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ABSTRACT

Federated learning is a distributed framework where a server com-
putes a global model by aggregating the local models trained on
users’ private data. However, for a stronger data privacy guarantee,
the server should not access the local models except the aggre-
gated one. One way to achieve this is to use a secure aggregation
protocol that comes with the cost of several rounds of interac-
tions between the server and users in the absence of a fully trusted
third party (TTP). In this paper, we present PROV-FL, an efficient
privacy-preserving federated learning training system that securely
aggregates users’ local models. PROV-FL requires only one round of
communication between the server and users for aggregating local
models without a TTP. Based on the homomorphic encryption and
differential privacy techniques, we develop two PROV-FL training
protocols for two different, namely single and multi-aggregator,
scenarios. PROV-FL enjoys the verifiability feature in which the
server can verify the authenticity of the aggregated model and
efficiently handles users’ dynamic joining and leaving. We evaluate
and compare the performance of PROV-FL by running experiments
on training CNN/DNN models with a diverse set of real-world
datasets.

CCS CONCEPTS

• Security and privacy→Privacy-preserving protocols; •Com-

puting methodologies→Multi-agent systems.
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1 INTRODUCTION

The past decade has seen a significant progress in deep learning
and their usage in various applications such as health and finance.
Privacy-preserving machine learning (PPML) aims to protect the
privacy of sensitive data and the model. Federated learning (FL) is
a collaborative/distributed machine learning framework in which
the server, coordinating the training process, holds the model, and
the users locally compute gradients on the dataset, called local
gradients, followed by the server computes the updated model by
aggregating the local gradients from the users [27]. As the data
never leaves local devices, therefore, it provides some level of data
privacy.Well-known real-world scenarios of the cloud-edge settings
include mobile applications like 5G, where base-stations are edge
servers. Federated learning is well-suited for these applications
where a cloud server holds the model and the end-devices can
perform training locally on their data.

In recent years, various types of attacks such as Inference attack
[39] andmodel inversion attack [17] have emerged that have tried to
compromise the privacy of data that is used to train anMLmodel. In
view of these attacks, PPML protocols have been developed. Existing
techniques for designing PPML protocols can be broadly classified
into four categories: 1) secure multi-party computation techniques,
e.g., [3, 11, 13, 28, 29, 33], 2) homomorphic encryption, e.g., [24, 26,
35], 3) differential privacy and homomorphic encryption or secure
aggregation, e.g., [9, 40, 42], and 4) leveraging trusted execution
environments (e.g., Intel-SGX), e.g., [18, 30]. In the private training
using secure multi-party computation, the training data is shared
using a secret-sharing protocol among a small set of servers (e.g., 2,
3 or 4-server) (e.g., [11, 28, 29]), and then the training is conducted
and the model is secret-shared among participating servers. While
secure multi-party computation based techniques provide strong
privacy guarantees, users need to upload their data in the secret-
shared form, which is opposed to the federated learning setting
of keeping private data locally. Thus, there is a risk that if those
servers ever collude data privacy will be violated. Moreover, for
a large dataset, secure multiparty computation based techniques
incur significant computational and communication overheads. In
this paper, we develop a private, verifiable, and robust federated
learning system. Our key focus, over existing work, is to maintain
a good balance among the efficiency, accuracy, and privacy, while
providing robustness in the training process.

Our Contributions. With that in focus, we design PROV-FL, a
communication efficient and strongly secure system for training
an ML model in the federated learning setting. Towards the design
of PROV-FL, we make two-fold contributions. First, we propose
a secure, verifiable and robust model aggregation protocol with
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single round in the presence of dynamic user participations or
dropouts. Compared to multi-round secure aggregation solutions
(e.g., [9, 26]) and solutions that are aided by a fully trusted third
party (TTP) (e.g., [42]), PROV-FL achieves a single-round MLmodel
aggregation, without a fully TTP, that is robust against dropouts.
Second, we construct the PROV-FL training protocols by combin-
ing our new model aggregation protocol in the federated training
along with the differential privacy mechanism to provide a good
balance between efficiency, privacy and accuracy in training an
ML model. The construction of PROV-FL is based on computation-
ally cheap cryptographic primitives, namely additive homomor-
phic encryption (AHE) (e.g., JL [6]), symmetric-key authenticated
encryption (AE), multi-key linearly homomorphic authenticators
(MLHA) and differential privacy (DP) operations, where AHE, AE
and DP provide the model privacy and theMLHA assures the ML
model verifiability guarantee. We provide two training protocols
for two different settings, namely single (ΠGlobal_Train) and multi-
aggregator (ΠMAFL_Train).

We prove the security of our protocols in the simulation para-
digm under the semi-honest adversarial model, where we consider
three different colluding scenarios among users, the aggregator(s)
and the server. The security of our protocols is based on the (stan-
dard) indistinguishability of the AHE, AE, homomorphic authenti-
cator and differential privacy assumptions. Our protocols assure
honest participants’ input data privacy, and the model privacy
against internal and external adversaries.

We implement PROV-FL using gmpy2, Charm [4], ECDSA and
AES-GCM/CBC in Python using multiprocessing to leverage the
state-of-the-art libraries and achieve the best efficiencies out of the
available resources. To demonstrate PROV-FL’s applicability, we
evaluate it in terms of running time and accuracy by conducting
extensive experiments on different deep and convolutional neural
network (DNN/CNN) models on four different real-world datasets
namely MNIST, Fashion MNIST, IMDB Movie Reviews, and Rice
Image from [21, 25, 41], and [20], respectively. We present exper-
imental results on the training time of PROV-FL for the single-
aggregator setting of without privacy, no differential privacy, and
with local DP. For instance, the timing overhead due to crypto-
graphic techniques in PROV-FL with 25 users and a CNN trained
on the MNIST dataset, compared to no privacy one, is ≈ 425×. Our
results show that training in PROV-FL does not compromise users’
privacywhile achieving above 90% accuracy (with (0.5, 1×10−5)-DP
noise) and reduced communication and computational complexities.
Compared with HybridAlpha [42] which uses Multi Input Func-
tional Encryption (MIFE) [2] for secure aggregation, PROV-FL’s
execution time is about 103 seconds per user for 118, 110 gradients
while HybridAlpha takes 326 seconds per user for the MIFE encryp-
tion (using the CiFEr Project’s MIFE implementation). A detailed
comparison between PROV-FL and HybridAlpha is provided in
Section 5.4. Other related works are presented in Section 6.

Outline. The rest of the paper is organized as follows. In Section
2, we describe the background and cryptographic primitives that we
use in our solution. Section 3 describes the system model. In Figure
2 of Section 4, we provide our protocol and its generalization is
discussed in Section 4.2. We provide extensive experimental results
in Section 5. We discuss related works in Section 6 followed by

concluding remarks in Section 7. Due to page limit, we provide the
security proofs in Appendix.

2 PRELIMINARIES

2.1 Federated learning

Federated Learning. The term Federated Learning was coined by
McMahan et al. [27], where they proposed a framework to train
a machine learning model in a distributed manner with training
data distributed across multiple devices. The ML model held by
the server is updated by aggregating locally-computed updates on
separate user devices. The federated averaging algorithm is applied
on the locally trained models from a subset of users. The model
computation that is an iterative process can be mathematically de-
fined as follows. Suppose there are 𝑛 users and each user 𝑈𝑖 has
a dataset D𝑖 , and the server holds the ML model 𝜽 . In federated
learning, the server sends the model 𝜽 to the users and each user
performs the gradient descent computation on the dataset D𝑖 as
𝐽𝑖 (D𝑖 , 𝜃 ) = 1

𝑑𝑖

∑
(x,𝑦) ∈D𝑖 𝐶 (𝜽 , (x, 𝑦)), where 𝐶 () is the cost func-

tion and 𝑑𝑖 = |D𝑖 |. The local model for user 𝑈𝑖 is computed as
𝜽 𝑖 ← 𝜽 − 𝜂∇𝐽 (D𝑖 , 𝜽 ), where 𝜂 is the learning rate. After receiving
the local models from the users, the server performs an aggregated
averaging on the local models to construct the global model as:

𝜽 =
1
𝑑

(
𝑑1𝜽

1 + . . . + 𝑑𝑛𝜽𝑛
)

(1)

where 𝑑 =
∑𝑛
𝑖=1 𝑑𝑖 is the total size of the dataset D = ∪𝑛

𝑖=1D𝑖 , and
𝜽 𝑖 is the locally trained model on the datasetD𝑖 . This computation
is repeated until the model converges.

2.2 Cryptographic primitives used in PROV-FL
2.2.1 Multi-key Linearly Homomorphic Authenticators. A context
hiding homomorphic authentication scheme guarantees that the
authenticator of the output of the function does not leak any infor-
mation about its inputs to the verifier. We use the context hiding
multi-key homomorphic authenticator schemeMLHA defined in
[36], which facilitates the evaluation of linear functions on inputs
held by different users. The scheme provides context hiding guar-
antees in case of internal adversaries who can corrupt any of the
users involved in the computation and external adversaries who
do not have this information. Additionally, all parties involved in
the computation can ensure that the evaluator has correctly com-
puted the function since the scheme supports public verification.
The MLHA scheme supports the evaluation of any linear function
𝑓 :M𝑛 →M whereM ∈ Z𝑇𝑝 over a subset of users where each
user may contribute more than one message. In the federated learn-
ing setting 𝑓 (Equation 1) performs the simple aggregation of user
models, 𝑛 is the maximum number of users that can participate and
each user contributes only one message.

2.2.2 Additive Homomorphic Encryption. An Additive Homomor-
phic Encryption (AHE) scheme (𝐸, 𝐷) is a public-key cryptosys-
tem that supports the linear evaluation of plaintext messages us-
ing the corresponding ciphertexts. Given two plaintext messages
𝑚1,𝑚2, their corresponding ciphertexts 𝐸 (𝑚1), 𝐸 (𝑚2) and a con-
stant 𝑘 , one can evaluate encryption of plaintext addition such that
𝐷 (𝐸 (𝑚1) · 𝐸 (𝑚2)) =𝑚1 +𝑚2 and 𝐷 (𝐸 (𝑚1)𝑘 ) = 𝑘 ·𝑚1 .
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We use the Joye-Libert (JL) cryptosystem [6] to realize an AHE
scheme. Compared to the Pailler cryptosystem [31], the ciphertexts
generated by the JL cryptosystem are 2× smaller for the same
security parameter.

2.2.3 Authenticated Encryption. Authenticated encryption with
associated data is a symmetric key encryption that consists of three
algorithms (AE.KeyGen,AE.Enc,AE.Dec), where AE.KeyGen is a
symmetric key generation algorithm, AE.Enc is a symmetric-key

encryption algorithm that accepts a key 𝑘
𝑅← AE.KeyGen and a

message and associated data (AD) as input and outputs a ciphertext
and a tag. AE.Dec is a decryption algorithm that takes a key, an
AD, a ciphertext and a tag, and outputs the original message or ⊥.
In the implementation, we use AES-GCM that offers the IND-CPA
and INT-CTXT security guarantees.

2.2.4 Key Derivative Function. Key Derivative Function (𝐾𝐷𝐹 )
function is a function with which an input key and other input
data are used to generate keying material that can be employed by
cryptographic algorithms. One can use HMAC-based KDF in this
regard.

2.2.5 Differential Privacy. Differential privacy [16] is a mathemati-
cal framework that enables us to quantify the information leakage
of data held by individuals who participate in a study or analysis.
An algorithm is defined as differentially private if it is not possible
to tell whether a single datapoint has been used in the analysis or
not. A formal definition of DP is as follows:

Definition 2.1 (Differential Privacy [16]). A randomized algo-
rithmM is (𝜖, 𝛿)-differentially private ((𝜖, 𝛿)-DP) if for all S ⊆
Range(M) and for all datasets 𝐷,𝐷′ ∈ D differing on at most one
element, the following condition holds:

𝑃𝑟 [M(𝐷) ∈ S] ≤ exp(𝜖) · 𝑃𝑟 [M(𝐷′) ∈ S] + 𝛿, (2)

where the probability space is over the coin flips ofM. If 𝛿 = 0,
then the algorithmM is said to be 𝜖-differentially private.

A DP mechanism provides a privacy guarantee by adding some
noise to the output of an algorithm or query 𝑓 applied on a data-
base. The Laplace, exponential, and Gaussian distributions are com-
mon mechanisms for sampling noises. The Gaussian mechanism
for a dataset 𝐷 ∈ D and the function 𝑓 : D → R is defined as
M(𝐷) = 𝑓 (𝐷) + N (0, 𝜎2𝑆2

𝑓
), where N(0, 𝜎2𝑆2

𝑓
) is a Gaussian dis-

tribution with mean 0 and standard deviation 𝜎𝑆𝑓 . Here, 𝑆𝑓 is the
ℓ2 sensitivity of 𝑓 which is defined as max∥ 𝑓 (𝐷) − 𝑓 (𝐷′)∥2, for
datasets 𝐷, 𝐷′ ∈ D differing on at most one element. The sensitiv-
ity 𝑆𝑓 and the noise scale 𝜎 are calibrated according to a desired
privacy level. A single application of the Gaussian mechanism to
𝑓 with sensitivity 𝑆𝑓 satisfies (𝜖, 𝛿)-DP if 𝜎 ≥

√︃
2 log 1.25

𝛿
/𝜖 and

𝜖 ∈ (0, 1) [16].

Differential Privacy in Federated Learning. Using the Gaussian DP
mechanism described above, if each user adds the noiseN(0, 𝜎2𝑆2

𝑓
)

independently, assuming there are 𝑛 users, the total noise adds up
toN(0, 𝑛 ·𝜎2𝑆2

𝑓
). However, each user can add a fraction of the noise

N(0, 𝜎2𝑆2
𝑓
/𝑛) and then use SMC to aggregate the individual values.

This ensures that an optimal amount of noise added to the final

sum to satisfy the promised (𝜖, 𝛿)-DP guarantee. In the federated
learning setting, [40, 42] have shown that the noise reduction tech-
nique coupled with SMC can be used to train machine learning
models with a DP guarantee.

3 OUR SYSTEM MODEL

In the description, we mention machine learning (ML) in general
to mean SGD based machine learning.

3.1 Our System Setting and Problem Statement

Our system model consists of three different entities, namely a set

of users who are willing to contribute their private data to train an
ML model, a centralized server who conducts the training process
and an aggregator who assists in the training process. The notion
of aggregator comes naturally in many applications such as 5G.
The basestation in 5G may act like a gateway that collects and
aggregates data from mobile devices and sends the aggregated data
to a back-end, centralized server. We can think this type of gateway
playing the role of an aggregator in our system model.

Figure 1 shows a high-level overview of our system model. We
consider the problem of private distributed training of a machine
learning model in the federated learning setting. A distributed train-
ing computation is described in Section 4. We follow the federated
learning training computationwhere the server holds theMLmodel,
and the users locally store their private dataset, but share the model
that is trained on the local data. Our goal is to design a verifiable,
secure and private training protocol with the following properties:

Correctness: When all the users and the server follow the pre-
scribed steps of the protocol, it outputs the correct machine learning
model.
Privacy: The protocol provides a user’s data privacy and protects
the its local model against the server, other users and any external
attacker in the system. Privacy requirement is further categorized
as follows.

Privacy of Computation. During the federated learning training
process, the individual user model updates can leak information
about the inputs. For example, in the NLP domain, non-zero gradi-
ents can leak information about the words used if a bag-of-words
model is used as an embedding to train text-based classifier [42].
Secure Multiparty Computation (SMC) [8] can alleviate this prob-
lem by ensuring that only information about the final function is
revealed without leaking any information about the inputs. In other
words, Privacy of Computation prevents information leakage during
the training process from the individual 𝜽 𝑖 in Equation (1) beyond
the knowledge the aggregated model 𝜽 .

Privacy of Output.While SMC techniques ensure that the individ-
ual models 𝜽 𝑖 are not revealed during aggregation, the aggregated
model 𝜽 in Equation (1) can also reveal information about the train-
ing data D (e.g.[17, 39]). Differentially private training techniques,
however, can help mitigate the inference over the output model
and quantify the privacy loss.

Privacy of Computation complemented by Privacy of Output tech-
niques offer strong privacy guarantees during and after the feder-
ated learning training process.
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Robustness and verifiability: The protocol is robust so that dy-
namic users do not affect the training or adds additional computa-
tional overhead to other users in the system. The verifiability of the
global model is achieved, meaning if the aggregator computation
deviates from the actual computation, then it should be detected
by the server.
Efficiency:The communication and computation costs areminimal.
The communication complexity can be divided into two parts. First
is the round complexity, which is the number of rounds a user has
to send data. Second is the bandwidth complexity, which means
how much data is being sent though the network. Lesser the data
lower the bandwidth requirement.

3.2 Threat Model

We consider the semi-honest adversaries in our system in which an
adversary follows the prescribed instructions of the protocol and
may try to learn any unintended information from the message
exchanges in the protocol. An adversary may compromise some
participants in the system. We consider three different adversarial
scenarios: 1) an adversary corrupting a set of users and the server;
2) an adversary corrupting only a set of users; and 3) an adversary
corrupting a set of users and the aggregator.

The goal of the adversary is to learn information about honest
users’ private data (e.g., by applying adversarial ML techniques on
the locally trained model). We assume that there is no server and
aggregator collusion. This assumption is in line with the notion of
collector [22] that plays a similar role as the aggregator does in our
system model. However, it is allowed to collude with some users,
that is the aggregator is not fully trusted. Further, we assume the
adversarial behaviour of the aggregator as per the cheap and lazy
adversary as described in [10]. It is cheap as it may try to reduce
resource costs which may make the computations error prone. It
is lazy as it may not actively modify the users’ input. This notion
captures a typical cost cutting third party service provider. Thus,
the adversary’s behaviour is different from an active adversary
and it is modeled as a semi-honest adversary. Our threat model is
similar to the one considered in [42]. However, we do not assume
fully trusted third party. It is also closely related to [9], in the semi-
honest setting. Other works are diverse in terms of threat model
considered. We discuss their threat models in Section 6.

4 OUR SOLUTION

In this section, we first describe our training protocolΠGlobal_Train
(Figure 2) for a single aggregator scenario, and then a generalized
training protocol (ΠMAFL_Train) for the multi-aggregator scenario.
The crux of the solution is that each user locally updates her model
and homomorphically encrypts it (with server’s public key) and
creates a homomorphic authenticator for the input. These two are
sent to an aggregator that homomorphically adds local models and
creates a combined authenticator. These two are sent to the server,
which can decrypt ciphertext to get the sum of the local models,
and can also verify the correctness with the help of the combined
authenticator. So this solution offers one round communication
complexity from users to the server and verifiability property.

4.1 Description of ΠGlobal_Train

In the training process, the server first initializes the model 𝜽
and then distributes the encrypted model to the users (U) where
the model encryption is done using the AE scheme with users-
server shared symmetric-keys. Then each user 𝑈𝑖 ∈ U decrypts
the encrypted model using the shared key (𝑆𝐾𝑖 ), and then runs
Algorithm 1 with her local data and this initial model to get a
locally updated model 𝜃𝑖 ← Train(𝜽 ,D𝑖 , 𝑏, 𝑆𝑓 , 𝜎, 𝜂, 𝑡). This train-
ing is enabled with differential privacy for strong privacy guar-
antees. Then, the user 𝑈𝑖 encrypts 𝜃𝑖 as 𝐶𝜃𝑖 ← Encpk𝐽 𝐿 (𝜃

𝑖 ) by
JL AHE scheme with the server’s public key pk𝐽 𝐿 , followed by
signing the local model 𝜃𝑖 using the MLHA signature scheme,
𝜎𝑖 ← MLHA.Auth(sksigi ,∆, 𝑙, 𝜃𝑖 ). The user 𝑈𝑖 encrypts 𝐶𝜃𝑖 using
the AE scheme with the user-aggregator shared key and sends the
encrypted 𝐶𝜃𝑖 along with 𝜎𝑖 . After receiving inputs from 𝑈𝑖 , the
aggregator first decrypts encrypted {𝐶𝜃𝑖 } and evaluates an AHE
encrypted sum of local models that have been received from the set
of alive user L in the form Encpk𝐽 𝐿 (

∑
𝑈𝑖 ∈L 𝜃

𝑖 ). It also computes an
aggregated signature 𝜎 on {𝜎𝑖 } using theMLHA.Eval function. The
aggregator sends Encpk𝐽 𝐿 (

∑
𝑈𝑖 ∈L 𝜃

𝑖 ) and aggregated signature 𝜎
to the server. After receiving Encpk𝐽 𝐿 (

∑
𝑈𝑖 ∈L 𝜃

𝑖 ) and 𝜎 , the server
decrypts the aggregated encrypted model to obtain

∑
𝑈𝑖 ∈L 𝜃

𝑖 and
subsequently verifies the validity of the sum with the aggregated
signature 𝜎 . Steps 1 to 7 in Figure 2 complete 1 epoch of training.

Aggregator Server

[1] θ, ∆

AESKn(θ)

AD = ∆

AESK1(θ)

AD = ∆

AESK2(θ)

AD = ∆

U1 [2] θ1 : Local model + DP U2 [2] θ2 : Local model + DP Un [2] θn : Local model + DP

AEAK1
(HEPK(θ1)) Auth(θ1)

AEAK2
(HEPK(θ2)) Auth(θ2)

AEAKn(HEPK(θn)) Auth(θn)

[3] HEPK(
∑
θi)

Aggregated Authenticator σ

[4] Aggregated model =
∑

θi

Verify σ

SK1

SK2...
SKn

SK1

AK1

SK2

AK2

SKn

AKn

AK1

AK2
...

AKn

Figure 1: Description of ΠGlobal_Train

Local Training using Differential Privacy. In machine learning,
the differential privacy is applied to two fundamental tasks namely
private prediction and private training. The private prediction tasks
only consider the privacy of the outputs of an ML model after
training i.e., information leakage of the training data is limited in
the prediction phase once model training is complete. This is useful
in scenarios where the model weights are not made public and
access to the model is facilitated in the form of an API. On the
other hand, the private training tasks take into consideration the
privacy of the training data, during and after the training process
is complete. In the federated learning setting in which the server
and users have direct access to the updated global model during the
training process, the private training task limits the information
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Our Privacy-preserving Training Protocol (ΠGlobal_Train)
Server: The server holds the machine learning model 𝜽
Users: Each user𝑈𝑖 ∈ U, where U is the set of all users, has a private dataset D𝑖 and shares long term keys 𝐾𝑆𝑈𝑖 and 𝐾𝐴𝑈𝑖 with the server and the aggregator
respectively

▷ Key setup phase

Server:

- Generates a session ID 𝜅 and sends this to all the users and the aggregator.
- Generates a session key for each user, 𝑆𝐾𝑖 = 𝐾𝐷𝐹 (𝐾𝑆𝑈𝑖 , 𝜅 ) , where 𝐾𝐷𝐹 is a key derivative function.

- Generates the private and public key pair of the JL HE scheme, (sk𝐽 𝐿, pk𝐽 𝐿 ) ← JL.KeyGen(1𝜆 )

- Generates the public parameters pp← MLHA.Setup(1𝜆 ) for the signature scheme and sends it to the users.
Users:

- Each user𝑈𝑖 ∈ U derives the session keys 𝑆𝐾𝑖 = 𝐾𝐷𝐹 (𝐾𝑆𝑈𝑖 , 𝜅 ) corresponding to the Server and 𝐴𝐾𝑖 = 𝐾𝐷𝐹 (𝐾𝐴𝑈𝑖 , 𝜅 ) corresponding to the aggregator.
- Each user𝑈𝑖 runs (ski, vki ) ← MLHA.Keygen(pp) to generate signing and verification keys of the aggregated signature scheme, and sends vki to the

server.
Aggregator:

- Aggregator derives the session key 𝐴𝐾𝑖 = 𝐾𝐷𝐹 (𝐾𝐴𝑈𝑖 , 𝜅 ) corresponding to each user𝑈𝑖 .

▷ Server initializes the model

1. Server initializes the model 𝜽 and sets dataset identifier ∆. For each user𝑈𝑖 , server computes 𝜽𝑈𝑖 ← AE.Enc𝑆𝐾𝑖 (𝜽 ,∆) , where ∆ is taken as the
associated data (AD). Then sends 𝜽𝑈𝑖 and ∆ to user𝑈𝑖 ,.

▷ Users locally train the model

2 Each user𝑈𝑖 ∈ U:
2.1. Applies decryption to get 𝜽 ← AE.Dec𝑆𝐾𝑖 (𝜽 ) .
2.2. Applies Algorithm 1 and gets locally updated model 𝜃𝑖 ← Train(𝜽 ,D𝑖 , 𝑏, 𝑆𝑓 , 𝜎, 𝜂, 𝑡 ) .
2.3. Encrypts 𝜃𝑖 by JL homomorphic encryption,𝐶𝜃𝑖 ← Encpk𝐽 𝐿 (𝜃

𝑖 ) .
2.4. Signs 𝜃𝑖 usingMLHA signature scheme, 𝜎𝑖 ← MLHA.Auth(ski,∆, 𝑙, 𝜃𝑖 ) .
2.5. Further encrypts𝐶𝐴

𝜃𝑖
← AE.Enc𝐴𝐾𝑖 (𝐶𝜃𝑖 ) , where ∆ is used as the associated data, and sends𝐶𝐴

𝜃𝑖
and 𝜎𝑖 to the aggregator.

▷ Aggregator aggregates the model

3. For all users in L, where L is the set of alive users
𝐶𝜽𝑖 ← AE.Dec𝐴𝐾𝑖 (𝐶

𝐴

𝜃𝑖
)

4. Aggregator aggregates users local models

Encpk𝐽 𝐿 (𝜽 ) = Encpk𝐽 𝐿 (
∑︁
𝑈𝑖 ∈L

𝜃𝑖 ) ← JL.Eval(pk𝐽 𝐿, {𝐶𝜃𝑖 }𝑈𝑖 ∈L )

and compute the aggregated signature as 𝜎 ← MLHA.Eval(𝑓 , {𝜎𝑖 }𝑈𝑖 ∈L ) . It sends the aggregated model Encpk𝐽 𝐿 (𝜽 ) and aggregated signature 𝜎 to the
server.

▷ Server computes the updated global model

5. Server decrypts Encpk𝐽 𝐿 (𝜽 ) and obtains the model 𝜽 ← Decsk𝐽 𝐿 (Encpk𝐽 𝐿 (
∑𝑛
𝑖=1 𝜃

𝑖 ) ) .
6. Then runs theMLHA.Ver(P∆, {vki}𝑈𝑖 ∈L , 𝜽 , 𝜎 ) , if it verifies, then accepts 𝜽 .

7. Server updates global model 𝜽 =
𝜽

| L | .
8. Server repeats steps 1 to 7 with the updated global model 𝜽 and continues until the model converges when both server and users possess the final model.

Figure 2: Our Privacy-preserving Training Protocol (ΠGlobal_Train)

leakage of the users’ data. PROV-FL leverages the noise reduced
variant of the DP-SGD [1] algorithm in [40] for federated learning
(Algorithm 1). ∇𝜽L(𝜽 , 𝑑 𝑗 ) denotes the gradient that is obtained
after the backpropagation. Aggregating at least 𝑡1 locally trained
models using Algorithm 1 is (𝜖, 𝛿)-DP with respect to each sampled
batch if 𝜎 ≥

√︃
2 log 1.25

𝛿
/𝜖 [16]. Using the Moments Accountant

[1], 𝑘 epochs of training provides
(
O

(
𝑏𝜖

√︁
𝑘/𝑏

)
, 𝛿

)
-DP. One epoch

of training is a single call to the Train function in Algorithm 1.

Need for Secure Aggregation. One may think that why it is nec-
essary to use the secure aggregation technique to aggregate locally
updated models, given that some noises have already been added

1We note that [40] scale down the amount of noise by a factor of 𝑡 − 1 to ensure that
the total noise after aggregating individual models is strictly greater than the amount
of noise required. However, similar to [42], we scale down by 𝑡 which ensures that the
noise is greater than or equal to the required amount after aggregation.

to the local models by Algorithm 1. The DP-SGD algorithm is a
local DP algorithm in which each user trains a local ML model on
its dataset with a sufficient amount of noise to provide the target
an (𝜖, 𝛿)-DP guarantee. In other words, the DP-SGD prevents any
inference on 𝜽 𝑖 . Algorithm 1, however, adds a smaller amount of
noise to the individual models 𝜽 𝑖 and only prevents any inference
over the aggregated model 𝜽 . Therefore, a secure aggregation tech-
nique is applied to protect individual 𝜽 𝑖 . Aggregating models with
the local DP guarantee with a large amount of noise results in a
significant loss to the model utility. Thus, combining the secure ag-
gregation with a reduced noise in DP-SGD helps preserve the model
utility. A comparison of these approaches is further evaluated in
Section 5.

4.2 Generalized Protocol: ΠMAFL_Train

We now describe ΠMAFL_Train that involves multiple aggregators,
which is a generalization of the single aggregator-aided training
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Algorithm 1: Noise-Reduced Differentially Private Sto-
chastic Gradient Descent (DP-SGD) [40]
Input:Model 𝜽 , Dataset D, batch rate 𝑏, sensitivity 𝑆𝑓 ,

noise scale 𝜎 , learning rate 𝜂, threshold of alive and
honest users 𝑡

Output: Trained model 𝜽
1 function Train(𝜽 ,D, 𝑏, 𝑆𝑓 , 𝜎, 𝜂, 𝑡):
2 for i = 1 to 1/b do

3 Randomly sample 𝑑 from D with probability 𝑏
4 for 𝑑 𝑗 ∈ 𝑑 do

5 𝑔𝑖 (𝑑 𝑗 ) = ∇𝜽L(𝜽 , 𝑑 𝑗 )

6 𝑔𝑖 (𝑑 𝑗 ) = 𝑔𝑖 (𝑑 𝑗 )/𝑚𝑎𝑥
(
1.0,
∥𝑔𝑖 (𝑑 𝑗 )∥2

𝑆𝑓

)
7 𝑔𝑖 =

1
|𝑑 |

(∑
∀ 𝑗 𝑔𝑖 (𝑑 𝑗 ) + N

(
0, 𝜎

2

𝑡 · 𝑆
2
𝑓

))
8 𝜽 = 𝜽 − 𝜂 · 𝑔𝑖
9 return 𝜽

protocol that captures real world scenarios. In the multi-aggregator
training scenario, consider a mobile network with a group of mobile
phones that are connected to a base station. The base stations are
connected to a server. Let us call the group of mobile phones and
connected base station as a cluster. In reality there are multiple
base stations and hence multiple clusters. These base stations form
the backbone of a mobile network and it can be assumed that they
are always online for a smooth functioning of the network.

Federated learning in this setup is as follows. Suppose 𝐵1, . . . , 𝐵𝑘
are the base stations and in the cluster of 𝐵𝑖 and mobile phones
are denoted as users 𝑈𝑖 𝑗 . Each base station plays the role of an
aggregator. Henceforth, we mention base stations as aggregators.
After receiving server model 𝜽 , each user 𝑈𝑖 𝑗 runs the model on
her data and updates the model locally to get 𝜃𝑖 𝑗 . Then 𝑈𝑖 𝑗 sends
encrypted 𝜃𝑖 𝑗 as Encpk𝐽 𝐿 (𝜃

𝑖 𝑗 )) and the corresponding authenticator
𝜎𝑖 𝑗 to its aggregator 𝐵𝑖 . Aggregators collect encrypted local models
and authenticators from their connected users, and aggregate them
and sends to the server. Aggregator 𝐵𝑖 aggregates the encrypted
models as Encpk𝐽 𝐿 (𝜃

𝑖 ) = Encpk𝐽 𝐿 (
∑
𝑈𝑖 𝑗 ∈L𝑖 𝜃

𝑖 𝑗 ), where L𝑖 is the
set of alive users in the cluster of 𝐵𝑖 . Then 𝐵𝑖 aggregates the au-
thenticators as 𝜎𝑖 using MLHA.EVAL function. Up to this point,
the protocol goes exactly the same way as ΠGlobal_Train for each
cluster, and then it differs in the next step. In the next step, all the
aggregators run a secure aggregation protocol such as [9] in the
same way as used in [26] (here users role is played by aggregators).
Let Encpk𝐽 𝐿 (𝜃

1 + 𝑟1), . . . , Encpk𝐽 𝐿 (𝜃
𝑘 + 𝑟𝑘 ) be the respective shares

of 𝐵1, . . . , 𝐵𝑘 which are sent to the server. Note that
∑𝑘
𝑖=1 𝑟𝑖 = 0

as per the secure aggregation protocol. Aggregator 𝐵𝑖 also sends
𝜎𝑖 separately to the server. At the last step, server computes the
aggregated model as

𝜽 = Decsk𝐽 𝐿

(
Π𝑘𝑖=1Encpk𝐽 𝐿 (𝜃

𝑖 + 𝑟𝑖 )
)
=

𝑘∑︁
𝑖=1
(𝜃𝑖 + 𝑟𝑖 ) =

𝑘∑︁
𝑖=1

𝜃𝑖 .

Server also aggregates 𝜎1, . . . , 𝜎𝑘 to get 𝜎 and then verifies the
authenticity of 𝜽 . Server initiates next iteration of the training

with 𝜽 = 𝜽
| L | , where L is the set of alive users. We note that

the evaluation of another linear function using the authenticators
of individual functions is supported by MLHA scheme. In other
words, the server can evaluate a linear function 𝑔(𝑓1, . . . , 𝑓𝑘 ) =

𝑐1 · 𝑓1 + . . . + 𝑐𝑘 · 𝑓𝑘 , where 𝑓𝑖 is the function evaluated by the 𝑖𝑡ℎ
base station.

This protocol involving multiple aggregators is still 1-round
as the server does not need to run several iterations with the
aggregators to unmask the effect of 𝑟𝑖 from the aggregation of
{Encpk𝐽 𝐿 (𝜃

1 + 𝑟1), . . . , Encpk𝐽 𝐿 (𝜃
𝑘 + 𝑟𝑘 )} as it was required in [9]

or [26]. Due to the fact these base stations are always online, so
they all are able to send their shares to the server without fail.

4.3 Supporting Dynamic Joins and Dropouts

The MLHA scheme supports the evaluation of a linear function
𝑓 :M𝑛 →M. When used in our training protocol ΠGlobal_Train,
we set 𝑛 to be the maximum number of users that can participate
in the training procedure. Assume that the number of users who
are willing to participate in the beginning is 𝑘 . Now, if 𝑘 = 𝑛, then
we cannot allow new users to join without performing the global
setup procedure again. When 𝑘 < 𝑛, up to 𝑛−𝑘 additional users can
join without disrupting the training. The new users only need to
perform the local setup procedure to generate their secret and public
keys. Consider, for example, the number of users intially is 𝑘 = 7
and the total number of users that can participate is 𝑛 = 10. Each
user 𝑢𝑖 , where 𝑖 ∈ [1, 𝑘], holds a message 𝑥𝑖 . The function 𝑓 and
the inputs of the function to which each user contributes is public
information in the MLHA scheme and does not leak information
about the user’s input. For simplicity, assume the user𝑢𝑖 contributes
to the 𝑖𝑡ℎ input of the function. Then, 𝑓 (x) = c ·x =

∑𝑛
𝑖=1 𝑐𝑖𝑥𝑖 . Here,

x = [𝑥1, . . . , 𝑥𝑛] is a vector of the users’ inputs and c = [𝑐1, . . . , 𝑐𝑛]
are the coefficients of 𝑓 . In case of simple aggregation all elements
of c are 1 i.e 𝑐𝑖∈[1,𝑛] = 1. While the users are sending their local
updates, we have the following possible scenarios for 𝑘 = 7 and
𝑛 = 10:

(1) No users dropout or join: In this scenario, we have x =

[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 0, 0, 0] and c = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0].
Then, 𝑓 (x) = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7.

(2) Someusers dropout: Assume that users 2 and 5 dropout and
their respective inputs are not sent to the aggregator. Then
x = [𝑥1, 0, 𝑥3, 𝑥4, 0, 𝑥6, 𝑥7, 0, 0, 0] and c = [1, 0, 1, 1, 0, 1, 1, 0, 0, 0].
In that case, 𝑓 (x) = 𝑥1 + 𝑥3 + 𝑥4 + 𝑥6 + 𝑥7.

(3) Some users join: Assume that 2 new users join in addition
to the existing 7 users and they are𝑢8 and𝑢9. In this case, x =

[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 0] and c = [1, 1, 1, 1, 0, 1, 1, 1, 1, 0].
Then, 𝑓 (x) = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9.

(4) Some users dropout and join: Assume that 2 new users
join in addition to the existing 7 users and they are𝑢8 and𝑢9.
While sending the inputs, users 𝑢3 and 𝑢4 dropout. So, x =

[𝑥1, 𝑥2, 0, 0, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 0] and c = [1, 1, 0, 0, 1, 1, 1, 1, 1, 0].
Then, 𝑓 (x) = 𝑥1 + 𝑥2 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9.

4.4 Security Analysis of Our Protocol

We use the simulation based proof technique (Real/Ideal simu-
lation paradigm) to prove the security of our training protocol
ΠGlobal_Train. We consider three trust settings: 1. an adversary
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corrupting a set of users and the server (Theorem 4.1), 2. an adver-
sary corrupting a set of users (Theorem 4.2) and 3. an adversary
corrupting a set of users and the aggregator (Theorem 4.3). We do
not claim the input privacy of the honest users when an adversary
corrupts both the server and the aggregator simultaneously. The
ideal functionality as per the the description of Federated Learning
in Section 2.1 is given in Appendix A.1.

Theorem 4.1 (Adversary corrupting Users-server). Suppose
the additive homomorphic encryption scheme 𝐸 () is semantically

secure and the authenticated encryption AE is IND-CPA secure. The

protocol ΠGlobal_Train is secure against the semi-honest adversaries,

meaning it does not leak any information about private datasets of

the honest users.

The proof is given in Appendix A.2.

Theorem 4.2 (Adversary corrupting Users). Suppose the ad-
ditive homomorphic encryption scheme 𝐸 () is semantically secure

and the authenticated encryption AE is IND-CPA secure. The protocol

ΠGlobal_Train is secure against the semi-honest adversaries, meaning

it does not leak any information about private datasets of the honest

users.

We now prove that the protocol preserves the input privacy of
the honest users when a semi-honest adversary corrupts a set of
users and the aggregator, meaning the adversary does not learn
any information about the honest users’ input privacy.

Theorem 4.3 (Adversary corruptingUsers-aggregator). Sup-
pose the additive homomorphic encryption scheme 𝐸 () is semantically

secure and the authenticated encryption AE is IND-CPA secure. Then

ΠGlobal_Train is secure against the semi-honest adversaries, meaning

it does not leak any information about private datasets of the honest

users.

The proof is given in Appendix A.2. In the following theorem,
we provide the security property of ΠMAFL_Train.

Theorem 4.4. Consider the training protocol in themulti-aggregator

scenario. Suppose the additive homomorphic encryption scheme 𝐸 () is
semantically secure and the authenticated encryption AE is IND-CPA

secure. The multi-aggregator training protocol ΠMAFL_Train is secure

against the semi-honest adversaries who can corrupt users-and-server,

users or users-and-aggregators, meaning the protocol does not leak

any information about private datasets of honest users.

4.5 Choice of Parameters

Suppose, 𝑁 is the total number of users who are running the PROV-
FL protocol. In reality, some users will drop out due to network or
some other issues. Let 𝜇 be the fraction of dropping out users on the
average. Further suppose that𝜓 is the fraction of colluding users.
Therefore, in the worst case, the number of honest users is H =

(1 − 𝜇 −𝜓 )𝑁 . In order to resist active adversarial coalition, we set
(1−𝜇−𝜓 ) > 2

3 . We also have the parameter 𝑡 which is the threshold
for the number of alive and honest users in Algorithm 1 that decides
the amount by which the noise needs to be scaled down to achieve
(𝜖, 𝛿) privacy in the aggregated model. Then (1− 𝜇 −𝜓 ) ≥ 𝑡

𝑁
, thus

(1 − 𝜇 − 𝜓 ) ≥ max( 𝑡
𝑁
, 23 ). We also recommend to set 𝜖 ≤ 1 for

DP to ensure strong privacy guarantees. We would like to note

that 𝛿 ≤ 1
𝑑
is generally considered where 𝑑 is the total number of

training samples [1].

5 EXPERIMENTAL EVALUATION

5.1 Implementation Details

We implement PROV-FL in Python 3.7. We use gmpy2==2.1.32

for multi precision integers and floats, Charm[4] with the RELIC3

backend for elliptic curve arithmetic over a 256-bit Barreto-Naehrig
(BN) curve, ECDSA with the NIST P-256 curve and SHA-256 hash
function from fastecdsa==2.2.34 to realise a signature scheme,
AES-128 CBC and AES-128 GCM from cryptography==36.0.15

to realise a pseudorandom function and a secure channel, and
joblib==1.1.06 for multiprocessing. The ML models are imple-
mented using the Keras API in tensorflow-privacy==0.7.3 and
tensorflow==2.8.0. All experiments were conducted on a con-
sumer grade laptop with a Intel(R) Core(TM) i7-8750H CPU @
2.20GHz processor, 16 GB RAM, and Ubuntu MATE 18.04.5 LTS.

5.2 Dealing with Floating Point Numbers in

Cryptographic Algorithms

The machine learning model 𝜽 is represented using 32-bit floating
point numbers which can be positive or negative. However, the
additive homomorphic encryption and signature schemes operate
over the integers and do not natively support floating point num-
bers. To resolve this issue, we represent the floating point numbers
as integers in Z𝑝 , where the 256-bit integer 𝑝 is the prime order of
the cyclic groups used in the MLHA scheme. Similar to [26], the
floating point numbers are encoded to integers before performing
the cryptographic operations and decoded after they are complete.
Encode: The message space Z𝑝 is divided into two halves. Pos-
itive floating point numbers are encoded in [0, 𝑝2 − 1] and neg-
ative numbers are encoded in [ 𝑝2 , 𝑝 − 1]. Given an integer 𝜏 ∈
[1, 127], a positive floating point number 𝑥 is encoded as 𝑥 =

Encode(𝑥, 𝜏) = round(𝑥 · 2𝜏 ). If 𝑥 is negative, then it is encoded as
𝑥 = 𝑝 − Encode( |𝑥 |, 𝜏). The round function rounds off the operand
to the nearest integer. The integer 𝜏 is chosen accordingly to en-
sure that no overflow error occurs in the message space. In our
experiments, we set 𝜏 = 90.
Decode: Given the encoding of 𝑥 as 𝑥 ∈ Z𝑝 , the decoding is com-

puted as 𝑥 = Decode(𝑥, 𝜏) = −𝑝 − 𝑥
2𝜏

if 𝑥 ≥ 𝑝

2
, else

𝑥

2𝜏
.

5.3 Datasets, Models, and Experimental Settings

We evaluate the performance of PROV-FL using the following
settings:
• No Privacy: Federated learning without any privacy guarantees
to serve as a benchmark against which we can compare the
performance of PROV-FL.
• PROV-FL: Our privacy-preserving federated learning protocol
with privacy of computation and privacy of output guarantees

2https://gmpy2.readthedocs.io/en/latest/
3https://github.com/relic-toolkit/relic
4https://fastecdsa.readthedocs.io/en/v2.2.3/
5https://cryptography.io/en/36.0.1/
6https://joblib.readthedocs.io/en/latest/

https://gmpy2.readthedocs.io/en/latest/
https://fastecdsa.readthedocs.io/en/v2.2.3/
https://cryptography.io/en/36.0.1/
https://joblib.readthedocs.io/en/latest/
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Table 1: Description of Datasets and Machine Learning Mod-

els

Experiment

ID

Dataset

Dataset

Type

Model

Type

No: of model

parameters

Users

Minimum Alive

Users per Epoch

1 MNIST[21] Grayscale Image CNN 26,010 25 18 (≥ 70%)
2 Fashion-MNIST[41] Grayscale Image DNN 101,770 30 24 (≥ 80%)
3 IMDB Movie Reviews[25] Text DNN 80,305 10 7 (≥ 70%)
4 Rice Image Dataset[20] RGB Image CNN 79,445 25 18 (≥ 70%)

using Algorithm 1 and secure aggregation through additive ho-
momorphic encryption.
• PROV-FL (No DP): PROV-FL without privacy of output i.e., no
differential privacy. Users train their models using vanilla SGD
and their models are aggregated using secure aggregation.
• Local DP: Local training of individual user models using their
private datasets trained using DP-SGD and aggregated without
secure aggregation. In this case, each user adds enough noise to
satisfy the DP guarantee of their own data in isolation.
A summary of the different datasets and ML models used in our

experiments are given in Table 1. In Experiment 1, we train a CNN
on theMNIST dataset. The dataset contains 28×28 grayscale images
of handwritten digits from 0 - 9. The ML problem is a 10-class
classification task. The train and test datasets contain 60, 000 and
10, 000 images respectively.We use a CNNmodel with 2 convolution
layers and 2 linear layers.7. ReLU is used as the activation function
and Maxpool as the pooling layer after the convolutions. The train
dataset is split equally among all the users, with each user having
2, 400 samples.

In Experiment 2, we train a DNN on the Fashion-MNIST dataset.
The dataset contains 28 × 28 grayscale images of clothing items.
Similar to MNIST, the ML problem is a 10-class classification task.
The train and test datasets contain 60, 000 and 10, 000 images re-
spectively. We use a DNN model with 2 linear layers and ReLU as
the activation function8. The train dataset is split equally among
all the users, with each user having 2, 000 samples.

In Experiment 3, we train a DNN on the IMDB Movie Reviews
dataset that contains 50, 000 movie reviews in text format. The ML
problem is sentiment analysis task formulated as a binary classifica-
tion problem where we need to predict whether the movie review
is positive or negative. The train and test datasets contain 25, 000
samples each. During the pre-processing step, the 5, 000 most fre-
quent words are kept. The text sequences are then represented as
binary vectors of length 5, 000 where each co-ordinate of the vector
is 1 if the corresponding word is found in the sequence. The train
dataset is split equally among all the users, with each user having
2, 500 samples. We use a DNN model with 3 linear layers and ReLU
as the activation function9.

In Experiment 4, we train a CNN on the Rice Image Dataset.
The dataset contains 250 × 250 RGB images of rice grains. The
ML problem is a 5-class classification task. We split the dataset
containing 75, 000 images into 62, 500 and 12, 500 train and test
images respectively. We pre-process the images by resizing them
to 50 × 50 RGB. We create a CNN model with 2 convolution layers

7https://github.com/tensorflow/privacy/blob/master/tutorials/mnist_dpsgd_tutorial_
keras.py
8https://www.tensorflow.org/tutorials/keras/classification
9https://www.kaggle.com/code/drscarlat/imdb-sentiment-analysis-keras-and-
tensorflow/notebook
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Figure 3: Accuracies in different settings and experiments

followed by 2 linear layers. The first and second convolution layers
have 32 and 16 filters each. Maxpool is used as the pooling layer
after the convolutions. The kernel size for the convolution and
maxpool layers are (3, 3) and (2, 2) respectively. The size of the
following linear layers are 32 and 5. The activation function is ReLU
for all the layers except the last linear layer. The train dataset is split
equally among all the users, with each user have 2, 500 samples.

For all experiments, we set the batch rate 𝑏 = 0.01, L2-norm clip-
ping (sensitivity) 𝑆𝑓 = 1.5, and use (0.5, 1× 10−5)-DP. The learning
rate in Experiment 2 is set to 0.15 and in the other experiments we
use a learning rate of 0.1. The pixel values in all the image datasets
are scaled down to lie in [0, 1]. The DP guarantee is estimated using
tensorflow-privacy’s compute_dp_sgd_privacy utility. During our
experiments, we do not perform hyperparameter optimization to
find the most optimal hyperparameters. Our intention is to analyse
and determine the utility of the model in the No Privacy, PROV-FL,
PROV-FL (No DP), and Local DP settings keeping the same model
architecture and hyperparameters fixed. While we demonstrate
PROV-FL on DNN and CNN models, we note that it supports other
ML models such as SVMs, linear/logistic regression, decision trees,
and other variants of neural networks. PROV-FL is compatible with
all the noise reduced DP ML algorithms proposed in [40].

5.4 Experimental Results

5.4.1 Model Performance in different settings. Figure 3 shows the
accuracy on the test dataset after every epoch of training for the
different settings and experiments. From the four graphs, we make
the following observations. First, the accuracy in the No Privacy
and PROV-FL (No DP) settings is the same. Second, there is a
minor loss in accuracy in the PROV-FL setting. Third, the Local DP
setting is significantly worse in terms of accuracy and the accuracy
curves are not smooth. The first observation can be attributed to
the fact that the error, if any, that is introduced while encoding

https://github.com/tensorflow/privacy/blob/master/tutorials/mnist_dpsgd_tutorial_keras.py
https://github.com/tensorflow/privacy/blob/master/tutorials/mnist_dpsgd_tutorial_keras.py
https://www.tensorflow.org/tutorials/keras/classification
https://www.kaggle.com/code/drscarlat/imdb-sentiment-analysis-keras-and-tensorflow/notebook
https://www.kaggle.com/code/drscarlat/imdb-sentiment-analysis-keras-and-tensorflow/notebook
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Table 2: Data sent/received by different parties per epoch

Data Transfer per Epoch in Megabits (Mb)

No Privacy/Local DP PROV-FL/PROV-FL (No DP)
User Server User Aggregator Server

Experiment ID Sent/Received Sent Received Sent Received Sent Received Sent Received

1 0.10 0.10 2.6 9.99 0.10 10.0 249.71 0.10 10.0
2 0.41 0.41 12.21 39.08 0.41 39.09 1172.40 0.41 39.09
3 0.32 0.32 3.21 30.84 0.32 30.84 308.38 0.32 30.84
4 0.32 0.32 7.94 30.51 0.32 30.51 762.68 0.32 30.51

and decoding floats as integers is neglible. This does not have any
discernible impact on the accuracy. The minor loss in accuracy in
the PROV-FL setting is because of the Algorithm 1, which adds
noise to every batch of the computed gradients. However, the loss
in accuracy is not as significant as the Local DP setting as the
amount of noise added in PROV-FL is sufficient to only protect
the aggregated model and not the individual user models. This
highlights the advantage of adding less noise and using secure
aggregation to combine the individual models. The Local DP setting
is the worst in terms of performance as an overwhelming amount
of noise is added to each user model. The uneven and erratic nature
of the accuracy curve can be attributed to the large amount of
noise in the aggregated model. Our results show that PROV-FL can
effectively preserve model utility while providing strong security
and privacy guarantees. We perform experiments with a strong
privacy guarantee of (0.5, 1×10−5)-DP. For weaker guarantees, the
performance of PROV-FLwill be closer to theNo Privacy setting. In
every case, the Local DP setting will perform worse than PROV-FL
due to extra noise that is accumulated in the aggregated model.

5.4.2 Communication Cost. Table 2 highlights the communication
overhead incurred in different settings. The communication over-
head for the aggregator and server depends on the number of users
alive. As we randomly dropout some users each epoch in our ex-
periments, the results reported in Table 2 correspond the worst
case scenario in terms data transfer i.e, all users are alive. Local
DP/No Privacy settings directly send the unencrypted weights of
the model which are 32-bit floating point numbers. The DP-SGD
training procedure does not result in any additional data transfer.
In the PROV-FL/PROV-FL (No DP) settings, the JL encrypted model
weights are 3072-bits each. The elliptic curve coordinates of ele-
ments of the MLHA scheme in G1 and G2 belong to 𝐸 (F𝑝 ) and
𝐸 (F𝑝2 ) respectively, where 𝑝 is a 256-bit prime and 𝐸 is a BN curve.
The size of the ECDSA signature is 576 bits.

5.4.3 Computation Cost. Let 𝑥 be the number of parameters in the
machine learning model, 𝑁 is the number of users, 𝑦 is the number
of iterations in one epoch, and𝑑 is the number of training samples in
each iteration. First we derive the cost incurred to the user. As a user
runs Algorithm 1, Homomorphic encryption andMLHA functional-
ities, the cost amounts to 1 AEAD encryption, 1 AEAD decryption, 1
PRF evaluation, 1 ECDSA signature evaluation, 2𝑥 + 6 elliptic curve
scalar multiplications, 2𝑥 + 2 elliptic curve point additions, 𝑥 JL ho-
momorphic encryptions, and O(𝑥 ∗𝑦 ∗𝑑) floating point operations.
In case of aggregator, it only has to aggregate the authenticators and
the ciphertexts. Thus the cost is as follows: 𝑁 AEAD decryptions,
2𝑁 elliptic curve point additions and 𝑁 × 𝑥 JL homomorphic eval-
uations. Finally we determine the cost at the server’s end. Server
has to run JL decryption andMLHA verification algorithm, so the

Table 3: Average time taken per epoch by different entities

Average Time per Epoch (secs)

No Privacy PROV-FL (No DP) PROV-FL Local DP
Experiment ID User Server User Aggregator Server User Aggregator Server User Server

1 0.36 0.02 23.07 15.17 119.87 24.83 17.11 120.04 2.24 0.03
2 0.13 0.03 90.04 82.72 477.03 90.2 82.4 476.38 0.76 0.03
3 0.18 0.06 71.28 20.93 373.17 71.61 21.95 375.02 0.87 0.06
4 1.46 0.06 72.02 52.14 369.27 98.47 49.55 370.85 29.34 0.07

cost is as follows: 𝑁 AEAD encryptions, 𝑥 JL decryptions, 1 ECDSA
verification, 2𝑁 + 4 pairing operations, 3𝑁 + 3 scalar multiplica-
tions, 𝑁 + 𝑥 point additions. Table 3 highlights the time incurred in
different settings and experiments in Figure 3. We simulate all the
users, aggregator, and server on a single machine and the reported
times do not account for any overheads that are incurred during
data transfer over a network. The time per epoch is computed as:
Average time per user +Aggregator time + Server time, since each
user trains their models in parallel. The execution time is computed
uses Python’s time.perf_counter. The Local DP and No Privacy
experiments were conducted without setting up a secure channel.
While the laptop we run our experiments on is representative of
a user device, dedicated server hardware is more powerful and
capable of efficiently handling parallel workloads. We believe that
the server times can be significantly improved on better hardware.

5.4.4 Comparing with HybridAlpha. We note that HybridAlpha is
the closest protocol to PROV-FL in terms of functionality. HybridAl-
pha uses Multi Input Functional Encryption (MIFE) [2] for secure
aggregation. It provides privacy of computation and output and
supports fully dynamic participation in a single round of communi-
cation but requires a fully trusted third party. To compare PROV-FL
with HybridAlpha, we compute the time required by the users to
encrypt 118, 110 gradients, which is the benchmark reported in their
paper. We use CiFEr’s10 implementation of the MIFE scheme as
HybridAlpha’s source code is not public. The MIFE implementation
takes 326 seconds per user for encryption. Similar to PROV-FL’s
implementation, we use multiprocessing to perform parallel encryp-
tion. PROV-FL takes 103 seconds per user (Encpk𝐽 𝐿 +MLHA.Auth
time only). When we compare the reported results in HybridAl-
pha to perform the aggregation of 118, 110 gradients of 10 users,
PROV-FL takes 737 seconds while HybridAlpha reports 34 sec-
onds (user time + server time). The following are the reasons for
time difference. First, we develop an end-to-end implementation
for benchmarking which accounts for the overheads involved in
the operations required to setup a secure channel. HybridAlpha
only reports the execution times of the individual modules and as-
sumes a secure channel is present. Second, the server to benchmark
HybridAlpha is significantly more powerful than the laptop that
we have used for these experiments.

The approach for designing PPML schemes is diverse, with vary-
ing privacy criteria (privacy of computation and/or output), ex-
perimental settings, and hardware. For example, Truex et. al. [40]
use threshold homomorphic encryption and require 0.001095 and
0.007112 seconds for client and server cryptographic operations
respectively. They use a CNN with 3 linear layers and 10 users for
MNIST and do not report full protocol execution time. However,
we use a CNN with 2 convolution layers and 2 linear layers with

10https://github.com/fentec-project/CiFEr

https://github.com/fentec-project/CiFEr
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Table 4: Comparison with Related Works

Single Round Verifiable Aggregation Fully Trusted Third Party Dynamic Participation

PROV-FL Yes Yes No Dropouts and Joins
Bonawitz et. al. [9] No No – Dropouts

PRIV-FL [26] No No – Dropouts
HybridAlpha [42] Yes No Yes Dropouts and Joins
Truex et. al. [40] No No – –

PySyft [34] No No – –

25 users and provide detailed timing information. We provide an
approach-related comparison with other works in Section 6 and
highlight prominent works in Table 4.

6 RELATEDWORKS

Table 4 summarizes the comparison between PROV-FL and re-
lated schemes. Secure aggregation protcols along with DP in feder-
ated learning settings can be used to provide privacy of computa-
tion and output. We categorize and discuss the remaining related
works in our literature review into secure aggregation and privacy-
preserving federated learning protocols.

6.1 Secure Aggregation

Bonawitz et al. [9] proposed a secure aggregation protocol that sup-
ports dropouts. However, their solution requires at least 3 rounds
of communication. More recently, the authors extend their work
[5] to support a large number of users with lower communication
complexity. However, this solution too requires multiple rounds of
communication and does not support dynamic joins.

Shi et al. [37] proposed a secure aggregation protocol with dif-
ferential privacy that does not support dropouts. Additionally, the
scheme is suitable for small plaintext spaces only which is not vi-
able in the federated learning setting as floating point values used
in ML models are encoded as large integers to ensure compatibility
with cryptographic protocols.

Joye et al. [19] proposed a secure aggregation protocol which
addresses the issue of small plaintext spaces in [37]. However, it
does not support dynamic participation. Moreover, the ciphertexts
are large since their protocol is built over Paillier cryptosystem.
A follow up work [7] uses smaller ciphertexts while retaining the
functionality of supporting large plaintext spaces but does not
support dynamic participation.

Leontiadis et al. [22] proposed a single round secure aggregation
protocol with dropout support using a “semi-trusted” third party.
However, heir protocol is based on [19] and inherits the issue of
large ciphertext spaces.

PUDA [23] introduced the notion of aggregate unforgeability and
considers the case of an untrusted aggregator who has to prove to
an external verifier that it has correctly aggregated the sum of the
participating users. However, their scheme is built upon [37] and
does not support dynamic participation.

Chan et al. [12] introduced a generic framework in which any
secure aggregation protocol can be used as a building block to
support dropouts. Their approach is based on fault tolerance via
duplication, each participant needs to send their data multiple times
(O(log𝑛) where 𝑛 is the number of total users).

The solutions presented above either require multiple rounds of
communication [5, 9], do not support fully dynamic participation
[7, 12, 19, 22, 23, 37] or require higher communication per user [12].
PROV-FL overcomes all these shortcomings.

6.2 Privacy-preserving Federated Learning

Shokri et al. [38] proposed a variant of SGD algorithm for federated
learning, where each participant chooses a fraction of the server’s
model parameters and updates their local models. Selected parame-
ters with DP noise are uploaded to the server after local training.
The authors did not propose a concrete implementation of how the
participants exchange gradients and assumed all users are honest.

Chase et al. [13] proposed a collaborative neural network training
framework using garbled circuits, DP and secret sharing. Partici-
pants send masked model updates and the masks to two trusted
servers, who then use garbled circuits to compute the aggregated
model. Their solution requires a single round of communication
but is not resistant to dropouts and assumes all parties are honest.

PATE [32] presented an ensemble approach to private learning
where several “teachers” train local models on private datasets. A
fully-trusted aggregator provides an interface with DP guarantees
to a “student” model with an unlabelled public dataset. The student
can obtain labels by querying the teachers through the interface.
However, this approach assumes all participants are honest.

PySyft [34] is a federated learning framework based on the SPDZ
protocol [15]. PySyft offers privacy of computation and output
guarantees but requires multiple rounds of communication and is
not resilient to dropouts.

Truex at al. [40] proposed a federated learning framework which
used threshold homomorphic encryption [14] to aggregate user
models. Their approach considers privacy of computation and out-
put but requires 3 rounds of communication and does not support
dynamic participation.

PrivFL [26] is a framework that only supports linear and logistic
regression algorithms. It only considers privacy of computation
and requires multiple rounds of communication.

Existing solutions either require multiple rounds of communi-
cation [26, 34, 40], or require fully trusted entities throughout the
execution of the protocol [32, 42] or assume that all participants
are honest [13, 32, 38]. PROV-FL overcomes all these shortcomings.

Other PPML approaches are based on SMC [3, 11, 24, 28, 29],
where users upload their encrypted data or secret shared data to
one or more servers which then train ML models or use trusted
execution environments [18, 30]. These approaches are different
from PROV-FL in which the dataset does not leave the user system.

7 CONCLUSION AND FUTUREWORKS

We have presented PROV-FL, a privacy-preserving federated learn-
ing framework with verifiable aggregation and dynamic participa-
tion that needs only one round of communication. Our idea can
also be tried on other machine learning techniques such as support
vector machine in the distributed setup. Solution that does not rely
on any third party and enjoys all the properties of PROV-FL will
be an interesting research direction in future.
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A APPENDIX

A.1 Ideal Functionality FGlobal_Train

Inputs:

Server: Model 𝜃
User (𝑈𝑖 ): Dataset {D𝑖 } for all 𝑖 = 1 . . . 𝑛

Outputs:

– User (𝑈𝑖 ): Aggregated model 𝜃
– Server: Aggregated model 𝜃

A.2 Proofs

Proof of Theorem 4.1.

Proof. Let C denote the set of corrupted users, L denote the
set of alive users, and D denote the set of dropout users where
U = L ∪ D and L = H ∪ C. We construct a simulator S through
a series of hybrids and we show that two consecutive hybrids are
indistinguishable.

Hyb 0: This hybrid is a random variable corresponding to the real-
world execution of the protocol ΠGlobal_Train.

Hyb 1: This hybrid is exactly the same as Hyb 0 except that the
simulator S uniformly randomly samples the keys 𝐴𝐾𝑖 of
the honest users 𝑈𝑖 in L\C that they share with the ag-
gregator. The security of KDF assures that this hybrid is
indistinguishable from Hyb 0.

Hyb 2: In this hybrid, all ciphertexts of the honest users inH that
are sent to the aggregator are substituted with encryption
of the zero local model. However, the honest users in H
in the real world execution respond with the encryption of
Encpk𝐽 𝐿 (𝜽

𝑖 ), 𝑖 ∈ H with the key 𝐴𝐾𝑖 . Thus, the IND-CPA
security of the encryption scheme AE.Enc() guarantees that
this hybrid is indistinguishable from the previous one.

Hyb 3: This hybrid is exactly same as the previous hybrid, except
that Encpk𝐽 𝐿 (𝜽 ) is substituted by encryption of the zero
model, i.e., Encpk𝐽 𝐿 (0), which is indistinguishable due to
the semantic security of the additive HE scheme. Further
the simulator calls the adversary A to receive 𝜽 which is
obtained by decrypting Encpk𝐽 𝐿 (𝜽 ). The sum of honest users’
(inH ) local model, denoted by 𝜽Hloc, can be derived as

𝜽Hloc =
∑︁
𝑖∈H

𝜽 𝑖loc =
∑︁
𝑖∈L

𝜽 𝑖loc −
∑︁
𝑖∈C

𝜽 𝑖loc

where L is the set of alive users, C is the set of alive cor-
rupted users and 𝜽 𝑖loc is the local model of the honest user
𝑖 ∈ H trained using Algorithm 1. The local model of user𝑈𝑖
can be represented as:

𝜽 𝑖loc = 𝜽 − 𝜂 ·
1/𝑏∑︁
𝑒=1

©­«
1
|𝑑 |

©­«
∑︁
∀ 𝑗
𝑔𝑒 (𝑑 𝑗 ) + N

(
0,
𝜎2

𝑡
· 𝑆2
𝑓

)ª®¬ª®¬
where 𝑒 is the batch, 𝑏 is the batch rate, and 𝜽 is the global
model. The sum of the models of the honest alive usersH is
then,

∑︁
𝑖∈H

𝜽𝑖loc = |H| · 𝜽 − 𝜂 ·
1/𝑏∑︁
𝑒=1

©­«
1
|𝑑 |

©­«
∑︁
𝑖∈H

∑︁
∀ 𝑗
𝑔𝑒 (𝑑𝑗 ) + N

(
0,
|H|𝜎2
𝑡

· 𝑆2
𝑓

)ª®¬ª®¬

By averaging the aggregate local models we get
∑
𝑖∈H 𝜽 𝑖loc
|H |

which is

𝜽 − 𝜂 ·
1/𝑏∑︁
𝑒=1

©­«
1

|H| · |𝑑 |
©­«

∑︁
𝑖∈H

∑︁
∀ 𝑗
𝑔𝑒 (𝑑𝑗 ) + N

(
0,
|H|𝜎2
𝑡

· 𝑆2
𝑓

)ª®¬ª®¬
Since 𝑡 ≤ |H |, the amount of noise added to 𝜽Hloc is sufficient
to provide (𝜖, 𝛿)-DP guarantee. As the addition of the Gauss-
ian noises gives the (𝜖, 𝛿)-indistinguishability, this hybrid is
indistinguishable from Hyb 2.

Hyb 4: In this hybrid, the simulator works exactly the same way
as in [36, Theorem 5], which outputs authenticators per-
fectly indistinguishable from the ones obtained by running
MLHA.Eval. The joint view of colluding users in C and the
server in simulated world is indistinguishable from that of
the real world. Therefore, this hybrid is indistinguishable
from the previous one.

Hyb 5: Simulator repeats Hyb 1 to Hyb 4 for polynomial number
of times, however, it remains indistinguishable from the real
world due to composition theorem.

□

Proof of Theorem 4.3.

Proof. We construct a simulator S that runs the adversary and
emulates the honest users outputs during the execution of the
protocol.

Hyb 0: This hybrid corresponds to the execution of the real-world
execution of the protocol ΠGlobal_Train.

Hyb 1: The difference between this hybrid and Hyb 1 is that in this
hybrid, the simulator S, working in the same way as in [36,
Theorem 5]; uniformly samples 𝑠𝑘𝑖 ∈ H and computes 𝑣𝑘𝑖
accordingly and uses the zero localmodel. The simulator calls
the adversary A to obtain individual signed local models
𝜎𝑖 . The security of theMLHA signature scheme assures that
Hyb 0 and Hyb 1 are indistinguishable.

Hyb 2: In this hybrid, the simulator calls the adversary A to obtain
𝐶𝑖
𝜃
, for𝑈𝑖 ∈ H , 𝐶𝑖

𝜃
is replaced by the encryption of the zero

local model i.e., Encpk𝐽 𝐿 (0) for the honest users inH . This
hybrid is indistinguishable from the previous one due to the
semantic security of the additive HE scheme.

Hyb 3: In this hybrid, the simulator calls the adversary A to obtain
the encrypted model Encpk𝐽 𝐿 (𝜽 ) and 𝜎 . The simulator substi-
tutes the encrypted model with encryption of the zero model
0. The signature can be forged with a negligible probability.
As the simulator has access to the local models of the users
in C, the encryption of the sum of the honest users’ local
model can be computed as

Encpk𝐽 𝐿

(
𝜽Hloc

)
= Encpk𝐽 𝐿

( ∑︁
𝑖∈H

𝜽𝑖loc

)
= Encpk𝐽 𝐿

( ∑︁
𝑖∈L

𝜽𝑖loc −
∑︁
𝑖∈C

𝜽𝑖loc

)
=

∏
𝑖∈H

Encpk𝐽 𝐿
(𝜽𝑖loc ) .

Due to the semantic security of the additive HE scheme,
Encpk𝐽 𝐿

(
𝜽Hloc

)
is indistinguishable from Encpk𝐽 𝐿 (0) or any

individual or combination of encrypted values. Thus Hyb 3

is indistinguishable from Hyb 2.
Hyb 4: The simulator repeats Hyb 1 to Hyb 3 for a polynomial

number of times, however, it remains indistinguishable from
the real world due to the composition theorem.

□
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