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Abstract
The goal of this article is to provide a detailed introduction to infinite-horizon
investment–consumption problems for agents with preferences described by Epstein–
Zin (EZ) stochastic differential utility (SDU). In the setting of a Black–Scholes–
Merton market, we seek to describe all parameter combinations that lead to a well-
founded problem in the sense that the problem is not just mathematically well posed,
but the solution is also economically meaningful. The key idea is to consider a novel
and slightly different description of EZ SDU under which the aggregator has only one
sign. This new formulation clearly highlights the necessity for the coefficients of rel-
ative risk aversion and of elasticity of intertemporal complementarity (the reciprocal
of the coefficient of intertemporal substitution) to lie on the same side of unity.
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1 Introduction

This paper is the first of a trio of papers by the same authors; see also Herdegen
et al. [11, 10]. The collective goal of these papers is to undertake a rigorous study
of a Merton-style infinite-horizon investment–consumption problem in the setting
of Epstein–Zin (EZ) stochastic differential utility (SDU). In particular, the aim is
to study when the problem is mathematically well posed and economically well
founded, and if so, to derive the candidate optimal strategy, the candidate value func-
tion and the candidate optimal utility process (this paper), and then to prove existence
and uniqueness (where possible) of the corresponding utility processes and to verify
that the candidate optimal strategy, value function and utility process are indeed op-
timal in a large class of admissible investment–consumption strategies; see [11, 10].

Within this general goal, the contributions of this first paper are partly foundational
and partly didactic. As already alluded to above, one issue in a stochastic control
problem such as an investment–consumption problem is to decide when the problem
is mathematically well posed: if the value function can become infinite, then it is gen-
erally not possible to discuss optimal strategies. In this paper, we also ask when the
problem is economically well founded. For EZ SDU, the utility process associated to
a consumption stream is given as the solution to a backward stochastic differential
equation (BSDE), and we ask: When does this solution have a sound economic inter-
pretation? We argue that for some parameter combinations, including some which are
widely used in the literature, the utility process has the properties of a utility bubble.
In these settings, the investment–consumption problem is ill founded.

In the economics literature, SDU was introduced by Duffie and Epstein [5] as the
continuous-time analogue of recursive utility (see Epstein and Zin [8] and Weil [24])
and further developed by Duffie and Lions [6] as well as Schroder and Skiadas [22].
It can be viewed as an extension of classical additive utility. It is recognised as hav-
ing the potential to explain several of the inconsistencies between the predictions
of the Merton model and agent behaviour (for example the equity premium puzzle,
see Mehra and Prescott [16]). However, with several honourable exceptions (includ-
ing Kraft and Seifried [13], Seiferling and Seifried [23], Xing [25], Matoussi and
Xing [15] and Melnyk et al. [17]), SDU has not been widely studied in the math-
ematical finance literature. Given the deep connections with many areas of modern
probability theory (including for example BSDEs), this is in some ways surprising;
but given the technical challenges involved, it is also understandable. We consider EZ
SDU for infinite-horizon problems and give a clear interpretation of all the parame-
ters, with a focus on the feasible ranges for these parameters. The fact that we concen-
trate on an infinite horizon brings several issues into focus. Over an infinite horizon,
it is not possible to work backwards from the terminal date. Therefore, it is neces-
sary to introduce some form of transversality condition as an alternative. Moreover,
integrability (and uniform integrability) become much more significant challenges.

The conventional wisdom (see for example Duffie and Epstein [5] and Melnyk
et al. [17]) is that the best technical solution to these challenges is to replace the
infinite-horizon problem with a family of finite-horizon problems (but note that this
is not the way in which the candidate solution is found). We take a different approach.
Key to the definition of EZ SDU is an aggregator, and we introduce a slightly different
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aggregator to the one which is traditionally used in the literature. The key point is that
our aggregator takes only one sign. When there exist utility processes associated with
both our aggregator and the classical aggregator, then the utility processes agree.
But crucially, any utility process associated to the traditional aggregator is also a
utility process associated to our modified aggregator, whereas the converse is not true.
Moreover, when specialised to the case of additive utility, our aggregator corresponds
to the classical formulation of the Merton problem, whereas the traditional aggregator
has a non-standard specification in this context.

Our reformulation of the problem brings significant new insights concerning the
set of feasible parameters for the problem with EZ SDU preferences. In particular, we
conclude that the coefficient R of relative risk aversion (RRA) and the coefficient S of
elasticity of intertemporal complementarity (EIC) (the reciprocal of the coefficient of
elasticity of intertemporal substitution, see Sect. 4 for details) should lie on the same
side of unity, at least for infinite-horizon problems. (In the classical Merton problem
for power utility, R and S are necessarily equal and therefore on the same side of
unity.) This seems to be a new and significant finding. In particular, our results bring
into doubt the conclusions of those parts of the literature which are in the setting of
R > 1 > S. This includes for example the literature on long-run risk, which builds
on the seminal paper by Bansal and Yaron [1]. We argue that the putative solutions
which have been found previously in the literature (in the case when R and S are on
opposite sides of unity) correspond to a bubble-like behaviour: the value associated
with a consumption stream does not come from the utility of consumption in the short
and medium term, but rather from a perceived and unrealisable value in the distant
future.

While there is strong empirical evidence for the existence of asset price bubbles,
supported by a large body of literature (both in finance and mathematical finance),
this literature is underpinned by the assumption that bubbles are transitory and ex-
ceptions to the norm. (Seminal papers on asset price bubbles include Diba and Gross-
man [4], Scheinkmann and Xiong [19], Loewenstein and Willard [14] and Cox and
Hobson [3]. See also the survey articles by Shiller [21], Scherbina and Schlusche [20]
and Protter [18] and the references therein.) Indeed, the effect of a bubble is typically
assessed relative to a more classical model in which assets are priced via their funda-
mentals, and any novel features are highlighted as the impact of the bubble. For this
reason, it seems questionable to base long-run investment decisions on the necessary
and perpetual existence of a bubble, at least without explicit recognition that a bubble
is present in the setup and driving the conclusions.

The remainder of this paper is structured as follows. In Sects. 2 and 3, we review
the classical investment–consumption problem for additive utility and then introduce
the corresponding problem for stochastic differential utility (SDU). In Sect. 4, we in-
troduce Epstein–Zin (EZ) SDU and carefully explain how the various parameters
should be interpreted, and which parameter combinations lead to a well-founded
problem. In Sect. 5, we embed EZ SDU within a Black–Scholes–Merton financial
market and derive the candidate value function, utility process and optimal strategy.
In Sects. 6 and 7, we compare our formulation with the conventional formulation
which has been used heretofore in the literature. We believe that our formulation
has significant advantages; first in that it contributes to the understanding of when
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the problem is ill founded, and second in that it makes it possible to optimise over
all attainable consumption streams in Herdegen et al. [11], and not just a restricted
subclass as in the extant literature.

2 Additive utility

Throughout, we work on a filtered probability space (�,F , (Ft )t≥0,P) satisfying
the usual conditions and we assume that F0 is P-trivial. Let P be the set of pro-
gressively measurable processes and P+, P++ the restrictions of P to processes
that take nonnegative and strictly positive values, respectively. Moreover, denote by
S the set of all semimartingales. We identify processes in P or S that agree up to
indistinguishability.

Before introducing the notion of stochastic differential utility, we recall the defini-
tion of additive expected utility over an infinite horizon. We call U :R+ ×R+ →R a
utility function if U is increasing and concave in its second argument, and we call C

a consumption stream if C ∈ P+. The utility associated to a consumption stream is
given by JU(C) = E[∫ ∞

0 U(t,Ct )dt]. The value process or, as it is called in the SDU
literature, the utility process V = V C ∈ S associated to the consumption stream C

is defined by

Vt = V C
t = E

[∫ ∞

t

U(s,Cs)ds

∣
∣
∣
∣Ft

]

. (2.1)

Then JU(C) = V C
0 . The goal is to maximise JU(C) over an appropriate space of

consumption streams. A key example of a utility function is the discounted constant

relative risk aversion (CRRA) utility function U(t, c) = e−δt c1−R

1−R
. Under that utility,

the utility process associated to C is given by

Vt = E

[∫ ∞

t

e−δs C1−R
s

1 − R
ds

∣
∣
∣
∣Ft

]

. (2.2)

It is well known that under CRRA preferences, the parameter R controls the agent’s
appetite for risk. In particular, since R is a measure of the concavity of the utility

function U(t, c) = e−δt c1−R

1−R
(more precisely, R = −c

U ′(t,c)
U ′′(t,c) ), R captures the agent’s

aversion to variation of consumption over ω ∈ �. It is also known, though perhaps
less well known, that the parameter R also captures the agent’s aversion to variation
of consumption over time. (We justify and explain this fact when we study EZ SDU
in Sect. 4.)

There is no economic or mathematical justification (beyond mathematical tracta-
bility) for restricting attention to preferences in which the same parameter governs
preferences over both fluctuations of consumption across sample paths and fluctua-
tions of consumption across time. One of the motivations behind the introduction of
SDU is to allow a disentanglement of preferences over these two types of fluctuations
of consumption.
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3 Stochastic differential utility

Stochastic differential utility (SDU) is a generalisation of time-additive discounted
expected utility and is designed to allow a separation of risk preferences from time
preferences. The goal in this section is to explain how this statement should be inter-
preted.

Under discounted expected utility, the value or utility of a consumption stream
is given by JU(C) = E[∫ ∞

0 U(t,Ct )dt], and the value or utility process is given by
Vt = E[∫ ∞

t
U(s,Cs)ds|Ft ]. Under SDU, the function U = U(s,Cs) is generalised to

become an aggregator g = g(s,Cs,Vs), and the stochastic differential utility process
V C = (V C

t )t≥0 associated to a consumption stream C solves (compare with (2.1))

V C
t = E

[∫ ∞

t

g(s,Cs,V
C
s )ds

∣
∣
∣
∣Ft

]

. (3.1)

This creates a feedback effect in which the value at time t may depend in a nonlinear
way on the value at future times. This feature (for appropriate choices of the aggre-
gator g) may lead to a separation of the two phenomena mentioned in the previous
section: risk aversion and temporal variation aversion.

Note that if g takes positive and negative values, the conditional expectation on
the right-hand side of (3.1) need not be well defined. With this in mind, we introduce
the following definitions.

Definition 3.1 An aggregator is a function g : R+ × R+ × R → R. For C ∈ P+,
define I(g,C) := {V ∈ P : E[∫ ∞

0 |g(s,Cs,Vs)|ds] < ∞}. Further, let UI(g,C) be
the set of elements of I(g,C) which are uniformly integrable. Then V ∈ I(g,C) is a
utility process associated to the pair (g,C) if it has càdlàg paths and satisfies (3.1) for
all t ∈ [0,∞).

Remark 3.2 All utility processes are special semimartingales, and bounded above in
absolute value by a uniformly integrable martingale. In particular, if V is a util-
ity process for the pair (g,C), then V ∈ UI(g,C). Indeed, let M = (Mt)t≥0 be
the (càdlàg) martingale defined by Mt = E[∫ ∞

0 g(s,Cs,Vs)ds |Ft ] and A = (At )t≥0

the continuous adapted process given by At = ∫ t

0 g(s,Cs,Vs)ds. Then we have
V = M − A ∈ S . Moreover, let M̃ = (M̃t )t≥0 be the uniformly integrable martin-
gale given by M̃t = E[∫ ∞

0 |g(s,Cs,Vs)|ds |Ft ]. Then for t ≥ 0,

|Vt | ≤ E

[∫ ∞

t

|g(s,Cs,Vs)|ds

∣
∣
∣
∣Ft

]

≤ E

[∫ ∞

0
|g(s,Cs,Vs)|ds

∣
∣
∣
∣Ft

]

= M̃t .

This immediately also gives V ∈UI(g,C).

Definition 3.3 A consumption stream C ∈ P+ is g-evaluable for an aggregator g

if there exists a utility process V ∈ I(g,C) associated to the pair (g,C). The set of
g-evaluable C is denoted by E (g). Furthermore, if the utility process is unique (up
to indistinguishability), then C is called g-uniquely evaluable. The set of g-uniquely
evaluable C is denoted by Eu(g).
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Throughout the paper (with a few exceptions where we explicitly state other-
wise), we only consider uniquely evaluable consumption streams. For such C, we
may therefore define the stochastic differential utility of C and of an aggregator g by
Jg(C) := V C

0 , where V C satisfies (3.1).

4 Epstein–Zin stochastic differential utility

The Epstein–Zin (EZ) aggregator corresponding to a vector of parameters (b, δ,R,S)

is the function gEZ :R+ ×R+ ×V →V given by

gEZ(t, c, v) := be−δt c1−S

1 − S

(
(1 − R)v

) S−R
1−R . (4.1)

Here, V = (1 − R)R+ denotes the domain of the EZ utility process and the param-
eters R and S both lie in (0,1) ∪ (1,∞). Note that some care is required when
c1−S

1−S
, ((1 − R)v)

S−R
1−R ∈ {0,∞}.

It is convenient to introduce the parameters ϑ := 1−R
1−S

and ρ = S−R
1−R

= ϑ−1
ϑ

so that
(4.1) becomes

gEZ(t, c, v) = be−δt c1−S

1 − S

(
(1 − R)v

)ρ
. (4.2)

The utility process V C = V = (Vt )t≥0 associated to the consumption C and aggrega-
tor gEZ solves

Vt = E

[∫ ∞

t

be−δs C1−S
s

1 − S

(
(1 − R)Vs

)ρ
ds

∣
∣
∣
∣Ft

]

. (4.3)

Standing Assumption 4.1 We assume b > 0, δ ∈ R and that R 	= S are both in
(0,∞) \ {1}.

Some comments on this standing assumption are in order.

Remark 4.2 (a) Positivity of the parameter b corresponds to monotone preferences
which are increasing in consumption. Beyond that, b has no effect on preferences.
To see this, suppose that V is a solution to (4.3) with b = 1. For arbitrary d > 0,
it follows that dϑV = (dϑVt )t≥0 is a solution to (4.3) with b = d . Since preferences
remain unchanged by a multiplicative scaling of the utility function, it does not matter
which value of b we choose.

(b) The parameter δ is left unrestricted. Based on its interpretation as a discount
factor, it is natural to expect δ to be positive. Notwithstanding, when EZ SDU is as-
sociated with a financial market model, a deterministic change of consumption units
leads to a change in the value of δ and potentially to a change in sign; see Sect. 5.2.
Since the choice of accounting units should be arbitrary, there is no economic or
mathematical reason to require or expect that δ ≥ 0.
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(c) The case S = R (equivalently ϑ = 1 or ρ = 0) corresponds to CRRA utility.
We exclude this case as it has been extensively studied and is well understood. In
addition to excluding R = S, we also exclude R = 1 and S = 1. Just as power law
utility becomes logarithmic utility when R = S = 1, EZ SDU also changes form. The
parameter combination when S = 1 is considered by Chacko and Viceira [2]. (It is
less clear how to extend EZ SDU to the case R = 1.)

Remark 4.3 The expression in (4.2) is a reformulation of the classical EZ SDU. Other
authors use the difference form aggregator g�

EZ given by

g�
EZ(c, v) := b

c1−S

1 − S

(
(1 − R)v

)ρ − δϑv. (4.4)

When we want to emphasise the distinction between the two formulations, we call
(4.2) the discounted form of EZ SDU. The naming is explained by the way that δ

enters the aggregator (4.2) and (4.4), respectively. As might be expected, there is a
very close relationship between solutions of the two different forms, and we discuss
this further in Sect. 6. Note immediately, however, that the discounted form is easily
recognised as the natural generalisation of CRRA utility as given in (2.2). Indeed,
when R = S, we recover (2.2) from (4.2) instantly.

Let gEZ be the aggregator in (4.2). We begin by trying to give interpretations of
the various parameters and to show that—despite first impressions—R captures the
agent’s relative risk aversion (RRA), whereas S captures the agent’s elasticity of in-
tertemporal complementarity (EIC), which is the reciprocal of the elasticity of in-
tertemporal substitution, or temporal variation aversion. In addition, δ represents the
agent’s subjective discount rate, and b is a scaling parameter which has no effect on
the agent’s preferences (as long as it is positive); see Remark 4.2. We have included b

to facilitate comparison with other forms of Epstein–Zin SDU used in the literature,
but it may be set to 1 without loss of generality (alternatively, it is sometimes set to δ).
The Standing Assumption 4.1 restricts the sets of parameters for a rational agent.

4.1 Risk aversion and temporal variation aversion

We proceed to show via a pair of examples that the condition R > 0 corresponds to
the agent being averse to (rather than seeking) variation of consumption over ω, and
the condition S > 0 corresponds to the agent being averse to (rather than seeking)
variation in consumption over time.

To this end, consider a consumption stream C = (Ct )t≥0 of the form Ct = Yc(t)

where Y is nonnegative and F0+-measurable (for the exposition, we temporarily
drop the assumption that the filtration (Ft )t≥0 is right-continuous and instead assume
Ft = σ(Y ) for all t > 0), both Y and Y 1−R are integrable, and the deterministic
function c = (c(t))t≥0 is such that e−δsc(s)1−R is Lebesgue-integrable at infinity.
Then, since all uncertainty is resolved at t = 0, for t > 0, V C = V = (V (t))t>0 can
be found by solving the ordinary differential equation

dV (t)

dt
= −be−δtY 1−S c(t)1−S

1 − S

(
(1 − R)V (t)

)ρ
,
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subject to limt→∞ V (t) = 0, where the (limit) boundary condition follows from tak-
ing limits in (4.3). Setting W(t) = (1 − R)V (t) and dividing through by W(t)ρ , we
find (recall ϑ = 1−R

1−S
= 1

1−ρ
)

1

W(t)ρ

dW(t)

dt
= −be−δtϑY 1−Sc(t)1−S, lim

t→∞W(t) = 0. (4.5)

Assuming that ϑ > 0, a solution to (4.5) is

W(t) =
(∫ ∞

t

be−δsY 1−Sc(s)1−S ds

)ϑ

= Y 1−R

(∫ ∞

t

be−δsc(s)1−S ds

)ϑ

.

Therefore, for t > 0, a utility process V = V C associated to C is

V (t) = Y 1−R

1 − R

(

b

∫ ∞

t

e−δsc(s)1−S ds

)ϑ

. (4.6)

To consider the time-dependence in more detail, assume (again temporarily and just
for the purposes of exposition) that δ > 0 and define a new (probability) measure
Q = Qδ on the Borel σ -algebra B(R+) by

Qδ[A] :=
∫

A

δe−δt dt.

The choice of δ accounts for the agent’s temporal preferences for consumption in the
sense that the higher the value of δ, the greater the weighting on consumption which
occurs earlier. Then (4.6) yields

V (0+) = Y 1−R

1 − R

(
b

δ

)ϑ

(EQδ [c1−S])ϑ .

It remains to deal with the random level of consumption. We find

JgEZ(C) = V C(0) = E[Y 1−R]
1 − R

(
b

δ

)ϑ

(EQδ [c1−S])ϑ

= ϑ

(
b

δ

)ϑ

E[Y 1−R] (E
Qδ [c1−S])ϑ

1 − S
.

For this particularly simple consumption stream, it is clear that the agent’s risk aver-
sion is captured by the parameter R and the aversion to temporal uncertainty is cap-
tured by S. Looking at (4.3) or (4.6), one might expect that the risk aversion comes
from the value of S, but contrary to naive intuition, this is not the case. This justi-
fies considering S as the parameter governing aversion to variation over time. In the
economics literature, S is called the coefficient of elasticity of intertemporal comple-
mentarity (EIC), the reciprocal of the coefficient of elasticity of intertemporal substi-
tution. Furthermore, in each case, Jensen’s inequality gives that the agent is averse to
fluctuations of consumption with respect to both randomness and time.

Note that if (1 − R)Vt < 0, the integrand on the right-hand side of (4.3) is ill
defined for non-integer ρ. This justifies the choice V = (1 − R)R+. Further, the inte-
grand is either positive (S < 1) or negative (S > 1). It is therefore necessary to impose
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a link between the coefficient R of RRA and the coefficient S of EIC to ensure agree-
ment in the sign of the left-hand side of (4.3) and the right-hand side.

Theorem 4.4 For EZ SDU over an infinite horizon with aggregator given by (4.2), we
must have ϑ = 1−R

1−S
> 0 for there to exist solutions to (4.3).

The condition ϑ > 0, or equivalently ρ ∈ (−∞,1), means that R and S are either
both greater than unity or both smaller than unity.

Remark 4.5 In the finite-horizon problem, the parity issue can be overcome by adding
a bequest function so that (4.3) is replaced by

Vt = E

[∫ T

t

be−δs C1−S
s

1 − S

(
(1 − R)V

)ρ ds + e−δT B(XT )

1 − R

∣
∣
∣
∣Ft

]

,

where B : R+ → R+ assigns a value to terminal wealth. But even over a finite hori-
zon, this leads to conceptual issues; for example, when S < 1 < R, the utility process
can be negative at time t even though the term corresponding to consumption over
(t, T ) is everywhere positive, because this positive term can be outweighed by the
contribution from the bequest. Moreover, if we let the horizon tend to infinity, the
problem becomes even more stark—in order to outweigh the increasing contribution
from consumption (as T increases), the contribution from the bequest must also grow,
and must become more (not less) influential as the horizon increases. In Sect. 6.2, we
argue that in the limit T ↗ ∞, we end up with a bubble-like behaviour which cannot
be justified economically, and which is not consistent with any notion of transversal-
ity. This further justifies the requirement ϑ > 0.

5 Optimal investment and consumption in a Black–Scholes–Merton
financial market

5.1 The financial market and attainable consumption streams

The Black–Scholes–Merton financial market consists of a risk-free asset with interest
rate r ∈ R, whose price process S0 = (S0

t )t≥0 satisfies S0
t = exp(rt), together with a

risky asset whose price process S1 = (S1
t )t≥0 follows a geometric Brownian motion

with drift μ ∈ R and volatility σ > 0, and whose initial value is S1
0 = s1

0 > 0. So
S1

t = s1
0 exp(σBt + (μ − 1

2σ 2)t), where B = (Bt )t≥0 denotes a Brownian motion.
The agent optimises over the control variables the proportion of wealth invested

in each asset and the rate of consumption. Let 	t represent the proportion of wealth
invested in the risky asset at time t and 	0

t = 1 − 	t the proportion of wealth held in
the riskless asset at time t . Further, let Ct denote the rate of consumption at time t . It
then follows that the wealth process X = (Xt )t≥0 satisfies the SDE

dXt = Xt	tσ dBt +
(
Xt

(
r + 	t(μ − r)

) − Ct

)
dt (5.1)

with initial condition X0 = x, where x is the initial wealth. Let λ := μ−r
σ

be the
Sharpe ratio of the risky asset.
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Definition 5.1 Given x > 0, an admissible investment–consumption strategy is a pair
(	,C) = (	t ,Ct )t≥0 of progressively measurable processes, where 	 is real-valued
and C is nonnegative, such that the SDE (5.1) has a unique strong solution Xx,	,C

that is P-a.s. nonnegative. We denote the set of admissible investment–consumption
strategies for x > 0 by A (x; r,μ,σ ).

Note that the criterion (4.3) by which an admissible investment–consumption
stream is evaluated only depends upon the consumption stream and not upon the
investment in the financial asset. This motivates the following definition.

Definition 5.2 A consumption stream C ∈ P+ is called attainable for initial wealth
x > 0 if there exists a progressively measurable process 	 = (	t )t≥0 such that
(	,C) is an admissible investment–consumption strategy. Denote the set of attain-
able consumption streams for x > 0 by C (x; r,μ,σ ).

When it is clear which financial market we are considering, we simplify the nota-
tion and write A (x) = A (x; r,μ,σ ) and C (x) = C (x; r,μ,σ ).

The goal of an agent with Epstein–Zin stochastic differential utility preferences
is to maximise JgEZ(C) over attainable consumption streams. However, JgEZ(C) is
currently only defined for C ∈ Eu(gEZ), and therefore we can currently only optimise
over uniquely evaluable consumption streams. Thus, we seek to find

V ∗
Eu(gEZ)(x) = sup

C∈C (x)∩Eu(gEZ)

V C
0 = sup

C∈C (x)∩Eu(gEZ)

JgEZ(C). (5.2)

This is very restrictive. For ϑ > 1, we have Eu(gEZ) = {0} because V ≡ 0 is al-
ways a solution to (4.3), and so the problem (5.2) is meaningless. Further, even when
ϑ ∈ (0,1), there are many attainable consumptions streams which are not evaluable
so that we currently cannot assign them a utility. For example, when S > 1, the zero
consumption stream is not evaluable. Since it might reasonably be argued that zero
consumption is clearly suboptimal (and when S > 1 should give a utility process
with negative infinite utility), we should like to eliminate this choice of consump-
tion stream because it is suboptimal, not because we cannot evaluate it. The same
applies to other non-evaluable consumption streams. Ideally, we should like every
attainable consumption stream to be considered, not just the ‘nice’ ones for which
we can define a unique utility process. For ϑ ∈ (0,1), this problem is considered in
Herdegen et al. [11].

5.2 Changes of numéraire

One apparent advantage of the difference form g�
EZ of the EZ SDU aggregator in (4.4)

over the discounted form gEZ in (4.2) is that g�
EZ, unlike gEZ, has no explicit time-

dependence, i.e., g�
EZ = g�

EZ(c, v) whereas gEZ = gEZ(t, c, v). However, when we
consider EZ SDU in the constant parameter Black–Scholes–Merton model, a sim-
ple change of accounting unit leads to a modification of the discount factor δ, but
leaves the problem otherwise unchanged. It follows that by an appropriate choice of
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units, we can switch to a coordinate system in which the aggregator becomes time-
independent. The change of accounting units has an effect upon the financial market
model, but it remains a Black–Scholes–Merton financial market, albeit with modified
interest rate and market drift.

Let C be a consumption stream with utility process V for gEZ. Let χ ∈ R and
define the discounted consumption stream C̃ by C̃t = e−χtCt . Then V satisfies

Vt = E

[∫ ∞

t

be−δs C1−S
s

1 − S

(
(1 − R)Vs

)ρ ds

∣
∣
∣
∣Ft

]

= E

[∫ ∞

t

be−(δ−χ(1−S))t C̃
1−S
s

1 − S

(
(1 − R)Vs

)ρ ds

∣
∣
∣
∣Ft

]

.

Thus V is the utility process for C̃ and aggregator gχ,EZ defined by

gχ,EZ(t, c, v) := be−(δ−χ(1−S))t c1−S

1 − S

(
(1 − R)v

)ρ
.

Choosing χ = δ
1−S

, we find that V is the utility process for the time-independent
aggregator

fEZ = fEZ(c, v) = gχ,EZ(t, c, v) = b
c1−S

1 − S

(
(1 − R)v

)ρ
.

Furthermore, we observe that we have V ∈ I(fEZ, C̃ = (Cte
− δ

1−S
t )t≥0) if and only if

V ∈ I(gEZ,C) = I(g0,EZ,C) and C̃ ∈ Eu(fEZ) if and only if C ∈ Eu(gEZ).

If we consider the discounted wealth process X̃
	,C̃
t := e− δ

1−S
tX

	,C
t , then by ap-

plying Itô’s lemma, we find that with r̃ = r − δ
1−S

and μ̃ = μ − δ
1−S

,

dX̃
	,C̃
t = X̃

	,C̃
t 	tσ dBt +

(
X̃

	,C̃
t

(
r̃ + 	t(μ̃ − r̃)

) − C̃t

)
dt, X̃

	,C̃
0 = x.

This means that our control problem (5.2) admits the equivalent formulation

V ∗
Eu(gEZ)(x) = sup

C∈C (x;r,μ,σ )∩Eu(gEZ)

V
C,gEZ
0

= sup
C̃∈C (x;r̃ ,μ̃,σ )∩Eu(fEZ)

V
C̃,fEZ
0 = V ∗

Eu(fEZ)(x).

In particular, by an appropriate change of accounting units, the problem for EZ SDU
in discounted form reduces to an equivalent form with no discounting. This simplifi-
cation result is used extensively in Herdegen et al. [11, 10]. In the following, however,
our goal is to compare and contrast the discounted and the difference forms of the ag-
gregator. For this reason, we continue to allow δ to be any real number.
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5.3 The candidate optimal strategy

Suppose now ϑ > 0. We seek to heuristically find an admissible (and uniquely evalu-
able) consumption stream C that maximises the value of V C

0 , where

V C
t = E

[∫ ∞

t

be−δs C1−S
s

1 − S

(
(1 − R)V C

s

)ρ ds

∣
∣
∣
∣Ft

]

. (5.3)

As in the Merton problem with CRRA utility, it is reasonable to guess that the opti-
mal strategy is to invest a constant proportion of wealth in the risky asset and to con-
sume a constant proportion of wealth. Consider the investment–consumption strat-
egy 	 ≡ π ∈ R and C = ξX for ξ ∈ R++. Then, solving (5.1), the wealth process
Xx,π,ξ = X = (Xt )t≥0 is given by

Xt = x exp

(

πσBt +
(
r + π(μ − r) − ξ − π2σ 2

2

)
t

)

.

Using that μ − r = σλ, we obtain for t ≥ 0 that

X1−R
t = x1−R exp

(

πσ(1 − R)Bt + (1 − R)
(
r + λσπ − ξ − π2σ 2

2

)
t

)

. (5.4)

Now consider a value process of the form Vt = V (t,Xt ) = Ae−βt X1−R
t

1−R
for some

constant β to be determined. By substituting this expression into (5.3) and using
1 − S + ρ(1 − R) = 1 − R, we have

Vt = E

[∫ ∞

t

be−δs (ξXs)
1−S

1 − S
(Ae−βsX1−R

s )ρ ds

∣
∣
∣
∣Ft

]

= bAρ ξ1−S

1 − S
E

[∫ ∞

t

e−(δ+βρ)sX1−R
s ds

∣
∣
∣
∣Ft

]

. (5.5)

Then

E[e−(δ+βρ)sX1−R
s |Ft ] = e−(δ+βρ)tX1−R

t e−Hδ+βρ(π,ξ)(s−t) for s > t,

where for ν ∈R, the function Hν : R×R++ →R is given by

Hν(π, ξ) = ν + (R − 1)

(

r + λσπ − ξ − π2σ 2

2
R

)

. (5.6)

Remark 5.3 If we consider the constant proportional investment–consumption strat-
egy (π, ξ), the drift of (e−νtX1−R

t )t≥0 is given by −Hν(π, ξ). Thus Hν(π, ξ) is a
critical quantity not only for the well-definedness of the integral E[∫ ∞

0 e−νtX1−R
t dt],

but also for the transversality condition limt→∞ E[e−νtX1−R
t ] = 0, which will feature

heavily in Sect. 7.
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If Hδ+βρ(π, ξ) > 0 so that the integral in (5.5) is well defined, we obtain

Vt = be−(δ+βρ)tAρξ1−S

Hδ+βρ(π, ξ)

X1−R
t

1 − S
.

Since V was postulated to be of the form Vt = Ae−βt X1−R
t

1−R
, it must be the case that

β = δ + βρ (i.e., β = δϑ ) and A = A(π, ξ) = (
bϑξ1−S

Hβ(π,ξ)
)ϑ > 0. Then δ + βρ = δϑ ,

and H := Hδϑ satisfies

H(π, ξ) = δϑ + (R − 1)

(

r + λσπ − ξ − π2σ 2

2
R

)

.

It follows that any proportional investment strategy (	 ≡ π, C = ξX) is evaluable,
provided that H(π, ξ) is positive.

To find the optimal amongst constant proportional strategies (and hence to find

a candidate optimal strategy), it remains to maximise A(π,ξ)
1−R

= 1
1−R

(
bϑξ1−S

H(π,ξ)
)ϑ over

(π, ξ) ∈R×R++ such that H(π, ξ) > 0. It follows that the candidate optimal strat-
egy (expressed as a fraction of wealth) is given by

(π̂ , ξ̂ ) =
(

λ

σR
,η

)

, (5.7)

where

η = 1

S

(

δ + (S − 1)r + (S − 1)
λ2

2R

)

. (5.8)

This means that the candidate optimal strategy in the original coordinates is given in
feedback form by

	̂ ≡ π̂ = λ

σR
, Ĉ = ξ̂X = ηX. (5.9)

Note that H(π̂, ξ̂ ) = H( λ
σR

,η) > 0 if and only if η > 0. If η is positive, it is not
difficult to check that (π = λ

σR
, ξ = η) is a maximum of (1 − R)−1A(π, ξ) over

{(π, ξ) : H(π, ξ) > 0}; it then follows that max{ξ>0:H(π̂,ξ)>0} V0 = bϑη−ϑS x1−R

1−R
.

Considering this as a function of the initial wealth, for η > 0, a candidate value func-
tion is defined by

V̂ (x) = bϑη−ϑS x1−R

1 − R
. (5.10)

The results of this section are summarised in the following proposition.

Proposition 5.4 Define D = {(π, ξ) ∈ R × R+ : H(π, ξ) > 0}. Consider constant
proportional strategies with parameters (π, ξ) ∈ D. Suppose ϑ > 0 and the (candi-
date) wellposedness condition η > 0 is satisfied, η > 0, where η is given in (5.8).
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(i) For (π, ξ) ∈ D, one solution V = (Vt )t≥0 to (5.3) is given by

Vt = e−δϑt

(
bϑξ1−S

H(π, ξ)

)ϑ
X1−R

t

1 − R
.

(ii) The global maximum of h(π, ξ) = 1
1−R

(
bϑξ1−S

H(π,ξ)
)ϑ over the set D is attained at

(π, ξ) = ( λ
σR

, η), and the maximum is bϑη−ϑS

1−R
.

(iii) The strategy (π, ξ) = ( λ
σR

, η) is such that V0 = bϑη−ϑS x1−R

1−R
= V̂ (x), where

x denotes initial wealth.

The agent’s (candidate) optimal investment in this case is a constant fraction
π̂ = λ

σR
of their wealth, a proportion which is independent of their EIC. The agent’s

investment preferences are controlled solely by the risk aversion coefficient R. The
agent’s (candidate) optimal consumption is a constant proportion η of their wealth.

To understand the interpretation of η, it is insightful to perform a change of
numéraire. As in Herdegen et al. [9, Sect. 7], the defining equation (4.3) of a util-
ity process associated to the pair (gEZ,C) may be rewritten in equivalent form as

Vt = E

[∫ ∞

t

be−(δ+r(S−1))s

1 − S

(
Cs

S0
s

)1−S(
(1 − R)Vs

)ρ
ds

∣
∣
∣
∣Ft

]

.

With this in mind, it makes sense to call φ := δ + r(S − 1) the impatience rate. Then
the optimal proportional consumption rate is given by

η = φ

S
+ S − 1

S

λ2

2R
.

This is a linear (convex if S > 1) combination of the impatience rate and (half of)
the squared Sharpe ratio per unit of risk aversion, with the weights depending on the
elasticity of intertemporal complementarity S.

Remark 5.5 The wellposedness condition η > 0 is equivalent to

δ > (1 − S)

(

r + λ2

2R

)

(or φ > (1 − S) λ2

2R
). This means that when S > 1 (or r < 0), the problem can be well

posed even for negative values of δ (or φ).

Remark 5.6 When ϑ > 1, uniqueness of a utility process fails (for example, V ≡ 0
always solves (5.3)). In this case, the first issue is to decide which utility process to
associate to a consumption stream; this in turn has implications for the optimal value
function and optimal consumption stream, and ultimately for the wellposedness of
the problem. This is a delicate issue which we cover in [10].

6 A comparison of the discounted and difference formulations

The goal of this section is to compare the discounted and difference formulations of
the aggregator for EZ SDU. Despite the ubiquity of the latter in the literature, we
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argue that the discounted form has many advantages. As demonstrated in Sect. 5.2,
its main disadvantage, the fact that it has an explicit dependence on time, is easily
overcome by a change in accounting unit.

6.1 The difference form of CRRA utility

Additive utilities such as CRRA may be thought of as special cases of SDU in which
the aggregator has no dependence on v. In this sense, CRRA utility may be identified
with the aggregator

gCRRA(t, c, v) = gCRRA(t, c) = be−δt c1−R

1 − R
.

Note that if E[∫ ∞
0 e−δs |C1−R

s |ds] < ∞, it follows that

V C
t = E

[∫ ∞

t

be−δs C1−R
s

1 − R
ds

∣
∣
∣
∣Ft

]

(6.1)

is the unique utility process associated with consumption C for aggregator gCRRA,
and then JgCRRA(C) = V C

0 . Further, if E[∫ ∞
0 e−δs |C1−R

s |ds] = ∞, we can set
J (C) = ∞ if R < 1 and J (C) = −∞ if R > 1.

In particular, two subtle but important questions which are crucial to the study
of SDU are absent from the additive utility setting: first, what value to assign to
non-evaluable strategies, and second, which utility process to assign to consumptions
which are not uniquely evaluable.

Now suppose C is such that E[∫ ∞
0 e−δs |C1−R

s |ds] < ∞. Then the martingale

M = (Mt)0≤t≤∞ given by Mt := E[∫ ∞
0 be−δs C1−R

s

1−R
ds |Ft ] is uniformly integrable

and satisfies Mt = ∫ t

0 be−δs C1−R
s

1−R
ds + Vt , where V is the utility process in (6.1). Us-

ing that M∞ = ∫ ∞
0 be−δs C1−R

s

1−R
ds and rearranging, we find that

Vt =
∫ ∞

t

be−δs C1−R
s

1 − R
ds −

∫ ∞

t

dMt.

Then, applying Itô’s formula to V � given by V �
t := eδtVt and integrating yields

V �
t = ∫ ∞

t
(b

C1−R
s

1−R
− δV �

s )ds + ∫ ∞
t

eδs dMs , provided that the integrals are well de-
fined. Taking expectations and assuming that the process Mδ = (Mδ

t )t≥0 given by
Mδ

t = ∫ t

0 eδs dMs is a uniformly integrable martingale, we get the difference form of
discounted expected utility as

V �
t = E

[∫ ∞

t

(

b
C1−R

s

1 − R
− δV �

s

)

ds

∣
∣
∣
∣Ft

]

. (6.2)

Modulo the technical issues, under CRRA preferences, it is possible to define the
value associated to a consumption stream C as the initial value V �

0 of the utility
process V � = (V �

t )t≥0, where V � solves (6.2), rather than using (6.1). However,
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doing so brings several immediate disadvantages. It is no longer obvious if solutions
to (6.2) are unique or even exist. This may result in a smaller class of evaluable
strategies. Indeed, there are simple deterministic counterexamples to the existence of
a solution to (6.2); consider Example 6.1 below and set R = S so that ϑ = 1. The

counterexamples arise because the integrand b
C1−R

s

1−R
− δV �

s takes both signs and so
the integral on the right-hand side of (6.2) may fail to be well defined. (In contrast,

E[∫ ∞
0 be−δs C1−R

s

1−R
ds] is always well defined, at least in [−∞,∞].) Further, whenever

E[∫ ∞
0 e−δs |C1−R

s |ds] is finite, M is a uniformly integrable martingale. But Mδ may
fail to be uniformly integrable, and the representation (6.2) may fail.

6.2 The difference form of Epstein–Zin stochastic differential utility

In the previous section, we argued that for additive CRRA preferences, the dis-
counted form was better than the difference form for three reasons: first, existence
and uniqueness of the utility process are guaranteed; second, there is a wider class of
consumption streams to which it is possible to assign a (finite) value; and third, it is
possible to assign a value (possibly infinite) to any consumption stream even when∫ ∞

0 gCRRA(s,Cs)ds is not integrable. The goal in this section is to show that when
we move to EZ SDU preferences, the second and third advantages of the discounted
form remain; the first advantage does not carry over. Indeed, much of the discussion
is as in the additive case.

Suppose that C ∈ Eu(gEZ). Following arguments similar to the CRRA case, if V

is the value process associated to consumption C and aggregator gEZ and if we define
the (upcounted) utility process V � by V �

t := eδϑtVt , then we may reasonably hope
that V � is the solution to

V �
t = E

[∫ ∞

t

(

b
C1−S

s

1 − S

(
(1 − R)V �

s

)ρ − δϑV �
s

)

ds

∣
∣
∣
∣Ft

]

. (6.3)

If so, V � is the utility process associated to the difference form of the EZ aggrega-
tor g�

EZ.
As discussed in Sect. 6.1, for some consumption streams, (6.3) is not well defined

because the integrand may take positive and negative signs. If the utility process is
defined via the difference aggregator g�

EZ, then it is necessary to restrict the class of
consumption streams when compared with those which may be evaluated under gEZ.

Example 6.1 Suppose δ > 0, let A := ⋃
n≥0[2n,2n + 1) and consider the determinis-

tic consumption stream c = (c(t))t≥0 satisfying

c(t)1−S

1 − S
:= 2

δ

b(1 − S)
eδ(�t�−t)1Ac(t).

Let V � = (V �(t))t≥0 be given by

V �(t) = 1

1 − R
exp

(
δϑ(t − �t�)(1A(t) − 1Ac(t)

))
.
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Then

dV �(t) =
(

δϑV �(t) − b
c(t)1−S

1 − S

(
(1 − R)V �(t)

)ρ
)

dt.

For this consumption stream, both the positive and the negative part of the inte-

gral
∫ ∞
t

(b
c(t)1−S

1−S
((1 − R)V �(t))ρ − δϑV �(s))ds (which can then be re-expressed

as
∫ ∞
t

δϑV �(s)(1A(s) − 1Ac(s))ds) are infinite for all t ≥ 0. Hence it cannot be the
case that V � solves (6.3). On the other hand, if V (t) = e−δϑtV �(t), then

∫ ∞

0
be−δt c(t)

1−S

1 − S

(
(1 − R)V (t)

)ρ dt =
∫ ∞

0
2e−δt δ

1 − S
eδϑ(�t�−t)1Ac(t)dt < ∞

and V = (V (t))t≥0 ∈ I(gEZ, c). Furthermore, it can be shown that V solves (5.3).
Thus E(g�

EZ)� E(gEZ).

7 Alternative formulations of SDU

7.1 A family of finite-horizon problems

Our approach to investment–consumption problems for EZ SDU over an infinite hori-
zon differs from the conventional approach in two important ways. First, we use the
discounted aggregator given by (4.2), whereas the standard approach is to use the dif-
ference form. Second, we define the value function over an infinite horizon directly
(with the natural transversality condition that the value process tends to zero in expec-
tation), whereas the standard approach (formulated by Duffie, Epstein and Skiadas in
the Appendix to [5], and developed further by Melnyk et al. [17]) is to look for utility
processes which solve a family of finite-horizon problems (where now the form of
the transversality condition is not so clear, and may be part of the definition of a util-
ity process). We have already compared the aggregators; so the goal in this section is
to explain why we believe that it is better to define utility processes over an infinite
horizon directly, and why, as a corollary, parameter combinations corresponding to
ϑ < 0 cannot make economic sense.

For the sake of exposition, we introduce some additional pieces of notation.
Fix an aggregator g and a consumption stream C ∈ P+. Then for T > 0, set
IT (g,C) := {W ∈ P : ∫ T

0 |g(s,Cs,Ws)|ds < ∞}, and let JT = JT (g,C) be a subset
of IT (g,C) such that elements of JT have additional regularity and/or integrability
properties. Finally, set J := ⋂

T >0 JT . Examples of suitable sets JT are given below.
As an alternative to defining utility processes directly over an infinite horizon, [5]

and [17] define utility processes as solutions to a family of finite-horizon problems.

Definition 7.1 A V-valued process V is the (ν,J)-utility process associated to the
consumption stream C and aggregator g if it has càdlàg paths, lies in J, satisfies the
transversality condition

lim
t→∞ e−νt

E[|Vt |] = 0, (7.1)
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and for all 0 ≤ t ≤ T < ∞,

Vt = E

[∫ T

t

g(s,Cs,Vs)ds + VT

∣
∣
∣
∣Ft

]

. (7.2)

Remark 7.2 It follows as in Remark 3.2 that a (ν,J)-utility process is automatically a
semimartingale.

Denote by E ν,J(g) the set of all consumption streams C such that there exists
a (ν,J)-utility process associated to C for the aggregator g, and let E ν,J

u (g) be the
subset of E ν,J(g) where there exists a unique (ν,J)-utility process. Moreover, let
C0(x) be some subset of C (x), the set of attainable consumption streams from ini-
tial wealth x. Additional regularity conditions on the consumption streams may be
encoded in C0.

In order to avoid the technical challenges of dealing with the infinite-horizon prob-
lem directly, the idea in [5, 17] is to replace the problem of finding V (x) with
the problem of finding V

C0,E
ν,J
u (g)

(x) = sup
C∈C0(x)∩E ν,J

u (g)
V C

0 for an appropriate
transversality parameter ν and appropriate sets C0(x) and J. But this immediately
raises several issues. What exactly are the spaces C0(x), E ν,J(g) and E ν,J

u (g)? How
do we (easily) check whether C ∈ C0(x) and/or C ∈ E ν,J

u (g)?
Regarding the choice of the transversality condition (7.1), two issues arise: First,

how do we know that E ν,J(g) is non-empty? Second, how do we know that a utility
process V associated with a consumption C makes economic sense? Regarding the
first issue, if ν < ν′, any (ν,J)-utility process is also a (ν′,J)-utility process. Hence
E ν,J(g) ⊆ E ν′,J(g), and if ν is chosen too small, it may easily follow that E ν,J(g)

does not contain the candidate optimal consumption. Regarding the second issue, we
introduce in Sect. 7.2 below the concept of a bubble solution and argue that bubble
solutions do not make economic sense.

Duffie et al. [5] impose Lipschitz-style conditions which exclude EZ SDU. Mel-
nyk et al. [17] do study EZ SDU, but their main focus is to understand the impact
of market frictions on the investment–consumption problem for SDU preferences.
Nonetheless, in the frictionless case which is the subject of this paper, [17] proves
some of the most complete results for EZ preferences currently available in the liter-
ature. Melnyk et al. [17] only consider R > 1, but this is mainly to limit the number
of cases rather than because their methods do not extend to the general case. The
following definition is from [17, Definition 3.1].

Definition 7.3 Suppose R > 1 and δ > 0. For T > 0, let

S
1
T =

{
V ∈ S : E

[
sup

0≤t≤T

|Vt |
]

< ∞
}
,

J
1
T = S

1
T ∩ IT (g�

EZ,C),

J
2
T =

{

V ∈ J
1
T : Vt ≤ −C1−R

t

R − 1
≤ 0 for all 0 ≤ t ≤ T

}

.
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For k ∈ {1,2}, set Jk := ⋂
T >0 J

k
T and let C0(x) be the set of C ∈ C (x) for which

there exists 	 with 	(Xx,	,C)1−R ∈ S
1
T for all T > 0 and 1

1−R
(Xx,	,C)1−R ∈ J

1.
Moreover, if 0 < ϑ < 1, set JMMS := J

1 and

E MMS = E MMS(g�
EZ) := E δϑ,JMMS

(g�
EZ);

if ϑ > 1 or ϑ ∈ (−∞,0), set JMMS := J
2 and

E MMS = E MMS(g�
EZ) := E δ,JMMS

(g�
EZ).

Note that as we move from ϑ ∈ (0,1) to ϑ /∈ (0,1), the transversality parameter

for (7.1) changes from δϑ to δ. Moreover, an additional restriction that V ≤ −C1−R

R−1
is imposed.

Melnyk et al. [17] take b = δ. Then it follows from (5.10) that for η > 0, the

candidate value function is given by V̂ (x) = η−ϑSδϑ x1−R

1−R
. The following result is

from [17, Corollary 2.3, Theorem 3.4].

Theorem 7.4 Suppose R > 1 and δ > 0. Then E MMS = E MMS
u . Moreover, suppose

μ−r

Rσ 2 /∈ {0,1} and η > 0. Then:

(i) If ϑ ∈ (0,1) (i.e., 1 < R < S), then we have VC0,E MMS
u

(x) = V̂ (x).

(ii) If ϑ ∈ (1,∞) (i.e., 1 < S < R) and R−S
R−1 δ = δρ < η < δ, then we have

VC0,E MMS
u

(x) = V̂ (x).

(iii) If ϑ ∈ (−∞,0) (i.e., S < 1 < R), then δ < η < δρ = δ R−S
R−1 . Then we have

VC0,E MMS
u

(x) = V̂ (x).

The results of Melnyk et al. [17] on the frictionless problem are amongst the
few rigorous results on the investment–consumption problem over an infinite hori-
zon. Nonetheless, they are incomplete in several respects. For all values of ϑ , there
is no existence result; although it is possible (at least under the conditions of the
theorem) to verify that the candidate optimal consumption stream is a member of
C0(x) ∩ E MMS

u , little is said in general about which consumption streams are evalu-
able by Definition 7.3, and it is unclear if the space of evaluable strategies goes
beyond the set of constant proportional strategies. The fact that the wealth process
must satisfy transversality and integrability conditions means that many plausible
consumption streams are excluded by assumption, rather than because they are sub-
optimal.

When ϑ /∈ (0,1), there are additional issues. In that case, Melnyk et al. [17] use the
transversality condition (7.1) with ν = δ. This condition leads to simple mathematics,
but does not necessarily make economic sense—we argue in Sect. 7.3 below that
the economically correct transversality condition is (7.1) with ν = δϑ . Moreover,
the restriction to consumption streams for which there exists a utility processes with
V ≤ 1

1−R
C1−R seems both hard to verify in general and hard to interpret. Finally, the

analysis in [17] leaves several parameter combinations uncovered, including the case
where ϑ > 1 together with η ∈ (0, δρ] ∪ [δ,∞).
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Although the space E MMS is difficult to describe, the following result, whose proof
is given in the Appendix, says that if C has an associated utility process in the sense of
[17], then it automatically has an associated utility process in the sense of a solution
to (3.1). The converse is not true.

Proposition 7.5 Let ϑ ∈ (0,∞) \ {1} and δ > 0. Suppose C ∈ E MMS and let V � be a
(δϑ,JMMS)-utility process associated to the consumption stream C and the aggrega-
tor g�

EZ. Then V given by Vt = eδϑtV �
t is a utility process associated to the consump-

tion stream C and the aggregator gEZ in the sense of Definition 3.1. In particular,
E MMS(g�

EZ) ⊆ E (gEZ).

Although Melnyk et al. [17] also define utility processes in the case ϑ < 0, we
argue below that there are issues with the economic interpretation of solutions in
this case. In the case ϑ < 0, while solutions in the sense of [17] are mathematically
correct, they only make sense economically as utility bubbles.

7.2 The transversality condition and utility bubbles in the additive case

Our goal is to show that when coupled with the switch from the infinite-horizon prob-
lem to the family of finite-horizon problems approach, a mismatched transversality
condition can lead to a peculiar behaviour. We conclude that the modeller is not free
to choose the transversality condition, at least in the framework of Definition 7.1, and
electing to use the wrong condition can either rule out perfectly reasonable admis-
sible strategies (and possibly rule out all strategies, including the candidate optimal
strategy), or can allow utility processes to be defined which have the characteristics
of a bubble.

In this section, we consider the simpler case of time-additive CRRA utility, i.e.,
the case where R = S, or equivalently ϑ = 1. We assume throughout this section
that the wellposedness condition

ηa := δ

R
− 1 − R

R

(

r + λ2

2R

)

> 0

holds (see for example Herdegen et al. [9, Corollary 6.4] for a discussion of the well-
posedness of the Merton problem for additive utility) and also that R > 1. The latter
condition is only imposed to avoid case distinctions; similar behaviour is observed
when R < 1.

In the above setting, it is clear that for gCRRA-evaluable consumption streams, the
infinite-horizon formulation

Vt = E

[∫ ∞

t

be−δs C1−R
s

1 − R
ds

∣
∣
∣
∣Ft

]

, 0 ≤ t < ∞,

is equivalent to the finite-horizon formulation

Vt = E

[∫ T

t

be−δs C1−R
s

1 − R
ds + VT

∣
∣
∣
∣Ft

]

, 0 ≤ t ≤ T < ∞, (7.3)
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if and only if the transversality condition limT →∞ E[VT ] = 0 is satisfied. Define
V �

t = eδtVt . By arguing as in the proof of Proposition 7.5 (specialised to the case
ϑ = 1), V satisfies (7.3) if and only if V � satisfies

V �
t = E

[∫ T

t

(

b
C1−R

s

1 − R
− δV �

s

)

ds + V �
T

∣
∣
∣
∣Ft

]

, 0 ≤ t ≤ T < ∞, (7.4)

where the transversality condition is limt→∞ e−δt
E[V �

t ] = 0.
The above observation suggests that the ‘correct’ transversality condition for the

problem with the difference aggregator is limt→∞ e−δt
E[V �

t ] = 0. But what hap-
pens if the transversality condition is modified to become limt→∞ e−νt

E[V �
t ] = 0

for some ν 	= δ?
For (π, ξ) such that

Hδ(π, ξ) = δ + (R − 1)

(

r + λσπ − ξ − π2σ 2

2
R

)

	= 0,

it follows from (5.4) that the constant proportional strategy with 	 ≡ π and C = ξX

satisfies E[C1−R
t ] = ξ1−R

E[X1−R
t ] = ξ1−Rx1−Re(1−R)(r+ λ2

2R
−ξ)t , and the solution to

(7.3) is

Vt = V
π,ξ
t = K(π, ξ)

1 − R
e−δtX1−R

t ,

where K(π, ξ) := b
ξ1−R

Hδ(π,ξ)
. This implies that a solution to (7.4) is given by

V �
t = V

�,π,ξ
t = eδtV

π,ξ
t = K(π, ξ)

1 − R
X1−R

t . (7.5)

Alternatively, we can see this directly from (7.4): if we look for a solution of the form

V
�,π,ξ
t = B

ξ1−RX1−R
t

1−R
, then B = B(π, ξ) solves

B =
∫ T

t

(b − δB)e−H0(π,ξ)(s−t) ds + Be−H0(π,ξ)(T −t),

which simplifies to B = (b − δB)/H0(π, ξ) or, equivalently,

BHδ(π, ξ) = b. (7.6)

In the following discussion, we focus on the case π = π̂ := λ
σR

and abbreviate V π̂,ξ

and V �,π̂,ξ to V ξ and V �,ξ , respectively. Note that

π̂ = argmax
π :Hδ(π,ξ)>0

1

(1 − R)

ξ1−R

Hδ(π, ξ)

and that Hδ(π̂, ξ) = δ − (1 − R)(r + λ2

2R
− ξ). Furthermore,

ηa = δ

R
− 1 − R

R

(

r + λ2

2R

)

= argmax
ξ :Hδ(π̂,ξ)>0

1

(1 − R)

ξ1−R

Hδ(π̂, ξ)
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so that (π̂ , ηa) is the candidate optimal proportional investment and consumption.
This is precisely the reduction of the candidate optimal strategy given in (5.7) to the
case S = R.

Turning to the transversality condition, note that limt→∞ e−νt
E[V �,ξ

t ] = 0 is
equivalent to limt→∞ e(δ−ν)t

E[V ξ
t ] = 0, which in turn is equivalent to Hν(π̂, ξ) > 0.

We can therefore define the maximum value of ξ such that the transversality condition
limt→∞ e−νt

E[V �,ξ
t ] = 0 is satisfied. This is given by

ξν
max := sup{ξ > 0 : Hν(π̂, ξ) > 0} =

(

r + λ2

2
+ ν

R − 1

)+
< ∞.

If the transversality condition

lim
t→∞ e−δt

E[V �
t ] = 0 (7.7)

associated with (7.4) is replaced by the transversality condition

lim
t→∞ e−νt

E[V �
t ] = 0 (7.8)

where ν < δ, then (7.8) is more restrictive than (7.7) since any process which satisfies
(7.7) also satisfies (7.8), but the converse is not true. Since ν < δ, it follows that
Hδ(π̂, ξ) > Hν(π̂, ξ). In this case, if

Hδ(π̂, ξ) > 0 ≥ Hν(π̂, ξ)

or, equivalently, if ξ is such that Rηa > (R − 1)ξ ≥ ν + (R − 1)(r + λ2

2R
), then V �

defined in (7.5) satisfies (7.7) but does not satisfy (7.8). In particular, if ηa > ξν
max,

then the candidate optimal strategy (π, ξ) = (π̂ , ηa) leads to a utility process which
does not satisfy (7.8) and hence does not lie in the set of consumption streams over
which the optimisation takes place. This is illustrated in Fig. 1(a) for the case R > 1
(but can also occur when R < 1).

Second, consider solving (7.4) under the transversality condition

lim
t→∞ e−νt

E[V �
t ] = 0

for ν > δ. In this case, Hν(π̂, ξ) > Hδ(π̂, ξ). Let ξ 	= Rηa

R−1 be such that

Hν(π̂, ξ) > 0 > Hδ(π̂, ξ),

e.g. for concreteness, ξ = ξε := δ+ε
R−1 + (r + λ2

2R
) = ε+Rηa

R−1 > 0 for ε ∈ (0, ν − δ). Then
V �,ξε given by (7.5) solves (7.4) for the investment–consumption strategy (π̂ , ξε).
As Hν(π̂, ξε) > 0, the transversality condition limt→∞ e−νt

E[V �,ξε
t ] = 0 is met.

Moreover, V �,ξε = −K(π̂,ξε)
R−1 X1−R , where K(π̂, ξε) = − ξ1−R

ε

ε
. In particular, we have

V
ξε

0 = ξ1−R

ε
x1−R

R−1 > 0. By comparison, V
ηa

0 = bηa
−ϑS x1−R

1−R
< 0. Hence the candidate

optimal strategy (π, ξ) = (π̂ , ηa) no longer maximises the initial value of the utility
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When the transversality parameter is too small
(ν < δ), the candidate optimal strategy need not
satisfy the transversality condition (7.1) in
Definition 7.1.

When the transversality parameter is too large
(ν > δ), the candidate optimal strategy is not
optimal. Furthermore, some consumption
streams lead to bubble-like utility processes.

Fig. 1 Plots of the solution to (7.5) associated to the constant proportional investment–consumption
strategy (π̂, ξ) along with blocked-out region where the transversality condition is not met (i.e., where
Hν(π̂, ξ) ≤ 0)

process over constant proportional strategies, in contradiction to the well-established
theory for this case.

In the case R > 1 where we expect to assign a negative utility, we may actually
obtain an arbitrarily large positive utility (see Fig. 1(b)). This can be seen by letting
ε ↘ 0 in the above. What is happening is that—while the integrand in (7.3) is always
negative—the discounted expected future utility E[V �

T |Ft ] is diverging to +∞ as
T ↗ ∞. The agent is always receiving a negative utility from consumption, but this
is offset by an ever increasing positive contribution from expectations of future utility.
The endless optimism that things will always be better in the future creates bubble-
like behaviour.

Although there are special features in the additive case, the study of CRRA utility
does show that some delicacy is needed when defining infinite-horizon utility to be
the solution to the finite-horizon utilities paired with a transversality condition. If we
wish to define SDU in this manner, we must be very careful that we use an appropriate
transversality condition. We return to this issue in the next section.

In preparation for the move beyond the additive case, we record the following
definition and proposition summarising the results of this section.

Definition 7.6 A process V = (Vt )t≥0 is a CRRA bubble for a consumption stream C

if V 	≡ 0 solves (7.3) for each 0 ≤ t ≤ T < ∞, but V and U = U(t,C) are of opposite
sign.

Proposition 7.7 (i) For constant proportional strategies, there do not exist CRRA bub-
bles which satisfy the transversality condition limt→∞ e−δt

E[V �
t ] = 0.

(ii) If ν < δ, there is a financial market such that the candidate optimal invest-
ment–consumption strategy given by (5.9) with S = R does not satisfy the transver-
sality condition (7.1).

(iii) If ν > δ, there is a financial market such that there is an investment–consump-
tion strategy (for example (π, ξ) = (π̂ , ξε) from the previous page) for which the
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associated utility process satisfies the transversality condition (7.1), but is a CRRA
bubble. When R > 1, the candidate optimal investment–consumption strategy given
by (5.9) with S = R does not maximise V C

0 over attainable strategies.

Remark 7.8 It is not difficult to check that Proposition 7.7(i) extends to all admissible
strategies.

7.3 Transversality, the case ϑ < 0, and the family of finite-horizon problems

For the EZ SDU aggregator in discounted form over an infinite horizon, it is not
possible to define a utility process in the case ϑ < 0. However, several authors have
attempted to define a utility process for ϑ < 0 using the difference form with the
family of finite-horizon problems approach or otherwise. Motivated by the analysis
of the additive case, we explain in this section why the mathematical results they find
may fail to have a sensible economic interpretation.

The only strategies for which we can hope to find a non-trivial utility process in ex-
plicit form are constant proportional investment–consumption strategies. Moreover,
the candidate optimal strategy is of this form. In consequence, and for this section
only, we make the following assumption so we can explicitly see the issues which
arise when ϑ < 0.

Assumption 7.9 (Assumed throughout Sect. 7.3 only) Consumption plans under
consideration in this section are generated by constant proportional investment–con-
sumption strategies (π, ξ). If an associated utility process exists for the aggregator in

difference form, then it is assumed to be of the form V �
t = Bξ1−R X1−R

t

1−R
for a positive

constant B = B(π, ξ). If there is no solution of the form V �
t = Bξ1−R X1−R

t

1−R
with

B ∈ (0,∞), then the consumption stream is assumed to be not evaluable.

Remark 7.10 If ϑ ∈ (0,1), Herdegen et al. [11, Corollary 5.9] show that if a utility
process exists for a consumption stream C, then it is unique. If ϑ /∈ [0,1], this need
not be the case. In that case, we must decide which utility process to assign to a
given consumption stream. Typically, the literature makes additional assumptions to

ensure that the time-homogeneous process V � given by V �
t = Bξ1−R X1−R

t

1−R
is the

utility process associated with C, if such a process exists. Without discussing what
these assumptions might be, the impact of the temporary standing assumption is to

assign the utility process V � given by V �
t = Bξ1−R X1−R

t

1−R
to the constant proportional

strategy.

Consider now g�
EZ and a constant proportional investment–consumption strategy

(π, ξ). Suppose V � = (V �
t )t≥0 is a solution to

V �
t = E

[∫ T

t

(

b
ξ1−SX1−S

s

1 − S

(
(1 − R)V �

s

)ρ − δϑV �
s

)

ds + V �
T

∣
∣
∣
∣Ft

]

(7.9)

for all 0 ≤ t ≤ T < ∞. By Assumption 7.9, we look for a solution of the form

V �
t = Bξ1−R X1−R

t

1−R
, where B = B(π, ξ) is a positive constant which we seek to
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identify. For a constant proportional strategy (π, ξ), we have by Remark 5.3 that
E[X1−R

s |Ft ] = X1−R
t e−H0(s−t), where H0 = H0(π, ξ) is as in (5.6) with ν = 0. Then,

substituting the candidate form for V � provided by Assumption 7.9 into (7.9) and di-
viding by ξ1−RX1−R

t yields

B

1 − R
=

∫ T

t

(
b

1 − S
Bρ − δϑB

1 − R

)

e−H0(s−t) ds + B

1 − R
e−H0(T −t),

and, provided H0(π, ξ) 	= 0,

B = (bϑBρ − δϑB)
1 − e−H0(T −t)

H0(π, ξ)
+ Be−H0(T −t). (7.10)

It follows that there is a solution V � to (7.9) of the form V �
t = Bξ1−R X1−R

t

1−R
if there

is a solution to

BHδϑ(π, ξ) = B
(
δϑ + H0(π, ξ)

) = bϑBρ, (7.11)

where Hδϑ(π, ξ) is as in (5.6) with ν = δϑ . (If H0(π, ξ) = 0, instead of (7.10), we
get B = (T − t)(bϑBρ − δϑB) + B which means that again B solves (7.11).) Since
b > 0, there can only be a positive solution to (7.11) if ϑHδϑ(π, ξ) > 0.

Note that already this is different to the additive case (ρ = 0 and ϑ = 1) which
was presented in Sect. 7.2. In the additive case (recall (7.6)), we looked for solu-
tions to B(δ + H0(π, ξ)) = b, but did not require that B > 0; indeed, we sometimes
found (genuine) solutions with B > 0 and sometimes bubble solutions with B < 0.
Solutions in the additive case with B < 0 do not satisfy V ∈ V and are automatically
excluded by Assumption 7.9. We now argue that similar ideas mean that ϑ < 0 does
not make sense if bubbles are excluded, where (colloquially) a bubble exists if the
value assigned to the combination of a flow and a terminal value arises mainly from
the terminal value: for example if (WZ

t )t≥0 solves WZ
t = E[∫ T

t
Zs ds +WZ

T |Ft ] and
WZ

t is primarily determined by WZ
T , and in extremis a positive process WZ is as-

signed to a negative flow Z, or vice versa. We give a formal definition of a bubble
solution in the Epstein–Zin setting in Definition 7.12 below.

Suppose ϑ 	= 1 (equivalently, ρ 	= 0 or R 	= S) and consider nonnegative solutions
to (7.11). If ϑ ∈ (0,1) (equivalently, ρ < 0), this equation has a solution if and only
if Hδϑ(π, ξ) > 0, and then the solution is unique and given by B = ( bϑ

Hδϑ (π,ξ)
)ϑ . If

ϑ > 1, then B = 0 is always a solution to (7.11) (and so is B = ∞ if Hδϑ(π, ξ) > 0),
and there exists a strictly positive, finite solution if and only if Hδϑ(π, ξ) > 0, whence
again B = ( bϑ

Hδϑ (π,ξ)
)ϑ . If ϑ < 0, then B = 0 is always a solution to (7.11), B = ∞ is

a solution if Hδϑ(π, ξ) < 0, and there exists a further (strictly positive and finite) so-
lution B = (

b|ϑ |
|Hδϑ (π,ξ)| )

ϑ if and only if Hδϑ(π, ξ) < 0. By Assumption 7.9, we exclude
0 and ∞ as solutions.

For a constant proportional strategy (π̂ = λ
σR

, ξ), a change of accounting units
has the effect of changing the discount parameter. Fix δ and g�

EZ, but introduce also
gγ = g

γ

EZ and V γ , where

gγ := b
c1−S

1 − S

(
(1 − R)v

)ρ − γϑv (7.12)
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and V γ = (V
γ
t )t≥0 is a solution to

V
γ
t = E

[∫ T

t

(

be(γ−δ)s ξ1−SX1−S
s

1 − S

(
(1 − R)V

γ
s

)ρ − γϑV
γ
s

)

ds + V
γ

T

∣
∣
∣
∣Ft

]

(7.13)

for all 0 ≤ t ≤ T < ∞. (Then also (gδ,V δ) = (g�
EZ,V �).) As before, we look for a

solution of the form V
γ
t = Bγ ξ1−R X1−R

t

1−R
, where Bγ = Bγ (π, ξ) ∈ (0,∞).

Lemma 7.11 Let (X
γ
t )t≥0 be given by X

γ
t = Xte

− (γ−δ)
1−S

t so that Xγ is the wealth
process which arises from a change of accounting unit. Then:

(i) V � solves (7.9) if and only if V γ = (V
γ
t )t≥0 defined by V

γ
t = e(γ−δ)ϑtV �

t

solves (7.13).
(ii) V γ solves (7.13) if and only if it also solves

V
γ
t = E

[∫ T

t

(

b
ξ1−S(X

γ
s )1−S

1 − S

(
(1 − R)V

γ
s

)ρ − γϑV
γ
s

)

ds + V
γ

T

∣
∣
∣
∣Ft

]

.

Proof The proof of (i) follows by an argument similar to the one used in the proof of
Proposition 7.5. Statement (ii) is a simple renaming of variables. �

In particular, taking γ = 0, V 0 solves

V 0
t = E

[∫ T

t

bξ1−S (X0
s )

1−S

1 − S

(
(1 − R)V 0

s

)ρ ds + V 0
T

∣
∣
∣
∣Ft

]

. (7.14)

Considering solutions to (7.14), it is clear that the aggregator g0 takes only one sign
in the sense that (except possibly on the boundary, where it need not be defined) either
g0 : R+ ×R+ ×V → R+ or g0 : R+ ×R+ ×V → R−.

Definition 7.12 Let g be an aggregator that takes values in [0,+∞] or in [−∞,0].
Then V 	≡ 0 is a bubble solution for a consumption stream C if it solves

Vt = E

[∫ T

t

g(s,Cs,Vs)ds + VT

∣
∣
∣
∣Ft

]

P-a.s.

for each 0 ≤ t ≤ T < ∞, and either V ≤ 0 and g ≥ 0, or V ≥ 0 and g ≤ 0.

Our contention is that it is not appropriate to value consumption streams using a
mechanism which incorporates bubble solutions (unless the purpose is to consider the
impact of bubbles). When g is one-signed, we have defined a bubble solution. Our
immediate goal is to consider the consequences for the Epstein–Zin aggregator under
a variety of accounting units.

Theorem 7.13 If there are no bubble solutions for the Epstein–Zin aggregator under
any choice of accounting units, then ϑ > 0.
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Proof Consider a constant proportional strategy (π, ξ) for which a solution V 0 to
(7.14) exists and is non-zero everywhere. It follows from the discussion at the be-
ginning of this section that such a strategy exists for any choice of ϑ . Since there
are by hypothesis no bubble solutions for the Epstein–Zin aggregator under any ac-
counting units, V 0 is not a bubble solution and therefore has the same sign as g0.
Since (1 − S)g0 ≥ 0 and V 0 is non-zero everywhere, it follows that (1 − S)V 0 > 0.
Using again that V 0 ∈ V = (1 − R)R+ is non-zero everywhere, it follows that
(1 − R)V 0 > 0. We conclude that ϑ = (1−R)V0

(1−S)V0
> 0. �

Now we want to consider which transversality condition we should associate with
(7.9). Suppose the transversality condition is

lim
t→∞ e−νt

E[V �
t ] = 0. (7.15)

It is easy to see from the definition of V γ in Lemma 7.11 that e−νt
E[V �

t ] → 0 if
and only if e−(ν−δϑ)t

E[e−γϑtV
γ
t ] → 0, and so the transversality condition (7.15)

becomes limt→∞ e−(ν−δϑ)t
E[V 0

t ] = 0.
We make the following hypothesis, which is very intuitive from an economic per-

spective.

Hypothesis 7.14 The transversality condition associated with the aggregator g de-
pends on the aggregator, but not on the financial market.

For the next lemma, we recall that the candidate optimal consumption stream
is given in feedback form in (5.9) by (	̂, Ĉ) = (π̂ , ηX). Furthermore, recall from
Proposition 5.4 that the candidate wellposedness condition is η > 0, where η is de-
fined by (5.8).

Lemma 7.15 Under Hypothesis 7.14, if the wellposedness condition η > 0 is satisfied
and the utility process associated with the candidate optimal consumption stream sat-
isfies the transversality condition (7.15) for every well-posed problem, then ν ≥ δϑ .

Proof Suppose ν < δϑ and define ε := δϑ − ν > 0. Then the candidate optimal strat-
egy (π̂, η) satisfies the transversality condition limt→∞ e−νt

E[V �
t ] = 0 if and only if

it satisfies limt→∞ eεt
E[e−δϑtV �

t ] = 0, which in turn is equivalent to Hδϑ(π̂, η) > ε

by Remark 5.3 and Assumption 7.9. Suppose the market parameters are such that
η ∈ (0, ε

ϑ
). Then Hδϑ(π̂, η) = ϑη < ε, and the candidate optimal utility process fails

to satisfy the transversality condition. �

In general, the larger the value of ν, the larger the class of processes which satisfy
the transversality condition (7.15). However, for the EZ aggregator, there is a point
where increasing ν further makes no difference to the set of evaluable consumption
streams.

Lemma 7.16 Suppose ϑ > 0 and (ξ,π) is a constant proportional investment–
consumption strategy. If V � = (V �

t )t≥0 is a V-valued solution to (7.9) for all
0 ≤ t ≤ T < ∞, then V � satisfies (7.15) for ν = δϑ .
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Proof Suppose that V � solves (7.9) for all 0 ≤ t ≤ T < ∞. Then Lemma 7.11 im-
plies that V 0 solves (7.14) for all 0 ≤ t ≤ T < ∞. By Assumption 7.9 and the form
for V γ given in Lemma 7.11,

V 0
t = Bξ1−Re−δϑt X

1−R
t

1 − R
.

Hence since ϑ > 0, by letting T → ∞ in (7.14), it follows that limt→∞ E[V 0
t ] = 0.

Equivalently, limt→∞ e−δϑt
E[V �

t ] = 0. �

Our second hypothesis says that we choose the smallest possible value for ν which
allows us to evaluate all the strategies that we want.

Hypothesis 7.17 The transversality parameter should be the smallest parameter ν

such that every solution to (7.9) satisfies (7.15).

Combining Lemmas 7.15 and 7.16, we get the following results.

Proposition 7.18 Under Hypotheses 7.14 and 7.17 and if ϑ > 0, the parameter ν in
the transversality condition (7.15) must take the value ν = δϑ .

Moreover, we get the following analogue to Proposition 7.7 and converse to The-
orem 7.13.

Theorem 7.19 Suppose Hypotheses 7.14 and 7.17 are satisfied. If ϑ > 0, there are no
bubble solutions for constant proportional strategies for the Epstein–Zin aggregator
under any choice of accounting units.

Proof The EZ aggregator gγ from (7.12) has one sign if and only if γ (1 − R) ≥ 0.
Suppose first that γ = 0. We want to show that there are no bubble solutions for
g0 under the transversality condition E[V 0

T ] → 0. But since g0 has one sign, taking
T → ∞ in (7.14) implies that V 0 and g0 have the same sign. Now consider some
other γ for which γ (1 − R) > 0 and hence gγ has one sign, which is the same sign
as that of g0. Then since they only differ by an exponential pre-factor, V γ defined in
Lemma 7.11 has the same sign as V 0. Hence V γ and gγ also have the same sign. �

Remark 7.20 (i) For ϑ > 1, Melnyk et al. [17] take the transversality condition to be
(7.15) with ν = δ < δϑ . For some parameter values, the candidate optimal strategy
from (5.9) may fail to be permitted by [17], in the sense of not being in the set of
MMS-evaluable strategies E MMS from Definition 7.3, because it fails their transver-
sality condition that uses ν = δ. However, these parameter combinations are ruled out
by the extra parameter restrictions imposed in [17]. In particular, [17] restrict atten-
tion to financial models for which η > δρ. It can be checked that the optimal strategy
satisfies Hδ(π̂, η) = (η − δ)ϑ + δ. Hence since the restriction η > δρ implies that
(η − δ)ϑ + δ > 0, this is precisely enough to ensure that e−δt

E[X1−R
t ] → 0 for the

candidate optimal strategy by Remark 5.3. For 0 < η ≤ δρ, the utility process for the
candidate optimal strategy would fail the transversality condition. Further, both in
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the case η > δρ ≥ 0 and in the case 0 < η ≤ δρ, many reasonable strategies (consider
constant proportional strategies (π, ξ) such that Hδϑ(π, ξ) > 0 but Hδ(π, ξ) < 0, and
consequently e−δt

E[X1−R
t ] 	→ 0 for ϑ > 1) are unnecessarily excluded because they

fail the transversality condition, and not because they are suboptimal.
For ϑ < 0 (and R > 1), Melnyk et al. [17] define candidate solutions V � as solu-

tions to (7.9). It follows that V = (Vt )t≥0 given by Vt = e−δϑtV �
t solves the family

of finite horizon problems given in (7.14). However, relative to the aggregator g0,
the solution V 0 is a bubble solution and therefore questionable from an economic
perspective.

7.4 The dual approach

Dual methods have proved spectacularly successful for the Merton problem with ad-
ditive utility. They work for general utility functions, and in principle make it possible
to move beyond the setting of constant-parameter financial markets to non-Markovian
settings and incomplete markets. However, it is not immediately clear how to extend
dual methods to the SDU setting. One promising idea is based on stochastic varia-
tional utility (SVU) as formulated by Dumas et al. [7] and applied in the context of
utility maximisation under finite-horizon EZ SDU by Matoussi and Xing [15].

The papers [7] and especially [15] provide great insights and a potential roadmap
describing how dual methods might be extended to the investment–consumption
problem for SDU. However, there are several obstacles which make it difficult to ap-
ply these ideas to the infinite-horizon problem. First, at present, the dual method has
little to say about existence of solutions. Second, the equivalence between the SDU
and SVU formulations may be challenging to prove in the infinite-horizon setting
without imposing substantive technical assumptions. Third, there are major issues of
non-uniqueness when ϑ > 1 (cf. Herdegen et al. [10]); these issues do not disappear
simply by a change of viewpoint.

8 Summary

The conclusions from this paper are twofold.
First, for EZ SDU over an infinite horizon, certain restrictions on the parameters

are necessary to have a well-founded problem. In particular, in addition to b > 0, for
the problem to make sense, the coefficients of relative risk aversion and of elasticity
of intertemporal complementarity both must lie on the same side of unity, i.e., ϑ > 0.
The finding that ϑ > 0 is a necessary condition raises fundamental questions over the
strand of literature which considers long-run risks and builds on the seminal paper of
Bansal and Yaron [1], since these papers assume S < 1 < R. Although these papers
consider an equilibrium setup, underpinning the analysis is the idea that there is a
utility process associated to the equilibrium consumption stream. Our results show
that the interpretation of this utility process may be problematic.

Second, for the infinite-horizon problem, it is preferable to consider a discounted
aggregator rather than a difference aggregator. The one-sign property of the dis-
counted form of the EZ SDU aggregator means that the integral

∫ ∞
0 g(s,Cs,Vs)ds
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and its expectation are always well defined in [−∞,∞], whereas this is not always
the case for the difference aggregator. Then, in addition to the fact that the discounted
aggregator is the natural generalisation of the standard form of the Merton problem
for additive utility, there are no issues for the discounted aggregator over bubble solu-
tions. In the companion paper Herdegen et al. [11], we strengthen this result further by
showing that at least when ϑ ∈ (0,1), for the discounted aggregator, it is possible to
define a (generalised) utility process for every consumption stream. This means that
we can prove optimality of a candidate optimal strategy within the class of all admis-
sible investment–consumption strategies from Definition 5.1, and not just a subclass
satisfying certain integrability properties.

Appendix: Proof omitted from the main text

Proof of Proposition 7.5 Let V � be a (δϑ,JMMS)-utility process associated to the con-
sumption stream C and aggregator g�

EZ. Then we have V � ∈ S
1
T ∩ IT (g�

EZ,C) as well
as limt→∞ e−δϑt

E[V �
t ] = 0, and V � solves (7.2) with the aggregator g�

EZ for all
0 ≤ t ≤ T < ∞.

Define the process V = (Vt )t≥0 by Vt := exp(−δt)V �
t . Then V ∈ S

1
T , and the

transversality condition (7.1) of V � uses ν = δ. This gives limt→∞ E [Vt ] = 0. We
proceed to show that V ∈ IT (gEZ,C) and V satisfies

Vt = E

[∫ T

t

be−δu C1−S
u

1 − S

(
(1 − R)Vu

)ρ du + VT

∣
∣
∣
∣Ft

]

(A.1)

for all 0 ≤ t ≤ T < ∞ and T > 0. So fix T > 0. Using that V � ∈ S
1
T ∩ IT (g�

EZ,C)

and e−δt |Vt |ρ ≤ e|δϑ |T |V �
t |ρ for t ∈ [0, T ], we obtain

E

[∫ T

0

∣
∣
∣
∣be−δs C1−S

s

1 − S

(
(1 − R)Vs

)ρ

∣
∣
∣
∣ ds

]

≤ e|δϑ |T
E

[∫ T

0

∣
∣
∣
∣b

C1−S
s

1 − S

(
(1 − R)V �

s

)ρ − δϑV �
s

∣
∣
∣
∣ ds

]

+ e|δϑ |T T |δϑ |E
[

sup
s∈[0,T ]

|V �
s |

]

< ∞.

Thus V ∈ IT (gEZ,C). Next, define the martingale M = (Mt)t∈[0,T ] by

Mt = E

[∫ T

0

(

b
C1−S

s

1 − S

(
(1 − R)Vs

)ρ − δϑVs

)

ds + VT

∣
∣
∣
∣Ft

]

.

As V � satisfies (7.2), it satisfies the BSDE

V �
t = V �

T +
∫ T

t

(

b
C1−S

u

1 − S

(
(1 − R)V �

u

)ρ − δϑV �
u

)

du −
∫ T

t

dMu.
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Applying the product rule to Vt = e−δϑtV �
t , we find that

Vt = VT +
∫ T

t

be−δu C1−S
u

1 − S

(
(1 − R)Vu

)ρ du +
∫ T

t

e−δϑu dMu.

Since E[(1− e−δϑT )|MT |] < ∞, N defined by Nt = ∫ t

0 e−δϑs dMs is a martingale by
Herdegen and Muhle-Karbe [12, Lemma A.1.], and taking conditional expectations
gives (A.1).

Next, using that V and the integrand in (A.1) have the same sign, it follows
from monotone convergence and limT →∞ E [VT ] = 0 that V satisfies (5.3). Since
V0 is finite, this also gives V ∈ I(gEZ,C). Finally, if ϑ > 1, then δϑ > δ and
any (δ, J MMS)-utility process is automatically a (δϑ,J MMS)-utility process. Hence
E MMS(g�

EZ) ⊆ E (gEZ). �
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