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Abstract: Sandwich structures fabricated from an aluminium skinned foam enclosed within a carbon
fibre reinforced composite structure have the potential application for high-performance on- and
off-road automotive vehicles. The deformations and failure of these types of structures are presented,
and results indicate that the application of aluminium face sheets with aluminium foam (AF) aids to
prevent the delamination of the outer layers of carbon fibre reinforced polymers (CFRP). The load
carrying capacity has been increased by utilising a manufacturing method to maintain the adhesion
between the core and the skins until the failure stage is reached. The core shear and de-bonded
issue associated with this type of sandwich structure can be addressed by this manufacture method.
The peak average flexure load capacity of an aluminium foam sandwich structure (AFSS) with a
completely wrapped around CFRP skin was 2800 N with a mass of 191 g. This compares favourably
with previously used AFSS without the skins, which had a peak average load of 600 N and a mass
of 125 g. An initial finite element model for comparison purposes has been developed to represent
the structure’s behaviour and predict the associated failure loads. It is proposed that CFRP wrapped
around AFSS enhances the structural performance without significant weight gain.

Keywords: composites; sandwich structures aluminium foam; automotive materials

1. Introduction

The world is passing through economic and climate change with the rapid increase in
the consumption of fuel and the emission of carbon, which requires the transport modes to
consider the influence on the environment and cost-effectiveness, especially those related
to high-performance products. There are numerous researchers who have investigated the
mechanical behaviour of metallic foams and aluminium foam sandwich structures. All the
cited research refers to aluminium foam sandwich structures that are made of closed-cell
aluminium foam with aluminium skins. In previous works, Guglielmino, et al. [1] have col-
lected data and mechanical properties on aluminium foam sandwich structures under shear
and compression tests. Experimental results using a finite element analysis on aluminium
foam under quasi-static compression and aluminium foam sandwich structures subjected
to the quasi-static three bending loads have been reported by Nammi, et al. [2]. This
work utilises the repeating unit-cell FE model to represent the performance of closed-cell
aluminium foam under quasi-static loading. Bart-Smith, et al. [3] discussed an aluminium
foam sandwich structure manufactured by the Alporas® core with two Al alloy face sheet
materials to measure and analyse the three-point bending performance of aluminium foam
sandwich structures. Yan, et al. [4] presented the mechanical properties of an aluminium
foam sandwich structure with a carbon fibre fabric/epoxy resin face-sheet whilst carrying
bending loads. The carbon fibre reinforcement increases the panel’s strength by distributing
the stress over a greater area and absorbing most of the shear strain that would have been
transmitted to the core. This also increases the energy absorption of the aluminium foam
sandwich structure with the incorporated carbon fibre reinforcement. The failure through
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de-bonding between the carbon fibre reinforced skins and aluminium foam sandwich
structure had been observed. This was due to the aluminium foam not bonding with
the CFRP skins which have a higher potential peak load capacity and increased rigidity.
The delamination between the aluminium foam core and CFRP skins was detected at the
early stage of the three-point bending tests by Yan, et al. [4], and this can be observed
in Figure 1. The debonding issue currently restricts the use of this type of structure for
potential automotive applications.

J. Compos. Sci. 2022, 6, x FOR PEER REVIEW 2 of 15 
 

 

increases the energy absorption of the aluminium foam sandwich structure with the in-
corporated carbon fibre reinforcement. The failure through de-bonding between the car-
bon fibre reinforced skins and aluminium foam sandwich structure had been observed. 
This was due to the aluminium foam not bonding with the CFRP skins which have a 
higher potential peak load capacity and increased rigidity. The delamination between the 
aluminium foam core and CFRP skins was detected at the early stage of the three-point 
bending tests by Yan, et al. [4], and this can be observed in Figure 1. The debonding issue 
currently restricts the use of this type of structure for potential automotive applications. 

 
Figure 1. De-bonded AFS specimen subject to quasi-static load. 

Further work investigated the use of metal skins that are applied as a reinforcement 
to the aluminium foam core. However, the metal skins increased the weight of the low-
density aluminium foam core when acting as the sandwich structure, and therefore limits 
the application when a lightweight structure is sought after. Composite materials have 
been introduced as skins to sandwich structures supporting the cellular foam materials in 
order to keep the lightweight advantage. Sun, et al. [5] introduced carbon fibre reinforce-
ment because of its high tensile strength, low weight, and chemical resistance properties. 
Zhu and Boay [6] described the performance of a sandwich structure fabricated from an 
aluminium honeycomb laminated with a carbon fibre epoxy under quasi-static bend tests 
and drop weight impact loading. Shi, et al. [7] also manufactured sandwich structures 
consisting of a carbon fibre fabric and aluminium honeycomb. The mechanical properties 
of the sandwich structure were studied using quasi-static loadings; however, this type of 
construction is limited as an energy absorber and has poor resistance to local impact loads, 
compared to a metallic foam system. 

Previous work highlighted that a sandwich structure consisting of carbon fibre rein-
forcement face sheets with the cellular core is capable of taking full advantage of a com-
bination of high strength skins and low density. This sandwich structure could provide 
much desired energy absorption capacity and beneficial damping properties. Even 
though the carbon fibre reinforcement enhances the foam material, the delamination be-
tween the carbon fibre face sheet and foam core during the process of quasi-static loadings 
tests was observed, and thus is the basis for further work presented here to alleviate this 
issue. In this work, a unique composite structure with the carbon fibre reinforced polymer 
(CFRP) wrapped around aluminium foam with a thin aluminium face sheet was applied 
as one structure. The number of layers of the CFRP was limited to four so as to compare 
with current automotive practices. The bonding between carbon fibres and the foam core 
with aluminium face sheets was utilised to produce a much-improved interface between 
the two materials and reduce the likelihood of premature failure.  

This new sandwich structure was manufactured with a fully self-contained core, and 
tested under quasi-static loads applied, to compare with previous systems. This work ex-
plains the unique manufacturing method of wrapping CFRP around the core and demon-
strates that this is a solution for delamination problems which occur at the early stage of 
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Further work investigated the use of metal skins that are applied as a reinforcement
to the aluminium foam core. However, the metal skins increased the weight of the low-
density aluminium foam core when acting as the sandwich structure, and therefore limits
the application when a lightweight structure is sought after. Composite materials have been
introduced as skins to sandwich structures supporting the cellular foam materials in order
to keep the lightweight advantage. Sun, et al. [5] introduced carbon fibre reinforcement
because of its high tensile strength, low weight, and chemical resistance properties. Zhu and
Boay [6] described the performance of a sandwich structure fabricated from an aluminium
honeycomb laminated with a carbon fibre epoxy under quasi-static bend tests and drop
weight impact loading. Shi, et al. [7] also manufactured sandwich structures consisting of a
carbon fibre fabric and aluminium honeycomb. The mechanical properties of the sandwich
structure were studied using quasi-static loadings; however, this type of construction is
limited as an energy absorber and has poor resistance to local impact loads, compared to a
metallic foam system.

Previous work highlighted that a sandwich structure consisting of carbon fibre re-
inforcement face sheets with the cellular core is capable of taking full advantage of a
combination of high strength skins and low density. This sandwich structure could provide
much desired energy absorption capacity and beneficial damping properties. Even though
the carbon fibre reinforcement enhances the foam material, the delamination between the
carbon fibre face sheet and foam core during the process of quasi-static loadings tests was
observed, and thus is the basis for further work presented here to alleviate this issue. In
this work, a unique composite structure with the carbon fibre reinforced polymer (CFRP)
wrapped around aluminium foam with a thin aluminium face sheet was applied as one
structure. The number of layers of the CFRP was limited to four so as to compare with
current automotive practices. The bonding between carbon fibres and the foam core with
aluminium face sheets was utilised to produce a much-improved interface between the two
materials and reduce the likelihood of premature failure.

This new sandwich structure was manufactured with a fully self-contained core,
and tested under quasi-static loads applied, to compare with previous systems. This
work explains the unique manufacturing method of wrapping CFRP around the core and
demonstrates that this is a solution for delamination problems which occur at the early
stage of flexure tests on specimens that are not wrapped or self-contained. A simplified
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finite element (FE) model of this sandwich structure was established based on the data
from experimental materials, and used for comparison purposes.

This is the basis for a potential energy absorption system that has been fabricated from
aluminium foam containing thin aluminium face sheets fully wrapped with CFRC skins. It
is proposed as a system with the potential for replacing the current metallic hollow section
structures utilised on high performance commercial vehicles.

2. Materials and Methods

The aluminium foam used in this work is AlMg3Si6 and the cover sheet alloy is Al
6082. The AFSS panels comprises of a foam containing TiH2 as a blowing agent with an
aluminium alloy sheet as a core layer and two face sheets of aluminium alloy on both sides
(see Figure 2).
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Figure 2. AFSS panel for this work.

The AFSS panels [8] were manufactured by the Austrian company Mepura Metallpul-
ver GmbH. The panels are manufactured by rousing a foaming agent, typically TiH2, into
an aluminium alloy and adjusting the pressure while cooling. This method produces a type
of aluminium foam named cymat and the material is normally referred to as Al-Sic, for
which the base mechanical properties are as shown in Table 1.

Table 1. Mechanical properties of aluminium foam.

Type Relative Density
(kg/m3)

Young’s Modulus
(GPa)

Shear Modulus
(GPa)

Compressive
Strength (MPa)

Tensile Strength
(MPa)

Closed-cell
aluminum foam 0.6 ± 0.1 2.0 ± 0.5 0.001–1.0 1.0–7.0 2.0–3.0

The aluminium skins are aluminium 6082. The main mechanical properties consist
of: density (2.71 kg/m3), Young’s modulus (71 GPa), and yield strength (280 MPa). M79
200T2 prepreg was used as the carbon fibre reinforced polymer surface for the sandwich
structure. 200T2 is a type of prepreg consisting of a 2 × 2 twill weave pattern. The main
properties of the resin matrix, as well as prepreg, are presented in Table 2. These outer skins
are HexPly® M79 carbon fibre reinforcement with the twill weave pattern, which is more
drappable and is therefore a suitable choice for this type of application. HexPly® M79 is a
low temperature cured CFRP system. The curing process takes place at 80 ◦C in an oven
for 8 h. Figure 3 shows the typical cure cycle of CFRP based on the out-of-autoclave (OOA)
method. KMS industry [9] described the automobile industry as constantly looking for
methods to make vehicles cheaper, lighter, faster, and stronger. Based on these ideals, the
potential application environment requires OOA as a more economical and time-efficient
method for the automobile industry, rather than the autoclave method. The autoclave
method needs a more specialised facility and much more investment to achieve the high-
quality curing of the composite, which is not generally accepted for general use by the
automobile industry.
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Table 2. Cured Prepreg Mechanical Properties (HexPly® M79, 2014).

Mechanical
Parameters

0◦ Tensile Strength
[MPa]

0◦ Tensile Modulus
[GPa]

0◦ Compression
Strength [MPa]

0◦ Compression
Modulus [GPa]

Value 955 60 750 57
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3. Experimental Results and Discussion

There are three stages of experimental testing that have been designed for the purposes
of this work. The first stage was to replace the AF with AFSS and make comparisons
between the AFSS and the AFSS laminated CFRP. The second stage was to compare AFSS
laminated CFRP with an AFSS wrapped CFRP system and third stage was to compare the
larger sized AFSS and AFSS wrapped CFRP systems.

The initial testing stage used beams with the dimensions 150 mm long × 20 mm wide
for the AFSS utilizing a standard beam test set up. To compare with actual automotive
systems, the size of the beam was increased to 400 mm in length × 40 mm wide for the
AFSS in order to simulate the requirements of typical automotive components. Four layers
for the CFRP skins producing a 1 mm thickness were used in the initial stage to replicate the
research outcome of Yan, et al. [4] and further investigate the de-bonding issues previously
described. The total wrapping of the four layers of CFRP skins were applied to remedy the
de-bonded issue with limited increase on the overall weight.

3.1. Experimental Investigation of AFSS and AFSS Laminated Four Layers CFRP

Yan, et al. [4] showed that the three-point bending flexural test provides, not only the
mechanical properties of the structure in bending, but also showed the deformation and
failure mechanism of a foam sandwich structure (as presented in Figure 1). The three-point
bending loading is a type of quasi-static loading which represents an initial assessment
of the energy absorption capability of the AF with a CFRP sandwich structure. An AFSS
panel is introduced here to remedy the deboning issue between aluminium foam core
and CFRP skins (see Figure 2). Due to the flat aluminium skin of AFSS, this provides a
much-improved contact area with the CFRP skins. Table 3 lists the geometric parameters
of the samples subjected to the three-point bending setup. The length and width of each
sample is 150 mm × 20 mm for both AFSS and AFSS laminated with four layers CFRP
skins in Figure 4; the other dimensions are shown in Table 3.



J. Compos. Sci. 2022, 6, 288 5 of 15

Table 3. Mass and beam depth for bending tests.

H (mm) Mass (g)

AFSS 1 13 28
AFSS 2 13 26
AFSS 3 13 28

AFSS Laminated CFRP-1 15 ± 0.25 46.2
AFSS Laminated CFRP-2 15 ± 0.25 39.6
AFSS Laminated CFRP-3 15 ± 0.25 45.5
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The average increase in mass of AFSS laminated with a CFRP to AFSS is only 1.7 times.
In the loading set up, the distance between the two support rollers was 100 mm and the
loading rate was set at 2 mm/min. The load-displacement curve relating to the AFSS and
AFSS laminated CFRP skins under the bending load is shown in Figure 5. The peak load
of each sample is used to determine the characteristics of two sandwich structures. The
average peak load of AFSS laminated CFRP skins is 2.9 times higher than AFSS with an
increase of 1.7 times mass compared with AFSS, therefore, producing a 70% increase in
specific strength. However, the peak load value of AFSS laminated CFRP sample 2 is close
to AFSS sample 1, as shown in Figure 5.

Figure 6 shows the issues of delamination on some of the samples and problems with
the core of AFSS with a CFRP skin, which had the main influence on the failure mechanism
during the bending test. The damage at the left side of the sample was observed under the
bending loading from the top surface, because the connection between the pores of closed-
cell AF was at the edges of the porous foam core, the walls collapsed, and the closed-cell
foam core showed shear failure prior to the skin cracking or delaminating. There were
three samples of the same dimensions and shape. After subjecting them to the bending
loads, all of the samples showed signs of the aluminium foam core shearing as shown in
Figure 6. This phenomenon needed a solution so that the core could continuously carry the
load up to the structure’s failure.

3.2. Experimental Set Up of AFSS with Wrapped around CFRP Skins

After investigating the de-bonded issues between the aluminium foam core and
CFRP skins, as shown in Figure 6, this could be alleviated by using the AFSS between the
aluminium foam and totally wrapping the outside surface with a CFRP skin. Therefore, the
CFRP skin is now totally wrapped around the outside surface to prevent the initial shear of
the aluminium foam core. HexPly® M79 was used as the reinforcement which incorporates
a twill weave, thus the degree of wrapping around could not follow the 00/00 direction
in all cases. The direction of wrapping HexPly® M79 is therefore 0/180/0/180/0 for the
twill weave to cover all around the surface of the sandwich structure. The layout method
assists in enhancing the strength in the primary load direction, which means the load can
be carried in two directions compared with a unidirectional (0◦) lamination. This method is
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more beneficial because the direction of the load in a vehicle during an accident is generally
unknown. Hence, the CFRP skin wrapped around the core to face will also improve the out
of plane load capacity condition. The four layers of CFRP (HexPly® M79) were assigned to
wrap around AFSS sheets. Figure 7 shows the direction of wrapping of the first and third
layers of CFRP around the AFSS.
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The samples were cured as before with the same method (OOA), cure time, and temperature
conditions. The parameters of AFS wrapped around four layers were 150 mm × 22 mm × 15 mm
with an average mass of 51.6 g; three samples were used to compare with the AFSS
laminated with four layers of CFRP. The distance between the two rollers was 100 mm and
the loading rate for the three-point bending load was 5 mm/min.

The three-point bending testing results between the AFSS laminated CFRP and AFSS
wrapped around CFRP with the same number of layers are presented in Figure 8. The
peak load values of the three samples of AFSS wrapped around CFRP skins are all close to
3000 N, which means that the aluminium foam did not shear at the initial stage; the peak
load occurred due to the CFRP cracking under the bending load. The foam core shearing
issue of AFSS laminated CFRP has now been alleviated by applying the wrapping process.
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The CFRP wrapping around AFSS manufacture method provides a solution to pro-
ducing a high strength, low mass structure. The average peak load of AFSS wrapped
around CFRP is 1.8 times higher than AFSS laminated with the same number of layers with
only 1.2 times the increased mass, which is detailed in Table 4. The performance of AFSS
wrapped around CFRP can be optimised by increasing the layers of CFRP or reducing the
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thickness of aluminium skins to decrease the mass, but more importantly, the de-bonded
issue could be fixed by incorporating a thin flat aluminium skin for the CFRP wrapped
around the AF cores.

Table 4. The comparison between AFSS and AFSS laminated four layers of CFRP.

Sample Mass (g) Peak Load (N) Average Mass (g) Average Peak Load (N)

AFSS Laminated CFRP-1 46.2 2100

44 ± 3.0 1600 ± 500AFSS Laminated CFRP-2 39.6 1100

AFSS Laminated CFRP-3 45.5 1600

AFSS Wrapped around CFRP-1 50.7 3011

52 ± 1.0 3017 ± 82.5AFSS Wrapped around CFRP-2 53 2940

AFSS Wrapped around CFRP-3 52 3100

3.3. Larger Sized AFSS with Wrapped around CFRP Skins

To simulate the potential for this application in a commercial vehicle, the components
were scaled up to represent realistic components using the same fabrication method. This
was carried out to support the results obtained from the smaller samples and to see if the
process could be upscaled without any loss of strength or the premature failure between
the skin and the core.

Table 5 shows the manufacture process of the AFSS wrapped around with four layers
of XPREG® XC110 (3K) carbon fibre reinforcement polymers (CFRP) which have a fibre
volume fraction of 45% [10]. This material is currently employed in many motorsports
vehicle systems. The ‘3K’ means 3000 carbon fibre filaments as one bundle. The weave style
of carbon fibre in XPREG® XC110 is the twill, in which one or more warp fibres alternate up
and down two or more weft fibres in a continuous routine. A broken diagonal or a straight
‘rib’ as the visual effect can be noticed in this weave manner shown in Figure 9.

Table 5. Mechanical properties of XPREG® XC110 (3K) prepreg system.

Type Density (kg/m3) 0◦ Tensile Strength (MPa) 0◦ Tensile Modulus (GPa)

XPREG® XC110 3K 1440 521 55.1
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The prepreg carbon fibre was cut to the right size and laminated on the aluminium
skins at the two sides of the AFSS panel. The out-of-autoclave was chosen to cure the
prepreg carbon fibre. The XPREG® XC110 is proposed to be cured in OOA (vacuum bag
at full pressure), however, it is also available to be cured in a typical autoclave with a hot
press [10]. The minimum pressure for the vacuum is 10 mbar. The multi-stage temperature
cycle with the final 120 ◦C temperature was used to accurately control and obtain best
results, expressed in Figure 10.
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Figure 10. Process and temperature for curing CFRP on the AFFS T.

Bending testing was carried out on a DENISON MAYES® T42B4 universal test machine
due the larger loads and sizes of supports required. The larger sized aluminium foam with
aluminium skins was carried out under a three-point bending test with the same span ratio
as for the smaller standard samples. Table 6 indicates the geometrical parameters used for
carrying out the bending tests. The CFRP (XPREG® XC110 3K) were also wrapped around
the closed-cell AFSS to form another form of structure, and subjected to a three-point
bending test. The size of this new structure is the same as the AFSS (Figure 11A), but the
thickness is different (Figure 11B). The span between the two rails was set at 200 mm.

Table 6. Geometrical properties for bending tests large scale.

L (mm) W (mm) H (mm) Weight (g)

AFSS 400 40 13 124.9
AFSS Wrapped around Four Layers of

CFRP (XPREG® XC110 3K) 400 40 ± 1 15 ± 0.5 191
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3.4. Discussion of Test Results for Larger Samples

The response between closed-cell aluminium foam with aluminium skins and closed-
cell aluminium foam with skins wrapped around four layers CFRP (XPREG® XC110 3K)
under bending is shown in Figure 12. In the case of the unwrapped structure, the foam
collapsed at the centre of the span under the bending load and, at the peak load, the
aluminium skin at the top face of aluminium foam yielded and the load bar indented
nearly halfway through the section as shown in Figure 12A. The stiffness of aluminium
foam with aluminium skins was increased by utilising a CFRP wrapped totally around the
core. This enabled an increased bending load without the total collapse of the top surface
under the peak load, as shown in Figure 12B. The cracking of CFRP was a consequence
of the aluminium foam not collapsing and the skins of CFRP just wrinkling, which then
means that this structure could significantly absorb more energy and load compared with
aluminium foam with aluminium skins under similar flexure tests without a large increase
in mass.
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Figure 12. The shape of samples after three-point bending test; (A) closed-cell aluminium foam with
aluminium skins; (B) closed-cell aluminium foam with aluminium skins wrapped around four-layers
CFRP (XPREG® XC110 3K).

The graphs in Figure 13 show comparisons with the three-point bending tests re-
sults between AFSS and AFSS wrapped around four layers CFRP. The four layers CFRP
significantly increased the stiffness of the closed-cell aluminium foam and the ability to
carry bending load. It can be observed from the peak load at the linear elastic region. The
aluminium foam recorded the peak load value of 600 N but the beam with the wrapped
four layers CFRP increased the peak load to around 2800 N. The load-displacement curve
of closed-cell aluminium foam with aluminium skins wrapped around four layers CFRP
indicated the closed-cell aluminium foam absorbed more energy after cracking initiated
in the CFRP. The structure continued to support the loading from the testing machine
instead of failing through the bending loading, as occurred previously. The CFRP produces
a structure that is much stiffer and stronger than aluminium foam with aluminium skins as
shown in Figure 13.

Table 7 summarises the large sized samples subjected to bending load. The peak
load of AFSS wrapped around four layers CFPP is four times higher than AFSS, with the
mass increasing by 50%. The ratio of load/mass is also shown in Table 7. The sample
with a wrapped around CFRP is three times higher than the AFSS only. These results
show that the process of wrapping around provides a significant improvement to the load
carrying capacity compared to the standard AFSS system, with only a moderate increase in
the weight.
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Figure 13. Comparison of the typically three-point bending tests results between closed-cell alu-
minium foam with aluminium skins and closed-cell aluminium foam with aluminium skins wrapped
around four layers CFRP (XPREG® XC110 3K).

Table 7. The summary of the bending tests results.

Peak Load (N) Mass (g) LOAD/MASS

AFSS 600 124.9 4.8
AFSS wrapped around four

layers CFRP 2800 181 15.5

4. Finite Element (FE) Modelling of Three-Point Bending on the Large Scale AFSS and
AFSS Wrapped with a CFRP

A simplified finite element analysis was performed to replicate the behaviour of the
beam up to potential failure under flexure load. The position of the load and constrains
were set as the same as the experimental test set up.

The FE model and simulation conditions can replicate the performance of the alu-
minium foam with aluminium skins (large scale) subjected to a three-point bending load.
The FE model used to simulate the process of the sandwich structure of aluminium foam
with aluminium skins wrapped around four layers CFRP by finite elements analysis was
developed from two Solidworks® CAD models designed for this simulation, as shown in
Figure 14a,b. The FE model of aluminium foam was simplified as a volume without pores,
but with the same non-linear behaviour as the actual foam. However, the actual aluminium
foam is filled irregularly with pores due to the manufacturing process which can be quite
random, and here we have assumed an average. The same thickness of 1 mm of CFRP is
applied on all surfaces as shown in Figure 14b.
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Figure 14. (a) The CAD model for the FE simulation of AFSS; (b) AFSS wrapped around four-layer
CFRP (XPREG® XC110 3K).

The direction of the load and boundary conditions for the FE model simulation are
shown in Figure 15. The positions of the load and constraints were the same as the
conditions of the experimental test shown in Section 3.3. The solid geometry set for the FE
model includes AF and aluminium skins. The load parameter was derived from the test
result and the load applied on an area on the top face of this FE model. The constrains were
set at the bottom face of the FE model to simulate a frictionless roller system.
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Figure 15. Schematic of boundary conditions and load direction.

The experimental stress-strain curves of CFRP and the foams were incorporated in the
FE model to simulate the behaviour of the structure’s ability to carry the flexure load.

Figure 16 indicates the comparison between the experiment test and simulation. The
simulation results reflect the sandwich structure properties of aluminium foam with alu-
minium skins. The trend of the simulation curve is close to the experimental test result.
The displacement of the experimental test was higher than the simulation, which is not
surprising, and in part due to the solid shape used for the aluminium core, which in reality
is comprised of the pores in the actual sample and the local random indentations.

The value of the maximum load was set at 1500 N. The displacement was recorded as
4.6 mm from the experimental test. The reason for the significant difference in displacement
between the FE model (wrapped around the CFRP) and the testing sample is the pores
filled around the AF core in the actual beam; however, the solid structure was selected for
an FE model to simplify it and reduce the calculation time for the simulation results. The
failure flexure load of larger AFSS wrapped around CFRP was 2800 N. The same maximum
load was applied to the FE model to determine the displacement between the experimental
testing sample and FE model. Figure 17 shows that the displacement of the FE model was
10 mm under the 2800 N (peak load obtained by the experimental result) and the testing
result is 8.5 mm.
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5. Conclusions

A lightweight and high strength with good energy capacity under the impact energy
have been the goal for the automotive industry for a long time. The combination of alu-
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minium foam and carbon fibre was chosen as a sandwich structure to meet the lightweight
and greater energy absorption capacity, however, the delamination between the aluminium
interface, even in the elastic region, is an issue for the application of this type of sand-
wich structure for an energy absorption system. Therefore, changes to the manufacturing
processes to produce a fully wrapped system have been proposed.

Hence, a purpose-built sandwich structure fabricated from an aluminium skinned
foam enclosed within a carbon fibre reinforced composite structure have been investigated
for the potential application for high-performance on and off-road automotive vehicles.

The initially proposed sandwich structures had limitations due to early debonding
between the core and the skins. However, when AFSS replaces AF bonded to CFRP, this
potentially eliminates the de-bonded issue initially stated by Yan, et al. [4]. These debonding
and delamination problems reduce the mechanical properties of these types of sandwich
structures and restrict the use of such systems in automotive structural applications.

To address this issue, a system that encompasses a completely wrapped CFRP around
an AFSS provides a potential solution to the de-bonded problem between AFSS and
CFRP skins in sandwich structures which commonly occur on surface bonded sandwich
structures. Once the improvement to the manufacturing process to optimise the wrapping
of the CFRP skins was achieved, the aluminium foam cores could reach their potential as
an energy absorbing system and support a larger carrying capacity compared to an AFSS
only system without showing signs of delamination until close to the failure loads.

The load carrying capacity of completely wrapped beams was increased by utilising
this new manufacturing method to maintain the adhesion between the core and the skins
until the failure stage is reached. The core shear and de-bonded issue associated with this
type of sandwich structure can be addressed by this manufacturing method.

In the present work, mechanical and performance of four layers only of CFRP wrapped
around an AFSS system have been studied to follow many automotive systems, although
this can be further investigated to optimise the lay up within the current design envelope,
but cost may be the governing factor.

The approach here of designing a structure which completely wraps the CFRP around
the AF provides a solution to the premature failure issues. An energy absorbing structure
fabricated by AFSS completely wrapped around with CFRP skins was thus used to maintain
the energy absorption characteristics of the structure under flexure load. The peak average
flexure load capacity of AFSS with a completely wrapped around CFRP skin was on average
2800 N with a mass of 191 g. This compares favourably with AFSS without the skins, which
had an average load of 600 N and a mass of 125 g.

A simplified FE model with perfect contact between the AF core and CFRP skins
was defined for the model to reduce the solution time and simplify the AF structure.
The simulation results, however, show that this contact definition could represent the
performance of a sandwich structure up to the failure stage. However, the overall stiffness
of the FE model is 5% higher than the experimental sample at the same flexure load. It is
proposed that when a CFRP is wrapped around the AFSS, this significantly enhances the
structural performance without substantial weight gain.
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