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A BOURGAIN–BREZIS–MIRONESCU REPRESENTATION

FOR FUNCTIONS WITH BOUNDED DEFORMATION

ADOLFO ARROYO-RABASA AND PAOLO BONICATTO

Abstract. We establish a non-local integral difference quotient rep-
resentation for symmetric gradient semi-norms in BD(Ω) and LD(Ω),
which does not require the manipulation of distributional derivatives.
Our representation extends the formulas for the symmetric gradient
established by Mengesha for vector-fields in W 1,p(Ω;Rd), which are
inspired by the gradient semi-norm formulas introduced by Bourgain,
Brezis and Mironescu in W 1,p(Ω) and by Dávila in BV (Ω).

1. Introduction

Let Ω be a connected open subset of Rd with uniformly Lipschitz boundary
and let Md×d

sym be the space of symmetric (d × d) real valued matrices. The

distributional symmetric gradient of an integrable vector-field u : Ω → Rd
is defined as the Md×d

sym -valued distribution

Eu :=
1

2
(Du+DuT )

=
1

2
(∂iu

j + ∂ju
i), i, j = 1, . . . , d,

(1.1)

where ∂i denotes the distributional partial derivative in the ei canonical
direction of Rd. Analogously to the classical Sobolev spaces, one may define
spaces of functions with Lp symmetric gradients as follows: if p ∈ [1,∞),
then

LDp(Ω) :=
{
u ∈ Lp(Ω;Rd) : Eu ∈ Lp(Ω;Md×d

sym )
}

is the space of p-integrable vector-fields u such that Eu can be represented
by a p-integrable Md×d

sym -valued field on Ω.1 The introduction of more general
spaces, where one considers functions with symmetric gradients represented
by a symmetric matrix-valued Radon measure, has been a crucial landmark
in the understanding of plasticity and fracture models in linear elasticity (we
refer the interested reader to [3, 8, 13, 19, 20] and references therein for a
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deeper discussion on this topic). Precisely for such purposes, Christiansen,
Matthies and Strang [8] and Suquet [19] independently introduced the space

BD(Ω) :=
{
u ∈ L1(Ω;Rd) : Eu ∈Mb(Ω;Md×d

sym )
}
,

of functions with bounded deformation over Ω, which consists of all integrable
vector-fields u : Ω → Rd such that their distributional symmetric gradient
Eu can be represented by a Md×d

sym -valued bounded Radon measure.
Functions in BD(Ω) possess similar functional and fine properties to the

ones exhibited by functions in BV (Ω;Rd) (see, e.g., [1, 4, 11, 12]). Here,

BV (Ω;Rd) =
{
u ∈ L1(Ω;Rd) : Du ∈Mb(Ω;Md×d)

}
,

is the space of vector-fields with bounded variation over Ω. However, the
kernel of E is strictly larger than the kernel of the gradient operator D.
This property substantially separates these two operators from a functional
viewpoint. Indeed, a vector-field u : Ω→ Rd satisfies Eu = 0 in the sense of
distributions on Ω if and only if u is a rigid motion, i.e., u = Rx+ c, where
R ∈Md×d

skew is a (d× d) skew-symmetric matrix and c ∈ Rd. For this reason,
one cannot expect, in general, to controlDu in terms of Eu alone. In order to
control the Lp norm of Du in terms of the one of Eu, one has to translate by
all possible rigid motions (modulo constant displacements). This reasoning
applies only when we restrict ourselves to the range p ∈ (1,∞), as it is
reflected in the following version of Korn’s inequality

inf
R∈Mn×n

skew

‖Du−R‖Lp(Ω) ≤ K(Ω, p)‖Eu‖Lp(Ω), p ∈ (1,∞).2

As a consequence, for p > 1, the definition of LDp(Ω) is superfluous from a
functional point of view, as it is straightforward to verify that LDp(Ω) coin-
cides with the Sobolev space W 1,p(Ω;Rd). On the other hand, as p → 1+,
the optimal constant K(Ω, p) in Korn’s inequality blows-up to infinity and
this points at the fact that the symmetric gradient and the gradient are
truly different operators from a functional perspective. This is formalized
through Ornstein’s non-inequality [15], which conveys that neither LD(Ω)
embeds into W 1,1(Ω;Rd), nor BD(Ω) embeds into the space BV (Ω;Rd).

The goal of this paper is to prove a limiting non-local integral formula for a
total variation semi-norm of the symmetric gradient of an integrable vector-
field, which avoids the direct manipulation of the distributions in (1.1). The
results presented here are inspired by similar formulas for gradients first
established by Bourgain, Brezis and Mironescu for functions in W 1,p(Ω), by
Dávila for BV (Ω), and for the symmetric gradient operator by Mengesha

2This (rigidity) version is a consequence of Korn’s second inequality

‖u‖W1,p(Ω) ≤ C
(
‖u‖Lp(Ω) + ‖Eu‖Lp(Ω)

)
,

whose first proof is arguably contained as a particular case of the coercive estimates
established by Smith [18].
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for functions W 1,p(Ω;Rd). Therefore, to contextualize and motivate our
findings, we shall first recall the theory for gradients.

1.1. Background theory for the gradient operator. In [5] (see also
[7]), Bourgain, Brezis and Mironescu established the following (BBM) lim-
iting difference quotient representation for Sobolev functions: if u ∈W 1,p(Ω)
for some p ∈ [1,∞), then

(1.2) lim
ε→0+

¨
Ω×Ω

|u(y)− u(x)|p

|y − x|p
ρε(y − x) dy dx = Kp,d

ˆ
Ω
|∇u|p,

where Kp,d is a positive constant depending on p, d and {ρε}ε>0 ⊂ L1(Rd)
is a family of non-negative radial probability mollifiers

(1.3) ‖ρε‖L1(Rd) = 1, ρε(x) = ρ̂ε(|x|),

which approximate the Dirac mass at zero in the sense that

(1.4) lim
ε→0+

‖ρε‖L1(Rd\Bδ) = 0 for all δ > 0.

The authors also show that the converse holds in the range p ∈ (1,∞). More
precisely, that if u ∈ Lp(Ω) and

(1.5) lim inf
ε→0+

¨
Ω×Ω

|u(y)− u(x)|p

|y − x|p
ρε(y − x) dy dx <∞,

then automatically u ∈ W 1,p(Ω). The analysis of the limiting case p = 1
is more delicate since one must take into account the appearance of mass
concentrations in the gradient. In this regard, Dávila [9] established a re-
lated representation for BV (Ω). He proved that u ∈ BV (Ω) if and only if
u ∈ L1(Ω) and (1.5) holds with p = 1; in that case the limit exists and is
given by

(1.6) lim
ε→0+

¨
Ω×Ω

|u(y)− u(x)|
|y − x|

ρε(y − x) dy dx = K1,d|Du|(Ω),

where |Du| is the total variation measure associated to Du ∈Mb(Ω;Rd).

1.2. Background theory for the symmetric gradient. Now that we
have recalled the representations for Sobolev and bounded variation func-
tions, we shall center on the theory concerning the symmetric gradient op-
erator. In order to do this, we shall first introduce an auxiliary family of
p-(quasi)norms in the Md×d

sym as follows: for p ∈ (0,∞), we set

Qp(A) :=

( 
Sd−1

|〈Aω, ω〉|p dS(ω)

) 1
p

, A ∈Md×d
sym ,

where S stands for the surface measure on the unit sphere Sd−1 in Rd. It
is easy to check that if p ≥ 1, then Qp(·) defines a norm on Md×d

sym (more
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details will be given in Sect. 2.3). Furthermore, for p ∈ [1,∞), a vector-
field u ∈ Lp(Ω;Rd) and a Borel set U ⊂ Rd, we introduce the following
short-hand notation:

Fp,ε(u, U) :=

¨
U×U

|〈u(y)− u(x), y − x〉|p

|y − x|2p
ρε(y − x) dy dx,

where the right-hand side is well-defined as the integral of a non-negative
function and may take the value ∞.

In [14, Theorem 2.2] Mengesha proved (under slightly more restrictive
assumptions) the following analogue of (1.2) for the symmetric gradient and
functions in W 1,p(Ω;Rd):

Theorem 1.1. Let p ∈ (1,∞) and let u ∈ Lp(Ω;Rd). Then, u belongs to
W 1,p(Ω;Rd) if and only if

(1.7) lim inf
ε→0+

Fp,ε(u,Ω) <∞.

Moreover, the (extended) limit always exists and equals

lim
ε→0+

¨
Ω×Ω

|〈u(y)− u(x), y − x〉|p

|y − x|2p
ρε(y − x) dy dx =

ˆ
Ω

Qp(Eu(x))p dx,

with the convention that the right-hand side integral equals ∞ whenever u /∈
W 1,p(Ω;Rd).3

Following Dávila’s ideas, and as a direct consequence of Mengesha’s repre-
sentation, one has the following strong compactness and convergence result
(which is somehow implicit in [14]):

Corollary 1.2. Let p ∈ (1,∞) and let u ∈ Lp(Ω;Rd). The following are
equivalent:

(a) u ∈W 1,p(Ω;Rd),
(b) the family of functions

µp,ε(x) :=

(ˆ
Ω

|〈u(y)− u(x), y − x〉|p

|y − x|2p
ρε(y − x) dy

) 1
p

, ε ∈ (0, 1),

is uniformly bounded in Lp(Ω),
(c) µp,ε −→ Qp(Eu) in Lp(Ω) as ε→ 0+.

Remark 1.3 (An alternative proof). For the convenience of the reader and
since our proofs depart in crucial points from the ones given by Bourgain,
Brezis and Mironescu, Davila and Mengesha, we have decided to include
here the proof of Theorem 1.1 and of Corollary 1.2. Notice also that we do
not require Ω to be bounded in any of these or the forthcoming results.

3Notice that our Qp-norms differ by a multiplicative constant |Sd−1| with respect to
Mengesha’s original norms. This, however, seems to stem from a minor normalization
typo.
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In addition to Theorem 1.1, Mengesha proved the following criterion for
functions of bounded deformation in terms of the symmetric difference quo-
tient energy: a map u belongs to BD(Ω) if and only if u ∈ L1(Ω;Rd)
and (1.7) is finite for p = 1. More precisely, he showed that there exist
positive constants γ1, γ2 satisfying

γ1‖u‖BD(Ω) ≤ lim inf
ε→0+

F1,ε(u,Ω)

≤ lim sup
ε→0+

F1,ε(u,Ω) ≤ γ2‖u‖BD(Ω),
(1.8)

with the convention that these norms may take the value ∞ and where
‖u‖BD(Ω) := ‖u‖L1(Ω) + |Eu|(Ω) is the standard norm in BD(Ω) (see be-
low). As it is already suggested by (1.6) and (1.8), the analysis and char-
acterization of (1.7) (with p = 1), requires one to relax the the statement
to functions with bounded deformation, rather than to elements of LD(Ω)
or W 1,1(Ω). In other words, the sufficiency of the first statement of Theo-
rem 1.1 fails for p = 1 because one must take into account the appearance
of mass concentrations on the symmetric gradient.

1.3. Main results. In order to state our results, we need to recall the
following basic geometric measure theory facts: if u ∈ BD(Ω), then Eu is a
bounded Md×d

sym -valued Radon measure and hence, by Riesz’ representation
theorem and the Radon–Nikodým differentiation theorem, we may write Eu
in polar form

Eu = eu |Eu| as measures on Ω,

where |Eu| ∈ M+(Ω) is the total variation measure of Eu (induced by the
classical Frobenius inner product of matrices) and

eu(x) :=
dEu

d |Eu|
(x) = lim

r→0+

Eu(Br(x))

|Eu|(Br(x))
, x ∈ Ω,

is a norm-1 density function in L∞(Ω, |Eu|;Md×d
sym ). We may then define the

Q1-total variation measure of Eu as

[Eu](U) :=

ˆ
U

Q1(eu(x)) d|Eu|(x), U ⊂ Ω Borel.

Having set this notation, we are finally ready to state our main result:

Theorem 1.4. Let u ∈ L1(Ω;Rd). Then, the (extended) limit

lim
ε→0+

F1,ε(u,Ω) ∈ [0,∞]

always exists and equals

lim
ε→0+

¨
Ω×Ω

|〈u(y)− u(x), y − x〉|
|y − x|2

ρε(y − x) dy dx = [Eu](Ω),

with the convention that the right-hand side equals ∞ whenever u /∈ BD(Ω).

In particular, we obtain the following strengthening of (1.8):
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Corollary 1.5. There exists a dimensional constant Cd > 0 such that

Cd|Eu|(Ω) ≤ lim
ε→0+

F1,ε(u,Ω) ≤ |Eu|(Ω),

under the convention that the semi-norms may attain the value ∞.

Remark 1.6. One can draw a parallelism between the BV -theory and
the BD-theory in the following way: Theorem 1.4 extends Theorem 1.1
to BD(Ω), just as Dávila’s representation (1.6) extends (1.2) to BV (Ω).

Remark 1.7. Notice that if u ∈ LD(Ω), we still get

lim
ε→0+

¨
Ω×Ω

|〈u(y)− u(x), y − x〉|
|y − x|2

ρε(y − x) dy dx =

ˆ
Ω

Q1(Eu(x)) dx.

See also Corollary 1.12 and remark below for a representation formula with
p ∈ (0, 1) and u ∈ BD(Ω).

In general, Corollary 1.2 does not have an L1-convergence analog. How-
ever, we can still deduce the following compactness and strict convergence
(in the sense of measures) results:

Corollary 1.8. Let u ∈ L1(Ω;Rd). The following are equivalent:

(a) u ∈ BD(Ω),
(b) the family of functions

µ1,ε(x) :=

ˆ
Ω

|〈u(y)− u(x), y − x〉|
|y − x|2

ρε(y − x) dy, ε ∈ (0, 1),

is uniformly bounded in L1(Ω),

(c) µε L d ∗⇀ [Eu] as measures in M(Ω) and

µ1,ε(Ω) −→ [Eu](Ω) as ε→ 0+.

We close the exposition of our results with some consequences of the
representation for BD-spaces that are inspired by the work of Ponce and
Spector [17] on BV -spaces. Let us recall (see [1, 11]) that a function
u ∈ BD(Ω) is approximately differentiable almost everywhere, that is, there
exists a measurable matrix-field x 7→ ap∇u(x) ∈Md×d satisfying

lim
r→0+

 
Br(x)

|u(y)− u(x)− ap∇u(x)[y − x]|
r

= 0 for L d-a.e. x ∈ Ω.

In this case, the matrix ap∇u(x) is called the approximate differential of u
at x. On the other hand, it is also well-known (see [1]) that if u ∈ BD(Ω),
then Eu can be decomposed into an absolutely continuous and a singular
part as

Eu = EuL d + Esu, Eu(x) :=
1

2
(ap∇u(x) + ap∇u(x)T ),

where |Esu| ⊥ L d.
Following verbatim the ideas contained in [17, Sect. 2], we give a criterion

for the absolute continuity of symmetric gradient measures in the terms of
its approximate first-order Taylor expansion:
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Corollary 1.9. Let u ∈ BD(Ω;Rd) and let ap∇u(x) ∈ Md×d denote the
approximate differential of u at a point x, which exists L d-almost every-
where in Ω. Then, the extended limit

lim
ε→0

¨
Ω×Ω

|〈u(y)− u(x)− ap∇u(x)[y − x], y − x〉|
|y − x|2

ρε(y − x) dy dx

exists and equals [Esu](Ω).
In particular, u ∈ LD1(Ω) if and only if

lim
ε→0

¨
Ω×Ω

|〈u(y)− u(x)− F (x)[y − x], y − x〉|
|y − x|2

ρε(y − x) dy dx = 0

for some Borel measurable function F : Ω→Md×d.

Remark 1.10. The assertions of the previous corollary remain unchanged
if instead we consider the integrand

|〈u(y)− u(x)− Eu(x)[y − x], y − x〉|
|y − x|2

ρε(y − x).

Finally, following [16] we prove the following representation for general
nonlinear integrands that have linear growth limits at infinity:

Theorem 1.11. Let f : [0,∞)→ [0,∞) be a continuous function satisfying

(1.9) f∞ := lim
t→∞

f(t)

t
∈ [0,∞).

If u ∈ BD(Ω), then the limit

lim
j→∞

¨
Ω×Ω

f

(
|〈u(x)− u(y), x− y〉|

|x− y|2

)
ρεj (x− y) dx dy

exists and equals ˆ
Ω

Qf (Eu) dx+ f∞
ˆ

Ω
Q1(Esu)

where

Qf (A) :=

 
Sd−1

f(|〈Aω, ω〉|) dS(ω), A ∈Md×d
sym .

A direct consequence of this result with f(t) = tp and p ∈ (0, 1) is the
following representation of non-convex p-difference quotients:

Corollary 1.12. Let p ∈ (0, 1) and let u ∈ BD(Ω). Then

lim
j→∞

¨
Ω×Ω

|〈u(x)− u(y), x− y〉|p

|x− y|2p
ρεj (x− y) dx dy =

ˆ
Ω

Qp(Eu(x))p dx.
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2. Preliminaries

Here and in all that follows we assume that p ≥ 1 unless otherwise is
stated. In this section we briefly recall the properties of the Q-norms defined
in the introduction and we also review some well-known results aboutBD(Ω)
and W 1,p(Ω;Rd) spaces, where Ω is a Lipschitz (possibly unbounded) open
set of Rd.

In all that follows, we write | q| to denote the classical Frobenius inner
product norm on Md×d (and Md×d

sym ), that is,

|A|2 := trace(ATA) =

d∑
i,j=1

A2
ij , A = (Aij).

2.1. Strict convergence. We say that a sequence (uk) ∈ BD(Ω) converges
strictly to u in BD(Ω) provided that

uk → u in L1(Ω;Rd), Euk
∗
⇀ Eu in M(Ω;Md×d

sym ),

and
|Euk|(Ω)→ |Eu|(Ω).

To denote this, we write

uk
s−→ u in BD(Ω)

2.2. Extension operators. When p > 1, a direct consequence of Korn’s
inequality is the embedding

LDp(Ω) ↪→W 1,p(Ω;Rd).
This, in particular, allows one to make use of a plethora of extension oper-
ators T : W 1,p(Ω;Rd) → W 1,p(Rd;Rd) whenever p > 1. If p = 1, it is well
known that neither LD1(Ω) nor BD(Ω) embed into W 1,1(Ω;Rd), not even
locally. However, BD(Ω) does possess trace operators [4] and in particular
it possesses an extension operator T : BD(Ω) → BD(Rd) that does not
charge the boundary, i.e., such that

|E(Tu)|(∂Ω) = 0.

2.3. The Q-norms on LDp and BD. As it has already been advanced
in the previous section, we will work with certain Rayleigh-type norms on
Md×d

sym . For the convenience of the reader, let us recall its definition:

Definition 2.1. Let p ∈ [1,∞). We define a norm on Md×d
sym by letting

Qp(A) :=

(  
Sd−1

|〈Aω, ω〉|p dS(ω)

) 1
p

= κp,d‖〈A q, q〉‖Lp(Sd−1),

where κp,d := |Sd−1|−1/p and |Sd−1| is the measure of the (d−1)-dimensional

sphere in Rd.
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That Qp defines a norm for every p ∈ [1,∞) is an immediate consequence
of the triangle inequality in Lp and the spectral theorem for matrices in
Md×d

sym . Indeed, it is straightforward to verify that Qp is invariant under the
conjugation with orthogonal matrices and hence

(2.1) Qp(A)p =

 
Sd−1

(λ1ω
2
1 + . . . λdω

2
d)
p dS(ω),

where λ1, . . . , λd are the eigenvalues of A. In particular, Qp(A) = 0 if
and only if all the eigenvalues are zero, and by homogeneity and Cauchy–
Schwarz’ inequality it follows that

Cd,p|A| ≤ Qp(A) ≤ |A|,

for some constant Cd,p. In a natural manner, this defines an equivalent norm

for functions F ∈ Lp(Ω;Md×d
sym ) by setting

[F ]p(Ω) :=

(ˆ
Ω

Qp(F )p dx

) 1
p

.

For (Md×d
sym )-valued Radon measures µ ∈Mb(Ω;Md×d

sym ), we may consider the

Q1-variation measure [µ] ∈ M+(Ω), which on Borel sets U ⊂ Ω is defined
as the non-negative Radon measure taking the values

[µ](U) :=

ˆ
U

Q1(µ) =

ˆ
U

Q1

(
µ

|µ|
(x)

)
d|µ|(x),

where µ/|µ| is the Radon–Nikodým derivative of µ with respect to |µ|. No-
tice that [ q] and | q| are equivalent norms in Mb(Ω;Md×d

sym ). Hence, both

|u|LDp(Ω) := ‖u‖Lp(Ω) + [Eu]p(Ω),

|u|BD(Ω) := ‖u‖L1(Ω) + [Eu](Ω),

define equivalent norms on LDp(Ω;Rd) and BD(Ω) respectively.

Remark 2.2 (Strict convexity and strict convergence). Every Qp is a con-
vex 1-homogenenous function (each of these being norms). However, it is
worthwhile to mention that Q1 is not a strictly convex norm. Indeed, it can
be seen from (2.1) that Q1(A) = αd tr(A) for all positive definite matrices
A ∈Md×d

sym , which implies that this norm behaves linearly on this connected
open set of matrices. In particular, Q1 is not the norm associated to an
inner product on Md×d

sym , and the [ q]-strict convergence of measures

µε
∗
⇀ µ in M(Ω;Md×d

sym ), [µε](Ω)→ [µ](Ω),

does not necessarily imply that µε −→ µ in the classical | q|-strict sense of
measures; this last assertion follows from [10, Theorem 1.3].
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3. Proof of the main result

3.1. Proof of the upper bound. The proof of the upper bound inequality
is somewhat standard as it follows closely the ideas from [5] and [9], with
the exception that we are considering slightly different integrands here.

The first step will be to show a suitable ε-independent upper bound for
u ∈ C1(Rd;Rd) (see Lemma 3.1 below). Once the scale-independent bound
contained in Lemma 3.1 has been established, the sought upper bound for
u ∈ LDp(Ω) and u ∈ BD(Ω) will follow from the existence of suitable
extension operators for these spaces.

For the next lemma, we write

(3.1) µp,ε(x) :=

(ˆ
Rd

|〈u(y)− u(x), y − x〉|p

|y − x|2p
ρε(y − x) dy

) 1
p

.

Lemma 3.1. Let u ∈ C1(Rd;Rd) and let U ⊂ Rd be a Borel set. For a
positive radius R > 0, we shall write

UR := U +BR,

to denote the set whose complement is at distance R from U . Then, it holds

(3.2)

ˆ
U
µpp,ε ≤ ([Eu]p(UR))p +

2

Rp
‖u‖pLp(U)

ˆ
Rd\BR(0)

ρε(x) dx.

Proof of the lemma. For a fixed R > 0, we splitˆ
U
µpp,ε =

ˆ
U

ˆ
Rd

|〈u(y)− u(x), y − x〉|p

|y − x|2p
ρε(y − x) dy dx = I1 + I2,

where

I1 :=

ˆ
U

ˆ
BR(x)

|〈u(y)− u(x), y − x〉|p

|y − x|2p
ρε(y − x) dy dx

I2 :=

ˆ
U

ˆ
Rd\BR(x)

|〈u(y)− u(x), y − x〉|p

|y − x|2p
ρε(y − x) dy dx.

Clearly, the second term in the right hand side of (3.2) is an upper bound for
I2. We shall hence focus on showing that ([Eu]p(UR))p is an upper bound
for I1. To this end, let us recall the path integral identity

u(y)− u(x) =

ˆ 1

0
∇u(ty + (1− t)x) · (y − x) dt, y, x ∈ Rd.

Together with Jensen’s inequality, this yields that
ˆ
U

ˆ
BR(x)

ˆ 1

0

∣∣∣∣〈∇u(ty + (1− t)x) · y − x
|y − x|

,
y − x
|y − x|

〉∣∣∣∣p dt ρε(y − x) dy dx

is an upper bound for I1.
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Fixing x, we apply the change of variables h := y− x and apply Tonelli’s
Theorem to permute the integrals and obtain

I1 ≤
ˆ
BR

ˆ 1

0

ˆ
U

∣∣∣∣〈∇u(x+ th) · h
|h|
,
h

|h|

〉∣∣∣∣p dx dt ρε(h) dh

=

ˆ
BR

ˆ 1

0

ˆ
U+th

∣∣∣∣〈∇u(z) · h
|h|
,
h

|h|

〉∣∣∣∣p dz dt ρε(h) dh

≤
ˆ
BR

ˆ
UR

∣∣∣∣〈∇u(z) · h
|h|
,
h

|h|

〉∣∣∣∣p dz ρε(h) dh.

Observe that if A ∈Md×d, then 〈Aω, ω〉 = 1
2〈(A

T + A)ω, ω〉 for all ω ∈ Rd.
We shall use this to express the integrand on the right-hand side of the
estimate in terms of Eu(x) rather than Du(x). Therefore, from the change
of variables ω = h

|h| , the coarea formula on balls and the radial symmetry of

the mollifier we deduce that

I1 ≤ |∂Br|
ˆ R

0
ρ̂ε(r) r

d−1dr ×
( ˆ

UR

ˆ
Sd−1

|〈Eu(z)ω, ω〉|p dHd−1(ω) dz

)
≤ ‖ρ‖L1

ˆ
UR

Qp(Eu)p dz ≤ ([Eu]p(UR))p .

This completes the proof of the lemma. �

Proof of the upper bound. Let U ⊂ Ω be an open set. Let u ∈ LDp(Ω) or
u ∈ BD(Ω). We aim to show that

lim sup
ε→0

Fp,ε(u,Ω) ≤ [Eu]p(Ω)p when p > 1

or

lim sup
ε→0

F1,ε(u,Ω) ≤ [Eu](Ω),

respectively. Let us recall from the preliminaries that for p > 1 there exists
an extension operator T : W 1,p(Ω;Rd)→W 1,p(Rd;Rd), and, for p = 1, there
also exists an extension operator, which for the sake of simplicity we shall
also denote by T : BD(Ω) → BD(Rd), that does not charge the boundary,
that is, |E(Tu)|(∂Ω) = 0. On either case, a standard mollification argument
yields an approximating sequence (uk) ⊂ C∞(Rd;Rd) satisfying

uk −→ Tu in W 1,p(Rd) when p > 1,

or

uk
s−→ Tu in BD(Rd) when p = 1.

In the latter case, there exists a full L1-measure set I ⊂ (0,∞) for which it
holds |Eu|(∂UR) = 0 for all R ∈ I. In particular, from the strict convergence
above we get

uk
s−→ Tu in BD(UR) for all R ∈ I.
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Claim. Let R ∈ I and let ε > 0. Then

(3.3) lim
k→∞

Fp,ε(uk, UR) = Fp,ε(Tu,UR)

and

(3.4) lim
k→∞

[Euk]p(UR) = M(u, UR) :=

{
[E(Tu)]p(UR) if u ∈ LDp(U),

[E(Tu)](UR) if u ∈ BD(U).

The first limit follows directly from Tonelli’s theorem and the strong con-
vergence uk → u in Lp(U). Let us address the convergence for the second
limit. For p = 1, the argument follows directly from the strict convergence

u
s−→ Tu in BD(UR), Reshetnyak’s continuity theorem ([2, Thm. 2.39])

and the fact that Q1 is 1-homogeneous:

lim
k→∞

[Euk]1(UR) = lim
k→∞

ˆ
UR

Q1

(
Euk
|Euk|

(x)

)
d|Euk|L n(x)

=

ˆ
UR

Q1

(
E(Tu)

|E(Tu)|
(x)

)
d|E(Tu)|(x) = [E(Tu)](UR).

For p > 1, we recall that Qp convex, so that [ q]p is lower semicontinuous
with respect to weak convergence in Lp. This implies the lower bound

[E(Tu)]p(U) ≤ lim inf
k→∞

[Euk]p(U).

The upper bound follows directly from the strong convergence Euk → E(Tu)
in Lp(Ω) and the triangle inequality for Qp, namely

Qp(Euk) ≤ Qp(E(Tu)) + ‖Euk − E(Tu)‖Lp(U) → Qp(E(Tu)) in Lp(U).

This proves the claim.
Conclusion. Let R ∈ I. Using the estimates from Step 1 on uk we get

(recall that Tu|U = u),

Fp,ε(u, U) = lim
k→∞

Fε,p(uk, U)

≤ lim
k→∞

[Euk]p(UR)p +
2

Rp
‖uk‖pLp(U)‖ρε‖L1(Rd\BR)

= M(Tu,UR) +
2

Rp
‖u‖pLp(U)‖ρε‖L1(Rd\BR).

Letting ε→ 0+ on both sides of the inequality and recalling (1.4) yields the
estimate

lim sup
ε→0+

Fp,ε(u, U) ≤M(Tu,UR).

Now we use that Qp(A) ≤ |A|, to deduce

lim sup
ε→0+

Fp,ε(u, U) ≤M(u, U) + lim sup
R∈I,R→0+

M(E(Tu), UR \ U)

≤M(u, U) +M(E(Tu), ∂U).(3.5)

Since M(E(Tu), ∂Ω) = 0, choosing U = Ω in the estimate above yields the
sought upper bound inequality. �
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As a immediate corollary we establish pre-compactness (either in Lp or
M) for the family {µp,ε}ε>0. Moreover, we note that each of its limit points
lies below |Eu|.

Corollary 3.2. Let 1 ≤ p <∞ and assume that

u ∈

{
BD(Ω) if p = 1,

LDp(Ω) if 1 ≤ p <∞.

Then, the family

U := {µpp,ε L d}ε, ε ∈ (0, 1)

is sequentially pre-compact in M+(Ω) with respect to the weak* convergence
of measures. Moreover, for every limit

µpp,εi
∗
⇀ µ in M+(Ω), εi → 0+,

there exists a Borel function g : Ω→ [0, 1] satisfying

µ = gQp(Eu)p.

Proof. We give the argument for p = 1 as the one for p > 1 is analogous.
The equi-boundedness follows directly from the upper bound and the fact
that the measures are positive. Now, let µ be a limit point as above and let
U ⊂ Ω be an Borel set. Then, in light of (3.5) we get

µ(U) ≤ lim
εi→0+

ˆ
Ω
µpp,ε(U) = lim sup

ε→0+

Fp,ε(u, U) ≤
ˆ
Ū∩Ω

Q1(Eu)

for all Borel sets U ⊂ Ω. A standard measure theoretic argument implies
that µ� Qp(Eu). Therefore, by the Radon–Nikodým theorem there exists
g ∈ L1(Ω,Q1(Eu);R+) such that

µ = gQ1(Eu), g ≤ 1.

This finishes the proof. �

3.2. Proof of the lower bound. We show that if p ∈ (1,∞) and u ∈
Lp(Ω;Rd), then (under the conventions discussed in the introduction)

[Eu]p(Ω)p ≤ lim inf
ε→0+

Fp,ε(u,Ω) ∈ [0,∞],

and

[Eu](Ω) ≤ lim inf
ε→0+

F1,ε(u,Ω) ∈ [0,∞] for all u ∈ L1(Ω;Rd).

For this step, we give a proof by means of a simple mollification argument.
This, in turn, differs from the proof by duality originally given in [5] for
W 1,p-gradients. Our proof follows from the observation that the energy is
convex with respect to translations, and hence mollification. In particular,
our argument also presents an alternative proof to the one contained in [9]
for gradients, which dispenses with the need of performing certain technical
measure theoretic density arguments.
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3.2.1. The regular case. We begin with a lemma, which establishes a local
version of the lower bound for regular functions.

Lemma 3.3. Let Ω ⊂ Rd be an open set and let u ∈ C2(Ω;Rd). Then, for
every compactly contained connected open set A b Ω it holds

[Eu]p(A)p ≤ lim inf
ε→0+

Fp,ε(u,A).

Proof. Fix A as in the statement and let x ∈ A. Observe that, since u is of
class C2(A) and Ā is connected and compact, we may appeal to its Taylor’s
expansion there. We can thus write, for every y ∈ A

u(y) = u(x) +∇u(x) · (y − x) + r(|x− y|2),

where |r(s)| ≤ Cs for every s ∈ [0, (diamA)2], for some constant C > 0
depending only on ‖u‖C2(Ā) and A. From this we get

〈u(y)− u(x), y − x〉
|y − x|2

=
〈∇u(x) · (y − x), y − x〉

|y − x|2
+
〈r(|x− y|2), y − x〉

|y − x|2

=
〈Eu(x) · (y − x), y − x〉

|y − x|2
+
〈r(|x− y|2), y − x〉

|y − x|2
.

Rearranging and taking the absolute values we obtain

|〈Eu(x) · (y − x), y − x〉|
|x− y|2

≤ |〈u(y)− u(x), y − x〉|
|x− y|2

+
|〈r(|y − x|2), y − x〉|

|y − x|2

≤ |〈u(y)− u(x), y − x〉|
|x− y|2

+ C|y − x|.

Recall that, for every p ≥ 1, for every a, b ≥ 0 and for every ζ > 0, by
Young’s inequality we have the estimate

(a+ b)p ≤ (1 + ζ)ap + cp,ζb
p,

for a suitable (large) constant cp,ζ > 0. Therefore, we have

|〈Eu(x) · (y − x), y − x〉|p

|y − x|2p

≤
(
|〈u(y)− u(x), y − x〉|

|x− y|2
+ C|x− y|

)p
≤ (1 + ζ)

|〈u(y)− u(x), y − x〉|p

|x− y|2p
+ cp,ζC|x− y|p.

Now we multiply times ρε(y − x) and we integrate w.r.t. x, y on A. We
obtain ˆ

A

ˆ
A

|〈Eu(x) · (y − x), y − x〉|p

|y − x|2p
ρε(y − x) dy dx

≤ (1 + ζ)

ˆ
A

ˆ
A

|〈u(y)− u(x), y − x〉|p

|x− y|2p
ρε(y − x) dy dx

+ cp,ζC

ˆ
A

ˆ
A
|x− y|pρε(y − x) dy dx.

(3.6)
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We observe that the left-hand side of (3.6), for δ > 0 sufficiently small, can
be estimated from below byˆ

A

ˆ
A

|〈Eu(x) · (y − x), y − x〉|p

|y − x|2p
ρε(y − x) dy dx

≥
ˆ
A

ˆ
A∩Bδ(x)

|〈Eu(x) · (y − x), y − x〉|p

|y − x|2p
ρε(y − x) dy dx

≥
ˆ
A−δ

ˆ
Bδ(x)

|〈Eu(x) · (y − x), y − x〉|p

|y − x|2p
ρε(y − x) dy dx

(3.7)

where A−δ := {x ∈ A : Bδ(x) ⊂ A}. Combining (3.6) and (3.7) we haveˆ
A−δ

ˆ
Bδ(x)

|〈Eu(x) · (y − x), y − x〉|p

|y − x|2p
ρε(y − x) dy dx

≤ (1 + ζ)

ˆ
A

ˆ
A

|〈u(y)− u(x), y − x〉|p

|x− y|2p
ρε(y − x) dy dx

+ cp,ζC

ˆ
A

ˆ
A
|x− y|pρε(y − x) dy dx.

(3.8)

We now send ε→ 0+ in (3.8) and we study the terms separately.
Claim 1. We have

lim
ε→0+

ˆ
A−δ

ˆ
Bδ(x)

|〈Eu(x) · (y − x), y − x〉|p

|y − x|2p
ρε(y − x) dy dx = [Eu]p(A−δ)

p.

Indeed, by the change of variables h := y − x (in the y-variable) we can
re-write ˆ

A−δ

ˆ
Bδ(x)

|〈Eu(x) · (y − x), y − x〉|p

|y − x|2p
ρε(y − x) dy dx

=

ˆ
A−δ

ˆ
Bδ(0)

|〈Eu(x) · h, h〉|p

|h|2p
ρε(h) dh dx.

Therefore, by the coarea formula on balls and the radial symmetry of the
mollifier, we further obtainˆ

A−δ

ˆ
Bδ

|〈Eu(x) · h, h〉|p

|h|2p
ρε(h) dh dx

=

ˆ
A−δ

 
Sd−1

|〈Eu(x) · ω, ω〉|p dS(ω) dx

ˆ δ

0
|∂B1|ρ̂ε(r)rd−1 dr

= ‖ρε‖L1(Bδ)

ˆ
A−δ

Qp(Eu(x))p dx
(1.3)−→ [Eu]p(A−δ)

p

as ε→ 0+ and this concludes the proof of the Claim.
Claim 2. We have

lim
ε→0+

ˆ
A

ˆ
A
|x− y|pρε(y − x) dy dx = 0.
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Changing variables as in the previous claim, we getˆ
A

ˆ
A
|x− y|pρε(y − x) dy dx ≤ L d(A)

ˆ
BR

|h|pρε(h) dh,

where R := diamA. Now, for any fixed σ > 0, we can estimate the integral
on the right-hand side byˆ

Rd
|h|pρε(h) dh ≤

ˆ
Bσ

|h|pρε(h) dh+Rp
ˆ
BR\Bσ

ρε(h) dh.

The second term on the right-hand side vanishes as ε → 0+ due to (1.4).
Recalling the normalization condition (1.3), the first term on the right-hand
side can be roughly estimated by

lim sup
ε→0+

ˆ
Bσ

|h|pρε(h) dh ≤ σp

and, since σ > 0 is an arbitrary positive real number, we conclude the
assertion of Claim 2.

Combining Claim 1 and Claim 2, we have from (3.8)

(3.9) [Eu]p(A−δ)
p ≤ (1 + ζ) lim inf

ε→0+
Fε,p(u,A)

and, since ζ > 0 is arbitrary,

[Eu]p(A−δ)
p ≤ lim inf

ε→0+
Fε,p(u,A).

We now observe that, since A is an open set, A−δ ↑ A as δ → 0+. Since
positive measures are continuous along monotone sequences [2, Remark
1.3], we can pass to the limit in (3.9), obtaining

[Eu]p(A)p ≤ lim inf
ε→0+

Fε,p(u,A),

which is the sought estimate. �

3.2.2. The general case. We are now ready to discuss the lower bound in the
general case of a function u ∈ Lp(Ω;Rd). We will make use of the following
observation (which seems to be originally due to E. Stein as mentioned
in [6, 17]). We will denote by (ψη)η ⊂ C∞c (Rd) a family of non-negative
smoothing kernels, with suppψη ⊂ Bη(0) and

´
Rd ψη = 1 for every η > 0.

For every u ∈ L1(Ω;Rd) we define uη(x) := (u∗ψη)(x), which is well-defined
and smooth in the set Ωη := {x ∈ Ω : d(x, ∂Ω) > η}.

Lemma 3.4. Let Ω ⊂ Rd be an open set and u ∈ Lp(Ω;Rd). Let A be an
open set with A b Ω. Then for every p ∈ [1,∞), for every ε > 0 and for
every 0 < η < 1

2 dist(A, ∂Ω) it holds

Fp,ε(uη, A) ≤ Fp,ε(u,Aη),

where Aη := A+Bη(0) is the open neighborhood of A of radius η.
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Proof. The claim is a rather easy consequence of the convexity of Fp,ε which
in turn follows by Jensen’s inequality. Indeed, we have¨

A×A
|〈uη(x)− uη(y), x− y〉|p ρε(x− y)

|x− y|2p
dxdy

=

¨
A×A

∣∣∣∣〈ˆ
Rd

[u(x− z)− u(y − z)]ψη(z) dz, x− y
〉∣∣∣∣p ρε(x− y)

|x− y|2p
dxdy

=

¨
A×A

∣∣∣∣ˆ
Rd
〈u(x− z)− u(y − z), x− y〉ψη(z) dz

∣∣∣∣p ρε(x− y)

|x− y|2p
dxdy

≤
¨
A×A

ˆ
Rd
|〈u(x− z)− u(y − z), x− y〉|p ψη(z) dz

ρε(x− y)

|x− y|2p
dxdy

where the last inequality indeed follows by Jensen’s inequality with respect
to the probability measure ψηL d. An application of Tonelli’s theorem and
a change of variables yieldˆ

Rd

¨
A×A
|〈u(x− z)− u(y − z), x− y〉|p ρε(x− y)

|x− y|2p
dxdy ψη(z) dz

≤
ˆ
Rd

¨
Aη×Aη

|〈u(w)− u(s), w − s〉|p ρε(w − s)
|w − s|2p

dwdsψη(z) dz

and, recalling that ‖ψη‖L1 = 1, this concludes the proof. �

We are now ready to present the proof of the lower bound.

Proof of the lower bound. Let u ∈ Lp(Ω;Rd). It is not restrictive to assume
that

L := lim inf
ε→0+

Fp,ε(u,Ω)

is finite (otherwise there is nothing to prove). Let A b Ω be an open
set whose closure is compact and contained in Ω. Consider convolution
kernels (ψη)η as above. For sufficiently small η > 0, the associated smooth
approximations uη are well defined and smooth in A ⊂ Ωη ⊂ Ω. We can
therefore use Lemma 3.3 and obtain

(3.10) [Euη]p(A)p ≤ lim inf
ε→0+

Fp,ε(uη, A).

In turn, by Lemma 3.4, we get

(3.11) Fp,ε(uη, A) ≤ Fp,ε(u,Aη) ≤ Fp,ε(u,Ω),

where we have used the fact that Aη = A + Bη ⊂ Ω for sufficiently small
η > 0. Passing to the limit in ε→ 0+ in (3.11) and combining it with (3.10),
we obtain

Cd,p|Euη|(A)p ≤ [Euη]p(A)p ≤ L.
In particular, the family {uη}η has Lp-bounded symmetric gradients on A
and hence by the lower semicontinuity of the classical total variation we con-
clude that Eu ∈ Mb(A;Md×d

sym ). Now, we may use the lower semicontinuity



18 ADOLFO ARROYO-RABASA AND PAOLO BONICATTO

of the Qp-variation (cf. the argument given in p. 10) to deduce that

[Eu]p(A)p ≤ L if p > 1,

[Eu](A) ≤ L if p = 1.
(3.12)

Since Ω connected and open, it can be written as the monotone limit Aj ↑ Ω
of connected open sets, whose closure is compact and contained in Ω. Ex-
ploiting again the continuity of positive measures along monotone sequences
[2, Remark 1.3], we may then pass to the limit as Aj ↑ Ω in (3.12) and
obtain the desired lower bound

[Eu]p(Ω)p ≤ L if p > 1,

[Eu](Ω) ≤ L if p = 1.
(3.13)

This implies that u ∈ BD(Ω) if p = 1 or u ∈ LDp(Ω) if p > 1 and concludes
the proof. �

3.3. Proof of Theorems 1.1 and 1.4. Let p ∈ [1,∞). The existence and
characterization of the extended limits

lim
ε→0+

Fp,ε(u,Ω) ∈ [0,∞],

for arbitrary functions u ∈ Lp(Ω;Rd), follows directly from the lower and
upper bounds.

3.4. Proof of Corollaries 1.2 and 1.8. The proof of these two conver-
gence results follows directly from Corollary 3.2 and Theorems 1.1, 1.4.
Indeed, if µ = gQp(Eu) is the measure from Corollary 3.2, then the charac-
terizations imply that (in both cases) g ≡ 1. Since Corollary 3.2 is valid for
arbitrary subsequences of (µp,ε), this shows that

µp,ε ⇀ Qp(Eu) in Lp(Ω) for p ∈ (1,∞),

and

µ1,ε L d ∗⇀ [Eu] in M(Ω).

Moreover, from Theorems 1.1 and 1.4 it follows that

‖µp,ε‖Lp(Ω) → ‖Qp‖Lp(Ω) for p > 1,

and

|µ1,εL
d|(Ω)→ [Eu](Ω),

for the extended values of the norm. Hence, the equivalences in Corollary 1.2
follow directly from the convergence of the Lp-norms, while Corollary 1.8
follows verbatim from the aforementioned convergences when p = 1.
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4. A functional for the singular part

We now show that subtracting the first-order term of the approximate
Taylor polynomial of u to our symmetric difference quotient leads to a lim-
iting functional representation of the singular part Esu. By appealing to
similar ideas as the ones introduced in the previous section via the ex-
tension operator T : BD(Ω) → BD(Rd), it suffices to prove the following
proposition:

Proposition 4.1. Let u ∈ BD(Rd;Rd) and let ∇u(x) ∈ Md×d denote the
approximate differential of u at a point x, which exists L d-almost every-
where in Rd. Then, the extended limit

lim
ε→0+

¨
Rd×Rd

|〈u(x)− u(y)− Eu(x)[y − x], y − x〉|
|x− y|2

ρε(x− y) dx dy

exists and equals [Esu](Rd).

Proof. We follow closely the ideas contained in [17, Sect. 2]. From the
Radon–Nikodým–Lebesgue decomposition of Eu, we find that (with the
same notation of the previous section)

(4.1) E(uη) = (Eu)η + (Esu)η.

Define the energies

Rεu(x) :=

ˆ
Rd

|〈u(y)− u(x)− Eu(x)[y − x], y − x〉|
|x− y|2

ρε(y − x) dy.

Appealing to similar Jensen inequalities as the ones in the previous section,
we findˆ

Rd

|〈uη(x+ h)− uη(x)− (Eu)η(x)[h], h〉|
|h|2

ρε(h) dh ≤ (Rεu)η(x)

and hence Young’s inequality gives
(4.2)¨

Rd×Rd

|〈uη(y)− uη(x)− (Eu)η(x)[y − x], y − x〉|
|x− y|2

ρε(y − x) dy ≤ ‖Rεu‖L1 .

In light of (4.1), the triangle inequality and the identity

Q1(A) =

ˆ ∞
0

 
∂B1

|〈Aω, ω〉| dS(ω) ρ̂ε(r)|∂B1|rd−1 dr

=

ˆ
Rd

|〈Ah, h〉|
|h|2

ρε(h) dh, ε > 0,

we deduce that Rεuη(x) is a bound for the energy (J)ε(x), defined by∣∣∣∣ˆ
Rd

|〈uη(x+ h)− uη(x)− (Eu)η(x)[h], h〉|
|h|2

ρε(h) dh−Q1((Esu)η(x))

∣∣∣∣ .
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Applying once more the triangle inequality and integrating over x, we deduce
from the previous bound, (4.2) and Young’s convolution inequality that

[(Esu)η](Rd) =

ˆ
Rd

Q1((Esu)η(x)) dx

≤
ˆ
Rd

(J)ε(x) dx+

ˆ
Rd

(Rεu)η(x) dx

≤ ‖Rεuη‖L1 + ‖Rεu‖L1 .

Now, since uη ∈ (C∞ ∩W 1,1)(Ω), then the first term on the right-hand side
vanishes as ε→ 0+. On the other hand, by Reshetnyak’s continuity theorem

and the convergence (Esu)η
∗
⇀ Esu, we find that

[Esu](Rd) ≤ lim inf
ε→0+

‖Rεu‖L1 .

This proves the lower bound.
For the upper bound, we continue following [17] and we claim that for

every non-negative bounded continuous function ϕ : Rd → R it holds

(4.3)

ˆ
Rd
Rεu(x)ϕ(x) dx ≤

ˆ
Rd
ϕd[Esu] + (II)ε + (III)ε

where

(II)ε :=

ˆ 1

0

ˆ
Rd

(ˆ
Rd
|ϕ(x+ th)− ϕ(x)| ρε(h) dh

)
d|Esu|(x) dt

and

(III)ε := ‖ϕ‖∞
ˆ 1

0

ˆ
Rd

(ˆ
Rd
|Eu(x+ th)− Eu(x)| dx

)
ρε(h) dh dt.

The conclusion will then follow observing that (II)ε → 0+ (because ϕ is
bounded and continuous) and (III)ε → 0 as ε → 0 (because Eu is an L1-
function). To establish (4.3), we rely once again on an approximation argu-
ment: by the Fundamental Theorem of Calculus and (4.1) we infer

|〈uη(x+ h)− uη(x)−(Eu)η(x) · h, h〉|

≤
ˆ 1

0
|〈(Esu)η(x+ th) · h, h〉| dt

+

ˆ 1

0
|(Eu)η(x+ th)− (Eu)η(x)||h|2 dt.

(4.4)
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Now, exactly as in [17], we observe that, adding and subtracting the term
ϕ(x+ th) and changing variables z := x+ th, one hasˆ

Rd
|〈(Esu)η(x+ th) · h, h〉|ϕ(x) dx

≤
ˆ
Rd
|〈(Esu)η(z)h, h〉|ϕ(z) dz

+ |h|2
ˆ
Rd
|(Esu)η(z)||ϕ(z)− ϕ(z − th)| dz.

In conclusion, by Fubini Theoremˆ
Rd

ˆ
Rd

ˆ 1

0

|〈(Esu)η(x+ th) · h, h〉|
|h|2

dt ρε(h) dhϕ(x)dx

=

ˆ
Rd

ˆ
Rd

|〈(Esu)η(z)h, h〉|
|h|2

ρε(h) dhϕ(z) dz + (II)ε,η

=

ˆ
Rd
ϕ(z)Q1((Esu)η(z)) dz + (II)ε,η

(4.5)

where we have denoted by

(II)ε,η :=

ˆ 1

0

ˆ
Rd

ˆ
Rd
|ϕ(z)− ϕ(z − th)| |(Esu)η(z)| dz ρε(h) dh dt.

Observe that due to Jensen’s inequality we have the point-wise inequalities
|(Esu)η| ≤ |Esu| ∗ ψη and [(Esu)η] ≤ [Esu] ∗ ψη. In particular, (II)ε,η ≤
(II)ε which, combined with (4.5) and (4.4), yields (4.3) and the proof is
complete. �

Using Proposition 4.1, we can finally prove Theorem 1.11:

Proof of Theorem 1.11. The proof is indeed a simple adaptation of the orig-
inal argument in [16]. First, we observe that it is enough to prove the
theorem in the case when f∞ = 0 (the general case follows from applying

this special case to the function f̃(t) := f(t) − tf∞ + C, where C is a suf-
ficiently large constant). In light of the previous sections (and of the usual
considerations about extension operators), it is clear that we may also as-
sume without loss of generality that Ω = Rd. We thus have to prove that
for every u ∈ BD(Rd) it holds

lim
j→∞

¨
Rd×Rd

f

(
|〈u(x)− u(y), x− y〉|

|x− y|2

)
ρεj (x− y) dx dy =

ˆ
Rd

Qf (Eu) dx.

Let us introduce the absolutely continuous measures

νj(x) :=

ˆ
Rd
f

(
|〈u(x+ h)− u(x), h〉|

|h|2

)
ρεj (h) dh, x ∈ Rd,

which are easily seen to be locally equi-bounded. Let ν be any weak limit
of νj in the sense of measures. The goal is to characterize the singular
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part νs (as the zero measure) and the absolutely continuous part νac (as
Qf (Eu)L d).

In view of (1.9) and our assumption that f∞ = 0, for each δ > 0 we can
find a constant Cδ > 0 such that

f(s) ≤ δs+ Cδ ∀s ≥ 0.

From this and Corollary 1.8 it follows that

ν ≤ δ[Eu] + CδL
d

as measures. In particular, we conclude that

νs ≤ δ[Esu]

as measures and hence, letting δ ↓ 0, we have νs ≡ 0.
It remains to characterize νac. In order to do this, we need to exploit

the sublinear growth of the integrand to get the following estimate (see [16,
Formula (83), pag. 248]): for any δ > 0, there exists Cδ > 0 such that

|f(s)− f(t)| ≤ Cδ|s− t|+ δ(1 + s+ t) ∀s, t ≥ 0.

Now we set

Aj(U) :=

ˆ
U

ˆ
Rd

∣∣∣∣f ( |〈u(x+ h)− u(x), h〉|
|h|2

)
− f

(
|〈Eu(x)[h], h〉|

|h|2

)∣∣∣∣ ρεj (h) dh dx

so that we can bound

Aj(U) ≤ CδA1
j (U) + δA2

j (U)

where

A1
j (U) :=

ˆ
U

ˆ
Rd

|〈u(x+ h)− u(x)− Eu(x)[h], h〉|
|h|2

ρεj (h) dh dx

and

A2
j (U) :=

ˆ
U

ˆ
Rd

(
1 +
|〈u(x+ h)− u(x), h〉|

|h|2
+ |Eu(x)|

)
ρεj (h) dh dx,

for all Borel sets U ⊂ Rd. By Proposition 4.1 we know that A1
j (U) has a

limsup as j → ∞, which is bounded by [Esu](Rd), while A2
j (U) is easily

seen to be equi-bounded in j (using again Corollary 1.8). Letting δ ↓ 0, we
deduce that

νac = lim
j→∞

[ˆ
Rd
f

(
|〈Eu(x)[h], h〉|

|h|2

)
ρεj (h) dh

]
L d.

In particular, for every open and bounded set U ⊂ Rd it holds

νac(U) = lim
j→∞

ˆ
U

ˆ
Rd
f

(
|〈Eu(x)[h], h〉|

|h|2

)
ρεj (h) dh dx

= lim
j→∞

ˆ
U

ˆ ∞
0

Qf (Eu(x)) ρ̂εj (s)nωns
n−1 ds dx =

ˆ
U

Qf (Eu) dx.

This precisely means that νac = Qf (Eu)L d in the sense of measures, as
desired. �
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