k=1 on the training set and compute the validation

loss
∑K̂ ∑ ∑n

i=1{(η̂k+1 − η̂k)−1
∑

k=1 t∈[η̂k,η̂k+1)

chosen to be the one corresponding to the lowest validation loss.

We consider five different scenarios for the observations {xti, yti}T,n
t=1,i=1. For all scenarios 1-5,

we set T = 200. Given the dimensionality d, denote a generic grid point as x = (x(1), · · · , x(d)).
Scenarios 1 to 4 are generated based on model (1). The basic setting is as follows.

• Scenario 1 (S1) Let (n, d) = (1, 1), the unevenly-spaced change-points be (η1, η2) = (30, 130)
and the three distinct mean functions be 6 cos(·), 6 sin(·) and 6 cos(·).
• Scenario 2 (S2) Let (n, d) = (10, 1), the unevenly-spaced change-points be (η1, η2) = (30, 130)
and the three distinct mean functions be 2 cos(·), 2 sin(·) and 2 cos(·).
• Scenario 3 (S3) Let (n, d) = (50, 1), the unevenly-spaced change-points be (η1, η2) = (30, 130)
and the three distinct mean functions be cos(·), sin(·) and cos(·).
• Scenario 4 (S4) Let (n, d) = (10, 2), the unevenly-spaced change-points be (η1, η2) = (100, 150)
and the three distinct mean functions be 0, 3x(1)x(2) and 0.

For S1-S4, the functional noise is generated as ξt(x) = 0.5ξt−1(x) +
∑50

i=1 i
−1bt,ihi(x), where

{hi(x) =
∏d

j=1(1/
√

η̂k+1

t=η̂k+1 Ft,h(xt,i)− yt,i}2. The pair (h, τ) is then

2)π sin(ix(j))}50i=1 are basis functions and {bt,i}T,50
t=1,i=1 are i.i.d. standard

normal random variables. The measurement error is generated as δt = 0.3δt−1 + ϵt, where {ϵt}Tt=1

are i.i.d. N (0, 0.5In). We observe the noisy functional data {yti}T,n
t=1,i=1 at grid points {xti}T,n

t=1,i=1

independently sampled from Unif([0, 1]d).

Scenario 5 is adopted from [40] for densely-sampled functional data without measurement error.

• Scenario 5 (S5) Let (n, d) = (50, 1), the evenly-spaced change-points be (η1, η2) = (68, 134) and
the three distinct mean functions be 0, sin(·) and 2 sin(·).
The grid points {xti}50
noise is generated as ξt(·) =

∫i=1 are 50 evenly-spaced points in [0, 1] for all t = 1, · · · , T . The functional

[0,1]
ψ(·, u)ξt−1(u) du + ϵt(·), where {ϵt(·)}Tt=1 are independent

standard Brownian motions and ψ(v, u) = 1/3 exp((v2 + u2)/2) is a bivariate Gaussian kernel.

S1-S5 represent a wide range of simulation settings including the extreme sparse case S1, sparse case
S2, the two-dimensional domain case S4, and the densely sampled cases S3 and S5. Note that S1 and
S4 can only be handled by FSBS as for S1 it is impossible to estimate a function via B-spline based
on one point and for S4, the domain is of dimension 2.

Evaluation result: For a given set of true change-points C = {ηk}Kk=1, we evaluate the accuracy
of the estimator {η̂k}K̂k=1 by the difference |
by d(Ĉ, C) = max{maxx∈Ĉ miny∈C{|x− y|},maxy∈Ĉ minx∈C{|x− y|}}. For Ĉ = ∅, we use the

convention that |K̂ −K| = K and d(Ĉ, C) = T .

For each scenario, we repeat the experiments 100 times and Figure 1 summarizes the performance
of FSBS, BGHK, HK and SN. Tabulated results can be found in Appendix A.1. As can be seen,
FSBS consistently outperforms the competing methods by a wide margin and demonstrates robust
behaviour across the board for both sparsely and densely sampled functional data.

K̂ − K| and the Hausdorff distance d(Ĉ, C), defined
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Figure 1: Bar plots for simulation results of S1-S5. Each bar reports the mean and standard deviation
computed based on 100 experiments. From left to right, the first two plots correspond to the Hausdorff
distance and |K − K̂| in S2, S3 and S5. The last two plots correspond to S1 and S4.

4.2 Real data application

We consider the COBE-SSTE dataset [29], which consists of monthly average sea surface temperature
(SST) from 1940 to 2019, on a 1 degree latitude by 1 degree longitude grid (48 × 30) covering
Australia. The specific coordinates are latitude 10S-39S and longitude 110E-157E.

We apply FSBS to detect potential change-points in the two-dimensional SST. The implementation of
FSBS is the same as the one described in Section 4.1. To avoid seasonality, we apply FSBS to the
SST for the month of June from 1940 to 2019. We further conduct the same analysis separately for
the month of July for robustness check.

For both the June and July data, two change-points are identified by FSBS, Year 1981 and 1996,
suggesting the robustness of the finding. The two change-points might be associated with years when
both the Indian Ocean Dipole and Oceanic Niño Index had extreme events [2]. The El Niño/Southern
Oscillation has been recognized as an important manifestation of the tropical ocean-atmosphere-land
coupled system. It is an irregular periodic variation in winds and sea surface temperatures over the
tropical eastern Pacific Ocean. Much of the variability in the climate of Australia is connected with
this phenomenon [5].

To visualize the estimated change, Figure 2 depicts the average SST before the first change-point
Year 1981, between the two change-points, and after the second change-point Year 1996. The two
rows correspond to the June and July data, respectively. As we can see, the top left corners exhibit
different patterns in the three periods, suggesting the existence of change-points.

Figure 2: Average SST. From left to right: average SST from 1940 to 1981, average SST from 1982
to 1996, and average SST from 1997 to 2019. The top and bottom rows correspond to the June and
July data respectively.
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5 Conclusion

In this paper, we study change-point detection for sparse and dense functional data in general
dimensions. We show that our algorithm FSBS can consistently estimate the change-points even in
the extreme sparse setting with n = 1. Our theoretical analysis reveals an interesting phase transition
between n and T , which has not been discovered in the existing literature for functional change-point
detection. The consistency of FSBS relies on the assumption that the minimal spacing ∆ ≍ T . To
relax this assumption, we may consider increasing K in Definition 1 to enlarge the coverage of the
seeded intervals in FSBS and apply the narrowest over threshold selection method [Theorem 3 in
22]. With minor modifications of the current theoretical analysis, the consistency of FSBS can be
established for the case of ∆≪ T . Since such a relaxation does not add much more methodological
insights to our paper, we omit this additional technical discussion for conciseness.
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Supplementary Materials

Additional numerical results and all technical details are included in the supplementary materials.

A Additional numerical results

A.1 Detailed simulation results

We present the tables containing the results of the simulation study in Section 4.1 of the main text.
On each table, the mean over 100 repetitions is reported, and the numbers in parenthesis denote the
standard errors. For the purpose of identifying underestimation and overestimation, we also include
the proportions of estimations for which the K̂ −K distance is negative, zero, or positive.

Table 1: Scenario 1 (n = 1, d = 1 changes from 6 cos-6 sin-6 cos)

Model K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
FSBS 0.05 0.86 0.09 0.17 (0.05) 16.15 (4.09)

Changes occur at the times 30 and 130.

Table 2: Scenario 2 (n = 10, d = 1, changes from 2 cos-2 sin-2 cos)

Model K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
FSBS 0.05 0.95 0 0.05 (0.02) 3.32 (1)
BGHK 0.58 0.42 0 1.12 (0.14) 20.11 (1.82)
HK 0.16 0.47 0.37 0.78 (0.08) 66.45 (7.87)
SN 0.04 0.03 0.93 1.83 (0.04) 181.11 (5.05)

Changes occur at the times 30 and 130.

Table 3: Scenario 3 (n = 50, d = 1, changes from cos-sin-cos)

Model K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
FSBS 0 0.93 0.07 0.07 (0.03) 7.35 (0.54)
BGHK 0.85 0.15 0 2.97 (0.22) 32.88 (1.82)
HK 0 0.08 0.92 1.71 (0.06) 172.52 (5.61)
SN 0.02 0.04 0.94 1.85 (0.05) 183.63 (4.57)

Changes occur at the times 30 and 130.

Table 4: Scenario 4 (n = 10, d = 2, changes from 0-3x(1)x(2)-0)

Model K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
FSBS 0 0.92 0.08 0.08 (0.021) 5.02 (1.25)

Changes occur at the times 100 and 150.
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Table 5: Scenario 5 (n = 50, d = 1, changes from 0-sin-2 sin)

Model K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
FSBS 0.02 0.98 0 0.02 (0.01) 16.9 (0.93)
BGHK 0.48 0.30 0.22 1.09 (0.11) 34.36 (1.78)
HK 0 0.19 0.81 0.81 (0.04) 48.24 (1.71)
SN 0.08 0.33 0.59 0.85 (0.07) 65.15 (6.38)

Changes occur at the times 68 and 134.

A.2 Details of Figure 2

We zoom in the top-left and top-right corners of each panel in Figure 2 and present in Figures A.2
and A.2, respectively. The top-left and top-right corners correspond to the northwest and northeast
coasts of Australia, where the changes occur.

Figure 3: Average SST of northwest coast of Australia. From left to right: average SST from 1940 to
1981, average SST from 1982 to 1996, and average SST from 1997 to 2019. The top and bottom
rows correspond to the June and July data respectively.

Figure 4: Average SST of northeast coast of Australia. From left to right: average SST from 1940 to
1981, average SST from 1982 to 1996, and average SST from 1997 to 2019. The top and bottom
rows correspond to the June and July data respectively.
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A.3 Sea surface temperature on Caribbean sea

We consider an additional real data example, also from the COBE-SSTE dataset [29], using data
from June and July. FSBS is applied to estimate potential change points on a 1 degree latitude by 1
degree longitude grid (10× 6), located at the Caribbean sea. In both months, FSBS identified the
year 2004 as a change-point. This might be associated with the development of a Modoki El Niño – a
rare type of El Niño in which unfavourable conditions are produced over the eastern Pacific instead
of the Atlantic basin due to warmer sea surface temperatures farther west along the equatorial Pacific
[38]. Variability in the climate of northeastern Caribbean is connected with this phenomenon, see for
example [26].

Figure 5: Average SST of Caribbean sea. From left to right: The first image shows the region
chosen, the small blue rectangle into the black rectangle. The second image contains four different
sub-images. Here, from left to right, the average SST from 1940 to 2003 and average SST from 2004
to 2019 is presented. The top and bottom rows correspond to the June and July data respectively.

A.4 On the dimension d

Recall that the localisation error rate of change-point estimation in Theorem 1 is(
CFSBS log

max{1,10/q}(T ) 1 + T
d

2r+dn
−2r

)
2r+d κ−2

k ,

which is an increasing function of d, i.e. a larger d will lead to a worse localization error rate.

In addition, Assumption 3 requires that the signal-to-noise ratio to be lower bounded by(
CSNR logmax{1/2,5/q}(T ) 1 + T

d
2r+dn

−2r
)1/2

2r+d ,

which implies that a larger d will also require a stronger signal.

We conducted additional numerical results to further show the influence of d. Using the same setting
as that in Scenario 4 in Section 4, we vary the dimension d ∈ {2, 3, 5, 10}. Results are collected in
Table 6 and Appendix A.4, supporting our theoretical findings.

Table 6: FSBS on Scenario 4 (n = 10, changes from 0-3x(1)x(2)-0)

Dimension K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
d = 2
d = 3
d = 5
d = 10

0 0.92 0.08 0.08 (0.02) 5.02 (1.25)
0.02 0.89 0.09 0.11 (0.03) 5.73 (1.22)
0.18 0.82 0 0.18 (0.05) 5.92 (1.23)
0.21 0.79 0 0.22 (0.08) 6.58 (1.24)

Performance of FSBS with different choices of dimension d is studied for S4. The mean over 100
repetitions is reported, and the numbers in parenthesis denote standard errors. It includes the

proportions of estimations for which the K̂ −K distance is negative, zero, or positive.
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Figure 6: Bar plots for simulation results of FSBS performance on S4 with respect to the dimension
d. Each bar reports the mean and standard error computed based on 100 experiments.

A.5 Choice of kernels

The choice of kernels may affect the performance of kernel based methods. We choose Gaussian
kernel in Section 4 and demonstrate the robustness against the choice of kernels of FSBS in this
section, by choosing different kernels. Tables 7, 8 and Appendix A.5 collect results of the performance
of the FSBS with different choices of kernels, based on the settings detailed in Scenarios 1 and 2 in
Section 4, with Gaussian, Uniform, Epanechnikov and Quartic kernels.

Table 7: FSBS in Scenario 1 (different kernels comparison)

Kernel K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
Gaussian 0.05 0.86 0.09 0.17 (0.05) 16.15 (4.09)
Uniform 0.01 0.99 0 0.01 (0.01) 13.32 (0.42)
Epanechnikov 0.06 0.87 0.17 0.13 (0.03) 15.14 (2.40)
Quartic 0.07 0.84 0.09 0.20 (0.04) 18.28 (1.63)

The mean over 100 repetitions is reported together with the standard errors into parenthesis. The
proportions of estimations for which the K̂ −K distance is negative, zero, or positive are included.

Table 8: FSBS in Scenario 2 (different kernels comparison)

Kernel K − K̂ < 0 K − K̂ = 0 K − K̂ > 0 |K̂ −K| d(Ĉ, C)
Gaussian 0.05 0.95 0 0.05 (0.02) 3.32 (1)
Uniform 0 0.99 0.01 0.01 (0.01) 2.93 (1.03)
Epanechnikov 0 100 0 0 (0) 1.24 (0.28)
Quartic 0.01 0.99 0 0.01 (0.01) 2.3 (0.55)

The mean over 100 repetitions is reported together with the standard errors into parenthesis. The
proportions of estimations for which the K̂ −K distance is negative, zero, or positive are included.
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Figure 7: Bar plots for simulation results of FSBS performance on S1 and S2 with respect to different
choices of kernels. Each bar reports the mean and standard error computed based on 100 experiments.

A.6 Computational costs

Our method is computationally efficient and its computational complexity is O(nT log T +
T (log T )2). Specifically, as can be seen from Algorithm 1, we need to conduct kernel smooth-
ing of the sampling distribution and mean function at log T measurement locations, which costs
O(nT log T ) operations. Once this is done, we conduct seeded binary segmentation (SBS) at the
log T measurement locations/grids. It is known that SBS has a computational cost of O(T log T ).
Thus, this step costs O(T (log T )2) computational complexity. In total, the computational complexity
of our method is O(nT log T + T (log T )2).

As for existing methods in the literature, in terms of implementation, they all rely on the two-stage
procedure. Specifically, the first stage is to register/estimate the discretely observed points into a
functional curve on each time t. Taking the B-spline smoothing with p basis functions for example,
this costs O(n2p+ p3) computational complexity for each time t due to a least square estimation.
Thus this step costs O(T (n2p + p3)) computational complexity. Once the functional curves are
registered, in the second stage, the existing methods conduct functional PCA to extract p′ principle
component scores from each function and then conduct mean change-point detection on the p′-
dimension time series of principle component scores. Ignoring the computational cost of functional
PCA, the change-point detection procedure costs at least O(T log T ) computational complexity if a
standard binary segmentation is used and could be more expensive if other segmentation algorithms
are used to conduct change-point estimation. Thus, in total, the computational complexity of existing
methods is at least O(T (n2p+ p3) + T log T ), which is more expensive unless n ⪯ log T.

B Proof of Theorem 1

In this section, we present the proofs of theorem Theorem 1. To this end, we will invoke the following
well-known l∞ bounds for kernel density estimation.

Lemma 1. Let {xt,i}n,Ti=1,t=1 be random grid points independently sampled from a common density
function u : [0, 1]d → R. Under Assumption 2-b, the density estimator of the sampling distribution µ,

p̂(x) =
1

satisfies,

nT

T∑
t=1

nt∑
i=1

Kh̄(x− xi,t), x ∈ [0, 1]d,

√
||p̂− E(p̂)||∞ ≤ C

log(nT ) + log(1/h̄)

nT h̄d
(4)

with probability at least 1− 1
nT . Moreover, under Assumption 2-a, the bias term satisfies

||E(p̂)− u||∞ ≤ C2h̄
r. (5)
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Therefore, (( log(nT )||p̂− u||∞ = O
) 2r

nT

2r+d
)

(6)

with probability at least 1− 1
nT .

The verification of these bounds can be found in many places in the literature. For equation (4) see
for example [17], [31], [32] and [19]. For equation (5), [33] is a common reference.

Proof of Theorem 1. For any (s, e] ⊆ (0, T ], let√
f̃
(s,e]
t (x) =

e− t t∑ √
f∗l (x)−(e− s)(t− s)

l=s+1

t− s e∑
f∗l (x), x ∈ [0, 1]d.

(e− s)(e− t)
l=t+1

For any r̃ ∈ (ρ, T − ρ] and x ∈ [0, 1], we consider{
e−ρ

}
Ax((s, e], ρ, λ) =

t=s+ρ+1
|F̃ s,emax t,h (x)− f̃

s,e
t (x)| ≤ λ ;{

T−r̃
∣∣∣∣ 1Bx(r̃, ρ, λ) = max

N=ρ
√
N

r̃+∑N

t=r̃+1

Ft,h(x)−
1√
N

r̃+∑N

t=r̃+1

ft(x)

{
r̃

∣∣∣∣ 1
max
N=ρ

∣∣ }⋃∣∣ ≤ λ
√

r̃

N

∑
t=r̃−N+1

1
Ft,h(x)− √

˜

From Algorithm 1, we have that
log(T )

ρ =

r∑
N

t=r̃−N+1

ft(x)

∣∣∣∣ ≤ λ}.

nhd
.

We observe that, ρnhd = log(T ) and for T ≥ 3, we have that

ρ1/2−1/q ≥ (nhd)1/2−(q−1)/q.

Therefore, Proposition 1 and Corollary 1 imply that with( √
λ = Cλ log5/q(T )

1
√

nhd
+ 1 +

log(T ) √
nhd

+
√

Thr +
( log(nT )

T
) 2r

nT

2r+d

)
, (7)

for some diverging sequence Cλ, it holds that{ }
P Ac

x((s, e], ρ, λ) ≤ 4C1
log(T )

(log5/q(T ))q
+

2

T 5
+

10

Tn

and { }
P Bcx(r, ρ, λ) ≤ 2C1

log(T )

(log5/q(T ))q
+

1

T 5
+

5

Tn
.

Then, using that log4(T ) = O(T ), from above{ } { }
P Ac

x((s, e], ρ, λ) = O(log−4(T )) and P Bcx(r, ρ, λ) = O(log−4(T )).

Now, we notice that,

K∑
k=1

ñk =

K∑
k=1

(2k − 1) ≤
K∑

k=1

2k ≤ 2(2⌈log(2)CK(log(log(T )))/ log 2⌉ − 1)

≤ 4(2(log(log(T )))/ log 2)log(2)CK = O(loglog(2)CK((T ))).
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In addition, there are K = O(1) number of change-points. In consequence, it follows that{ }
P Au(I, ρ, λ) for all I ∈ J and all u ∈ {um}log(T ) ≥ 1− 1

m=1
log2(T )

, (8){ }
P Bu(s, ρ, λ) ∪ Bu(e, ρ, λ) for all (s, e] = I ∈ J and all u ∈ {um}log(T ) ≥ 1− 1

m=1 log(T )
, (9){ }

P Bu(ηk, ρ, λ) for all 1 ≤ k ≤ K and all u ∈ {um}log(T ) ≥ 1− 1
m=1

log3(T )
. (10)

The rest of the argument is made by assuming the events in equations (8), (9) and (10) hold.

Denote (
Υk = C logmax{1,10/q}(T ) 1+T

d
2r+dn

−2r

) (
2r+d κ−2

k and Υmax = C logmax{1,10/q}(T ) 1+T
d

2r+dn
−2r

)
2r+d κ−2,

where κ = min{κ1, . . . , κK}. Since Υk is the desired localisation rate, by induction, it suffices to
consider any generic interval (s, e] ⊆ (0, T ] that satisfies the following three conditions:

ηm−1 ≤ s ≤ ηm ≤ . . . ≤ ηm+q ≤ e ≤ ηm+q+1, q ≥ −1;
either ηm − s ≤ Υm or s− ηm−1 ≤ Υm−1;

either ηm+q+1 − e ≤ Υm+q+1 or e− ηm+q ≤ Υm+q.

Here q = −1 indicates that there is no change-point contained in (s, e].

Denote

∆k = ηk−1 − ηk for k = 1, . . . ,K + 1 and ∆ = min{∆1, . . . ,∆K+1}.

Observe that since κk > 0 for all 1 ≤ k ≤ K and that ∆k = Θ(T ), it holds that Υmax = o(∆).
Therefore, it has to be the case that for any true change-point ηm ∈ (0, T ], either |ηm − s| ≤ Υm or
|ηm − s| ≥ ∆−Υmax ≥ Θ(T ). This means that min{|ηm − e|, |ηm − s|} ≤ Υm indicates that ηm
is a detected change-point in the previous induction step, even if ηm ∈ (s, e]. We refer to ηm ∈ (s, e]
as an undetected change-point if min{ηm − s, ηm − e} = Θ(T ). To complete the induction step, it
suffices to show that FSBS ((s, e], h, τ)
(i) will not detect any new change point in (s, e] if all the change-points in that interval have been
previously detected, and
(ii) will find a point DI∗

m∗ in (s, e] such that |ηm −DI∗

m∗| ≤ Υm if there exists at least one undetected
change-point in (s, e].

In order to accomplish this, we need the following series of steps.

Step 1. We first observe that if ηk ∈ {ηk}Kk=1 is any change-point in the functional time
series, by Lemma 8, there exists a seeded interval Ik = (sk, ek] containing exactly one change-point
ηk such that

min{ηk − sk, ek − ηk} ≥
1

16
ζk, and max{ηk − sk, ek − ηk} ≤ ζk

where,
9

ζk =
10

min{ηk+1 − ηk, ηk − ηk−1}.

Even more, we notice that if ηk ∈ (s, e] is any undetected change-point in (s, e]. Then it must hold
that

s− ηk−1 ≤ Υmax.

Since Υmax = O(logmax{1,10/q}(T )T
d

2r+d ) and O(loga(T )) = o(T b) for any positive numbers a
and b, we have that Υmax = o(T ). Moreover, ηk − sk ≤ ζk ≤ 9

10 (ηk − ηk−1), so that it holds that

sk − ηk−1 ≥
1

10
(ηk − ηk−1) > Υmax ≥ s− ηk−1
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and in consequence sk ≥ s. Similarly ek ≤ e. Therefore

Ik = (sk, ek] ⊆ (s, e].

Step 2. Consider the collection of intervals {Ik = (sk, ek]}Kk=1 in Step 1. In this step, it is shown
that for each k ∈ {1, . . . ,K}, it holds that

t=ek−ρ
max

t=sk+ρ

m=log(T )
max
m=1

|F̃ (sk,ek]
√

t,h (um)| ≥ c1

for some sufficient small constant c1.

Tκk, (11)

Let k ∈ {1, . . . ,K}. By Step 1, Ik contains exactly one change-point ηk. Since for every
um, f∗t (um) is a one dimensional population time series and there is only one change-point in
Ik = (sk, ek], it holds that

f∗sk+1(um) = ... = f∗ηk
(um) ̸= f∗ηk+1(um) = ... = f∗ek(um)

which implies, for sk < t < ηk√
f̃
(sk,ek]
t (um) =

ek − t
t∑ √

f∗ηk
(um)−

(ek − sk)(t− sk)
l=sk+1

t− sk
ηk∑

f∗ηk
(um)

(ek − sk)(ek − t)
l=t+1√

− t− sk
ek∑

(ek − sk)(ek − t)
f∗ηk+1(um)

l=ηk+1√
=(t− sk)

ek − t
√

(ek − sk)(t− sk)
f∗ηk

(um)− (ηk − t)
t− sk

(ek − sk)(ek − t)
f∗ηk

(um)√
−(ek − ηk)

t− sk
(ek − sk)(ek − t)

f∗ηk+1(um)

=

√
(t− sk)(ek − t)

√
(ek − sk)

f∗ηk
(um)− (ηk − t)

t− sk
(ek − sk)(ek − t)

f∗ηk
(um)√

−(ek − ηk)
t− sk

(ek − sk)(ek − t)
f∗ηk+1(um)√

=(ek − t)
t− sk

√
(ek − t)(ek − sk)

f∗ηk
(um)− (ηk − t)

t− sk
(ek − sk)(ek − t)

f∗ηk
(um)√

−(ek − ηk)
t− sk

(ek − sk)(ek − t)
f∗ηk+1(um)√

=(ek − ηk)
t− sk

√
(ek − t)(ek − sk)

f∗ηk
(um)− (ek − ηk)

t− sk
(ek − sk)(ek − t)

f∗ηk+1(um)√
=(ek − ηk)

t− sk
(ek − t)(ek − sk)

(f∗ηk
(um)− f∗ηk+1(um)).

Similarly, for ηk ≤ t ≤ ek √
f
(sk,ek]
t (um) =

ek − t
(ek − sk)(t− sk)

(ηk − sk)(f∗ηk
(um)− f∗ηk+1(um)).

Therefore,

f̃
(sk,ek]
t (um) =


√

t−sk
(ek−sk)(ek−t) (ek − ηk)(f

∗
ηk
(um)− f∗ηk+1(um)), sk < t < ηk;√

ek−t
(12)

(ek−sk)(t−sk)
(ηk − sk)(f∗ηk

(um)− f∗ηk+1(um)), ηk ≤ t ≤ ek.
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By Lemma 7, with probability at least 1− o(1), there exists uk̃ ∈ {um}
log(T )
m=1 such that

|f∗ηk
(uk̃)− f

∗
ηk+1(uk̃)| ≥

3

4
κk.

Since ∆ = Θ(T ), ρ = O(log(T )T
d

2r+d ) and loga(T ) = o(T b) for any positive numbers a and b, we
have that

min{ηk − sk, ek − ηk} ≥
1

16
ζk ≥ c2T > ρ, (13)

so that ηk ∈ [sk+ρ, ek−ρ]. Then, from (12), (13) and the fact that |ek−sk| < T and |ηk−sk| < T ,

|f̃ (sk,ek]
√

ηk
(uk̃)| =

ek − ηk √
(ek − sk)(ηk − sk)

(ηk − sk)|f∗ηk
(uk̃)− f

∗
ηk+1(uk̃)| ≥ c2 T

3

4
κk. (14)

Therefore, it holds that

t=ek−ρ
max

t=sk+ρ

m=log(T )
max
m=1

|F̃ (sk,ek]
t,h (um)| ≥|F̃ (sk,ek]

ηk,h
(uk̃)|

≥|f̃ (sk,ek]ηk
(uk̃)| − λ

≥c2
3√
4

Tκk − λ,

where the first inequality follows from the fact that ηk ∈ [sk + ρ, ek − ρ], the second inequality
follows from the good event in (8), and the last inequality follows from (14).

5

Next, we observe that log
√

q (T ) 1
√

nhd + 1 = o( T
2r+d

√
d )O( T

d √
2r+d ) = o( T ), ρ < c2T , hr =(

lognTo(1) and
)

nT

2r

of λ on Equation (7), for sufficiently large T , it holds that
c2

2r+d

= o(1). In consequence, since κk is a positive constant, by the upper bound

4

√
Tκk ≥ λ.

Therefore,
t=ek−ρ
max

t=sk+ρ

m=log(T )
max
m=1

|F̃ (sk,ek]
t,h (um)| ≥ c2√

2
Tκk.

Therefore Equation (11) holds with c1 = c2
2 .

Step 3. In this step, it is shown that FSBS((s, e], h, τ) can consistently detect or reject the
existence of undetected change-points within (s, e].

Suppose ηk ∈ (s, e] is any undetected change-point. Then by the second half of Step 1,
Ik ⊆ (s, e]. Therefore

AI∗

m∗ ≥
t=ek−ρ
max

t=sk+ρ

m=log(T )
max
m=1

|F̃ (sk,ek]
√

t,h (um)| ≥ c1 Tκk > τ,

where the second inequality follows from Equation (11), and the last inequality fol-
lows from the fact that, loga(T ) = o(T b) for any positive numbers a and b implies( √
τ = Cτ logmax{1,10/q}(T ) 1

) √
nhd + 1 = o( T ).

Suppose there does not exist any undetected change-point in (s, e]. Then for any I = (α, β] ⊆ (s, e],
one of the following situations must hold,

(a) There is no change-point within (α, β];

(b) there exists only one change-point ηk within (α, β] and min{ηk − α, β − ηk} ≤ Υk;

(c) there exist two change-points ηk, ηk+1 within (α, β] and

ηk − α ≤ Υk and β − ηk+1 ≤ Υk+1.
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The calculations of (c) are provided as the other two cases are similar and simpler. Note that for any
x ∈ [0, 1]d, it holds that

|f∗ηk+1
(x)− f∗ηk+1+1(x)| ≤ ∥f∗ηk+1

− f∗ηk+1+1∥∞ = κk+1

and similarly
|f∗ηk

(x)− f∗ηk+1(x)| ≤ κk.
By Lemma 10 and the assumption that (α, β] contains only two change-points, it holds that for all
x ∈ [0, 1]d,

β
max
t=α
|f̃ (a,β]

√
t (x)| ≤ β − ηr+1|f∗ηr+1

(x)− f∗ηr+1+1(x)|+
√
ηr − α|f∗ηr

(x)− fη∗
r+1(x)|√

≤
√

Υk+1κk+1 +
√

Υkκk ≤ 2

√
C logmax{1/2,5/q}(T ) 1 + T

d
2r+dn

−2r

Thus

2r+d .

β
max
t=α
∥

√
f̃
(a,β]
t ∥∞ ≤ 2

√
C logmax{1/2,5/q}(T ) 1 + T

d
2r+dn

−2r
2r+d . (15)

Therefore in the good event in Equation (8), for any 1 ≤ m ≤ log(T ) and any I = (α, β] ⊆ (s, e], it
holds that

AI
m =

β−ρ
max
t=α+ρ

|F̃ (α,β]
t,h (um)|

≤ β−ρ
max
t=α+ρ

∥f̃ (α,β]t ∥∞ + λ

√
≤2

√
C logmax{1/2,5/q}(T ) 1 + T

d
2r+dn

−2r
2r+d + λ,

where the first inequality follows from Equation (8), and the last inequality follows from Equation (15).
Then,

√
2

√
C logmax{1/2,5/q}(T ) 1 + T

d
2r+dn

−2r
2r+d + λ

√
=2

√
C logmax{1/2,5/q}(T )

1

nhd
+ 1√

+ Cλ log
5/q(T )

1
√

nhd
+ 1 + Cλ

log(T ) √
nhd

+ Cλ

√
Thr + Cλ

( log nT
T

) 2r

nT

2r+d

.√
We observe that log(T )

nhd = O(log(T )1/2
√

1
nhd + 1). Moreover,

√ √
Thr =

( 1
T

) r

nT

2r+d ≤ (T
1
2−

r
2r+d )

1

n
r

2r+d
,

and given that,
1 −
2

r

2r + d
=

d

we get,
√

2(2r + d)
,

( √
Thr = o logmax 1/2,5/q(T )

1 )
nhd

+ 1 .

Following the same line of arguments, we have that

√ ( log nT
T

) 2r

nT

2r+d

= T
1
2−

2r
2r+d log

2r

√(
2r+d (T ) = o log T

1 )
.

nhd
+ 1

Thus, by the choice of τ , it holds that with sufficiently large constant Cτ ,

AI
m ≤ τ for all 1 ≤ m ≤ log(T ) and all I ⊆ (s, e]. (16)

As a result, FSBS ((s, e], h, τ) will correctly reject if (s, e] contains no undetected change-points.

Step 4. Assume that there exists an undetected change-point ηk̃ ∈ (s, e] such that

min{ηk̃ − s, ηk̃ − e} = Θ(T ).
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Let m∗ and I∗ be defined as in FSBS ((s, e], h, τ) with

I∗ = (α∗, β∗].

To complete the induction, it suffices to show that, there exists a change-point ηk ∈ (s, e] such that
min{ηk − s, ηk − e} = Θ(T ) and |DI∗

m∗ − ηk| ≤ Υk.

Consider the uni-variate time series

Ft,h(um∗) =
1

n

n∑
i=1

yt,iKh(um∗ − xt,i) and f∗t (um∗) for all 1 ≤ t ≤ T.

Since the collection of the change-points of the time series {f∗t (um∗)}t∈I∗ is a subset of that of
{ηk}K+1

k=0 ∩ (s, e], we may apply Lemma 9 to by setting

µt = Ft,h(um∗) and ωt = f∗t (um∗)

on the interval I∗. Therefore, it suffices to justify that all the assumptions of Lemma 9 hold.

In the following, λ is used in Lemma 9. Then Equation (36) and Equation (37) are directly
consequence of Equation (8), Equation (9), Equation (10).
We observe that, for any I = (α, β] ⊆ (s, e],

β∗−ρ
max

t=α∗+ρ
|F̃ (α∗,β∗]

t,h (um∗)| = AI∗

m∗ ≥ AI
m =

β−ρ
max
t=α+ρ

|F̃ (α,β]
t,h (um)|

for all m. By Step 1 with Ik = (sk, ek], it holds that

min{ηk − sk, ek − ηk} ≥
1

16
ζk ≥ c2T,

Therefore for all k ∈ {k̃ : min{ηk̃ − s, e− ηk̃} ≥ c2T},

β∗−ρ
max

t=α∗+ρ
|F̃ (α∗,β∗]

t,h (um∗)| ≥
t=ek−ρ,m=log(T ) √

t=sk+ρ,m=1
|F̃ (sk,ek]max t,h (um)| ≥ c1 Tκk,

where the last inequality follows from Equation (11). Therefore Equation (38) holds in Lemma 9.
Finally, Equation (39) is a direct consequence of the choices that

h = Ch(Tn)
−1 log(T )

2r+d and ρ =
nhd

.

Thus, all the conditions in Lemma 9 are met. So that, there exists a change-point ηk of {f∗t (um∗)}t∈I∗ ,
satisfying

min{β∗ − ηk, ηk − α∗} > cT, (17)

and (
|DI∗

m∗ − ηk| ≤ max{C3λ
2κ−2

k , ρ} ≤C4 log
max{10/q,1}(T ) 1 +

1
(
log(nT )

nhd
+ Th2r + T

)
nT

4r
2r+d

)
κ−2
k(

≤C logmax{10/q,1}(T ) 1 + T
d

2r+dn
−2r

)
2r+d κ−2

k

for sufficiently large constant C, where we have followed the same line of arguments than for the
conclusion of (16). Observe that
i) The change-points of {f∗t (um∗)}t∈I∗ belong to (s, e] ∩ {ηk}Kk=1; and
ii) Equation (17) and (α∗, β∗] ⊆ (s, e] imply that

min{e− ηk, ηk − s} > cT ≥ Υmax.

As discussed in the argument before Step 1, this implies that ηk must be an undetected change-point
of {f∗t (um∗)}t∈I∗ .
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C Deviation bounds related to kernels

In this section, we deal with all the large probability events occurred in the proof of Theorem 1.
Recall that Ft,h(x) =

1
n

∑n
i=1 yt,iKh(x−xt,i)

p̂(x) , and√
F̃

(s,e]
t,h (x) =

e− t t∑ √
Fl,h(x)−

(e− s)(t− s)
l=s+1

t− s e∑
Fl,h(x).

(e− s)(e− t)
l=t+1

By assumption 2, we have maxql=1 ∥Kl∥∞ = maxql=1 ∥K∥l∞ < CK , where CK > 0 is an absolute
constant. Moreover, assumption 1b implies |f∗t (x)| < Cf for any x ∈ [0, 1]d, t ∈ 1, ..., T.

Proposition 1. Suppose that Assumption 1 and 2 hold, that ρnhd ≥ log(T ) and that T ≥ 3. Then
for any x ∈ [0, 1]d(

T−r̃
∣∣∣∣ 1P max

k=ρ
√
k

r̃+∑k

t=r̃+1

∣(
Ft,h(x)− f∗

t (x)
)∣∣ ≥ 2∣ c̃

√
z

1 C̃1

nhd
+ 1 +

(√
c̃

log(T )) C̃
+

nhd

√
c̃

Thr +
C̄Cf

√
c̃

( log(nT )
T

) 2r

nT

2r+d

)
log(T )≤ 2C1 + T−5 +

5

zq
(18)

Tn
;(

r̃
∣∣∣∣ 1P max

k=ρ
√

r̃∑
k
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∣(
Ft,h(x)− f∗

t (x)
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(√
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Proof. The proofs of Equation (18) and Equation (19) are the same. So only the proof of Equation (18){
is presented. We define the events E1 = ||p̂ − u||∞ ≤ C̄

((
log(Tn)

)
Tn

2r

c̄, c̄ = infx u(x)− C̄
(

log(Tn)

2r+d
)} {

and E2 = p̂ ≥)
Tn

2r

P (E1) ≥ 1− 1

2r+d
}

. Using Lemma 1, especifically by equation (6), we have that

nT . Then, we observe that in event E1, for x ∈ [0, 1]d
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s

( log(Tn)
u(s)− p̂(x) ≤ u(x)− p̂(x) ≤ |u(x)− p̂(x)| ≤ C̄

) 2r

Tn

2r+d

which implies E1 ⊆ E2. Therefore, P (Ec
2) ≤ 1

nT .
Now, for any x, observe that, by definition of Ft,h and triangle inequality

I =
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max
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∣∣∣∣
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∣∣∣∣
= I1 + I2 + I3.

In the following, we will show that I1 ≤ I1,1 + I1,2 + I1,3, and that

(
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(
3. P I1,3 ≥ C̄Cf

√
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(
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)
nT

2r
2r+d

)
≤ 1

Tn ,(
4. P I2 ≥ 1

√
c̃ z

1
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1
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in order to conclude that,( √
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Step 1. The analysis for I1 is done. We observe that,

T−r̃
max
k=ρ

∣∣∣∣ 1√
k
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1
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n∑
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(
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max
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Step 1.1 The analysis for I1,1 is done. We note that the random variables {f∗t (xt,i)Kh(x −
xt,i)}1≤i≤nt,1≤t≤N are independent distributed with mean
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}∫
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=
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.

Since |f∗t (xt,i)Kh(x− xt,i)| ≤ CfCKh
−d, by Bernstein inequality [34], we have that(∣∣∣∣ 1

P
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r̃+∑k n∑
t=r̃+1 i=1

∫
f∗t (xt,i)Kh(x−xt,i)− f∗t (z)Kh(x−z)dµ(z)
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Therefore, using that P (Ec
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with probability at most T−5 + 1
nT .

Step 1.2 The analysis for I1,2 and I1,3 is done. We observe that
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where the second inequality follows from assumption 2. Therefore, using event E2, we can bound
(21) by C̃
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√
Thr with probability at least 1− 1

nT . Meanwhile, for (22) we have that,
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with probability at least 1− 1
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Step 2. The analysis for I2 and I3 is done. For 1 ≤ t ≤ T , let

1
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and {
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The desired result follows from putting the previous steps together.

.

Corollary 1. Suppose that ρnhd ≥ log(T ) and that T ≥ 3. Then for z > 0{
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+
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Proof. By definition of F̃ (s,e]
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where the last inequality follows from Proposition 1.
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C.1 Additional Technical Results

The following lemmas provide lower bounds for

1
Zt =

n

n∑
i=1

ξt(xt,i)Kh(x− xt,i) and Wt =
1

n

n∑
i=1

δt,iKh(x− xt,i).

They are a direct consequence of the temporal dependence and heavy-tailedness of the data considered
in Assumption 1.
Lemma 2. Let ρ ≤ T be such that ρnhd ≥ log(T ) and T ≥ 3. Let N ∈ Z+ be such that N ≥ ρ.
a. Suppose that for any q ≥ 3 it holds that
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∞∑
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Proof. The proof of part b is similar and simpler than that of part a. For conciseness, only the proof
of a is presented.

By Lemma 4 and Equation (24), for all J ∈ Z+, it holds that

E
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J
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As a result there exists a constant C1 such that
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We observe that
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( ∫ 2 ∫ J )
1 + xq/2−1dx+ ...+ xq/2−1dx (29)

1 J−1

≤q
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which implies, there is a constant C2 such that{(
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where the last inequality follows from the fact that
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By Markov’s inequality, for any z > 0 and the assumption that T ≥ N,{
N
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1
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Since N ≥ ρ, this directly implies that{
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Lemma 3. Suppose Assumption 1 c holds and q ≥ 2. Then there exists absolute constants C > 0 so
that }{(

1
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Proof. The proof of the Equation (33) is simpler and simpler than Equation (32). So only the proof of
Equation (32) is presented. Note that since {xt}Tt=1 and {ξt}Tt=1 are independent, and that {xt}Tt=1
are independent identically distributed,
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E t − ξt)(xt,1)

∣∣β1
∣∣Kh(x− xt,1)

∣∣β1 · · ·
∣∣(ξ∗t − ξt)(xt,k)∣∣βk

∣∣Kh(x− xt,k)
∣∣βk

{∫ ∣∣(ξ∗ }
=Eξ t − ξt)(r)

∣∣β1
∣∣Kh(x− r)

∣∣β1
dµ(r) · · ·

∫ ∣∣(ξ∗t − ξt)(r)∣∣βk
∣∣Kh(x− r)

∣∣βkdµ(r){∫ ∣∣(ξ∗ ∣∣β1

∣∣K(s)
∣∣β1

=Eξ t − ξt)(x− sh)
∫ ∣∣(ξ∗ ∣∣βk

∣∣K(s)
∣∣βk

hd(β1−1)
dµ(s) · · · t − ξt)(x− sh)

}
hd(βk−1)

dµ(s){ }
≤h−d

∑k
j=1(βj−1)Eξ ∥ξ∗t − ξt∥β1

∞C
β1

K · · · ∥ξ
∗
t − ξt∥βk

∞Cβk

K{ ∑k
}

≤h−d(q−k)Cq
KEξ ∥ξ∗t − ξt∥

j=1 βk

∞

≤h−d(q−k)Cq
KEξ

{
∥ξ∗t − ξt∥q∞

}
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where the third equality follows by using the change of variable s = x−r
h , the first inequality by

assumption 2.

Step 3. Let k ∈ {1, . . . , q} be fixed. Note that
(

q
)
≤ q!. Consider setβ1,β2,...,βn{ }

Bk = β ∈ Nn : β ≥ 0, β1 + . . .+ βn = q, |β|0 = k .

To bound the cardinality of the set Bk, first note that since |β|0 = k, there are
(
n
k

)
number of ways to

choose the index of non-zero entries of β.
Suppose {i1, . . . ik} are the chosen index such that βi1 ̸= 0, . . . , βik ̸= 0. Then the constrains
βi1 > 0, . . . , βi1 > 0 and βi1 + . . .+ βik = q are equivalent to that of diving q balls into k groups
(without distinguishing each ball). As a result there are

(
q−1

)
number of ways to choose thek−1

{βi1 , . . . , βik} once the index {i1, . . . ik} are chosen.

Step 4. Combining the previous three steps, it follows that for some constants Cq, C1 > 0
only depending on q,

E|Zt − Z∗
t |q ≤

1

nq

≤ 1

E
{ q∑ ∑

k=1 β1+β2+...+βn=q

β=(β1,...,βn),|β|0=k,β≥0

(
q

) n∏ }∣∣(ξ∗t − ξt)(xt,i)Kh(x− xt,i)
∣∣βj

β1, β2, . . . , βn j=1

nq

≤ 1

q∑
k=1

(
n
)(

q − 1
)

KEξ

{
∥ξ∗

}
q!h−d(q−k)Cq

t − ξt∥qk k − 1 ∞

nq

q∑
k=1

nkCqC
q
Kh

−d(q−k)Eξ

{
∥ξ∗t − ξt∥q∞

}
≤C1Eξ

{
∥ξ∗

}{( 1
t − ξt∥q∞

)q−1 (
1

+
nhd

)q−2 (
1

+ . . .+
nhd

})
+ 1

nhd

≤C1Eξ

{
∥ξ∗t − ξt∥q

}
q

{(
1

∞

)q−1 }
nhd

+ 1 ,

where the second inequality is satisfied by step 3 and that
(

q
)
≤ q!, while the third inequality

is achieved by using that
(
n
)(

q−1
)
q! ≤

(
n
)
Cq ≤ nkCq. Moreover, given that 1

β1,β2,...,βn

k k−1 k nq n
kh−d(q−k) =(

1
)q−k

the fourth inequality is obtained. The last inequality holds because if 1
nhd nhd ≤ 1, then{(

1

)
nhd

q−1 (
+ . . .+ 1

) }
+1 ≤ q, and if 1

nhd

{(
nhd ≥ 1, then 1

)q−1

nhd

(
+ . . .+ 1(

q 1

) }
nhd +1 ≤)q−1

nhd .

Lemma 4. Suppose Assumption 1 c holds. Let ρ ≤ T be such that ρnhd ≥ log(T ) and T ≥ 3. Let
N ∈ Z+ be such that N ≥ ρ. Then, it holds that{

E N
max

k∑ }1/q {(
1

k=1
| Zt|q ≤ N1/2C
t=1

)1/2 } {(
1

+ 1 +N1/qC ′
nhd

)(q−1)/q

nhd

Proof. We have that q > 2 and E|Z1| <∞ by the use of Lemma 3. Then, making use of Theorem 1
of Liu et al. (2013), we obtain that

+ 1

}
.

{
E N
max

k∑ }1/q { N∑ ∞∑ }
k=1
| Zt|q ≤N1/2C1 Θj,2 + Θj,q + {E|Z1|2}1/2
t=1 j=1 j=N+1{ N∑ }

+N1/qC2

j=1

j1/2−1/qΘj,q + {E|Z1|q}1/q ,
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where Θj,q = {E(|Z∗
j − Zj |q)}1/q. Moreover, we observe that since Θj,2 ≤ Θj,q for any q ≥ 2, it

follows {
E N
max

k∑ }1/q { ∞∑ }
k=1
| Zt|q ≤N1/2C1 Θj,q + {E|Z1|2}1/2
t=1 j=1{ ∞∑ }

+N1/qC2

j=1

j1/2−1/qΘj,q + {E|Z1|q}1/q ,

Next, by the first part of Lemma 3,

}{(
1

Θq
j,q ≤ CE

{
∥ξj − ξ∗j ∥q∞

)q−1 }
nhd

+ 1 .

even more, we have that N ≥ 1
nhd , implies that{

E N
max

k∑ }1/q { ∞∑ }{(
1

k=1
| Zt|q ≤N1/2C

′
CE

{
∥ξj − ξ∗j ∥q1 ∞

t=1 j=1

)q−1}1/q

nhd
+ {E|Z1|2}1/2

}
{ ∞∑

+N1/qC
′

j1/2−1/qCE
{
∥ξj − ξ∗

}{(
1

j ∥q2 ∞
j=1

)q−1 }1/q }
+ {E|Z1|q}1/q

nhd
+ 1

{ ∞∑ }{(
1≤N1/2C

′′
CE

{
∥ξj − ξ∗j ∥q1 ∞

j=1

)1/2−1/q}{(
1

nhd

)1/2 } }
+ 1 + {E|Z1|2}1/2

nhd{ ∞∑
+N1/qC

′
j1/2−1/qCE

{
∥ξj − ξ∗

}{(
1

j ∥q2 ∞
j=1

)q−1 }1/q }
+ {E|Z1|q}1/q

nhd
+ 1

{ ∞∑ }{( )1/2−1/q}{(
1≤N1/2C

′′
CE

{
∥ξj − ξ∗j ∥q1

j=1

∞ N

)1/2

nhd{ ∞∑
+N1/qC

′
j1/2−1/qCE

{
∥ξj − ξ∗

}{(
1

j ∥q2 ∞
j=1

} }
+ 1 + {E|Z1|2}1/2

)q−1 }1/q }
+ {E|Z1|q}1/q

nhd
+ 1 .

From Assumption 1 c,{
E N
max

k∑ }1/q { {(
1

k=1
| Zt|q ≤N1/2C ′′′

1 1 +
t=1

)1/2 } }
nhd

+ 1 + {E|Z1|2}1/2{ {(
1

+N1/qC
′′

2 1 +

)q−1 }1/q }
+ {E|Z1|q}1/q

nhd
+ 1 .

By the second part of Lemma 3, it holds that{
E N
max

k∑ }1/q { {(
1

k=1
| Zt|q ≤ N1/2C ′′′′

1 1 +
t=1

) }1/2} { {(
1

+ 1 +N1/qC ′′′
nhd 2 1 +

)q−1 }1/q}
.

nhd
+ 1

This immediately implies the desired result.

Lemma 5. Suppose Assumption 1 holds. Then there exists absolute constants C1 such that

E|Wt −W ∗
t |q ≤ C1

n
max
i=1

E
{
|δt,i − δ∗t,i|q

}{(
1

)q−1 }
nhd

+ 1 . (34)

If in addition E
{
|δt,i|qq

}
= O(1) for all 1 ≤ i ≤ n, then there exists absolute constants C ′ such that{(

1
E(|Wt|q)1/q ≤ C ′

)q−1 }1/q

nhd
+ 1 . (35)
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Proof. The proof is similar to that of Lemma 3. The proof of the Equation (35) is simpler and simpler
than Equation (34). So only the proof of Equation (34) is presented. Note that since {xt}Tt=1 and
{δt}Tt=1 are independent, and that {xt}Tt=1 are independent identically distributed,

δ∗
1

t =
n

n∑
i=1

δ∗t,iKh(x− xt,i).

Step 1. Note that, by the Newton’s binomial{∣∣∣∣ 1E|δt − δ∗t |q =E
n∑ ∣∣∣∣q}n
(δ∗t,i − δt,i)Kh(x− xt,i)

i=1

≤ 1

nq

=
1

E
{ ∑

β1+β2+...+βn=q
β1≥0,...,βn≥0

(
q

) n∏ }∣∣(δ∗ ∣∣βj

t,i − δt,i)Kh(x− xt,i)
β1, β2, . . . , βn j=1

nq
E
{ q∑ ∑

k=1 β1+β2+...+βn=q

β=(β1,...,βn),|β|0=k,β≥0

(
q

) n∏ }∣∣(δ∗ ∣∣βj

t,i − δt,i)Kh(x− xt,i) .
β1, β2, . . . , βn j=1

Step 2. For a fixed β = (β1, . . . , βn) such that β1 + . . .+ βn = q and that |β|0 = k, consider{ n∏ ∣∣βj

}
E

j=1

∣∣(δ∗t,i − δt,i)Kh(x− xt,i) .

Without loss of generality, assume that β1, . . . , βk are non-zero. Then it holds that{∣∣(δ∗ }
E t,1 − δt,1)

∣∣β1
∣∣Kh(x− xt,1)

∣∣β1 · · ·
∣∣(δ∗t,k − δt,k)∣∣βk

∣∣Kh(x− xt,k)
∣∣βk

{∫ ∣∣(δ∗ }
=Eδ t,1 − δt,1

∣∣β1
∣∣Kh(x− r)

∣∣β1
dµ(r) · · ·

∫ ∣∣(δ∗t,k − δt,k)∣∣βk
∣∣Kh(x− r)

∣∣βkdµ(r){∫ ∣∣(δ∗ ∣∣β1

∣∣K(s)
∣∣β1

=Eδ t,1 − δt,1
∫ ∣∣(δ∗ ∣∣βk

∣∣K(s)
∣∣βk

hd(β1−1)
dµ(s) · · · t,k − δt,k)

}
hd(βk−1)

dµ(s)}
≤h−d

∑k
j=1(βj−1)Eδ

{∣∣(δ∗t,1 − δt,1)∣∣β1
Cβ1

K · · ·
∣∣(δ∗t,k − δt,k)∣∣βkCβk

K{
n ∑k

}
≤h−d(q−k)Cq

KEδ max
i=1
|δt,i − δ∗t,i| j=1 βk

≤h−d(q−k)Cq
KEδ

{ n
max
i=1
|δt,i − δ∗t,i|q

}
where the third equality follows by using the change of variable s = x−r

h , the first inequality by
assumption 2.
Step 3. Let k ∈ {1, . . . , q} be fixed. Note that

(
q

)
≤ q!. Consider setβ1,β2,...,βn{ }

Bk = β ∈ Nn : β ≥ 0, β1 + . . .+ βn = q, |β|0 = k .

To bound the cardinality of the set Bk, first note that since |β|0 = k, there are
(
n
k

)
number of ways to

choose the index of non-zero entries of β.
Suppose {i1, . . . ik} are the chosen index such that βi1 ̸= 0, . . . , βik ̸= 0. Then the constrains
βi1 > 0, . . . , βi1 > 0 and βi1 + . . .+ βik = q are equivalent to that of diving q balls into k groups
(without distinguishing each ball). As a result there are

(
q−1

)
number of ways to choose thek−1

{βi1 , . . . , βik} once the index {i1, . . . ik} are chosen.

Step 4. Combining the previous three steps, it follows that for some constants Cq, C1 > 0
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only depending on q,

E|Wt −W ∗
t |q ≤

1

nq

≤ 1

E
{ q∑ ∑

k=1 β1+β2+...+βn=q

β=(β1,...,βn),|β|0=k,β≥0

(
q

) n∏ }∣∣(δ∗ ∣∣βj

t,i − δt,i)Kh(x− xt,i)
β1, β2, . . . , βn j=1

nq

≤ 1

q∑
k=1

(
n
)(

q − 1
)
q!h−d(q−k)Cq

KEδ

{ n
max
i=1
|δt,i − δ∗t,i|q

}
k k − 1

nq

q∑
k=1

nkCqC
q
Kh

−d(q−k)Eδ

{ n
max
i=1
|δt,i − δ∗t,i|q

}
≤C1Eδ

{ n
max
i=1
|δt,i − δ∗t,i|q

}{(
1

)q−1 (
1

+
nhd

)q−2 (
1

+ . . .+
nhd

) }
+ 1

nhd

≤C1Eδ

{ n
max
i=1
|δt,i − δ∗t,i|q

}
q

{(
1

)q−1 }
nhd

+ 1 ,

where the second inequality is satisfied by step 3 and that
(

q
)
≤ q!, while the third inequality

is achieved by using that
(
n
)(

q−1
)
q! ≤

(
n
)
Cq ≤ nkCq. Moreover, given that 1

β1,β2,...,βn

k k−1 k nq n
kh−d(q−k) =(

1
)q−k

the fourth inequality is obtained. The last inequality holds because if 1
nhd nhd ≤ 1, then{(

1

)
nhd

q−1 (
+ . . .+ 1

) }
+1 ≤ q, and if 1

nhd

{(
nhd ≥ 1, then 1

)q−1

nhd

(
+ . . .+ 1(

q 1

) }
nhd +1 ≤)q−1

nhd .

Lemma 6. Suppose Assumption 1 d holds. Let ρ ≤ T be such that ρnhd ≥ log(T ) and T ≥ 3. Let
N ∈ Z+ be such that N ≥ ρ. Then, it holds that{

E N
max

k∑ }1/q {(
1

k=1
| Wt|q ≤ N1/2C
t=1

)1/2 } {(
1

+ 1 +N1/qC ′
nhd

)(q−1)/q

nhd

Proof. We have that q > 2 and E|W1| <∞ by the use of Lemma 5. Then, making use of Theorem
1 of Liu et al. (2013), we obtain that

+ 1

}
.

{
E N
max

k∑ }1/q { N∑ ∞∑ }
k=1
| Zt|q ≤N1/2C1 Θj,2 + Θj,q + {E|W1|2}1/2
t=1 j=1 j=N+1{ N∑ }

+N1/qC2

j=1

j1/2−1/qΘj,q + {E|W1|q}1/q ,

where Θj,q = {E(|W ∗
j −Wj |q)}1/q . Moreover, we observe that since Θj,2 ≤ Θj,q for any q ≥ 2, it

follows {
E N
max

k∑ }1/q { ∞∑ }
k=1
| Wt|q ≤N1/2C1 Θj,q + {E|W1|2}1/2
t=1 j=1{ ∞∑ }

+N1/qC2

j=1

j1/2−1/qΘj,q + {E|W1|q}1/q .

Next, by the first part of Lemma 3,

Θq
j,q ≤ CE

{ n
max
i=1
|δt,i − δ∗t,i|q

}{(
1

)q−1 }
nhd

+ 1 .
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Since we have that N ≥ 1
nhd , the above inequality further implies that{

E N
max

k∑ }1/q { ∞∑
k=1

| Wt|q ≤N1/2C
′

CE
{ n

1 max
i=1

|δt,i − δ∗t,i|q
}{(

1

t=1 j=1

)q−1}1/q }
+ {E|W1|2}1/2

nhd{ ∞∑
+N1/qC

′
j1/2−1/qCE

{ n
2 max

i=1
|δt,i − δ∗t,i|q

}{(
1

j=1

)q−1 }}1/q

nhd
+ 1 + {E|W1|q}1/q

{ ∞∑
≤N1/2C

′′
CE

{ n
1 max

i=1
|δt,i − δ∗t,i|q

}{(
1

j=1

)1/2−1/q}{(
1

nhd

)
nhd

1/2 } }
+ 1 + {E|W1|2}1/2

{ ∞∑
+N1/qC

′
j1/2−1/qCE

{ n
2 max

i=1
|δt,i − δ∗t,i|q

}{(
1

j=1

)q−1 }}1/q

nhd
+ 1 + {E|W1|q}1/q

{ ∞∑
≤N1/2C

′′
CE

{ n
)1/2−1/q}{(

1
1 max

i=1
|δt,i − δ∗t,i|q

}{(
N

j=1

})1/2 }
nhd

+ 1 + {E|W1|2}1/2

{ ∞∑
+N1/qC

′
j1/2−1/qCE

{ n
2 max

i=1
|δt,i − δ∗t,i|q

}{(
1

j=1

)q−1

+ {E|W1|q}1/q
}1/q }

nhd
+ 1 .

From Assumption 1 d, the above inequality further implies that{
E N
max

k∑ }1/q { {(
1

k=1
| Wt|q ≤N1/2C ′′′

1 1 +
t=1

)1/2 } }
nhd

+ 1 + {E|W1|2}1/2{ {(
1

+N1/qC
′′

2 1 +

)q−1 }1/q }
+ {E|W1|q}1/q

nhd
+ 1 .

By the second part of Lemma 3, it holds that{
E N
max

k∑ }1/q { {(
1

k=1
| Zt|q ≤ N1/2C ′′′′

1 1 +
t=1

) }1/2} { {(
1

+ 1 +N1/qC ′′′
nhd 2 1 +

)q−1 }1/q}
.

nhd
+ 1

This immediately implies the desired result.

D Additional Technical Results

Lemma 7. Suppose that f, g : [0, 1]d → R such that f, g ∈ Hr(L) for some r ≥ 1 L > 0.
Suppose in addition that {xm}Mm=1 is a collection of grid points randomly sampled from a density
u : [0, 1]d → R such that infx∈[0,1]d u(x) ≥ cu > 0. If ∥f − g∥∞ ≥ κ for some parameter κ > 0,
then

P
{

M
max
m=1
|f(xm)− g(xm)| ≥ 3

}
4
κ ≥ 1− exp

(
− cMκd

)
,

where c is a constant only depending on d.

Proof. Let h = f − g. Since f, g ∈ Hr(L), h ∈ Hr(L). Since r ≥ 1, we have that

|h(x)− h(x′)| ≤ L|x− x′| for all x, x′ ∈ [0, 1]d.

for some absolute constant L > 0. Let x0 ∈ [0, 1]d be such that

|h(x0)| = ∥h∥∞.

Then for all x′ ∈ B(x0,
κ
4L ) ∩ [0, 1]d,

|h(x′)| ≥ |h(x0)| − L|x0 − x′| ≥
3

4
κ.

Therefore

P
{

M
max
m=1
|f(xm)− g(xm)| < 3

} (
4
κ ≤ P {xm}Mm=1 ̸∈ B

(
x0,

κ ))
4L

.

37



Since

κ
P B(x0,{xm}Mm=1 ̸∈
(

=

{
1 P B(x0,

κ

4L
)

)
− x1 ∈

( (
1−

4L
) ≤
)}M {cuκ

the desired result follows.

}d
)M

4L
≤ exp

(
−Mcκd

)
,

Lemma 8. Let J be defined as in Definition 1 and suppose Assumption 1 e holds. Denote

9
ζk =

10
min{ηk+1 − ηk, ηk − ηk−1} k ∈ {1, ...,K}.

Then for each change-point ηk there exists a seeded interval Ik = (sk, ek] such that
a. Ik contains exactly one change-point ηk;
b. min{ηk − sk, ek − ηk} ≥ 1

16ζk; and
c. max{ηk − sk, ek − ηk} ≤ ζk;

Proof. These are the desired properties of seeded intervals by construction. The proof is the same as
theorem 3 of Kovács et al. (2020) and is provided here for completeness.

Since ζk = Θ(T ), by construction of seeded intervals, one can find a seeded interval
(sk, ek] = (ck − rk, ck + rk] such that (ck − rk, ck + rk] ⊆ (ηk − ζk, ηk + ζk], rk ≥ ζk

4

and |ck − ηk| ≤ 5rk
8 . So (ck − rk, ck + rk] contains only one change-point ηk. In addition,

ek − ηk = ck + rk − ηk ≥ rk − |ck − ηk| ≥
3rk
8
≥ 3ζk

32
,

and similarly ηk − sk ≥ 3ζk
32 , so b holds. Finally, since (ck − rk, ck + rk] ⊆ (ηk − ζk, ηk + ζk], it

holds that ck + rk ≤ ηk + ζk and so

ek − ηk = ck + rk − ηk ≤ ζk.

D.1 Univariate CUSUM

We introduce some notation for one-dimensional change-point detection and the corresponding
CUSUM statistics. Let {µi}ni=1, {ωi}ni=1 ⊆ R be two univariate sequences. We will make the
following assumptions.

Assumption 4 (Univariate mean change-points). Let {ηk}K+1
k=0 ⊆ {0, . . . , n}, where η0 = 0 and

ηK+1 = T , and

Assume

ωt ̸= ωt+1 if and only if t ∈ {η1, ...ηK},

K+1
min
k=1

(ηk − ηk−1) ≥ ∆ > 0,

0 < |ωηk+1
− ωηk

| = κk for all k = 1, . . . ,K.

We also have the corresponding CUSUM statistics over any generic interval [s, e] ⊆ [1, T ] defined as√
µ̃s,e
t =

e− t t∑ √
µi −

(e− s)(t− s)
i=s+1

t− s e∑
µi,

(e− s)(e− t)
i=t+1√

ω̃s,e
t =

e− t
ωi −

√
t∑

(e− s)(t− s)
i=s+1

t− s
(e− s)(e− t)

e∑
ωi.

i=t+1

Throughout this section, all of our results are proven by regarding {µi}Ti=1 and {ωi}Ti=1 as two
deterministic sequences. We will frequently assume that µ̃s,e

t is a good approximation of ω̃s,e
t in

ways that we will specify through appropriate assumptions.
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Consider the following events{
e−ρ

}
A((s, e], ρ, γ) =

t=s+ρ+1
|µ̃s,emax t − ω̃

s,e
t | ≤ γ ;{

T−r
∣∣∣∣ 1B(r, ρ, γ) = max

N=ρ
√

r+N∑
N

t=r+1

∣∣ }⋃{
r

(µt − ωt)∣ ∣∣∣∣ 1∣ ≤ γ max
N=ρ

√
r }∑ ∣∣∣∣ ≤ γ(µt − ωt) .

N
t=r−N+1

Lemma 9. Suppose Assumption 4 holds. Let [s, e] be an subinterval of [1, T ] and contain at least
one change-point ηr with min{ηr − s, e− ηr} ≥ cT for some constant c > 0. Let κs,emax = max{κp :
min{ηp − s, e− ηp} ≥ cT}. Let

e−ρ
b ∈ arg max |µ̃s,e

t=s+ρ
t |.

For some c1 > 0, λ > 0 and δ > 0, suppose that the following events hold

A((s, e], ρ, γ), (36)⋃
B(s, ρ, γ) ∪ B(e, ρ, γ) ∪

η∈{ηk}K
k=1

and that

B(η, ρ, γ) (37)

e−ρ
max |µ̃s,e

√
t | = |µ̃

s,e
b | ≥ c1κ

s,e

t=s+ρ
max T (38)

If there exists a sufficiently small c2 > 0 such that
√

γ ≤ c2κs,emax T and that ρ ≤ c2T, (39)

then there exists a change-point ηk ∈ (s, e) such that

min{e− ηk, ηk − s} > c3T and |ηk − b| ≤ C3 max{γ2κ−2
k , ρ},

where c3 is some sufficiently small constant independent of T .

Proof. The proof is the same as that for Lemma 22 in Wang et al. (2020).

Lemma 10. If [s, e] contain two and only two change-points ηr and ηr+1, then
e

max
t=s
|ω̃s,e

t | ≤
√
e− ηr+1κr+1 +

√
ηr − sκr.

Proof. This is Lemma 15 in Wang et al. (2020).

E Common Stationary Processes

Basic time series models which are widely used in practice, can be incorporated by Assumption 1b
and c. Functional autoregressive model (FAR) and functional moving average model (FMA) are
presented in examples 1 below. The vector autoregressive (VAR) model and vector moving average
(VMA) model can be defined in similar and simpler fashions.
Example 1 (FMA and FAR). Let L = L(H,H) be the set of bounded linear operators from H to H ,
where H = L∞. For A ∈ L, we define the norm operator ||A||L = sup||ε||H≤1 ||Aε||H . Suppose
θ1,Ψ ∈ L with ∥Ψ∥L < 1 and ∥θ1∥L <∞.

a) For FMA model, let (εt : t ∈ Z) be a sequence of independent and identically dis-
tributed random L∞ functions with mean zero. Then the FMA time series (ξj : j ∈ Z) of order 1 is
given by the equation

ξt = θ1(εt−1) + εt = g(. . . , ε−1, ε0, ε1, . . . , εt−1, εt). (40)

For any t ≥ 2, by (40) we have that
ξt − ξ∗t = 0
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and ξ1 − ξ∗1 = θ1(ε0)− θ1(ε
′

0). As a result
∞∑
t=1

t1/2−1/qE(||ξt − ξ∗t ||q∞)1/q = E(||ξ1 − ξ∗1 ||q∞)1/q = E(∥θ1(ε0)− θ1(ε
′

0)∥q∞)1/q <∞.

Therefore Assumption 1b is satisfied by FMA models.

b) We can define a FAR time series as

It admits the expansion,

ξt =

∞∑
j=0

Ψj(εt−j)

ξt = Ψ(ξt−1) + εt. (41)

=Ψ(εt) + Ψ1(εt−1) + ...+Ψt(ε0) + Ψt+1(ε−1) + ...

=g(. . . , ε−1, ε
′
0, ε1, . . . , εt−1, εt).

Then for any t ≥ 1, we have that ξt − ξ∗t = Ψt(ε0)−Ψt(ε
′

0). Thus,
∞∑
t=1

t1/2−1/qE(||ξt − ξ∗t ||q∞)1/q =

∞∑
t=1

≤
∞∑
t=1

Assumption 1b incorporates FAR time series.

t1/2−1/qE(||Ψt(ε0)−Ψt(ε′0)||q∞)1/q

t1/2−1/q||Ψ||tLE(||ε0 − ε′0||q∞)1/q <∞.
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