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Abstract. I develop a continuous-time model to examine how the interaction between com-
petition and financial constraints affects firms’ research and development (R&D) strategies.
The model integrates two key characteristics of R&D investment: accelerability (i.e., higher
R&D intensity leads to faster discovery) and scalability (i.e., higher R&D intensity leads to
higher project payoff). I find that firms react strategically to their rivals’ financial constraints
whenmaking investment decisions in a duopoly R&D race. In particular, firms respond posi-
tively to the R&D intensity of an unconstrained rival, while they respond in a hump-shaped
fashion to the R&D intensity of a constrained rival. As a result, a constrained firm can pre-
empt an unconstrained competitor in market equilibrium. Accelerability is necessary for such
pre-emption to occur, and scalability generally reduces its likelihood. Comparison with a
monopoly benchmark shows that the economic mechanism differs from over-investment
induced by financial constraints alone. The model also generates new implications regarding
how project characteristics and cash flow risks impact R&D decisions.
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1. Introduction
Research and development (R&D) investment has
always been an important corporate decision, and it is
becoming more so in the current time of never-ending
technology races. Comparing with capital investment,
R&D projects often take longer, measured in years if
not decades, before bearing the fruits of innovation.
The maturity uncertainty and the innate technical risk
make R&D decisions complex. Meanwhile, innovative
firms, especially the smaller and younger ones, often
face financial constraints (Hall 2002), and are subject
to winner-takes-all competitions (modeled in Loury
1979 and Weeds 2002). These facts lead to a relevant
question in the economics and finance literature: How
do financial constraints interact with competition in
affecting firms’ R&D decisions?

To provide a theoretical framework for analyzing
firms’ R&D decisions in the presence of both financing
frictions and innovation competition, I simplify the
setting to focus on a single decision variable, that is, a
fixed level of R&D investment per period, which is also
referred to as “investment intensity” or “investment rate.”
A novel feature of the study is to combine the scalability

of innovation projects (often recognized in traditional
investment models) with their accelerability (typical in pat-
ent race models). The dynamic and strategic nature of the
investment decision causes nontrivial tradeoff for an inno-
vative firm, which leads to the specific research questions
of this paper: How does the impact of financial constraints
on a firm’s R&D investment rate depend on the character-
istics of innovation technologies? How do firms with the
same or different financing constraints compete in R&D
projects, and how do their strategic interactions vary with
the R&D project characteristics?

To answer these questions, I build a continuous-
time model of R&D investment. An all-equity firm
with stochastic cash flows faces a now-or-never R&D
investment opportunity and decides its investment
intensity to maximize the firm value. The innovation
process is stochastic, and both the speed of discovery
and the value of innovation are weakly increasing in
the investment rate that is fixed for the duration of the
project. If a firm is financially constrained, it is unable
to continue funding the investment once it drains the
internal funds, and it has to terminate the project with
no scrap value. Meanwhile, a competition on the R&D
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project is modeled as a winner-takes-all speed contest of
duopoly: only the first firm that makes a discovery gets
all the market share while the other firm gets nothing.
As mentioned already, I distinguish two typical aspects
of R&D project characteristics: accelerability versus scal-
ability. An accelerable project can be expedited by more
intensive investment. Consider a pharmaceutical com-
pany searching the best chemical compound for a drug.
Hiring more technicians will likely help find the most
suitable compound sooner. A scalable project’s expected
payoff can be raised by more intensive investment. One
example is an R&D project by a semiconductor com-
pany that aims at improving the reliability and function-
ality of its products. More R&D investment helps the
company earn more profits and get a larger market
share at the end of R&D when its products are released.
However, the speed of the process is perceived to be
restricted by Moore’s Law. Moore’s Law predicts that
the computer chip performance would roughly double
every 18 months because of shrinking transistor dimen-
sions and other improvements, and it has been widely
used to guide the R&D and production planning in the
semiconductor industry. Innovation projects in practice
differ in their accelerability and scalability and their
benchmark speed and discovery payoff.

From the baseline monopoly model with nondeferra-
ble projects, I find that financial constraints can increase
a firm’s R&D investment intensity (Corollary 1). Intui-
tively, financial constraints impose a risk that a firm
may run out of money when its valuable project is still
in progress and has to terminate the project and forgo
any potential future cash flows associated with a suc-
cessful discovery. If the R&D project is accelerable, a
constrained firm (FC) may find it optimal to invest more
heavily (comparing with an unconstrained one (UC)) to
expedite the discovery and increase the survival proba-
bility of the project. The over-investment can be optimal
for a constrained firm even though the higher burning
rate of internal cash flows makes its financing constraints
bind earlier. This result complements real options models
that show financial frictions can cause accelerated invest-
ment (Boyle and Guthrie 2003, Lyandres and Zhdanov
2010, Bolton et al. 2019). The economicmechanism remains
that financial frictions render a firm less patient. There is a
slight difference with the aforementioned studies: they
show the effect of financing frictions through its erosion to
the value of the option to delay investment, I emphasize
the incentive to increase the probability of project survival
to retain the project value and avoid abandonment.

The study of my R&D race model uncovers inter-
esting features regarding the interaction of financial
constraints and competition. I find that the R&D com-
petition affects firms’ investment intensities in equili-
brium differently, depending on the participating firms’
financial constraints as well as the R&D project character-
istics. This can be understood through firms’ responses to

the investment intensities of their rivals. For example, on
an accelerable project, a firm reacts positively to the
investment rate of an unconstrained rival. The rival’s dis-
covery rate affects the firm’s decision through changing
the discount rate of future cash flows; thus, it has the
same impact as the risk-free rate. On the contrary, a firm
reacts to a constrained competitor’s investment with a
hump-shaped pattern of its own investment. In other
words, as a financially constrained competitor increases
its R&D investment, its rival firm in the race (regardless
of being financially constrained or not) first uses a more
aggressive response of R&D investment strategy, fol-
lowed by a pull-back of the investment as the constrained
competitor’s investment increases further. The part of the
reaction with the negative slope can be explained by a
strategic motive. A high investment level of the con-
strained rival raises the cost of competing head-to-head
with it, but waiting on the sideline for the rival to bust
and quit can turn out to be an optimal decision. Project
scalability preserves these patterns, which disappear (and
be flat) if the project is only scalable and not accelerable.
Comparing to the investment models with competition
(Grenadier 2002, Weeds 2002, Novy-Marx 2007) that gen-
erally focus on the value erosion of competition and the
motive from the fear-to-lose, my model shows strategic
interaction can lead to not-fear-to-lose when facing a
financially constrained competitor.

The aforementioned patterns of best responses hold in
all three kinds of races: a UCUC race between two uncon-
strained firms, an FCUC race between a constrained and
an unconstrained firms, and an FCFC race between two
constrained firms. I find that, as a result of those best
response patterns, an FC firm can pre-empt its UC rival
in the equilibrium of an accelerable FCUC race. Intui-
tively, a UC firm may choose not to escalate the speed
contest in the equilibrium but instead invests less inten-
sively and waits for the FC firm to drop out of the race,
so it can achieve discovery with a relatively low cost. This
result is related to the weaker status of the FC competitor
in an FCUC race: a UC firm can still achieve the innova-
tion after its FC rival firm drops out of the race, but an
FC firm’s only possibility of achieving an innovation is
by winning the race against its UC rival. This new form of
pre-emption may help explain “the standard folklore that
smaller firms are more aggressive about entering new
markets or launching new products than bigger, safer,
and less financially constrained firms” (Boyle and Guthrie
2003, p. 2144) in a setting with innovation competition.

My model on R&D investment provides a unified
framework of examining the “termination risk” on R&D
projects. The risk of having to terminate a valuable proj-
ect acts like the Sword of Damocles, which is a significant
concern for any innovative firms. Although it is related
to the maturity uncertainty and technical risk in recent
R&D models (Berk et al. 2004, Malamud and Zucchi
2019), a careful inspection of the sources of the termination
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including that from the market competition, or financ-
ing frictions in combination with cash flow risks is use-
ful. For example, contrasting to the negative impact of a
termination risk from cash flow volatility (diffusion
risk) on investment under certain conditions, I show in
the model discussion of Section 4.1 that a jump risk on
cash flow raises investment intensity of an FC firm.
Intuitively, catastrophic events on internal cash flow
cause the project termination regardless of how much
internal funds or liquidity the firm has. The jump risk
thus effectively alleviates the negative impact of heavier
investment (through making an earlier burn-out caused
by a higher investment rate a lesser concern) and gives
the FC firm an extra incentive to invest. This is similar
to the effect of a larger discount rate in a model with
exogenous competition (Hackbarth et al. 2014). Further-
more, my duopoly race model shows that the effect of
the termination risk from competition depends on the
characteristics of both competing firms’ cash flows,
financing capacity, and the R&D project’s characteris-
tics. As a tradeoff to retain model tractability, the paper
is silent on optimal liquidity management.

I also discuss the implications of relaxing a few key
assumptions in the model. For example, I argue that the
winner-takes-all is essential to deliver the model results
and suggest that the race model is most appropriate for
studying R&D investment, as opposed to any capital
investment. In addition, I provide some evidence on the
utilization of external financing for firms that are able to
tap the financial markets and fill the funding gap
between the internal cash flow and the R&D investment
with a cost. The analysis shows that the R&D investment
intensity of such a firm is in between an unconstrained
firm and a strictly constrained firm in the main model.

The race model in the paper integrates two kinds of
investment models to some extent: those that study
R&D races or investment with competition (Grenadier
2002, Weeds 2002, Novy-Marx 2007, Meng 2008) and
those that study how financially constrained firms invest
and abandon projects (Boyle and Guthrie 2003, Lyandres
and Zhdanov 2010, Bolton et al. 2019). The former ones
typically feature unconstrained firms, and the latter ones
focus on stand-alone firms. This paper contributes to at
least three strands of literature besides the ones men-
tioned already. First, by providing a new understanding
of investment level decisions, this paper contributes to
the corporate investment literature and complements
endogenous timing models (McDonald and Siegel 1986,
Boyle and Guthrie 2003, Bolton et al. 2011, Hugonnier
et al. 2015) in which “the investment level is not a choice
variable” (Gu 2016). Second, by introducing strategic
interactions among R&D competitors with different
financing constraints, this paper can enlighten more
in-depth studies in the booming literature on the interac-
tion of finance and industrial organization (Lambrecht
2001, Phillips and Zhdanov 2013, Hackbarth et al. 2014,

Malamud and Zucchi 2019). Third, by recognizing the
consequence of investment rate decisions on both the
timing and scale of innovation for the first time as I am
aware, the paper provides a new analytical tool to the
growing literature on innovation and entrepreneurship,
as well as the large extant literature on R&D and produc-
tivity or macroeconomics (Bloom 2007, Brown et al. 2009,
Aw et al. 2011, Doraszelski and Jaumandreu 2013).

The theoretical framework in this paper generates
new empirical implications regarding R&D strategies.
For example, it is more likely to observe higher R&D
investment rates by financially constrained firms (1)
when they are racing against an unconstrained firm;
(2) on projects with accelerability; (3) when they face a
looming challenge that can potentially wipe out their
funding sources for the R&D project, or a large decline
of the funding cash flow; and (4) in a winner-takes-all
race.

This paper has broader applications in the finance and
economics research. For example, it demonstrates the
relevance of cross-industry studies in examining the real
effects of financial market frictions on corporate innova-
tion. A potentially fruitful way of separating industries is
by examining the accelerability and scalability of the new
technologies in those industries. This can add a new line
of research to the growing empirical literature studying
the role of finance in the innovation process (Hellmann
and Puri 2000, Lerner et al. 2011, Manso 2011, Tian and
Wang 2014, Nanda and Rhodes-Kropf 2017). In addition,
researchers may explain the time-varying composition of
young and private firms making successful innovation in
the economy by examining how the characteristics of
innovation change over time.

The paper proceeds as follows. Section 2 presents a
baseline monopoly model. Section 3 presents the R&D
race model for three types of duopoly races. Section 4
discusses model extensions and the few key assump-
tions in the main model. Section 5 concludes the
paper. The appendices contain all proofs and some
additional figures.

2. Baseline Monopoly Model
Consider an all-equity firm, with assets-in-place (AIP)
that generate a cash flow Xt (≥ 0) at time t that follows
a geometric Brownian motion (GBM)1:

dXt � μXtdt+ σXtdZt, (1)

where Z � {Zt;0 < t <∞} is a standard Brownian motion,
μ and σ are constants.

The firm is run by a risk-neutral agent who maximizes
the firm value when making decisions. Upon the arrival
of a nondeferrable one-time innovation opportunity, the
agent decides whether to start a project then, and if
she does, she chooses the firm’s R&D investment expen-
diture per period (“investment intensity” or “investment
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rate,” denoted as R), which needs to be paid at each t.
The decision on R can potentially affect both the scale of
the project payoff, and the speed of a successful inno-
vation. Specifically, the project generates a random one-
time payoff ũ(R) at an uncertain discovery time τd,
which is modelled as the first arrival of a Poisson proc-
ess2 with an intensity parameter λ(R). The expected pay-
off is u(R) � E(ũ(R)). Suppose both λ(R) and u(R) are
weakly increasing and concave, and the R&D investment
has decreasing returns to scale, that is, ∂2(u(R) ·λ(R))=
∂R∂R < 0, to cap the optimal investment intensity. For
the ease of discussion, I define two kinds of R&D proj-
ects accordingly.

Definitions. A scalable project is a project whose pay-
off can be scaled up by higher investment intensity,
that is, u′(R) ≡ ∂u(R)=∂R > 0. An accelerable project is
a project whose discovery can be expedited by higher
investment intensity, that is, λ′(R) ≡ ∂λ(R)=∂R > 0.

The two kinds of projects are not mutually exclusive.
A project can be both scalable and accelerable, that
is, u′(R) > 0 and λ′(R) > 0. Going beyond the extant
research on R&D investment, this model captures both
the scalability (of the final outcome) and the accelerabil-
ity (of the discovery speed) of the input-output relation-
ship for innovation investment. The former is often
seen in capital investment models, in the form of a
Cobb-Douglas production function, and the latter is
often used to characterize projects for firms in a patent
race. The novelty of modelling both the scalability and
accelerability of R&D investment leads to the disentan-
gle of financial constraints’ effects on R&D investment
through different aspects of project characteristics.
When the functional forms of u(R) and λ(R) are needed
in this paper, I use the following power functions3:

u(R) � A ·Rβ, λ(R) � η ·Rγ,

with β,γ ∈ [0, 1) and β+ γ < 1: (2)

The scaling factor A > 0 and the speed factor η > 0 are
constants. I interpret β as the project scalability, which
measures the degree to which the project is scalable,
and interpret γ as the project accelerability, which meas-
ures the degree to which the project is accelerable.4

Both β and γ are constants. I label {A,β,η,γ} as the
technology parameters or tech-parameters of the model.
To have the sensible property that ∂u=∂β > 0 and
∂λ=∂γ > 0, I impose a lower bound on R: R ≥ R ≡ 1.

I compare two kinds of monopoly firm’s investment
decisions: an FC firm and a UC firm. The latter can
issue new equity at no extra cost, whereas the former
cannot. Whether the firm is financially constrained or
not is exogenous to the model, and financial constraints
are defined based on the cost of accessing financial mar-
kets (as in Kaplan and Zingales 1997 and Bolton et al.
2011).5

To keep the model simple yet powerful enough to
develop the intuition, I make several assumptions. (1)
There is no fixed cost of starting the now-or-never R&D
project. (2) The investment rate is fixed once chosen
(and until either the cash flow is exhausted for a con-
strained firm or the innovation becomes successful). (3)
The R&D cash flows do not affect the AIP cash flows
nor does the R&D project has any effect on the firm’s
financing ability, before or after the discovery (Boyle
and Guthrie 2003).6 (4) The financial constraints are
extreme, such that an FC firm has no access to external
financial market whatsover. (5) The firm does not retain
cash and instead pays out the residual of the AIP cash
flow after the R&D investment cost in each period, that
is, Xt −R. (6) If the project is discontinued before matur-
ity, the scrap value is zero.7 (7) The FC firm does not
abandon an ongoing project unless it is forced to do so
as a result of funding shortages, that is, once Xt < R.8

The assumptions (1), (4), and (5) are discussed in
Section 4. The smooth investment assumption in (2) is
crucial for solving the model analytically, and it is
used in the literature (Malamud and Zucchi 2019),
although it makes the model not fully dynamic. Stud-
ies such as Brown and Petersen (2011) and Liu et al.
(2021) provide empirical evidence on the R&D invest-
ment being smooth. R&D smoothing is often regarded
as a firm’s reaction toward very large adjustment costs
of R&D investment (Himmelberg and Petersen 1994,
Hamermesh and Pfann 1996, Hall 2002). The substantial
adjustment costs after cutting R&D temporarily, which
usually involves firing quality workers include the time
and efforts needed to find the right talents who then
require a great amount of firm- and project-specific
training; disruption to the R&D teams which experience
the repeated turnover of workers; the potential dissemi-
nation of critical proprietary information from the fired
R&Dworkers to the competitors, and so on.

2.1. Monopoly Firm’s Problem
The agent maximizes the firm value by choosing an
R&D strategy {1invest, R}. A monopoly firm’s problem
conditional on investing in the project can be
described as follows, with X0 representing AIP cash
flow at the project arrival:

FC firm :

sup
R∈(0,X0]

E

∫ ∞

0
e−rtXtdt+

∫ τd�τc

0
e−rt(−R)dt+ e−rτd ũ1{τd<τc}

[ ]
,

(3)
UC firm :

sup
R>0

E

∫ ∞

0
e−rtXtdt+

∫ τd

0
e−rt(−R)dt+ e−rτd ũ

[ ]
: (4)

The first terms in Equation (3) and Equation (4) repre-
sent the firm value from AIP cash flows. The second
terms are the present value of the future R&D cost.
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The FC firm stops paying for the investment at the
earliest time (denoted as “�”) of (1) the R&D discov-
ery at τd, and (2) the time that its funding shortages
occur at τc ≡ inf {t : Xt < R}. The UC firm keeps inves-
ting in the R&D project until discovery happens. The
last terms are the present value of the project payoff,
which for the FC firm is only realized if the project
reaches discovery before the financial constraints
bind, that is, τd < τc. Provided assumption (3), the
monopoly firm’s problem is equivalent to maximizing
the R&D project value. Lemma 1 presents the project
values with its proof in Appendix A.1.

Lemma 1. The R&D project values for a UC monopoly
firm and an FC monopoly firm are

Vuc � sup
R>0

u(R)λ(R) − R
λ(R) + r

, (5)

Vfc(X) � sup
R∈(0,X]

u(R)λ(R) − R
λ(R) + r

1 − X
R

( )α( )
, (6)

respectively, α � 1=2−μ=σ2 −
����������������������������������������
1=2−μ=σ2
( )2 + 2(λ(R) + r)=σ2

√
,

X is the AIP cash flow at the project arrival.

The project value for a UC monopoly in Equation
(5) is the present value of a perpetuity, with per-
period payments of uλ−R and a discount rate of
λ+ r. The investment intensity R affects Vuc through
the expected payoff and the cost per period, as well as
the discount rate. To an FC monopoly firm, the risk of
having to abandon the project because of the shortage
of funds reduces the project value proportionally by
X=R( )α. Alternatively, the term 1− X=R( )α in Equation
(6) can be interpreted roughly as the probability of the
project’s survival from abandonment (Pr(τd < τc)), or
the pricing kernel for the cash flow stream of the proj-
ect. This term shows that R also affects Vfc through its
distance to the AIP cash flow, as well as the speed at
which Xt drops to R (via α). Equations (5) and (6) indi-
cate an upper bound for R: uλ−R ≥ 0⇒ R ≤ R̄. Thus,
when using Equation (2), the ranges of the investment
intensities are

Ruc ∈ [R, R̄uc] �
[
1, (Aη) 1

1−(β+γ)
]
,

Rfc ∈ [R, R̄fc] �
[
1,min (Aη) 1

1−(β+γ),X
{ }]

: (7)

Propositions 1 and 2 present the comparative statics of
the optimal investment intensities for the UC and FC
monopoly, respectively, conditional on investment tak-
ing place and given (2). The proofs are in Appendices
A.2 and A.3.

Proposition 1. (i) If u′ � 0 and λ′ � 0, then R∗
uc � R. (ii)

If u′ > 0 and/or λ′ > 0, ∂R∗
uc=∂A > 0. (iii) If u′ > 0,

∂R∗
uc=∂β > 0. (iv) If λ′ � 0 and u′ > 0, ∂R∗

uc=∂η > 0. (v) If
λ′ � 0, ∂R∗

uc=∂r � 0. If λ′ > 0, ∂R∗
uc=∂r > 0.

Intuitively, if the investment intensity only affects
the cost of running the project, but neither the project
payoff nor the speed of discovery, it must be optimal
to choose the lowest possible rate of investment. If the
investment rate affects either the payoff scale or the
speed or both, then a higher scaling factor (A ↑) moti-
vates more intense investment for the UC monopoly
(R∗

uc ↑). This is because either the scalability or the
accelerability induces the complementarity between A
and Ruc, in the sense that a higher A increases the mar-
ginal return to having a higher Ruc. The scalability β
has a positive impact on R∗

uc for the same reason, pro-
vided a project is scalable. However, if the project is
accelerable (λ′ > 0), then even in the simplest case of a
UC monopoly, the effects of the speed factor η and the
project accelerability γ on Ruc are ambiguous. The
directions of the effects depend on the comparison of
two opposing forces, both via changing the expected
time to discovery. Take the speed factor η for an
example. A higher η (1) increases the marginal value
of expanding Ruc via raising the expected effective
payoff per period, whilst (2) raises the marginal cost
of expanding Ruc through a heavier discount rate by
shortening the time to discover. If λ′ � 0 instead, then
η has an unambiguous and positive impact on R∗

uc as a
result of the absence of the second force (provided
u′ > 0). R∗

uc increases with the risk free rate if the project
is accelerable, because a higher r reduces the marginal
cost of expanding Ruc through the discount rate. If
λ′ � 0, then changes in r does not affect R∗

uc.

Proposition 2. (i) Proposition 1(i) holds for R∗
fc. (ii) If

λ′ � 0 and u′ > 0, then ∂R∗
fc=∂X > 0. (iii) If λ′ > 0, then

∂R∗
fc=∂X > 0 when X is small, but ∂R∗

fc=∂X < 0 when X is
large. (iv) If λ′ > 0, then ∂R∗

fc=∂μ < 0 when X is large. If
λ′ � 0 and u′ > 0, then ∂R∗

fc=∂μ > 0 when X is large. (v)
Regardless of λ′ � 0 or not, ∂R∗

fc=∂r > 0. (vi) If λ′ � 0 and
u′ > 0, then ∂R∗

fc=∂η > 0 if X is large, and ∂R∗
fc=∂η < 0 if X

is small.

Comparing to a UC monopoly, some additional
effects of Rfc on Vfc arise through the changes to the like-
lihood of project’s survival. On the one hand, choosing
a higher Rfc (recall Rfc ≤ X) makes the burn-out of inter-
nal capital more imminent, regardless of the tech-
parameters. If λ′ � 0 and u′ � 0 (as in Proposition 2(i)),
a higher Rfc not only increases the cost of investment
but also brings forward the funding shortages while
having no benefit whatsoever. Therefore, it is optimal
for an FC firm to invest at the minimal level R. Con-
versely, if the project is accelerable (λ′ > 0), a higher Rfc

also speeds up the discovery and effectively delays the
burn-out of internal capital relative to the project dis-
covery. These two effects work against each other to
impact the project value.

Lin: R&D Investment Under Financial Constraints and Competition
Management Science, Articles in Advance, pp. 1–30, © 2022 The Author(s) 5

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

51
.9

.5
.4

8]
 o

n 
11

 O
ct

ob
er

 2
02

2,
 a

t 0
4:

12
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Consider Proposition 2, (ii) and (iii), which regard
the impact of AIP cash flow X on R∗

fc. X affects Rfc only
through the probability of project survival; thus, I
focus on discussing the effect of X on the marginal
return of increasing Rfc via the two channels men-
tioned in the last paragraph. Apparently, when λ′ � 0,
the second channel is absent, and the marginal return
of a higher Rfc through changing the probability of
project survival is always negative. By relaxing the
financial constraints an FC firm faces, a higher AIP
cash flow (X ↑) makes the marginal return of a higher
Rfc less negative. Therefore, ∂R∗

fc=∂X > 0. Proposition
2(iii) reveals that once the project accelerability is
turned on (λ′ > 0), the complementarity/substitutabil-
ity between X and Rfc depends on the level of X. If X is
small, indicating the financial constraints are more
likely to bind soon, then a higher X increases the mar-
ginal return of increasing Rfc. However, as the con-
straints become less tight by a large enough X (X ↑↑),
the second channel of increasing Rfc (i.e., to speeds up
the discovery relative to the burnout) dominates the
first, causing the combined effect of increasing Rfc on Vfc

to be positive. In such circumstances, a further increase
in X leads to a decreasing marginal return of a higher
Rfc, by making ∂Vfc=∂Rfc less positive. Intuitively, it is
difficult to speed up the discovery relative to burnout if
the expected discovery speed is already very fast. The
nonmonotonic effect of X on ∂R∗

fc=∂X leads to the possi-
bility of over-investment (R∗

fc > R∗
uc), stated more for-

mally in Corollary 1.
Proposition 2(v) states that the risk-free rate always

increases an FC firm’s R&D investment in the monopoly
benchmark. The proof in Appendix A.3 shows dis-
tinct reasons for that on projects with and without
accelerability. If the project is not accelerable (λ′ � 0),
a higher investment expenditure Rfc makes it more
difficult for the project to survive; thus, the marginal
return of a higher Rfc through the survival probability
term is negative. A higher r effectively delays the
burnout time relative to innovation discovery, mak-
ing the marginal return of a higher Rfc less negative.
Hence, ∂Rfc=∂r > 0 for λ′ � 0. On the contrary, if the
project is accelerable, the accelerability acts against
the aforementioned force and weakens the effect of a
higher r on the marginal return of an increasing Rfc

but not enough to outweigh it. Plus, the additional
effect of r on the marginal return of an increasing Rfc

through the perpetuity term is positive (as for a UC
firm shown in Proposition 1), leading to the combined
positive impact of the risk-free discount rate r on Rfc.
Proposition 2(v) relates to a few other results in the
paper, such as the increasing best response of a FC
firm’s investment intensity toward its UC rival in Sec-
tion 3.2, as well as the positive effect of a jump risk in
AIP cash flow on R in Section 4.1.

Proposition 2(vi) shows that if X is small and the proj-
ect is not accelerable, then the complementarity between
the speed factor η and Rfc can be overturned. It is because
the constraints are more likely to bind during project
development; thus, a higher η does not increase the mar-
ginal return of a higher Rfc. Although not stated formally
in the proposition, the proof in Appendix A.4 shows the
Rfc increases with the diffusion risk σ2 under certain con-
ditions and it is in direct contrast with positive the effect
of a jump risk on Rfc as detailed in Section 4.1.

Corollary 1 compares investment rates of an FC
firm and a UC firm, with the first and last statements
proved in Appendix A.4 and the possibility of over-
investment evidenced by many numerical exercises
using Equation (2) as the functional forms for the dis-
covery payoff u and rate λ.

Corollary 1. If λ′ � 0 and u′ > 0, then R∗
fc < R∗

uc. If λ
′ > 0,

then financial constraints can induce over-investment, that
is, R∗

fc > R∗
uc. Over-investment is more likely for an FC firm

with large enough X and a low μ and on projects with a
small to moderate γ.

Table 1 lists the parameter values used in the baseline
numerical exercise, where the over-investment (R∗

fc >
R∗
uc) is present: R∗

fc � 8:02 and R∗
uc � 6:79. The baseline

firm’s AIP cash flows expect to decline 20% annually
with a 30% annual volatility. The parameter values
reflect the high uncertainty typically associated with
innovative firms’ internal cash flows or future funding,
and are close to a few previous studies (Morellec and
Schürhoff 2011, Hackbarth et al. 2014) except the
growth rate of AIP μ.9 The baseline values for the R&D
project technology parameters (i.e., η, γ, A, β) are
chosen ad hoc, with the simple goal of having reason-
able investment intensity and expected discovery time
at the optimum in the monopoly benchmark and in the
race model equilibrium of Section 3.10

Corollary 1 closely resembles earlier work regard-
ing the effect of funding risk on growth options. For
example, the first statement relates to Myers (1977),
which shows the probability of default leads to under-
investmentwhen it is impossible to accelerate the exercise
of growth options. The statement on over-investment
joins earlier work (Boyle and Guthrie 2003, Lyandres and

Table 1. Baseline Parameter Values for Numerical Solutions

Parameter Value

Discount rate r � 0.05
Discovery rate (λ � ηRγ) η � 0:05, γ � 0:7
Expected project payoff (u �ARβ) A � 100, β � 0:01
AIP cash flow at the project’s arrival X � 100
Growth/decline rate of AIP cash flow μ � −0:2
Volatility of AIP cash flow σ � 0:3

(ext.) The jump risk of AIP cash flow λj � 0:1

Lin: R&D Investment Under Financial Constraints and Competition
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Zhdanov 2010, Bolton et al. 2019),11 which suggests
financial constraints make a firm endogenously more
impatient. However, in this model with now-or-never
investment opportunities, the economicmechanism is not
exactly that financial frictions lower the value of the
option to delay, as in the aforementioned studies. The
intuition is that by investing more intensively in an accel-
erable project, a constrained firm may increase its chance
of retaining the project value, instead of paying R&D
expenditures regularly but getting nothing back in the
end. It complements studies on investment timing deci-
sions and show similar effects of future funding un-
certainty on the investment level decision. On the one
hand, a higher cash burning rate on the R&D investment
leads to an earlier instance of project abandonment
caused by funding shortages. On the other hand, by
investing more heavily each period, the firmmay be able
to push the discovery fast enough to survive from the
earlier burnout of funds. If by speeding up the project,
the constrained firm gets a higher expected value, then it
optimally invests more aggressively comparing with the
first best.

Corollary 1 also clarifies the conditions on AIP cash
flow and the project characteristics that motivate
over-investment. A low X makes the threat of project
abandonment from funding burnout so imminent that
the project survival is highly unlikely, even with a
faster discovery. A higher growth rate of AIP cash
flow lowers the FC firm’s incentive to speed up the
innovation process to escape the burn-out. A high
level of accelerability motives the UC firm to speed up
its discovery, more so relative to an FC firm. All three
forces push against over-investment.

Going back to the R&D project initiation decision, the
firm optimally starts a nondeferrable innovative project
if its value, which can be calculated using Lemma 1 with
the optimal R, is positive. Ceteris paribus, a UC firm is
more likely to initiate an investment than an FC firm
because the UC firm’s project value is always higher.

3. Model with an R&D Race
Built on the baseline monopoly model, I further study
the Nash equilibrium of duopoly competition between
two firms (call them Firm 1 and Firm 2) and examine
how equilibrium R&D investment rates (R1,R2) depend
on the competing firms’ financial constraints and the
type of projects. I compare three scenarios: (1) both
firms are financially unconstrained (a UCUC race); (2)
one firm is financially constrained and the other is not
(an FCUC race); and (3) both firms are financially con-
strained (an FCFC race).

Following the literature on patent race models (Loury
1979, Dasgupta and Stiglitz 1980, Weeds 2002, Meng
2008), I assume the competition is a winner-takes-all
speed contest. Only the firm that makes the discovery

first is rewarded with future profit flows related to the
project. All the other assumptions in the baseline mono-
poly model remain. The firms determine their R&D
investment rates R1 and R2 simultaneously with complete
information to maximize their firm values. Each firm’s
expected time to a successful discovery and the expected
value of the future cash flows associated with the dis-
covery depend only on its own choice of R, that is,
λi(Ri), ui(Ri). For simplicity, I assume the two firms face
the same functional forms of λ and u as in Equation (2)
but may differ in the tech-parameters.12 Meanwhile, the
firm can also differ in their AIP cash flows parameters,
that is, dXi,t � μiXi,tdt+ σiXi,tdZt, i ∈ {1, 2}.

Going beyond the patent race models, I assume that
if one firm drops out of the race because of financial
constraints, the other firm carries on with its R&D
effort and becomes the winner once it makes the dis-
covery. If both firms abandon their projects before
making a discovery, then there is no winner of the
race. The case that both firms make the discovery at
the same time is not considered because of its zero
probability. Similar to financial constraints, the race
competition also imposes a termination risk to firms: a
firm’s successful innovation makes its competitor’s
R&D project obsolete, and some may interpret it as an
obsolescence risk. However, the termination risk from
competition results from firms’ strategic interactions
in the R&D race and is thus endogenous in the model
(unlike Eisdorfer and Hsu 2011, Hackbarth et al. 2014,
and Gu 2016). Examining the three types of races in
the following subsections separately helps to reveal
the dependence of firms’ strategic interactions in the
race on both firms’ financial constraints.

3.1. Race Between Two UC Firms
In a UCUC race, both firms keep paying the R&D
expenditure until one participating firm becomes suc-
cessful in its R&D pursuit first, and it gets the project
payoff ũi. The slower firm gets nothing. For Firm i, its
optimization problem can be written as

sup
Ri>0

E

∫ τi �τ−i

0
e−rt(−R)dt+ e−rτi ũ1{τi<τ−i}

[ ]
: (8)

When the project is accelerable but not scalable, that
is, λ′(R) > 0 and u′(R) � 0, it corresponds to a typical
patent race model with two participating firms. The
project values are provided in Lemma 2, with the
proof in Appendix A.5.

Lemma 2. In a UCUC race, firms’ project values are

V1 � u1 · λ1 − R1

r + λ1 + λ2
, V2 � u2 · λ2 − R2

r + λ1 + λ2
, (9)

where (R1,R2) is a pair of R&D investment intensities,
ui(Ri) is Firm i’s expected value of future project cash flows
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upon a successful discovery, and λi(Ri) is Firm i’s discov-
ery rate i ∈ {1, 2}:

The patent race literature (Reinganum 1989) recog-
nizes the effect of competition on firm value when com-
peting firms are financially unconstrained, in the same
spirit of Lemma 2, and with the number of rivals being
more general.13 Competition effectively increases the
discount rate (comparing with Equation (5) in Lemma
1), via the rival firm’s discovery rate. It is evident, as a
departure from the patent race models, that if the proj-
ect is not accelerable (λ′ � 0), then having competition
is equivalent to introducing an exogenous termination
risk for a UC firm, and it reduces the marginal benefit
and marginal cost of investment equally and thus has
no impact on the investment intensity. When λ′ > 0 as
in patent race models, Proposition 3 shows the best
responses are increasing, regardless of project scalability
on which the patent race models are silent. The exis-
tence of Nash equilibrium is guaranteed, and the proof
is in Appendix A.6.

Proposition 3. In a UCUC race, a firm responds posi-
tively to the R&D intensity of its unconstrained rival if the
project is accelerable, that is, dR∗

i (R−i)=dR−i > 0 if λ′ > 0.
If λ′ � 0, then dR∗

i (R−i)=dR−i � 0. Regardless of scalabil-
ity/accelerability, there exists at least one symmetric pure
strategy Nash equilibrium.

A UC firm responds positively to its UC rival’s R&D
rate when racing in accelerable projects, and it is a direct
implication of the UCUC race being a log-supermodular
game (Milgrom and Roberts 1990, Vives 1999). The
two firms’ investment rates are strategic complements,
meaning a more intense investment of a rival firm
increases the marginal return of the own firm’s invest-
ment intensity. The strategic complementarities result
from the speed contest without any financing considera-
tions. Intuitively, the rival’s earlier expected discovery
makes a firm’s marginal effort in R&Dmore worthwhile
as it increases the chance to gain the whole market more
significantly as opposed to ending up with nothing.

Proposition 3 clarifies that the widely accepted not-
ion that competition enhances innovation only hold
with accelerable projects (λ′ > 0) in a winner-takes-all
race. When the maturity of an innovation project is
fixed ex ante, competition between two UC firms does
not make them more aggressive even if the project is
scalable. Instead, competition only reduces project val-
ues and thus may alter the project initiation decision.
However, if the project is accelerable, the race can moti-
vate R&D investment significantly. At the baseline as in
Table 1, the competition increases a UC firm’s invest-
ment from the monopoly level of R∗

uc � 6:79, to R∗
uc �

35:5 in the UCUC race. In Appendix A.7, I characterize
a pure strategy symmetric equilibrium and provide the
necessary and sufficient condition(s) for its uniqueness.

Proposition 4 provides comparative statics of the
UCUC equilibrium with respect to tech-parameters and
r, and its proof is in Appendix A.8.

Proposition 4. In a UCUC race, denote R∗
i as the equili-

brium investment intensity i ∈ {1, 2}:
(1) If u′ � 0 and λ′ � 0, then R∗

1 � R∗
2 � R.

(2) If u′ > 0 and λ′ � 0, then ∂R∗
i=∂Ai,∂R∗

i=∂βi,
∂R∗

i=∂ηi,∂R
∗
i=∂η−i,∂R

∗
i=∂r > 0, ∂R∗

i=∂A−i,∂R∗
i=∂β−i � 0.

(3) If λ′ > 0 and u′ � 0, then ∂R∗
i=∂Ai,∂R∗

i=∂A−i > 0,
and ∂R∗

i=∂ηi,∂R
∗
i=∂γi, ∂R

∗
i=∂η−i,∂R

∗
i=∂γ−i > 0 at least

when γi is small.
(4) If λ′ > 0 and u′ > 0, then on top of the results in (3),

∂R∗
i=∂βi,∂R

∗
i=∂β−i > 0.

This proposition states that a firm’s equilibrium invest-
ment does not depend on its rival firm’s scalability related
parameters if the project is scalable but not accelerable. As
λ′ > 0, both firms’ equilibrium investment rates increase
in their own and the rival firms’ tech-parameters. This is a
direct consequence of the following two forces: both firms
have increasing best responses as Proposition 3 shows,
and a higher tech-parameter of a firm increases the mar-
ginal return on the investment intensity of that firm, lead-
ing to a more responsive best response of that firm
toward its rival. Even without the change in its rival
firm’s response, which is also positive, both firms end up
investing at higher levels in equilibrium.

3.2. Race Between an FC Firm (Firm 1) and a UC
Firm (Firm 2)

Firms competing in innovation often vary in their
financing abilities. It can appear in the form of a small
firm competing against a large one or a young firm
competing against a mature one. I abstract from the
various scenarios and investigate an FCUC race, with
Firm 1 being constrained and Firm 2 being uncon-
strained. Firms’ problems are presented in Expres-
sions (10) and (11). τi denotes Firm i’s discovery time,
and τc1 denotes the time that the FC firm has to aban-
don its project due to financial constraints, that is,
τc1 � inf {t : X1,t < R1}. τ̃ denotes the first discovery
time with FC’s possible burnout considered, that is,
τ̃ � τ1 if τ1 < τ2�τc1 and τ̃ � τ2 if τ1 > τ2�τc1 .

The FC firm’s problem :

sup
R1∈(0,X1]

E

∫ τ1 �τ2 �τc1

0
e−rt(−R)dt+ e−rτ1 ũ1{τ1<τ2�τc1 }

[ ]
(10)

The UC firm’s problem :

sup
R2>0

E

[∫ τ̃

0
e−rt(−R)dt+ e−rτ2 ũ1{τ1>τ2�τc1 }

]
(11)

The FC firm only wins the race if it makes the discovery
first and before running out of money in the process,
that is, τ1 < τ2�τc1 . It pays the R&D expenditure until
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one of the firms obtain discovery or itself cannot afford
to invest any more, that is, the earliest of τ1,τ2 and τc1 . In
contrast, the UC firm is in a more advantageous position:
it wins the race either when it makes the discovery first
or when the rival runs out of money before making its
discovery, that is, τ1 > τ2�τc1 .

14 TheUCfirm stops paying
the R&D cost only when a discovery is made. Lemma 3
shows theproject values,with its proof inAppendixA.9.

Lemma 3. In an FCUC race, the project values for the two
firms (FC is 1, UC is 2) are

V1(X1) � Vd
1 · 1 − X1

R1

( )α′
1

( )
, (12)

V2(X1) � Vd
2 · 1 − X1

R1

( )α′
1

( )
+ Vm

2 · X1

R1

( )α′
1

, (13)

where (R1, R2) is a pair of investment intensities with R1 ∈
(0,X1] and R2 > 0. Vm

2 is the project value in a UC
monopoly, and Vd

i is the project value in an UCUC duop-
oly, that is,

Vm
2 � u2 ·λ2 −R2

r+λ2
, Vd

i �
ui ·λi −Ri

r+λ2 +λ1
, (14)

α′
1 � 1=2−μ1=σ

2
1 −

��������������������������������������������
1=2−μ1=σ

2
1

( )2 + 2(r+λ2 +λ1)=σ21
√

, and λi

and ui are the discovery rate and expected project payoff of
Firm i that depend on Ri, i ∈ {1, 2}, respectively.

Both Equations (12) and (13) are intuitive. The only
state variable for both competitors is the constrained
firm’s AIP cash flows X1. The UC firm’s cash flows do
not affect its own investment decision and have no
impact on its FC rival. There are two possibilities
regarding the chronological order of the following two
events: the earlier discovery among the two firms, and
the FC firm being forced out of the race because of the
shortage of its internal funds, that is, τ1 �τ2 versus τc1 .
The term 1− X1=R1( )α′

1 can be roughly understood as
the probability (or the state price density associated
with the possibility) that the earlier discovery among
the two firms happens before FC’s burnout, that is,
Pr(τ1 � τ2 ≤ τc1). Relatedly, the term X1=R1( )α′

1 is
roughly the probability of burnout happening first, that
is, Pr(τc1 < τ1 �τ2). Because of the two possibilities, the
market structure at the first discovery is uncertain: it is
a duopoly in the first scenario and a UC monopoly in
the second scenario. Correspondingly, the project
value for the UC firm in Equation (13) is a weighted
average of the values in the two scenarios. The weights
are the probabilities, and the value is the same as a
duopoly firm in the UCUC race in the first scenario
(see Equation (9) in Lemma 2) and the same as a UC
monopoly in the second scenario (see Equation (6) in
Lemma 1). Likewise, the FC firm’s value in Equation

(12) is a weighted average of FC firm’s project values,
with the project value being zero in the second sce-
nario. Corollary 2 presents the properties of firms’ best
responses in the FCUC race, with the functional forms
of u and λ specified in Equation (2), and its proof in
Appendix A.10.

Corollary 2. In an FCUC race (FC-1, UC-2), if λ′ � 0,
then dR∗

i (R−i)=dR−i � 0. If λ′ > 0, then dR∗
1(R2)=dR2 > 0,

and dR∗
2(R1)=dR1 is hump-shaped as long as X is not too

large (i.e., it is not that X� (Aη) 1
1−(β+γ)). Regardless of scal-

ability/accelerability, there exists a unique pure strategy
Nash equilibrium.

For the ease of the discussion, I use the subscript
“fc” and “uc” in replacement of “1” and “2.” The first
part of Corollary 2 is trivial. Without project acceler-
ability (i.e., λ′ � 0), the rival firm’s investment rate,
conditional on investing, does not impact a firm’s
R&D project value. Thus, dR∗

i (R−i)=dR−i � 0. Corollary
2 also points out the distinct best responses of the two
firms when λ′ > 0, that is, a monotonically increasing
R∗
fc(Ruc) versus a hump-shaped R∗

uc(Rfc). The UC firm’s
investment Ruc affects the FC firm’s project value
through the discovery rate λuc; λuc influences the FC
firm’s value in the same way as the risk-free rate,
which always intensifies the FC firm’s investment, as Prop-
osition 2(v) shows.15 This positive impact of an FCUC race
on the FC firm’s investment is similar to the impact of a
UCUC race on a UC firm’s investment, although the for-
mer is milder because of the FC firm’s additional concern
of the early burnout of internal funds.

The hump-shaped R∗
uc(Rfc) demonstrates the UC

firm’s strategic considerations in an FCUC race on an
accelerable project. To the UC firm, when its FC rival’s
investment is low relative to its AIP cash flow,16 it is
unlikely for the FC rival to have binding constraints
before any discovery, making the race resembles a
UCUC race. The conventional positive impact of com-
petition in patent race models arises as a result. How-
ever, as the FC rival’s investment increases, especially
to a level that is close to its AIP cash flow (i.e.,
Rfc → Xfc), it becomes highly likely that the FC rival will
go bust soon, leaving the UC firm the only one to make
a discovery. Meanwhile, the cost of competing head-to-
head against an aggressive FC rival to win the race
becomes prohibitively high for the UC firm. Therefore,
the UC firm optimally pulls back its R&D investment
rate and sits on the sideline of the innovation project,
investing at nearly the monopoly level while waiting for
the FC firm to exhaust its funds and leave the race.

3.2.1. Pre-Emption and Comparative Statics. In the
context of the model, one firm pre-empts another in
an R&D race when it achieves the discovery first.17
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With pre-emption regarded in this way, I find through
numerical exercises that an FC firm may pre-empt a
UC firm in a R&D race if λ′ > 0, with some examples
shown in Figure 1 and Figure 2 (i.e., those equilibria
that are under the 45-degree lines). Pre-emption by an
FC firm in a FCUC race is not a mere extension of the
over-investment result in the baseline monopoly
model. Instead, the FC pre-emption results from the
combination of two effects. (1) Motivated by the com-
petition, the FC firm acts more aggressively than at
the monopoly benchmark, trying to get the first dis-
covery and reap the payoff. The incentive to invest is

stronger as its UC rival intensifies the R&D invest-
ment. (2) As the FC firm becomes more competitive
by raising its investment rate, the UC firm reacts posi-
tively to the race at first, but as the FC firm’s burnout
becomes more imminent, the UC firm acts in a laid-
back fashion and retreats to its monopoly strategy.

Figures 1 and 2 plot the best responses R∗
fc(Ruc), R∗

uc(Rfc)
and equilibrium investment rates (R1,R2) in an FCUC
race around the baseline values in Table 1. The subplots
in Figure 1 change one AIP cash flow parameter for the
FC competitor at a time, and the subplots in Figure 2
change one tech-parameter for both firms at a time. In

Figure 1. (Color online) Best Responses and the Equilibrium in an FCUC Race: AIP Cash Flow Changes

(a) i (a) ii (a) iii

(b) i (b) ii (b) iii

(c) i (c) ii (c) iii

Notes. The blue solid lines plot the UC firm’s best response to the investment intensity of the FC firm, that is, R∗
uc(Rfc). The green dashed lines

plot R∗
fc(Ruc). The orange lines representRfc � Ruc. Rfc is on the x axis, and Ruc is on the y axis. Except those labeled on the subplots, all other model

parameters are set at the values in Table 1.
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Figure 1, X increases by the rows, and μ decreases by
the columns of the subplots. This exercise and many
other unreported ones demonstrate a lower μ makes
the FC pre-emption more likely. Examination of the fig-
ure reveals a different intuition from the over-invest-
ment in the monopoly model (Corollary 1). Instead of
speeding up the FC firm’s discovery as in the monopoly
model, a lower μ makes the FC firm act less aggres-
sively in the race on the contrary. This force is evident
from the milder slope of R∗

fc(Ruc) as μ ↓, and by it alone,
UC pre-emption would emerge. Nevertheless, a faster
declining AIP cash flow of the FC rival also makes the
UC firm less concerned of the race and thus acts more
like a monopoly firm as shown via the lower hump of
R∗
uc(Rfc). Together, the FC pre-emption is more likely as

μ ↓ because the UC firm’s reaction to the race domi-
nates. In addition, a higher X makes FC pre-emption
more likely, and it is driven by the increasingly aggres-
sive response of the FC firm to its UC rival.

In Figure 2, (b).i shows that turning off the project
scalability does not change the best responses of the
two firms qualitatively. Plot (d).i confirms that firms do
not respond to their rivals’ strategies without project
accelerability. More importantly, technology parame-
ters, regardless of whether scale or speed related, all
motivate both firms to respond more actively to their
rival’s investment decisions. This can be seen from
the more curved R∗

uc(Rfc) and an increased slop of
R∗
fc(Ruc). As I change the tech-parameters for both firms

simultaneously, their positive effects on the UC firm’s best
response dominate those on the FC firm’s best response,
making the UC pre-emptionmore likely as a result.

3.3. Race Between Two FC Firms
In an FCFC race, both firms in the R&D race are finan-
cially constrained. This is relevant for races between
innovative firms that already have some products that
generate cash flows but are still facing large frictions in
the financial market possibly because of information
asymmetry. These firms can be at the forefront of new
technologies and have the human capital that is essential
for making a breakthrough in the relevant technology
area, but the huge technological uncertainties deter exter-
nal investors from getting involved. The firms are aware
of the financing restrictions of the race participants, mak-
ing the game a strategic one. As a firm determines the
R&D investment rate Ri, it considers the direct impact of
Ri on its own success rate λi, the discovery scale ui, and
the probability of reaching the innovation success before
running out of funds (i.e., E1{τi,d < τi,c}). In addition, the
firm considers the indirect impact of Ri through its rival
firm’s investment decision, that is, R−i(Ri), taking into
account the similar considerations of its rival in choosing
R−i. Intuitively, both firms’ assets-in-place cash flows (X1

and X2) affect each firm’s project value, and I assume X1

and X2 are independent.
The race starts if both firms decide to invest in the

innovative project upon the arrival of such an R&D

Figure 2. (Color online) Best Responses and the Equilibrium in an FCUC Race: Technology Parameter Changes

(a) i (a) ii (b) i (b) ii

(c) i (c) ii (d) i (d) ii

Notes. The blue solid lines plot the UC firm’s best response to the investment intensity of the FC firm, that is, R∗
uc(Rfc). The green dashed lines

plot R∗
fc(Ruc). The orange lines representRfc � Ruc. Rfc is on the x axis, and Ruc is on the y axis. Except those labeled on the subplots, all other model

parameters are set at the values in Table 1.
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opportunity. The project development continues until a
firm reaches a first discovery (before running out of
money) or both firms drop out of the race because of
financial constraints, whichever happens first. If one
firm runs out of the internal funds before either firm’s
project reaches discovery, then the competition ends
because this firm has to drop out of the race. After that,
the other firm keeps investing in the project until it faces
shortage of funds and must abandon the project, or its
R&D project becomes successful, whichever happens
first. I keep the assumption that both firms cannot adjust
their investment intensities throughout the process.

Two firms’ problems are symmetric. Take Firm 1’s
investment decision as an example. I use the Hamil-
ton-Jacobi-Bellman (HJB) equation with boundary
conditions to characterize the dynamics of project val-
ues at the optimum. The HJB equation on Firm 1’s
project value V1 can be written as

rV1dt � E$ V1 − R1dt + λ1 × (u1 − V1)dt + λ2

× (0 − V1)dt, (15)

where V1 represents V1(X1,X2 | R1,R2); E$ V1 � ((1=2)
(∂2V1=∂X2

1)σ21X2
1 + (1=2)(∂2V1=∂X2

2)σ22X2
2 + (∂V1=∂X1)μ1X1

+ (∂V1=∂X2)μ2X2)dt, and there are no cross terms as a
result of the independence assumption of the two
firms’ AIP cash flows. Because the firms are financially
constrained, I simplify the analysis of V1(X1,X2) by
focusing on the domain of (X1 ∈ [R1, +∞],X2 ∈ [R2,
+∞]) while setting V1(X1,X2) � 0 for any X1 < R1. Using
the definition of α in Lemma 1 of the FC monopoly,
with added subscript i, that is, αi � 1=2−μi=σ

2
i −�������������������������������������

1=2−μi=σ
2
i

( )2 + 2(λi + r)=σ2i
√

, and define Vm
i , V

d
i , α

′
i in the same

way as Lemma 3 of the FCUC race, Four Dirichlet boun-
dary conditions on the partial differential equation of
Equation (15) can be written as18:

V1(X1 � R1,X2 > R2) � 0, (16)

V1(X1 > R1,X2 � R2) � Vm
1 · 1− X1

R1

( )α1
( )

, (17)

lim
X1→∞V1(X1,X2 > R2) � Vd

1 · 1− X2

R2

( )α′
2

( )
+Vm

1 · X2

R2

( )α′
2

,

(18)

lim
X2→∞V1(X1 > R1,X2) � Vd

1 · 1− X1

R1

( )α′
1

( )
: (19)

The explanations for the boundary conditions are linked
to the previous sections of the paper. First, a project is
worthless if the firm is forced to abandon it at X1 � R1

(see Equation (16)). Second, the project value equals that
of an FC monopoly firm when the rival drops out of the
race because of financial constraints, that is, X2 � R2 (see
Equation (17), and it resembles Equation (6) of Lemma
1). Third, the project value equals that of a UC duopoly

firm in an FCUC race when the firm’s internal funds are
so high as if it is not financially constrained, that is,
X1 →∞ (see Equation (18), and it resembles Equation
(13) of Lemma 3). Fourth, the project value equals that
of an FC duopoly firm in an FCUC race if its rival is not
concerned of financial constraints, that is, X2 →∞ (see
Equation (19), and it resembles Equation (12) of Lemma
3). Firm 2’s problem can be represented similarly.

I use numerical methods to solve the PDEs of project
values V1 and V2 given (R1,R2) and then obtain firms’
responses to the investment rate of their rivals by finding
the strategies that maximize project values. The details are
described in Appendix A.11. The exercises performed
suggest that the fixed point for firms’ best response corre-
spondences exists and is unique under a wide range of
model parameters. Figures 3 and 4 illustrate some exam-
ples of FCFC equilibria as I change the AIP cash flow
parameters (X and μ), and the tech-parameters (A, β, η,
and γ) one at a time for both FC firms in the race.

Several interesting observations emerge from these
exercises and many other unreported ones. First, all
plots show that both firms have hump-shaped best
responses to their rivals’ investment intensities if λ′ >
0 (as long as X1 and X2 are not too large to make firms
unconstrained). They suggest that FC firms respond
to their FC rivals in a similar way to how a UC firm
responds to an FC rival in an FCUC race. From many
numerical exercises that allow X1 and X2 to differ, I
conjecture that it is the rival firm’s financial con-
straints that induce the hump-shaped response. Sec-
ond, unlike in an FCUC race where the hump-shaped
R∗
uc(Rfc) becomes less curved as the AIP cash flow

declines faster (μ ↓), the curvature of R∗
fc,1(Rfc,2) in the

FCFC race does not respond monotonically with
respect to μ. It becomes more curved as the rate of
decline increases first (μ ↓) but less curved as the cash
flow drops more sharply (μ ↓↓). This nonmonotonicity
is tied to the fact that the reacting firm itself is finan-
cially constrained. Third, similar to an FCUC race,
higher values of tech-parameters curve up the hump
of the best responses by providing a stronger incen-
tive to invest in the project. However, because of the
firm’s own constraints, the positive effect of the tech-
parameters on the response in the FCFC race is not as
significant as it is for a UC firm in an FCUC race.

3.4. Equilibrium Investment and Values:
Comparison Among Races

To compare R&D intensities in the races that are ana-
lyzed in Sections 3.1 to 3.3, I show the best responses
and equilibria of the three races at the baseline in
Figure 5. The figure (and many unreported numerical
exercises) reveal two distinct patterns of duopoly
R&D races on accelerable projects. (1) Regardless of a
firm’s financial (un)constraints, competing against a
UC rival leads to more intensive R&D investment in
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equilibrium than competing against an FC rival. A
firm has to forgo any potential profits associated with
the project once its UC rival, which never abandons
the project, makes a discovery. Therefore, the firm is
motivated to expedite its discovery to lower the prob-
ability of losing the contest. (2) A firm responds in a
hump-shaped fashion to the investment rate of its FC
rival. As an FC rival firm increases its investment
intensity and burns its internal funds faster, it is per-
ceived to have a higher likelihood of project abandon-
ment. Consequently, competing head-to-head against
such a rival becomes less appealing.

Table 2 lists the equilibrium investment rates and proj-
ect values under different market structures (monopoly
or in an R&D race) around the baseline parameters,
depending on whether the project is only scalable (Panel
A) or only accelerable (Panel B) or both (Panel C). Table 2
confirms that competition increases investment intensity,
regardless of financial constraints, except for a UC firm in
a race on a project with scalability alone. Table 2 also pro-
vides support to the intuition that competing against a
UC rival is more fierce than competing against an FC
rival, inducing more intense investment. For example, an
FC firm invests at R∗

fc, fcuc � 28:8 (more than three times of

Figure 3. (Color online) Best Responses and the Equilibrium in an FCFC Race: AIP Cash Flow Changes

(a) i (a) ii (a) iii

(b) i (b) ii (b) iii

(c) i (c) ii (c) iii

Notes. All model parameters values follow Table 1, except the ones labeled in the subplots. The blue lines plot Firm 2’s best response to the
investment intensity of Firm 1, that is, R∗

fc,2(Rfc,1). The green lines plot R∗
fc,1(Rfc,2). The orange lines represent Rfc,1 � Rfc,2. Rfc,1 is on the x axis, and

Rfc,2 is on the y axis.
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its monopoly level) in an FCUC race, as opposed to inves-
ting at R∗

fc, fcfc � 21:4 (between two to three times of its
monopoly level) in an FCFC race. A UC firm invests at
R∗
uc,ucuc � 35:5 (more than five times of its monopoly level)

in a UCUC race, as opposed to investing at R∗
uc, fcuc � 30:1

(about four times of its monopoly level) in an FCUC
race. Meanwhile, Table 2 suggests the over-investment
incentive from increasing the probability of project
survival in the monopoly model can be overshadowed
by competition. This is evident by the absence of FC
pre-emption in the FCUC race of Panels B and C while
the over-investment by an FC monopoly is present.
Regarding values, firms experience a large drop (more
than half at the baseline) in the project value as a
result of competition, regardless of whether they are

financially constrained or not. Such value drops are
more significant if the race is against a UC rival com-
pared to an FC rival.19

4. Model Discussion
4.1. Downward Jump Risk in AIP Cash Flow
The diffusion process associated with dZt in Equation
(1) of the baseline represents uncertainty from a firm’s
daily operations, and σ2 captures the conventional
cash flow risk. However, innovative firms can often
be exposed to a more extreme cash flow risk, which I
call “jump risk” or “catastrophe risk.”20 Such risks are
exogenous to firms’ operations and are related to obso-
lescence risk of the innovation opportunity in some
investment models (Hackbarth et al. 2014). In what

Figure 4. (Color online) Best Responses and the Equilibrium in an FCFC Race: Technology Parameter Changes

(a) i (a) ii (b) i (b) ii

(b) i (b) ii (c) i (c) ii

Notes. The blue lines plot Firm 2’s best response to the investment intensity of Firm 1, that is, R∗
fc,2(Rfc,1). The green lines plot R∗

fc,1(Rfc,2). The
orange lines represent Rfc,1 � Rfc,2. Rfc,1 is on the x axis, and Rfc,2 is on the y axis. All model parameters values follow Table 1, except the ones
labelled in the subplots.

Figure 5. (Color online) All Three Races at the Baseline

(a) (Ruc,Ruc) = 35.5, 35.5 (b) (Rfc,Ruc) = 28.8, 30.1 (c) (Rfc,Rfc) = 21.4, 21.4
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follows, I examine the effect of a jump risk on an FC
firm’s investment rate and assume the AIP cash flow
follows a combined geometric Brownian motion/jump
process (as in chapter 5.B of Dixit and Pindyck 1994):

dXt � μXtdt+ σXtdZt −Xtdq1: (20)

The component −Xtdq1 captures an extreme down-
ward jump risk on the AIP cash flow and represents a
negative shock which wipes out all future cash flow
from AIP. I assume the time of the potential cata-
strophic event follows an exponential distribution
with the parameter λj, that is, it is expected in 1=λj

years. When the catastrophe hits, an FC firm can no
longer fund an ongoing R&D project and must termi-
nate it. Consistent with the notion of a firm being
unconstrained in the model, a UC firm is capable of
raising funds through external financial markets and
continuing the project, although it has no AIP left.

4.1.1. Jump Risk in the Monopoly Model. With the
jump risk represented by λj > 0, Equation (A.48) in
Appendix A.12 presents a monopoly firm’s problem, and
Lemma A.1 states the project values for an FC firm and
a UC firm. Although the UC firm’s project value re-
mains the same as in Lemma1, λj changes Vfc in two
ways. It raises the discount rate (Dixit and Pindyck
1994) and changes the project survival probability.
Consistent with Merton (1976) and McDonald and Sie-
gel (1986), the jump risk causes a sudden ruin of the
project and effectively increases the interest rate. Fur-
thermore, Proposition A.1 in Appendix A.12 shows that,
unlike the ambiguous effect of cash flow risk σ, the jump
risk always increases an FC monopoly firm’s investment
intensity R∗

fc, regardless of the project accelerability or
scalability (but cannot be neither, as it is trivial).

Both the diffusion risk σ and jump risk λj of AIP
cash flow can cause project termination for an FC
firm, but the mechanisms differ. Lowering investment

intensity delays project termination caused by the dif-
fusion risk, but it does not impact the termination
induced by the jump risk. On the contrary, a catastrophe
risk in AIP effectively reduces the cost of financial con-
straints by lowering the concern of hitting the con-
straints early with a high level of investment. As a
result, the jump risk motivates investment and can exac-
erbate the over-investment by an FC monopoly firm.
For example, at the baseline as in Table 1, with a cata-
strophic event expected in 10 years (i.e., λj � 0:1), R∗

fc

increases from 8.02 to 13.8, comparing with R∗
uc � 6:79

that remains the same after introducing the jump risk.

4.1.2. Jump Risk in an FCUC Race. I focus on the
analysis of an FCUC race.21 Lemma A.2 in Appendix
A.12 presents project values in an FCUC race with the
presence of a jump risk. Equation (A.56) shows that λj

affects Vfc in the same way as the risk-free rate r; thus, it
has the same positive effect on the FC firm’s investment
in the race as r on an FC monopoly (see Proposition 2).
Besides affecting the discount rate, the jump risk has
additional effects on Vuc. It effectively lowers the proba-
bility of the FC rival firm abandoning the project because
of the diffusion risk. It also increases the UC firm’s pay-
off in the scenarios where the FC rival would manage to
make the discovery before the burnout of internal funds
if the jump risk were absent but has to terminate the
project because of the jump risk. A catastrophe pushes
the FC rival out of the race, leaving the UC firm the only
one working on the innovation project.

Through numerical exercises, I find that the jump
risk on an FC competitor’s cash flow changes the equili-
brium investment rates mainly through altering the UC
firm’s response to its FC rival’s investment. Figure B.1
shows comparable examples to Figure 5(b) with added
jump risk with the intensity represented by λj. When
the jump risk becomes more imminent (λj ↑), the UC
firm acts less responsively to its FC rival, that is, the

Table 2. Investment Intensities and Project Values

Monopoly UCUC race FCUC race FCFC race

Panel A: With project scalability alone (γ � 0,β � 0:1,η � 0:5): τd � 2 (years)

FC firm (Rfc � 5:3, Vfc � 97.1) n/a (5:9, 51.2) (5:7, 51.3)
UC firm (Ruc � 6:0, Vuc � 97.8) (6:0, 51.2) (6:0, 51.3) n/a

Panel B: with project accelerability alone (β � 0): τd,fc � 5 (years),τd,uc � 5:7,τucuc � 1:9,τfcuc � 2:1,τfcfc � 2:6:

FC firm (Rfc � 7:2, Vfc � 45:9) n/a (24:7, 21.9) (18:9, 23.9)
UC firm (Ruc � 6:0, Vuc � 51:2) (29:0, 21.5) (25:2, 23.1) n/a

Panel C: With both accelerability and scalability: τd,fc � 4:7 (years),τd,uc � 5:2,τucuc � 1:7,τfcuc � 1:8,τfcfc � 2:3

FC firm (Rfc � 8:0, Vfc � 47.4) n/a (28:8, 22.3) (21:4, 24.6)
UC firm (Ruc � 6:8, Vuc � 52.6) (35:5, 21.7) (30:1, 23.8) n/a

Notes. This table presents investment intensities R (in bold), project values V, and the expected (first) discovery time τd (in years) of the
monopoly model in Section 2 and the race model in Section 3. The parameter values are set as in Table 1, if not otherwise specified. Multiple
parameter values differ from the baseline in Panel A to have comparable magnitudes for the investment intensities in Panels B and C (but not
comparable for values or the time to discover). n/a, not applicable.
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hump-shape of R∗
uc(Rfc) becomes less curved. Conse-

quently, the jump risk makes the FC pre-emption more
likely. For example, at the baseline as in Table 1, having
a catastrophic event expected in 10 years (i.e., λj � 0:1),
changes the equilibrium from (Rfc � 28:84,Ruc � 30:12)
to (Rfc � 29:4,Ruc � 24:4) in the FCUC race.

4.2. Winner-Takes-All or Not
Winner-takes-all is a standard assumption in models
on R&D investment with competition (Weeds 2002). It
has the natural interpretation from the patent race lit-
erature that multiple firms strive for developing a
new technology, and the successful innovation by one
firm leads to a patent with exclusive rights of using
the technology and eliminates all possible profits for
the other firms. I relax this assumption from Section 3
and examine if the results change qualitatively.22

Suppose a firm does not have to drop out of the
race when its rival reaches the discovery first. Instead,
the firm can carry on investing in the project with its
chosen investment intensity, and the remaining time
to success still follows the same exponential distribu-
tion with parameter λi. Upon making the first discov-
ery, the winner earns a monopoly profit of πm

i per
period until a second discovery is made by the other
firm, after which the two firms split the market and
each earns a duopoly profit flow of πd

i . Firms make
decisions on Ri simultaneously at the project arrival,
and upon one firm reaching the first success, the other
firm decides whether to continue pursuing the project
or not. The competition between the two firms is simi-
lar to a typical capacity competition. In addition, if the
second firm is an FC firm and it runs out of money
before the discovery, then the competition ends with
the first firm being the monopoly forever. Denote umi �
πm
i =r and udi � πd

i =r. Suppose the monopoly and duop-
oly profits are related to firms’ investment decisions,
and umi (Ri) � Am ·Rβ

i and udi (Ri) � Ad ·Rβ
i , with Ad < Am.

4.2.1. UCUC Competition Without Winner-Takes-All. In
a UCUC competition with the winner-takes-all as-
sumption removed, a firm optimally carries on inves-
ting after a rival firm makes the first discovery if the
continuation value is positive, that is, continue inves-
ting if udi λi −Ri > 0, and stop otherwise. If stopping is
optimal, then the equilibrium is the same as in the set-
ting of winner-takes-all. If continuation is optimal,
then Firm 1’s problem can be written as

V1 � sup
R1

E

{∫ τ1

0
−R1e−rtdt+ 1{τ1<τ2}e

−rτ1um1

+ 1{τ1<τ2}e
−rτ2(ud1 − um1 ) + 1{τ1>τ2}e

−rτ1ud1

}
: (21)

The first term differs from the winner-takes-all case
setting in Equation (8) as the R&D expenditure is paid

until the firm’s own discovery, regardless of which
firm makes the first discovery. The second term is the
same as Equation (8). The third and fourth terms are
absent in the winner-takes-all setting, with the third
term describing the reduction in the future payoff
upon a rival’s discovery and the last term describing
the value of duopoly profits conditional on it is the
second to discover.

Lemma A.3 in Appendix A.13 presents the project
values. One immediate implication is that, in a UCUC
competition where the order of discoveries does not
matter (i.e., um � ud in the model), the firm’s project
value and its problem are identical to a UC monopoly,
and firms do not respond to the investment rates of their
rivals. Instead, the equilibrium investment rates remain
at the monopoly level. Proposition A.2 in AppendixA.13
shows that the best responses in the UCUC competition
withoutwinner-takes-all are downward-sloping on accel-
erable projects, which is opposite to the winner-takes-all
setting (see Proposition 3).23 The difference is caused by a
much higher possibility of reaping the gains of invest-
ment if it is profitable to be the second, as well as the
shortened period to earn monopoly profits for the first
firm that makes the discovery. As a result, the compe-
tition becomes less fierce, and a rival firm’s investment
no longer increases the marginal return of the firm’s
own investment, breaking down the complementarity
between the investment of the two firms. From this
striking comparison of firms’ responses in a simple
UCUC race, I argue that the winner-takes-all setting is
key in driving the results of the race model, making
themodel most applicable to R&D investment.

Figure B.2 illustrates a few examples of best responses
and equilibria of a UCUC race without the winner-
takes-all assumption. They show how the equilibrium
investment rates depend on the relative magnitudes of
the monopoly and duopoly profit parameters Am and
Ad, as well as whether the project is scalable or acceler-
able or both. Plots (a)–(c) confirm that the larger the dif-
ference is between Am and Ad, the lower the equilibrium
R&D rates are, and the more responsive a firm is to the
investment rate of its rival. Comparing with the win-
ner-takes-all scenario (see Plot (d) as an equivalent
graph), both firms invest less intensively without win-
ner-takes-all. Plot (e) demonstrates that turning off
project scalability for accelerable projects reduces equi-
librium investment but does not eliminate the two
firms’ interactions. Plot (f) confirms the intuition that
firms do not respond to the investment rate of its rival
if λ′ � 0.

4.3. Costly Access to External Financing
The extreme assumption on firms’ financial constraints,
coupled with the policy of no earnings accumulation,
force an FC firm to drop an ongoing R&D project once
the AIP cash flow drops below the R&D intensity (Xt <
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R). To understand the impact of this assumption, I
modify the monopoly model and assume the firm can
finance its cash flow shortfall at a cost h(Xt;R,δ), with
the cost parameter δ measuring the extent to which
external financing is expensive.24 Call this a firm with
costly external financing (a CEF firm). The goal is to
check if the firm’s R&D investment is monotonic in δ. If
so, it provides some evidence that firms’ investment in
a more realistic setting with costly external finance is
between the two polar cases of a UC and an FC firm.

The firm’s decision in this modified model is twofold:
(1) the investment intensity R and (2) the abandonment
threshold X at which the firm stops the project. Before
the project abandonment, the firm pays out dividend
Xt −R if it is positive and finances the gap R−Xt other-
wise. Denote τd and τc as the Poisson discovery time
and project abandonment time (τc � inf {t : Xt ≤ X}); the
firm’s problem can be written as the expression of
(A.68) in Appendix A.14. The project value is

V(Xt) � sup
X,R

E

{∫ τc �τd

0
( −R− h(Xt)1{Xt<R}) · e−rtdt

+1{τd<τc}e
−rτd ũ

}
: (22)

Lemma A.4 in Appendix A.14 presents the conditions
on a CEF firm’s optimal investment. Proposition A.3
in the appendix confirms the intuition that the firm
delays its project abandonment further if it can access
cheaper external financing. Table B.1 lists the optimal
(R,X) for various combinations of the AIP cash flow X
and the external financing cost parameter δ, with a
cost function of h � δ · (R−Xt)2. All other parameter
values are set as in Table 1. Consistent with the com-
parative statics of an FC monopoly, the column of
δ�1 or δ�2 shows that a CEF firm increases its
investment intensity as AIP cash flow increases.
New from this analysis, the rows in Table B.1 show
that the CEF firm increases investment intensity
with the cost of external financing at the baseline,
and Ruc < Rcef < Rfc.

4.4. Some Other Assumptions
Firms do not save in the model, which follows earlier
literature on corporate investment such as Hennessy
et al. (2007). This assumption of no liquidity manage-
ment helps keep the model parsimonious and track-
able, arguably without compromising the main
insights. Undeniably, cash holding policy and liquid-
ity management are important (Brown and Petersen
2011; Bolton et al. 2013, 2019; Hugonnier et al. 2015)
and relevant for R&D firms (Schroth and Szalay 2010,
Ma et al. 2020). I argue that the qualitative results in
both the monopoly model and the race model are
likely to hold if the firm(s) can save, with probable
changes in magnitudes. In the extreme case where the

cash-carrying cost is prohibitively high, shareholders
prefer not to save in the form of retaining cash inside
the firm. As the cost or retaining cash reduces, a finan-
cially constrained firm accumulates some internal funds
to increase the likelihood of project survival and invest
at a rate closer to an unconstrained firm. However,
such cash accumulation does not completely eliminate
the FC firm’s incentive to speed up the project develop-
ment if it is accelerable, because saving only delays the
possible burn-out but cannot eliminate it. Plus, using
savings to invest in R&D, as opposed to receiving divi-
dends each period, is risky for shareholders. Unlike
capital investment, an R&D process can have huge
uncertainty on its maturity. Saving all internal cash
flows and spending them on the R&D investment may
lead to nothing in return, especially in a race. The analy-
sis of costly external financing in Section 4.3 shows a
limited utilization of external financing, which mirrors
the limited cash accumulation. If the agency cost of free
cash flow (Jensen 1986) is introduced, which is reason-
able given the intangibility nature of the R&D capital, it
can further dampen the incentive to save.

The analyses throughout the paper emphasize the
investment intensity decision, instead of the project ini-
tiation. It is because the latter decision is straightfor-
ward with the traditional net present value rule. If the
innovative project requires an initial investment cost
κ > 0, then the firm carries out the project upon its
availability if the project value V exceeds the fixed cost
(V > κ). Because the value of a project depends on the
firm’s financial constraints among other things, this
entry cost affects an FC firm differently than a UC firm.

5. Final Remarks
Using a parsimonious continuous-time model, I
examine the interactive impacts of financial constraints
and competition on corporate R&D investment. The
over-investment (in the R&D level decision) caused by
financial constraints in a monopoly setting (Corollary 1)
complements earlier work that shows acceleration in the
investment timing decision (Boyle and Guthrie 2003,
Lyandres and Zhdanov 2010, Bolton et al. 2019). More-
over, the R&D race model in the paper uncovers novel
patterns of firms’ responses to its rival’s R&D investment.
The increasing response to an unconstrained firm’s
investment intensity and the hump-shaped response to a
financially constrained firm’s investment intensity can
be used to explain the FC pre-emption in the equilibrium
of an FCUC race (Corollary 2). Firms’ heterogeneity in
their financing capabilities is thus an important factor in
understanding R&D races, and this model adds to others
that examine the effect of competition on investment
(Weeds 2002, Grenadier 2002, Novy-Marx 2007).

By incorporating both project accelerability (stand-
ard in the patent race literature) and project scalability
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(widely considered in the investment literature), this
paper shows that the characteristics of innovation proj-
ects can significantly impact a firm’s R&D decisions
with the presence of financial frictions and competition
(Propositions 1–4). This study calls for more careful
empirical investigations on R&D investment by consid-
ering the characteristics of the innovation technology
and financial constraints of firms in the race.

A few directions for related future research can be
promising. One regards endogenous choice of innova-
tion technology by firms with different financing fric-
tions, especially if firms can trade off between the
discovery speed and the innovation scale. Another po-
tential regards the possible extension to a general equili-
brium setting in which firms with varying financing
frictions compete in R&D races, and the examination of
the welfare implications of financial constraints may be
fruitful. Studying the optimal liquidity management
policy for R&D firms that face financial constraints and
competition is also important.
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Appendix A. Proofs and Derivations
A.1. Proof of Lemma 1
The proof for Lemma A.1 in Appendix A.12 is more gen-
eral. Setting λj � 0 in Appendix A.12 gives the proof.

A.2. Proof of Proposition 1

Proof. For the UC monopoly, if u′ � λ′ � 0, then R only
appears in the numerator and as a cost term. Thus, the
optimal R is the lowest R needed to maintain the project,
and it is not affected by any parameters in the model.
Otherwise, I use monotone comparative statics on the
optimal Ruc. I first take a log transformation for the objec-
tive function (project value), which does not change R∗

uc .
The range of the investment intensity Ruc in (7) satisfies
the ascendancy property with regard to all of the parameters
analyzed. Next, check whether the increasing differences of
lnVuc(Ruc, s) hold. I omit the subscripts from now on in this

proof:

lnV(R) � ln (uλ−R) − ln (λ+ r) ⇒ ∂lnV
∂R

� (uλ−R)′
uλ−R

− λ′

λ+ r
,

(A.1)

and 0 < β+ γ < 1, ∂u′=∂A � (β=R)(∂u=∂A), ∂u′=∂β � (β=R)(∂u=∂β)+
u=R.
Regarding A and β:

∂2lnV
∂R∂A

�
λ′ ∂u

∂A
+ λ

∂u′

∂A

( )
(λu − R) − (λu − R)′λ ∂u

∂A

(λu − R)2
� λ

(λu − R)2
∂u
∂A

· (1 − β − γ) > 0, (A.2)

∂2lnV
∂R∂β

� λ

(λu − R)2
∂u
∂β

· (1 − β − γ) + uλ
R

(λu − R)−1 > 0 if β ≠ 0:

(A.3)

Regarding η:

∂2lnV
∂R∂η

� u(1 − β − γ)
(λu − R)2 − rγ

R(λ + r)2
( )

× ∂λ

∂η
: (A.4)

If λ′ � 0, thus γ � 0, then ∂2lnV=∂R∂η > 0. Otherwise,
Expression (A.4) cannot be signed.
Regarding γ:

∂2lnV
∂R∂γ

� u · (1 − β − γ)
(λu − R)2 − rγ

R(λ + r)2
( )

· ∂λ
∂γ

+ uλr + λR
R(uλ − R)(λ + r) :

(A.5)

If λ′ � 0, thus γ�0, ∂2lnV=∂R∂γ is not defined. Otherwise,
Expression (A.5) cannot be signed. If λ′ > 0⇒ γ > 0, then
∂2lnV=∂R∂η > 0 implies ∂2lnV=∂R∂γ > 0 because the latter
has an additional and positive term.
Regarding r: If λ′ � 0 and u′ > 0, then u′λ � 1⇒ R∗

uc �
1=Aβλ
( ) 1

β−1, so ∂R∗
uc=∂r � 0. Otherwise

∂2lnV
∂R∂r

� λ′

(λ+ r)2 > 0 if λ′ > 0: (A.6)

According to Topkis’s theorem (Topkis 1978; or theorem
2.3 in Vives 1999 or Athey 2002), the increasing differen-
ces of the lnV(R; s), which is an increasing transformation
of V(R; s), s ∈ {A,η,β,γ}, coupled with the ascendancy
property of the action domain [R(s), R̄(s)], gives us the
comparative statics in the proposition. w

A.3. Proof of Proposition 2

Proof. Define

ζ � 1 − X
R

( )α
,sA � 1

2
− μ

σ2

( )2
+ 2(λ + r)

σ2
: (A.7)

Use α′ as the notation for the first- order derivative with
regard to R (as opposed to that in Lemma 3),

α � 1
2
− μ

σ2
−

���
sA

√
, α′ � − λ′

σ2
���
sA

√ : (A.8)

If u′ � λ′ � 0, then Rfc appears only in the cost term and in
ζ of Vfc, both having a negative impact on Vfc. Thus, R∗

fc �
R is optimal, and it is not influenced by any parameters
in the model. Otherwise, the range of Rfc in (7) satisfies
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the ascendancy property with regard to all of the parame-
ters analyzed. I use the monotone comparative statics and
check the cross derivatives of the log-transformation of
the project value lnVfc(R, s). I omit the subscripts from
this point on in the proof.

lnV(R) � ln (uλ−R) − ln (λ+ r) + lnζ⇒ ∂lnV
∂R

� (uλ−R)′
uλ−R

− λ′

λ+ r
+ ζ′

ζ
(A.9)

Regarding A,β : Denote f � ζ′=ζ. Expression (A.9) differs
from Expression (A.1) only by f, thus

∂f
∂A

� ∂f
∂β

� 0⇒ ∂2lnV
∂R∂A

> 0, and
∂2lnV
∂R∂β

> 0 if u′ > 0:

(A.10)

Regarding X: Given ζ′ � (ζ− 1) α′lnX=R− α=R( ), ∂ζ=∂X �
−α=X X=R( )α, ∂ζ′=∂X � ζ− 1=X α′ αlnX=R+ 1( ) −α2=R

[ ]
, and

ζ− 1 < 0:

∂f
∂X

�
∂ζ′

∂X
ζ− ζ′

∂ζ

∂X
ζ2

�
(ζ− 1) α′ αln

X
R
+ ζ

( )
− α2

R

( )
ζ2X

> 0

⇒ sign
∂2lnV
∂R∂X

( )
� sign

α2

R
−α′ αln

X
R
+ ζ

( )( )
: (A.11)

If λ′ � 0⇒ α′ � 0⇒ ∂2lnV=∂R∂X > 0. If λ′ > 0⇒ α′ < 0,

then as X ↑↑ , ∂2lnV=∂R∂X < 0, and as X→ R, ∂2lnV=

∂R∂X > 0.

Regarding μ: notice ∂α=∂μ � 1=σ2 sA −1=2 1=2−μ=σ2
( )− 1

[ ]
< 0, and

∂α′

∂μ
� λ′

2σ2
sA−2

3 × ∂sA

∂μ︸︷︷︸
� if μ≤σ2

2

> 0,
∂ζ

∂μ
� ∂ζ

∂α

∂α

∂μ
> 0, (A.12)

∂2lnV
∂R∂μ

� ∂2lnζ
∂R∂μ

�
∂
ζ′

ζ
∂μ

�
∂ζ′

∂μ
ζ− ζ′

∂ζ

∂μ

ζ2
: (A.13)

The numerator of the expression after the last equal sign
of Expression (A.13) can be rewritten as

α′ln
X
R
− α

R

( )
∂ζ

∂μ
+ ζ(ζ − 1)

∂ α′ln
X
R
− α

R

( )
∂μ

: (A.14)

In Equation (A.14), <0 if X is large and λ′ > 0. It is because
the first term is negative when X ↑↑, and the second term

ζ(ζ− 1)
∂ α′ln

X
R
− α

R

( )
∂μ

� ζ(ζ− 1)ln X
R
∂α′

∂μ
− ζ(ζ− 1)

R
∂α

∂μ
< 0:

(A.15)
If λ′ � 0⇒ α′ � 0, and u′ > 0, then the numerator of the
expression after the last equal sign of (A.13) can be rewritten as

−α

R
∂ζ

∂α

∂α

∂μ
− ζ(ζ− 1)

R
∂α

∂μ
� − 1

R
∂α

∂μ
(ζ− 1) αln X

R
+ ζ

( )
> 0 if X is large: (A.16)

Regarding σ2: for simplicity replace σ2 with the notation of
σ for this comparative statics analysis. Only the last term of

Equation (A.9) is relevant and the numerator of the expres-
sion on ∂2lnV=∂R∂σ, which is similar to Equation (A.14),
can be rewritten as

α′ln
X
R
− α

R

( )
∂ζ

∂σ
+ ζ(ζ− 1)

∂ α′ln
X
R
− α

R

( )
∂σ

:

A set of sufficient conditions for the first term to be negative are
if X is large, and μ <sA −1=2 · 1=2−μ=σ−λ− r

( )
. A sufficient

condition for the second term to be negative issA > 1=2 −(
μ=σ)−(λ+ r)=σ. These conditions can be satisfied at the same
time, andwhen they are satisfied ∂2lnV=∂R∂σ < 0.
Regarding r : Focus on the last term of Expression (A.9):

∂f
∂r

�
∂ζ′

∂r
ζ− ζ′

∂ζ

∂r
ζ2

�
α′ln

X
R
− α

R

( )
∂ζ

∂r
+ ζ(ζ− 1)

∂ α′ln
X
R
− α

R

( )
∂r

ζ2
,

(A.17)
if λ′ � 0⇒ α′ � 0, the numerator of Equation (A.17) can be
rewritten as

ζ− 1
R

−αln X
R
+ ζ

[ ]
∂α

∂r
> 0, (A.18)

with ∂α=∂r < 0 and ∂ζ=∂r � ∂ζ=∂α × ∂α=∂r � (ζ− 1)lnX=R ×
∂α=∂r used in the derivation. Using monotone comparative
statics, and together with Proposition 1, ∂R∗

fc=∂r > 0 for
λ′ � 0. This is in contrast with ∂R∗

uc=∂r � 0 when λ′ � 0.
If λ′ > 0, by using α′ < 0, ∂ζ=∂r > 0, ∂α′=∂r � λ′=σ4sA −32

> 0, the two terms associated with α′ in the numerator of
Equation (A.17) can be signed:

α′ln
X
R
· ∂ζ
∂r

+ ζ(ζ− 1)∂α
′

∂r
· ln X

R
< 0: (A.19)

Because ∂α=∂r � −(1=2)sA −1=2(∂sA=∂r), then ∂α′=∂r � −λ′=σ2 ·
∂α= ∂rsA −1; thus, Equation (A.19) can be rewritten as

ln
X
R
(ζ− 1)∂α

∂r
α′ln

X
R
− ζ

λ′

σ2
sA −1

[ ]
< 0: (A.20)

The sign of (Equation (A.20) + Equation (A.18)) gives us
the sign of the effect of r on increasing the marginal
return of Rfc from the project survival probability ζ term.
The summation of those two terms is

∂α

∂r
(ζ − 1) 1

R
−αln X

R
+ ζ

[ ]
+ α′ln

X
R
− ζ

λ′

σ2
sA −1

( )
: (A.21)

Given λ′ � λγ=R, λ=σ2sA −1 < 1=2,sA 1=2 > −α, and replace α′
by Equation (A.8), the previous expression can be rear-
ranged to have the sign depend on −αlnX=( R+ ζ)
· 1=R− γ=2R
( )

, which is positive as γ < 1. The term λ′=(λ +
r)2 is also positive; thus, the sign of Eq:(A:21)=ζ2 +λ′=
(λ+ r)2 is positive, and ∂R∗

fc=∂r > 0 for λ′ > 0.
Regarding η : Its effect on the first two terms of Equation (A.9) is
the same as in the UC monopoly, thus let’s focus on the last
term:

∂f
∂η

�
∂ζ′

∂η
ζ− ζ′

∂ζ

∂η

ζ2
�

α′ln
X
R
− α

R

( )
∂ζ

∂η
+ ζ(ζ− 1)

∂ α′ln
X
R
− α

R

( )
∂η

ζ2
:

(A.22)
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If λ′ � 0, then α′ � 0. Because ∂ζ=∂η � ∂ζ=∂α · ∂α=∂η � (ζ− 1)
ln X=R( ) · ∂α=∂η and ∂α=∂η < 0:

∂f
∂η

�
−α∂ζ

∂η
− ζ(ζ− 1)∂α

∂η

Rζ2
�

−αln X
R

( )
− ζ

( )
(ζ− 1)∂α

∂η

Rζ2
⇒ sign

∂f
∂η

( )
� sign −αln X

R

( )
− ζ

( )
:

As X ↑↑ , ∂f=∂η > 0, and as X→ R, ∂f=∂η < 0 and can over-
turn the positive effect of η on R for a UC firm, causing
∂R∗

fc=∂η < 0. However, if λ′ > 0, two components of the
numerator of Equation (A.22) are

∂ζ

∂η
� X

R

( )α
ln

X
R

( )
sA−1=2 ∂λ

∂η
=σ2,

∂α

∂η
� −sA

−1=2

σ2
∂λ

∂η
,

∂α′

∂η
� γ

Rσ2
sA −1=2 ∂λ

∂η

λ

σ2sA
− 1

( )
,

∂ α′ln
X
R
− α

R

( )
∂η

� ln
X
R

γ

Rσ2
sA−1=2 ∂λ

∂η

λ

σ2sA
− 1

( )
+sA

−1=2

σ2
∂λ

∂η

1
R

�sA
−1=2

σ2
∂λ

∂η

1
R

ln
X
R

λ

σ2sA
− 1

( )
γ

σ2
+ 1

( )
:

The numerator of Equation (A.22) thus equals

sA −1=2 1
σ2

∂λ

∂η
α′ln

X
R
− α

R

( )
X
R

( )α
ln

X
R

( )
+ ζ(ζ − 1)

[
ln

X
R

λ

σ2sA
− 1

( )
γ

σ2
+ 1

( )
1
R

]
: (A.23)

Equation (A.23) cannot be signed in general because, when the
first term tends to be positive, then second term is likely to be
negative and vice versa. The sign of ∂2lnV=∂R∂η is likely to
be nonmonotonic (and the numerical exercises confirm it).
Regarding γ : focus again on the last term:

∂f
∂γ

�
α′ln

X
R
− α

R

( )
∂ζ

∂γ
+ ζ(ζ− 1)

∂ α′ln
X
R
− α

R

( )
∂γ

ζ2
: (A.24)

If λ′ � 0, then it is meaningless to discuss ∂2lnV=∂R∂γ
because γ � 0. Otherwise,

∂α

∂γ
� −sA

−1=2

σ2
∂λ

∂γ
,

∂ζ

∂γ
� X

R

( )α
ln

X
R

( )
sA −1=2 ∂λ

∂γ
=σ2,

∂α′

∂γ
� γ

Rσ2
sA−1=2 ∂λ

∂γ

λ

σ2sA
− 1

( )
− λ

σ2R
sA −1

2:

Therefore,

∂ α′ln
X
R
− α

R

( )
∂γ

� ln
X
R

γ

Rσ2
sA −1=2 ∂λ

∂γ

λ

σ2sA
− 1

( )
− λ

σ2R
sA−1

2

( )
+sA

−1=2

σ2
∂λ

∂γ

1
R

�sA
−1=2

σ2
∂λ

∂γ

1
R

ln
X
R

λ

σ2sA
− 1

( )
γ

σ2
+ 1

( )
−ln X

R
λ

σ2R
sA −1

2:

The numerator of Equation (A.24) equals the following,
which cannot be signed generally:

α′ln
X
R
− α

R

( )
X
R

( )α
ln

X
R

( )
sA −1=2 ∂λ

∂γ
=σ2

+ ζ(ζ − 1)sA
−1=2

σ2
∂λ

∂γ

1
R

ln
X
R

λ

σ2sA
− 1

( )
γ

σ2
+ 1

( )
− ln

X
R

λ

σ2R
sA −1

2

[ ]
:

The expression ∂R∗
fc=∂γ is nonmonotonic, and it is again the

case that if ∂2lnV=∂R∂η > 0, then ∂2lnV=∂R∂γ > 0 for sure.
Similar to the proof of Proposition 1, I use Topkis’s the-

orem (Topkis 1978 or theorem 2.3 in Vives 1999) to get
the comparative statics from the increasing differences
and the ascendancy property of the action domain when
the cross partial derivatives ∂2lnV=∂R∂s can be signed. w

A.4. Proof of the First and Last Statements of Corollary 1

Proof. For the first statement: the proof in Appendix A.3 that
shows ∂R∗

fc=∂X > 0 when λ′ � 0 can be used directly. The rele-
vant part is Equation (A.11) and the analysis that follows plus
the application of monotone comparative statics. As X ↑↑
, R∗

fc converges to R∗
uc. The monotonic (and positive) effect of

X on R∗
fc thus gives us R

∗
uc > R∗

fc. An alternative way of prov-
ing it is to check the first-order conditions for FC versus UC
monopoly firms. For FC, an internal solution satisfies

∂ 1− X
R

( )α( )
∂R

× u(R)λ−R
λ+ r

+
∂
u(R)λ−R

λ+ r
∂R

× 1− X
R

( )α( )
� 0:

(A.25)

The first of the two terms is negative, because u(R)λ > R (for
a firm to start the project), and the derivative of 1− X=R( )α1

with regard to R is always negative. Given 1− X=R( )α1 > 0, it
has to be u′(R)λ− 1 > 0 at R∗

fc for Equation (A.25) to hold.
From a UC firm’s problem, u′(R)λ− 1 � 0 at R∗

uc. The concav-
ity of f indicates R∗

fc < R∗
uc. The second-order derivative shows

that a sufficient condition for Vfc to be concave is α < −1.
For the last statement: the proof in Appendix A.3 that

shows ∂R∗
fc=∂μ < 0 if X is large and λ′ > 0 can be used

directly. The relevant part is Equation (A.13) to Equation
(A.15). Both X and μ do not affect R∗

uc, but as μ ↓ and X
being large, R∗

fc ↑ and can exceed R∗
uc. Appendix A.3 demon-

strates the relation between R∗
fc and γ is nonmonotonic. A

small to moderate γ is required as λ′ > 0 is necessary. w

A.5. Proof of Lemma 2

Proof. The two firms’ problems are symmetric, so proving
the project value for Firm 1 is sufficient:

sup
R1

E 1{τ1<τ2}e
−rτ1 ũ1 −

∫ τ1 � τ2

0
R1e−rtdt

( )
� sup

R1

E

∫ τ2

0
λ1ũ1e−(r+λ1)τ1dτ1 −

∫ τ2

0
R1e−(r+λ1)tdt

( )
� sup

R1

E

∫ ∞

0
(λ1u1 − R1)1{t<τ2}e

−(r+λ1)tdt

� sup
R1

u1λ1 − R1

λ1 + λ2 + r
:
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Alternatively, use the Bellman equation (i.e., the required
rate of return for the investment equals the expected rate of
capital gain minus the flow payment plus the expected prob-
ability weighted payoff at project discovery and subtract the
expected probability weighted loss at rival’s discovery) to get

rV1 � E$ V1 − R1 + λ1(u1 − V1) + λ2(0 − V1):
Because the project value does not depend on its own or its
rival’s cash flow, and the project value is not time depend-
ent, E$ V1 � 0. Thus, V1 is as described in the lemma. w

A.6. Proof of Proposition 3
I first prove that with the project accelerability (λ′ > 0), the
UCUC race is a (strict) log-supermodular game (Milgrom and
Roberts 1990, Vives 1999). A two-player one-dimension game
is log-supermodular if the action sets are compact, and the
smooth payoff function πi(ai, aj) has the following property:
lnπi(ai, aj) has increasing differences in actions (ai, aj), that is,

πi · ∂
2πi

∂ai∂aj
− ∂πi

∂ai
· ∂πi

∂aj
≥ 0: (A.26)

Proof. Because of the symmetry of the game, to prove the
UCUC race strictly log-supermodular, it is sufficient to
show the following inequality for Firm 1:

V1 · ∂2V1

∂R1∂R2
− ∂V1

∂R1
· ∂V1

∂R2
> 0 (A.27)

From the project values in Lemma 2:

∂V1

∂R2
� − u1λ1 − R1

(r + λ1 + λ2)2
∂λ2

∂R2
,

∂V1

∂R1
� (r + λ2) · (uλ1 − R1)′ − (λ1 − R1λ

′
1 − u′1λ

2
1)

(r + λ1 + λ2)2
,

∂2V1

∂R1∂R2
� ∂λ2

∂R2

(u1λ1 − R1)′
(r + λ1 + λ2)2

− 2

(r + λ1 + λ2)3
(

· [(r + λ2) · (uλ1 − R1)′ − (λ1 − R1λ
′
1 − u′1λ

2
1)]

)
:

Putting them together:

V1
∂2V1

∂R1∂R2
− ∂V1

∂R2

∂V1

∂R1

� V1 · ∂λ2

∂R2

(u1λ1 −R1)′
(r+λ1 +λ2)2

− 2

(r+λ1 +λ2)3
(

· [(r+λ2) · (uλ1 −R1)′ − (λ1 −R1λ
′
1 − u′1λ

2
1)]

)
+ u1λ1 −R1

(r+λ1 +λ2)2
∂λ2

∂R2
· (r+λ2) · (uλ1 −R1)′ − (λ1 −R1λ

′
1 − u′1λ

2
1)

(r+λ1 +λ2)2

� ∂λ2

∂R2
· 1

(r+λ1 +λ2)4
((u1λ1 −R1)(u1λ1 −R1)′ · (r+λ1 +λ2)

−(u1λ1 −R1) · [(r+λ2) · (u1λ1 −R1)′ − (λ1 −R1λ
′
1 − u′1λ

2
1)])

� ∂λ2

∂R2
· u1λ1 −R1

(r+λ1 +λ2)4
((u1λ1 −R1)′ ·λ1 + (λ1 −R1λ

′
1 − u′1λ

2
1))

� ∂λ2

∂R2
· u1λ1 −R1

(r+λ1 +λ2)4
(u′1(λ2

1 −λ2
1) +λ′

1(u1λ1 −R1))

� ∂λ2

∂R2
· (u1λ1 −R1)2
(r+λ1 +λ2)4

λ′
1 > 0 if λ′

1 > 0 and
∂λ2

∂R2
> 0: (A.28)

Equation (A.28) shows the cancellation of u′1, which suggests
that regardless of the sign of u′1, this is a (strict) log-
supermodular game as long as the project is accelerable. The
application of theories on supermodular games can be
extended by considering increasing transformations of
the payoff, including log-supermodular games (Milgrom
and Roberts 1990, Vives 2007). Thus, by Topkis’s theorem
(Topkis 1978, and relatedly, Shannon 1995), Firm i’s best
response is increasing in its rival’s action, that is, dRi(R−i)=
dR−i > 0. By Tarski’s fixed point theorem (Tarski 1955 and
in the review of Amir 2005), the existence of a pure-strategy
equilibrium of the game is guaranteed. Alternatively, apply-
ing Topki’s theorem stated as theorem 2.5 in Vives (1999)
proves the existence of equilibrium.
For a scalable-only project (i.e., u′ > 0, λ′ � 0), it is

straightforward to see the equilibrium investment rates
satisfy λiu′i � 1, for i ∈ {1, 2}. Because of the monotonicity
of u′i , the equilibrium is unique. w

A.7. Pure Nash Equilibrium in UCUC Race in Section 3.1
A.7.1. Characterization of a Symmetric Pure Nash Equili-
brium. The investment intensities in a symmetric pure
Nash equilibrium satisfy the first-order condition of Equa-
tion (A.30).

Proof. Focus on Firm 1’s value in Equation (9), we have

∂V1

∂R1
� (r + λ2) · (u1λ1 − R1)′ − (λ1 − R1λ

′
1 − u′1λ

2
1)

(r + λ1 + λ2)2
: (A.29)

At a symmetric equilibrium, R1 � R2,λ1 � λ2. The condition
for a symmetric equilibrium can be written as the following,
with subscripts removed to be general for both firms:

sH � ∂V1

∂R1

∣∣∣∣∣
λ2�λ1�λ

� (r+λ) · (uλ−R)′ − (λ−Rλ′ − u′λ2)
(r+ 2λ)2 � 0:

(A.30)

It can be rewritten as

(r + 2λ) · (uλ − R)′ � (uλ − R) · λ ⇒ R − uλ

� (r + 2λ)(R − uλ)′
λ′ , (A.31)

or with the functional forms in Equation (2):

R − AηRγ+β � (r + 2ARγ)(1 − Aη(β + γ)Rβ+γ−1)
ηγRγ−1 : (A.32)

Because UCUC race is a log-supermodular game, the exis-
tence of the pure strategy equilibrium is ensured by Topkis’s
theorem as mentioned in Appendix A.6. The second-order
condition for a symmetric equilibrium is

sG � (uλ)′′λ′ + λ′′(R − uλ)′
(r + 2λ)λ′ < 0: (A.33)

w

A.7.2. Uniqueness of the UCUC Equilibrium.
The symmetric Nash equilibrium is unique with Conditions
(A.34), (A.35), and (A.39). With the functional forms of u
and λ in Equation (2), the conditions that ensure the unique-
ness of the equilibrium are Conditions (A.36) and (A.39).
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Proof. IfsH (R � R � 1) > 0,sH (R � R̄) < 0, withsH decreases
in R andsG < 0, then the R that solvessH � 0 is unique. The
first two conditions are

sH (R � R � 1) � (r+ 2λ)(uλ−R)′ − (uλ−R)λ′

(r+ 2λ)2
∣∣∣∣
R�R�1

> 0,

(A.34)

sH (R � R̄) � (r+λ) · (u′λ+ uλ′ − 1) − (λ−Rλ′ − u′λ2)
(r+ 2λ)2

∣∣∣∣
uλ�R

< 0:

(A.35)

With the assumptions in Equation (2), Conditions (A.34)
and (A.35) can be rewritten as

(r + 2η)(Aη(γ + β) − 1) > (Aη − 1)γη, (A.36)

(r + λ) · (β + γ − 1) − (λ − γλ − βλ)
(r + 2λ)2

� (r + 2λ) · (β + γ − 1)
(r + 2λ)2 < 0 (guaranteed): (A.37)

For the third condition, because

∂sH
∂R

� (uλ − R)′λ′

(r + 2λ)2 +sG , (A.38)

The condition for∂sH =∂R ≤ 0 is not weaker than the condi-
tion forsG ≤ 0. Use (uλ−R)′ � λ−Rλ′ − u′λ2=r+λ,

∂sH
∂R

� (uλ)′′(r+λ)
(r+ 2λ)2 +Rλ′′λ+λ′λ−Rλ′2

(r+λ)(r+ 2λ)2

+Rrλ′′ + u′′λ2(r+λ) + u′λ′λ(2r+λ)
(r+λ)(r+ 2λ)2 < 0: (A.39)

If u′ � 0, then Condition (A.39) is guaranteed by decreas-
ing hazard rate elasticity (Nti 1999). However, when
u′ > 0, Condition (A.39) is needed to ensure a unique sym-
metric equilibrium of the UCUC race. w

A.8. Proof of Proposition 4

Proof. The proof of Proposition 4(1) is omitted, as it is
obvious. If u′ > 0 and λ′ � 0, the rival’s investment does not
affect the firm value; thus, both firms invest at their
monopoly level in the equilibrium (with r being replaced
by r+λ−i), and comparative statics in Proposition 1 apply
for own firm tech-parameters. The rival firm’s tech-parame-
ters only matter if they affect the discount rate via λ−i, that
is, η−i.

λ′ > 0: Given this is a strict log-supermodular game (see
Appendix A.6), the equilibrium investment intensities
(R∗

1,R
∗
2) increase in a model parameter s if the value func-

tion lnVi(Ri,R−i; s) has increasing differences in (Ri, s), or
∂2lnVi=∂Ri∂s ≥ 0 (theorem 2.3 and 2.4 in Vives 1999).
Proving it for one firm (i.e., ∂2lnVi=∂Ri∂s ≥ 0) is sufficient to
get comparative statics for both firms (i.e., ∂R∗

i=∂s > 0 and
∂R∗−i=∂s > 0) because the game is log-supermodular. Because
of the symmetry of the game, let’s just check V1 for the

parameters A1, β1, η1, and γ1. Use the notation “′“to denote
the first order derivative regarding R1:

∂lnV1

∂R1
� (λ1u1 −R1)′

λ1u1 −R1
− λ′

1

λ1 +λ2 + r
:

With the functional forms of u and λ from Equation (2), I
check whether ∂2lnV1=∂R1∂s ≥ 0 holds for own firm’s pro-
ject characteristics (this is almost identical to the proof of
Proposition 1 in Section A.2, so the proof is succinct):

∂2lnV1

∂R1∂A1
� λ1

(λ1u1 −R1)2
∂u1
∂A1

· (1− β− γ) > 0, (A.40)

∂2lnV1

∂R1∂β1
� λ1

(λ1u1 −R1)2
∂u1
∂β1

· (1− β− γ)

+ u1λ1

R1
(λ1u1 −R1)−1 > 0 for β > 0, (A.41)

∂2lnV1

∂R1∂η1
�

(
u1(1− β− γ)
(λ1u1 −R1)2

− (λ2 + r)γ
R1(λ1 +λ2 + r)2

)
· ∂λ1

∂η1
> 0 at least for small γ, (A.42)

∂2lnV1

∂R1∂γ1
� u1

(λ1u1 −R1)2
· (1− β− γ) − (λ2 + r)γ

R1(λ1 +λ2 + r)2
( )

× ∂λ1

∂γ1

+ λ1(u1λ2 + u1r+R1)
R1(λ1 +λ2 + r)(λ1u1 −R1) > 0 at least for small γ:

(A.43)

The derivations show that the key drives for the increasing
comparative statics in the UCUC race are the decreasing returns
to scale, that is, β+ γ < 1, and ∂λi=∂ηi > 0, ∂λi=∂γi > 0. w

A.9. Proof of Lemma 3
The proof for Lemma A.2 in Appendix A.12 is more gen-
eral. Setting λj � 0 in Appendix A.12 proves Lemma 3.

A.10. Proof of Corollary 2

Proof. Regarding the monotonicity of R∗
1(R2), that is, R∗

fc(Ruc),
write the value function in Equation (12) as V1(R1,R2;X1) �
u1 ·λ1 −R1=r+λ2 +λ1( ) × (1− X1=R1( )α′

1 ). Obviously, ifλ′ � 0,
V1 does not depend on R2; thus, ∂R∗

1=∂R2 � 0. If λ′ > 0, then
R2 affects V1 through the term of λ2 (and the term of α′

1 via
λ2). Observe that r and λ2 always appear together in V1 in
the form of summation, the directional effect of λ2 on R∗

1 is
the same as the effect of r on R∗

1. ∂Rfc=∂r > 0 from Proposi-
tion 2; therefore, ∂R1=∂λ2 > 0 and ∂R1=∂R2 � ∂R1=∂λ2 ×
∂λ2=∂R2 > 0.
Regarding R∗

2(R1), rewrite V2(R1,R2;X1) �sB +sC :

V2(R1,R2;X1) � λ2u2 −R2

λ2 +λ1 + r
· 1− X1

R1

( )α′
1

( )
︸������������︷︷������������︸

sB

+λ2u2 −R2

λ2 + r
· X1

R1

( )α′
1

︸��������︷︷��������︸
sC

:

(A.44)

It is obvious that if λ′ � 0, V2 does not depend on R1;
thus, ∂R∗

2=∂R1 � 0. Next, I prove that if λ′ > 0, ∂R∗
2(R1)=

∂R1 < 0 when R1 is large (and X1 is not too large, i.e., it is
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not that X� (Aη) 1
1−(β+γ)). The strict concavity of the natural

logarithmic function implies lnV2 < lnsB + lnsC . Thus,
∂2lnV2=∂R1∂R2 ≤ ∂2lnsB =∂R1∂R2 + ∂2lnsC =∂R1∂R2. Monoto-
nicity of the same function implies ∂2lnV2=∂R1∂R2 ≥
∂2lnsB =∂R1∂R2 if sC > 0. Applying ∂f (x)g(x)=∂x � f (x)g(x)
g′ln f + (g=f )f ′( )

gives ∂(1− X1=R1( )α′
1 )=∂R1 � − X1=R1( )α′

1 ∂α′
1=∂R1)(

ln (X1=R1) − (α′
1=R1)) and ∂ 1− X1=R1( )α′

1

( )
=∂R2 � − X1=R1( )α′

1 · ln(X1)=
(R1∂α′

1=∂R2). WithsM ≡ 1=2−μ=σ2
( )2 + 2(λ+ r)=σ2 defined, and re-

call R1 ≤X1 for the constrained firm,

∂2lnsB

∂R1∂R2
� λ′

1λ
′
2

(λ1 +λ2 + r)2 +
∂
∂α′

1

∂R1
ln

X1

R1
− α′

R1

( )
∂R2

−
∂

∂α′
1

∂R1
lnX1

R1
−α′
R1

( )
1− X1

R1

( )α′
1

∂R2
,

(A.45)

� λ′
1λ

′
2

(λ1+λ2+r)2+ ln
X1

R1

λ′
1λ

′
2

σ4
sM

−2
3+λ′

2

σ2
sM

−1
2 1
R1

−
ln

X1

R1

λ′
1λ

′
2

σ4
sM

−2
3+λ′

2

σ2
sM

−1
2 1
R1

1− X1

R1

( )α′
1

( ) +
∂α′

1

∂R1
ln

X1

R1
−α′

R1

( )
× X1

R1

( )α′
1 · lnX1

R1

∂α′
1

∂R2

1− X1

R1

( )α′
1

( )2 ,

(A.46){
≥0 ifR1 is small (e:g:R1→R),
<0 ifR1→X1 i:e: lnX1=R1→0( ), andX1∈[R1 ,R̄1]:

(A.47)

Meanwhile,

∂2lnsC
∂R1∂R2

� ln
X1

R1

∂2α′
1

∂R2∂R1
− ∂α′

1

∂R2

1
R1

� ln
X1

R1

λ′
1λ

′
2

σ4
sM

−2
3 + λ′

2

σ2
sM

−1
2 1
R1

> 0:

Recall the economic interpretation ofsB is the probability
weighted project value in the scenario of τ1 �τ2 ≤ τc1,
andsC corresponds to the scenario of τ1 �τ2 > τc1. As R1 →
X1, τc1 happens almost instantly, which means the signifi-
cance ofsC in V2 becomes negligible, and ∂2lnV2=∂R1∂R2 ≤
∂2lnsB=∂R1∂R2 + ∂2lnsC=∂R1∂R2 < 0. The decreasing differ-
ences coupled with the nonincreasing property of the
action domain R2 ∈ [R2(R1), R̄2(R1)] give the decreasing
R∗
2(R1) when R1 is large (Amir 2005). However, if

(Aη)1=1−(β+γ) � X, that is, the upper bound of the range of
Rfc that makes the project value positive is much smaller
than X, so that R1 → X1 is impossible on the domain of
R∗
2(R1), then R∗

2(R1) is monotonically increasing on its
domain. Finally, the monotonicity of R∗

2(R1) is obvious
if R1 is small, and it is from ∂2lnV2=∂R1∂R2 ≥ ∂2lnsB=
∂R1∂R2 > 0 as sC > 0 plus the ascendancy property of the
action domain (Topkis 1978). The seemingly contradiction
of the decreasing/ascendancy property of the same action
domain is because the domain does not depend on the
rival’s investment.

Next, proving the existence of at least one pure strategy
equilibrium is straightforward by using the shapes of the

best responses in an FCUC race. Note that R∗
i (Rj) is close

to Firm i’s monopoly investment intensity when Rj � Rj. If
X is not too large that R∗

2(R1) follows the hump shape, then
it is obvious that the two best response functions have
exactly one intersection. If X is large such that R∗

2(R1) is
monotonically increasing on the domain of R1 ∈ [R1, R̄1],
then in the same spirit of Taski’s fixed point theorem, the
existence of equilibrium is guaranteed. Without changes in
convexity/concavity of the best response on its domain, the
uniqueness of equilibrium is obtained. This equilibrium can
be graphically shown to be stable. w

A.11. Numerical Procedures
When the analytical expressions for firm values are available,
the usual software can be used to find the optimal investment
intensities numerically. To solve the equilibrium of the FCFC
race in Section 3.3, I used COMSOL Multiphysics software (v.
6.0. www.comsol.com. COMSOL AB, Stockholm, Sweden)
with the following steps. More details can be found in the
online appendix.

1. Given a pair of (R1,R2), solve V1(X1,X2 | R1,R2) on the
whole domain of (X1,X2) numerically, using the PDE in
Equation (15) and the boundary conditions in Equation (16)
to Equation (19). Record V1(X0

1,X
0
2 | R1,R2), where X0

1,X
0
2 rep-

resent a point of interest, for example, the pair of baseline
AIP cash flows shown in Table 1.

2. Fix R2, change R1 to any R̂1. Repeat Step 1, and record
V1(X0

1,X
0
2 | R̂1,R2). Keep repeating this step, and find the opti-

mal R1 for the given R2: R∗
1 � argmaxR1

V1(R1 | X0
1,X

0
2,R2).

3. Change R2, follow Steps 1 and 2 for this newR2. Repeat for
a wide range of R2 and find Firm 1’s optimal choice each time.
This leads to the best responsesR∗

1(R2). ObtainR∗
2(R1) similarly.

4. Find the pure Nash equilibrium (R1,R2) by finding the
fixed point of the best response correspondences such that
R∗
2(R̄1 ) � R2 and R∗

1(R̄2 ) � R1.

A.12. Results and Proofs of Section 4.1 with a Jump
Risk in AIP Cash Flow
Redefine τc in Equation (3) of the monopoly model as
τc ≡ inf {t : Xt < X}, where X is the abandonment threshold
of an FC monopoly X ≥ Rfc. The monopoly firm’s problem
can be written as

An FC monopoly : sup
R∈(0,X],X

E

∫ τj

0
e−rtXtdt

[

+
∫ τd �τc �τj

0
e−rt(−R)dt+ e−rτd ũ1{τd<τc �τj}

]
A UC monopoly : sup

R>0
E

[∫ τj

0
e−rtXtdt

+
∫ τd

0
e−rt(−R)dt+ e−rτd ũ

]
: (A.48)

Lemma A.1. With a jump risk that wipes out all future AIP
cash flow and happens at a first Poisson arrival with intensity
λj, the monopoly R&D project values are

Vuc(X) � sup
R>0

u(R)λ(R) − R
λ(R) + r

, (A.49)

Vfc(X) � sup
R∈(0,X]

u(R)λ(R) − R
λ(R) + λj + r

1 − X
R

( )α( )
, (A.50)
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for a UC firm and an FC firm, respectively, where α �
1=2−μ=σ2−

���������������������������������������������
1=2−μ=σ2
( )2 + 2(λ(R) +λj + r)=σ2

√
.

Proof. With the jump risk, the AIP cash flows follow a
mixed Poisson-Wiener process of the form dX=X � μdt+
σdZ+ dqj, where dqj takes the value of −1 with probability
λdt and 0 with probability 1−λdt. By Itô’s lemma, the
expected change in the project value given any choice of
R is

E$ V � ∂V
∂X

μX+ 1
2
∂2V
∂X2 σ

2X2 +λj[V(0) −V]
{ }

dt:

At the optimal strategy, the required rate of return for
investing in the project should equal to the expected rate
of capital gain minus the flow payment to the project
and plus the expected payoff of the project at discovery
while taking the discovery probability into considera-
tion. The HJB equation on the project value can be writ-
ten as

rV � E$ V
dt

− R + λ(u − V): (A.51)

A.12.1. UC. Equation (A.49) is from Equation (A.51) by
setting VX � 0, VXX � 0, and V(0) � V. Equation (A.49) can
also be obtained by calculating supR>0E(e−rτd ũ − ∫ τd

0
Re−rtdt).

A.12.2. FC. Rewrite Equation (A.51) as

(r + λ + λj)V � ∂V
∂X

μX + 1
2
∂2V
∂X2 σ

2X2 + λu − R: (A.52)

The solution to the ordinary differential equation follows
the form of V(X) � A1Xα1 +A2Xα2 + (uλ−R)=(r+λ+λj),
where α1,α2 are the solutions of the quadratic function
1
2σ

2α(α− 1) + μα− (r+λ+λj) � 0. Suppose α1 < 0 and
α2 > 0. The project value is subject to the following boun-
dary conditions:

lim
X→∞V(X) � uλ−R

r+λ+λj
, V(X � X) � 0: (A.53)

The first no-bubble condition gives us A2 � 0, and the sec-
ond value matching condition at the abandonment threshold
gives us the value of A1, which is a function of R. Together,
and using α to replace α1 for the ease of notation,

Vfc(X) � sup
{R,X}

uλ−R
λ+ r+λj

1− X
X

( )α( )
: (A.54)

Given any R, provided that the project discovery is ran-
dom and memoryless, the project value is higher if it lasts
longer. The expression X∗

fc � R from Equation (A.54) thus
leads to Equation (A.50). w

Proposition A.1. A downward jump risk on Xt motivates an
FC monopoly firm to invest more intensively, that is,
∂R∗

fc=∂λj ≥ 0, regardless of the project type. If λ′ > 0, a higher
jump risk makes over-investment more likely.

Proof. If u′ > 0 and λ′ � 0, the jump risk acts exactly like
the risk-free rate r. This can be seen by comparing Equation
(A.50) in Lemma A.1 with Equation (6) in Lemma 1. The
proof of Proposition 2 in Appendix A.3 shows ∂Rfc=∂r > 0

for a project with u′ > 0 and λ′ � 0. Alternatively, the
implicit function theorem can be used. w

Lemma A.2. In an FCUC race with a jump risk on AIP cash
flow, the project values for the two firms (FC is 1, UC is 2) are

V1(X1) � u1λ1 − R1

r + λ2 + λ1 + λj
1 − X1

R1

( )α( )
, (A.55)

V2(X1) � u2λd,2 − R2 + λjVm
2 (R2)

r + λ2 + λ1 + λj
1 − X1

R1

( )α( )
+ Vm

2 (R2) X1

R1

( )α
,

(A.56)

where Vm
2 is defined in Lemma 3, and α � 1=2−μ1=σ

2
1−��������������������������������������������������

1=2−μ1=σ
2
1

( )2 + 2(r+λ2 +λ1 +λj)=σ21
√

.

Proof. For FC, Firm 1’s project value during the race satis-
fies the following HJB equation at the optimum:

rV1dt � E$ V1 − R1dt + λ1(u1 − V1)dt + λ2(0 − V1)dt,
(A.57)

where E$ V1(X1) � {(∂V1=∂X1)μ1X1 + 1=2(∂2V1=∂X2
1)σ21X2

1+
λj[V1(0) −V1]}dt and V1(0) � 0. The solution of the corre-
sponding ordinary differential equation (ODE) on V1 fol-
lows the form of V1(X1) � c1X

α1
1 + c2X

α2
1 + (λ1u1 −R1)=(r

+λ1 +λ2 +λj), where α1,α2 are the roots of the quadratic
function (1=2)σ21α(α− 1) +μ1α− (r+λ1 +λ2 +λj) � 0. The
project value is subject to the two boundary conditions:

lim
X1→∞V1(X1) � λ1u1 −R1

r+λ2 +λ1 +λj
, V1(X1 → R1) � 0:

Equation (A.55) follows from applying the boundary con-
ditions on the general solution of V1(X1).
For UC, the project value satisfies the HJB equation at

the optimum:

rV2dt � E$ V2 − R2dt + λ2(u2 − V2)dt + λ1(0 − V2)dt
+ λj(Vm

2 − V2)dt, (A.58)

where E$ V2(X1) � {(∂V2=∂X1)μ1X1 + (1=2)(∂2V2=∂X2
1)σ21X2

1 +
λ j[V2(X1 � 0) −V2(X1)]}dt and V2(X1 � 0) � Vm

2 as in Equa-
tion (14) of Lemma 3. The ODE can be solved with the two
boundary conditions:

lim
X1→∞V2(X1) � u2λ2 −R2 +λjVm

2

r+λ2 +λ1 +λj
, (A.59)

V2(X1 � R1) � Vm
2 : (A.60)

With λj, the UC firm’s project value in the FCUC race
does not converge to that in a UCUC race if X1 is very high
(see Equation (A.59)). This is because the jump terminates the
FC firm’s project even if the FC firm has a high AIP cash flow.
Equation (A.60) is a value matching condition that the UC firm
recovers its monopolistic project value when its FC rival aban-
dons the project. Solving V2 yields Equation (A.56). w

A.13. Competition Without Winner-Takes-All in Section 4.2
I present the results for the UCUC competition without
winner-takes-all here. In the online appendix, I present
firms’ project values in the FCUC competition without
winner-take-al via their HJB equations and the boundary
conditions.

Lin: R&D Investment Under Financial Constraints and Competition
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Lemma A.3. In a non–winner-takes-all UCUC competition, if
it is not worthwhile to continue investing in the project after
the rival firm gets the discovery first, that is, udi λi −Ri ≤ 0,
then project values are the same as in Lemma 2. Otherwise,

Vi � − Ri

λi + r
+ umi

λ1 +λ2

λ1 +λ2 + r
− λ−i
r+λ−i

( )
+ udi

λi

r+λi
+ λ−i
λ−i + r

− λ1 +λ2

r+λ1 +λ2

( )
, (A.61)

where umi and udi are the present value of the future monopoly
and duopoly profits, that is, umi � πm

i =r, u
d
i � πd

i =r, π
m
i or πd

i is
the per period profit upon discovery, i ∈ {1,2}.
Proof. Term by term of Equation (21):

E

∫ τ1

0
−R1e−rtdt �

∫ ∞

0
f (τ1)

∫ τ1

0
−R1e−rtdtdτ1 � − R1

λ1 + r
,

(A.62)

E1{τ1<τ2}e
−rτ1um1 � um1

∫ ∞

τ2�0

∫ τ2

τ1�0
e−rτ1 f (τ1)dτ1f (τ2)dτ2

� λ1

λ1 + λ2 + r
um1 , (A.63)

E1{τ1<τ2}e
−rτ2 (ud1 − um1 ) � (ud1 − um1 )

∫ ∞

τ1�0

∫ ∞

τ2�τ1
e−rτ2 f (τ2)dτ2f (τ1)dτ1

� (ud1 − um1 )
λ2λ1

(r+λ2)(r+λ1 +λ2) ,

which can also be written as

(ud1 − um1 )λ2 · 1
r+λ2

− 1
r+λ1 +λ2

( )
:

E1{τ1>τ2}e−rτ1ud1 � ud1

∫ ∞

τ2�0

∫ ∞

τ1�τ2
e−rτ1 f (τ1)dτ1f (τ2)dτ2

� ud1
λ1λ2

λ1 + r
1

r+λ1 +λ2
, (A.64)

which can also be written as

ud1λ1
1

r+λ1
− 1
r+λ1 +λ2

( )
: (A.65)

Putting Equation (A.62) to Equation (A.64) together,

V1 � − R1

λ1 + r
+ λ1

λ1 + λ2 + r
um1 + (ud1 − um1 )λ2

· 1
r + λ2

− 1
r + λ1 + λ2

( )
+ ud1λ1

1
r + λ1

− 1
r + λ1 + λ2

( )
,

(A.66)

which can be rearranged by the terms of um1 and ud1 to get
Equation (A.61) for i � 1. With um1 � ud1, or λ2 � 0, then the
project values is the same as it is for a UC monopoly firm,
that is, V1 � (um1 λ1 −R)=(r+λ1). One should not use ud1 � 0
to check V1 for the case for winner-takes-all, because
ud1λ1 −R1 > 0 is required for Equation (A.61). w

Proposition A.2. In a non–winner-takes-all UCUC competi-
tion, if it is worthwhile to continue investing in the project
after the rival firm gets discovery first, then the best responses

R∗
1(R2), R∗

2(R1) are decreasing functions. A Nash equilibrium
exists, and it is unique.

Proof. The cross-derivative of a firm's project value with
respect to both firms' investment intensities can be written as

∂2V1

∂R1∂R2

� ∂(um1 − ud1)
∂R1

· r

(r + λ1 + λ2)2
− r

(λ2 + r)2
( )

− 2r(um1 − ud1)
(λ1 + λ2 + r)3

[ ]
· ∂λ2

∂R2
:

(A.67)

Given that both um1 and ud1 increase with R1 and monopoly
profits are more than duopoly profits, the first term is nega-
tive. The term after the minus sign is positive. Together, that
gives us ∂2V1=∂R1∂R2 < 0; that is, V1 satisfies decreasing dif-
ferences in (R1,R2). By the standard monotone comparative
statics and with the regular conditions on V1 easily verified,
the best response functions are decreasing functions. Because
of the symmetry of the problem, and the convexity of the best
responses, there can only be one intersection of the best
response graphs, and thus the equilibrium is unique. w

Equation (A.67) indicates the only cases in which a firm
in a non–winner-takes-all UCUC competition does not
respond to its rival’s strategy are when ud1 � um1 or when
its rival firm’s success rate does not depend on the invest-
ment intensity, that is, ∂λ2=∂R2 � 0.

A.14. Costly External Financing in Section 4.3
The problem faced by a CEF monopoly firm is

sup
X,R

E

{∫ τc � τd

0
(Xt − R) · e−rtdt + 1{τd<τc}u · e−rτd

−
∫ τc � τd

0
h(Xt;R)1{Xt<R} · e−rtdt +

∫ ∞

τc � τd

Xt · e−rtdt
}
:

The project value V before discovery or abandonment
follows:

(r + λ)V � μXVX + 1
2
σ2X2VXX + λu − R − g(X), (A.68)

where g(X) � h(X;R,δ) · 1{X<R}, and I’ve omitted the subscript
t of Xt. Assume ∂h=∂δ > 0. For example, h(X;R) � δ · (R−Xt)n
with n > 1. A requirement for Proposition A.3 is n < α2 + 1.

Lemma A.4. With an external financing cost g(·), the CEF
firm optimally abandons an ongoing R&D project at the thresh-
old X∗(R), which satisfies∫ ∞

X ∗(R)
(R+ g(s) −λu)

sα2+1 ds � 0: (A.69)

The firm’s optimal investment intensity R∗, conditional on
investment, maximizes the project value:

R∗(X) � argmax
R>0

2
(α2 − α1)σ2

×
∫ X

X ∗(R)
(R+ g(s) −λu) · Xα2

sα2+1 −
Xα1

sα1+1

( )
ds

[ ]
, (A.70)

where α1 � (1=2) −μ=σ2 −
����������������������������������������
(1=2) − (μ=σ2)( )2 + 2(λ+ r)=σ2

√
, and α2 �

(1=2) − (μ=σ2)+ ����������������������������������������
(1=2) − (μ=σ2)( )2 + 2(λ+ r)=σ2

√
.
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Proof. Equation (A.68) is a second-order linear ODE. I fol-
low Boyce and DiPrima (2000) (see theorem 3.7.1. in the
12th edition of the book) and Liu and Loewenstein (2002)
to solve V. This method states that if the functions p, q,
and h are continuous on an open interval, and if the dif-
ferentiable functions y1(x) and y2(x) are linearly independ-
ent solutions of the homogeneous equation y′′ + p(x)y′+
q(x)y � 0 corresponding to the nonhomogeneous equation
y′′ + p(x)y′ + q(x)y �m(x), then a particular solution of the
nonhomogeneous equation is

Y(x) � −y1(x)
∫ x

x∗1

y2(s)m(s)
W(y1,y2)(s)ds+ y2(x)

∫ x

x∗2

y1(s)m(s)
W(y1,y2)(s) ds,

where W(y1,y2)(x) is the Wronskian of y1(x) and y2(x), that
is, W(y1,y2)(x) � y1y′2 − y′1y2, and x∗1, x∗2 are a conveniently
chosen point on the open interval that the functions p, g,
and h are defined.

To apply the method, recall that the general solution for
Equation (A.68) is

V(X) � c1Xα1 + c2Xα2 + Vp(X), (A.71)

where α1,α2 are defined in the lemma, and Xα1 , Xα2 , 2(R+
g(R− x) −λu)=X2σ2 correspond to y1, y2, and m in the
method. The method gives us a particular solution as
follows:

Vp(X) � −Xα1

∫ X

x∗1

2(R+ g(s) − uλ)
(α2 −α1)sα1+1σ2

ds

+Xα2

∫ X

x∗2

2(R+ g(s) −λu)
(α2 −α1)sα2+1σ2

ds: (A.72)

For convenience, set both of the lower bounds at the aban-
donment level X, that is, x∗1 � x∗2 � X. Then by plugging in
the particular solution and collecting terms of Xα1 and
Xα2 , Equation (A.71) can be written as

V(X) � Xα1

(
c1 −

∫
X

X 2(R+ g(s) −λu)
(α2 −α1)sα1+1σ2 ds

)
+Xα2

(
c2 +

∫
X

X 2(R+ g(s) −λu)
(α2 − α1)sα2+1σ2

ds
)
: (A.73)

Three boundary conditions are used to solve the optimal
abandonment threshold X, and c1 and c2 in the value
function. The first is based on the value of a UC
monopoly, and the next two are value-matching and
smooth-pasting conditions for value functions at the opti-
mal abandonment threshold.

lim
X→∞V(X) � uλ−R

λ+ r
(A.74)

V(X) � 0 (A.75)
dV(X)
dX

∣∣∣∣
X�X

� 0: (A.76)

From Equation (A.74), as long as limX→∞
∫
X

X2(R+ g(s) −
λu)=(α2 − α1)sα2+1σ2ds has a finite limit,25 the coefficient
associated with the term Xα2 is zero as X→∞. Therefore,

c2 � −
∫
X

∞ 2(R+ g(s) −λu)
(α2 − α1)sα2+1σ2

ds: (A.77)

To verify c2 in Equation (A.77) satisfies Equation (A.74),
plug the expression of c2 in Equation (A.73) and take the

limit of X→∞:

lim
X→∞V(X) � lim

X→∞

{
c1Xα1 −Xα1

∫
X

X 2(R+ g(s) −λu)
(α2 − α1)sα1+1σ2

ds

−Xα2

∫
X

∞ 2(R+ g(s) −λu)
(α2 − α1)sα2+1σ2

ds

+Xα2

∫
X

X 2(R+ g(s) −λu)
(α2 − α1)sα2+1σ2

ds

}

� lim
X→∞

{
− Xα1︸︷︷︸

→0

∫ X

X

2(R+ g(s) −λu)
(α2 −α1)sα1+1σ2

ds︸�����������︷︷�����������︸
→∞ if α1 + 1 < 0

− Xα2︸︷︷︸
→∞

∫ ∞

X

2(R+ g(s) −λu)
(α2 −α1)sα2+1σ2

ds︸�����������︷︷�����������︸
→ 0

}
: (A.78)

By applying L’Hôpital’s rule on Equation (A.78), and pro-
vided that α1α2 � −2(r+λ)=σ2, Equation (A.74) is verified:

lim
X→∞V(X)

�(H)
lim
X→∞ −

2(R+ g(R−X) −λu)
(α2 − α1)Xα1+1σ2

−α1X−α1−1 −
−2(R+ g(R−X) −λu)

(α2 −α1)Xα2+1σ2
−α2X−α2−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

� 2(R−λu)
(α2 − α1)α1σ2

− 2(R−λu)
(α2 − α1)α2σ2

� uλ−R
λ+ r

:

Equation (A.75), gives us the solution for c1:

V(X) � c1Xα1 + c2Xα2 + 0 � 0 ⇒ c1 � −c2Xα2−α1 : (A.79)

Applying the first fundamental theorem of calculus on
Equation (A.76) leads to the following equation, with the

second-order condition ∂2V(X,X;R)=∂X2
∣∣∣
X ∗ < 0 ensuring the

optimality of X:

c1α1Xα1−1 + c2α2Xα2−1 −Xα1
2(R+ g(R−X) −λu)
(α2 −α1)Xα1+1σ2

+Xα2
2(R+ g(R−X) −λu)
(α2 − α1)Xα2+1σ2

� 0

use Eq:(A:79) ⇒ −c2Xα2−α1α1Xα1−1+c2α2Xα2−1 + 0 � 0

⇒ c2(−α1 + α2)Xα2−1 � 0 (A.80)

Equation (A.80) suggests two possibilities: (1) X � 0 and
(2) c2 � 0. I discard the first one because it is not sensible
for the CEF firm to never abandon the project regardless
of how costly the external financing is. With c2 � 0, Equa-
tion (A.79) gives us c1 � 0. To solve the optimal abandon-
ment threshold given any choice of investment intensity
R, I get from Equation (A.77):

−
∫
X

∞ 2(R+ g(s) −λu)
(α2 −α1)sα2+1σ2

ds � 0⇒
∫
X

∞ (R+ g(s) −λu)
sα2+1 ds � 0:

(A.81)

Equation (A.81) indicates that the threshold should be a
function of the investment scale X(R). Moreover, given that
g is nonincreasing in Xt and is positive only when Xt < R,
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Equation (A.81) suggests that the CEF firm is willing to
endure negative cash flows with costly financing being pos-
sible and X < R. With c1 � c2 � 0 plugged into Equation
(A.73), the project value before success and abandonment is

V(X) � Xα2

∫
X

X 2(R+ g(s) −λu)
(α2 −α1)sα2+1σ2 ds−Xα1

∫
X

X 2(R+ g(s) −λu)
(α2 −α1)sα1+1σ2

ds

� 2
(α2 −α1)σ2

∫
X

X
(R+ g(s) −λu) Xα2

sα2+1 −
Xα1

sα1+1

( )
ds

[ ]
: (A.82)

w

Proposition A.3. The abandonment threshold increases with
the cost of external financing, that is, ∂X=∂δ > 0.

Proof. Rewrite Equation (A.69) as f (g(X;R,δ),X) � 0. With the
conditions of the implicit function theorem satisfied, and

given a fixed R that is relevant for an CEF firm (i.e.,
λu > R):

∂X
∂δ

� −
∂f
∂δ
∂f
∂X

� −
∫ ∞

X ∗(R)

1
sα2+1

∂g(·)
∂δ

ds

−R+ g(X,δ) −λu
Xα2+1

� − �

−� > 0 (A.83)

The numerator of the third expression in Equation (A.83) is
positive because each element in the integral is nonnegative
and some are positive. The denominator has a negative
sign in the front as X is the lower end of the interval over
which the integral is taken. The term R+ g(X,δ) −λu=Xα2+1
is positive because this is the largest term of all the inte-
grands, and all the integrands add up to zero. w

Table B.1. Investment Intensities and Abandonment Thresholds in Section 4.3

δ � 0:001 δ � 1 δ � 2

X � 75 R � 6.75, X � 0 R � 6.85, X � 2:80 R � 7.08, X � 3:94
X � 100 R � 6.79, X � 0 R � 7.22, X � 3:08 R � 7.47, X � 4:24
X � 150 R � 6.80, X � 0 R � 7.46, X � 3:27 R � 7.72, X � 4:45

Notes. This table reports the investment intensity R and the abandonment threshold X on the AIP cash flow for a monopoly firm that is subject to
external financing cost of g(X) � δ · (R−Xt)2 1{R<Xt}. The parameter values are set as in Table 1;Ruc � 6:79, Rfc � 8:02 in the baselinemonopolymodel.

Figure B.1. (Color online) FCUC Race with the Jump Risk in AIP Cash Flow

(a) (b) (c)

Notes. Thefigures plot the best responses and equilibriumof an FCUC racewithλj > 0 onAIP cashflow. The plot description is similar to that of Figure 1.

Appendix B. Additional Tables and Figures
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Endnotes
1 Equation (1) can alternatively be interpreted as stochastic cash flows
from a financier, so the model can apply not only to an established
firm that has a new R&D investment opportunity, but also to a
startup that uses venture capital funding to develop its first big idea.
2 This implies that there is no cumulative learning in the model (see
Berk et al. 2004 and Childs and Triantis 1999 for R&D models with
learning), and τd follows an exponential distribution. R can also be
interpreted as the searching intensity in the search models (Morten-
sen 1986). More-intense searching leads to speedier discovery and/
or better search outcome.
3 Power functions satisfy both (1) the nonincreasing discovery rate
elasticity needed in patent race models to ensure the stability of
equilibrium (Nti 1999) and (2) the decreasing returns to scale
assumption needed to limit the optimal investment intensity. In
addition, the constant discovery rate elasticity (Rλ′=λ � γ) and the
constant payoff elasticity (Ru′=u � β) from the power function help
simplify model derivations.
4 This model can be used more generally to study the tradeoff
between a better-but-slower discovery versus a worse-but-speedier
one (i.e., βγ < 0), but it is not the focus of this paper.
5 I do not interpret the financial constraints as collateral constraints
(as in Li 2011 and Rampini and Viswanathan 2013); thus, the liqui-
dation of AIP does not prohibit a UC firm from getting external
financing for its innovation project. This is relevant for the discus-
sion in Section 4.1 regarding the jump risk in AIP cash flows.
6 This is to exclude the investment incentive to relax financing con-
straints (Almeida et al. 2011), plus the main results will not change

qualitatively if there is a moderate cannibalization cost (Hackbarth
et al. 2014), that is, a negative effect on the AIP cash flows from a
successful innovation.
7 The assumption seems extreme, but the huge uncertainty during
innovative project development and the exclusiveness of accumu-
lated knowledge make it very difficult to evaluate the resale value
of underdeveloped intangible assets.
8 The proof of Lemma A.1 in Appendix A.12 shows that a monopoly
firm never abandons an ongoing project unless it has to.
9 A wide range of parameter values of μ are checked to ensure the
findings in the paper are relevant for industries at large, instead of
only the industries with sharply declining profits.
10 At the baseline optimum, an FC (UC) monopoly firm spends
around 8% (6.8%) of its instantaneous AIP cash flows on R&D, and
the project value is around 16% (18%) of what its AIP are worth, at
the time of the project initiation. The discovery takes about five
years and slightly longer for UC than for FC monopoly.
11 Boyle and Guthrie (2003) find that the threat of future funding short-
falls encourages acceleration of investment if the benefits of delay are
outweighed by the risk of losing the ability to finance the project. Bolton
et al. (2019) take a step further and show that financial constraints erode
option value and lead to earlier investment, particularly, in projects with
frontloaded cash flows. With risky debt financing, Lyandres and Zhda-
nov (2010) show the probability of default leads to the effect of acceler-
ated investment via reducing the value of the option to wait.
12 It implies that the project types are the same for the two compet-
ing firms (i.e., sign(λ′

1) � sign(λ′
2), sign(u

′
1) � sign(u′2)). The model is

flexible to allow A1 ≠ A2, β1 ≠ β2, η1 ≠ η2, and γ1 ≠ γ2.

Figure B.2. (Color online) UCUC CompetitionWithoutWinner-Takes-All

(a) (b) (c)

(d) (e) (f)

Notes. These are examples of the best responses and equilibria in a UCUC competition without the winner-takes-all assumption (Section 4.2).
The blue solid lines plot Firm 2’s best response to the investment rate of Firm 1, that is, R∗

2(R1), with R1 on the x axis. The green dashed lines plot
R∗
1(R2)with R2 on the y axis. The orange lines represent R1 � R2. All other parameters, except the ones labeled, are set at the values in Table 1.
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13 Patent race models are often used to study the impact of the
number of competing firms on firm profits and the expected time of
new technology introduction but are not concerned with the effect
of financial constraints in such competition.
14 The assumption that firms in the race do not actively abandon
their ongoing projects simplifies the analysis. Otherwise, a firm
wins the race if its success happens before its own project abandon-
ment and its rival’s success.
15 Equation (12) differs from Equation (6) in Lemma 1 in that all the
r terms are replaced by λ2 + r. Proposition 2(v) shows the effect of r
regardless of accelerability, whereas λ′ > 0 is necessary here
because it is through the discovery rate that the rival’s project accel-
erability is relevant, without which Ruc does not matter for Vfc.
16 The condition X� (Aη)1=1−(β+γ) translates to the AIP cash flow at
the project arrival being higher than 15 times of the optimal FC
monopoly investment at the baseline.
17 Alternatively, a pre-emption in an FCUC race can be understood
as a firm investing more aggressively than it would in a UCUC race
or in a monopoly. Also see Fudenberg et al. (1983) for a dynamic
setting of pre-emption, in which the relative position during the
race matters for firms’ decisions.
18 There are two more Dirichlet boundary conditions available to use:
(1) limX1→∞V1(X1,X2 � R2) � λ1u1 −R1=r+λ1 and (2) limX1→∞,X2→∞
V1(X1,X2) � λ1u1 −R1=λ+λ2 + r. However, these two turn out to
be converging cases for the ones already listed and are thus
redundant.
19 Numerical exercises on a wide range of parameters suggest
Vfc,fcfc > Vuc,fcuc > Vfc,fcuc > Vuc,ucuc if the project is accelerable. It
implies that given a fixed rival, a firm’s project value is higher if the
firm is constrained than if it is unconstrained. The seemingly
counter-intuitive result is related to how the rival firm reacts to the
competition.
20 A few examples of a catastrophe include (1) a car manufacturer is
found to have fatal defects in its models, (2) a smartphone company
is blown by a recall crisis, or (3) a pharmaceutical firm loses its
dominant status in a market when its patent expires and its compet-
itor successfully manufactured a generic drug. The diffusion and
the jump processes are independent of each other.
21 The UCUC race is not affected by λj, whereas the analytical solu-
tions for the FCFC race with λj are not feasible.
22 I focus on the UCUC race, and I describe firms’ problems in the
FCUC race without the winner-takes-all assumption in the online
appendix, but solving that model is beyond the scope of this paper.
23 It is conditional on being worthwhile to keep investing in an
R&D project after a rival firm makes a first discovery as the proposi-
tion shows. The existence of the equilibrium is guaranteed in this
two-player game (Vives 1999).
24 One interpretation of the cost function h(·) is that it captures a cash
bribery to the existing equity holders when it issues new equity or a
flotation cost at issuance. The term h(·) is increasing and convex. The
same assumptions are used in papers regarding financial constraints
(Kaplan and Zingales 1997, Hennessy andWhited 2007).
25 If g is a polynomial consisting the highest degree of h, then a suf-
ficient condition for having a finite limit is α2 > h. With h � 2 in the
functional form of g, this corresponds to μ < 0 with all other param-
eters at the benchmark and R at the lower boundary.
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