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Abstract

Working with causal models at different levels of

abstraction is an important feature of science. Ex-

isting work has already considered the problem of

expressing formally the relation of abstraction be-

tween causal models. In this paper, we focus on

the problem of learning abstractions. We start by

defining the learning problem formally in terms

of the optimization of a standard measure of con-

sistency. We then point out the limitation of this

approach, and we suggest extending the objective

function with a term accounting for information

loss. We suggest a concrete measure of informa-

tion loss, and we illustrate its contribution to learn-

ing new abstractions.

1 INTRODUCTION

Understanding causality is a key challenge for modern arti-

ficial intelligence (AI) [Schölkopf et al., 2021]. Structural

causal models (SCM) [Pearl, 2009] are well-established

tools used in statistics and computer science to describe

causal systems and to express causal assumptions in a

graphical form. One could, for instance, describe the re-

lation between smoking and cancer in a model with few

variables of interest represented as nodes (e.g., environment

stress, smoking, and cancer), and with directed arcs denot-

ing the hypothesised causal relationships (see Figure 1a).

An SCM is formulated over a set of relevant variables,

some of which may not be as important for analysing the

problem at hand. In our example, for instance, we may not

be interested in explicitly modelling the role of the environ-

ment in causing smoking or cancer, but it could be suffi-

cient to have a smaller model incorporating only the latter

variables (see Figure 1b). Being able to work with SCMs

at different levels of abstraction allows us to adjust to our

available computational resources, while still getting mean-

ingful results; it would also allow us to integrate data that

may have been collected with models at different resolu-

tions.

But what is the “right" abstraction of an SCM? Answering

this question in a rigorous fashion requires tackling several

challenges, among which how to define mathematically a

relation of abstraction and how to formalize a notion of

consistency among models. Answers to these two problems

have recently been proposed in the literature [Rubenstein

et al., 2017, Beckers and Halpern, 2019, Rischel, 2020]

and, building on these contributions, we can now establish

a relationship between SCMs and assess their consistency,

as sketched in Figure 1c. Despite the recent progress in the

literature, the question still remains of how to order abstrac-

tions in terms of gains and losses with respect to the origi-

nal model and how to compute an optimal abstraction.

Contribution. In this paper we address the problem of

computing an optimal abstraction for SCMs. We define sev-

eral concrete subproblems, ranging from the simpler ques-

tion of finding an abstraction between two fully specified

SCMs (Figure 2a) to the harder question of being given a

starting model and jointly finding an abstraction and an ab-

stracted model (Figure 2b). We phrase the problem of learn-

ing an abstraction as an optimization problem where the ob-

jective is to maximize key properties of an abstraction. We

start by considering the optimization of a standard measure

of consistency; however, this approach could lead to opti-

mal, yet doubtfully useful solutions, such as identities or

the collapse of all the variables and outcomes onto a single

value (Figure 2c). Therefore, we suggest the introduction

of a measure that accounts for the information being lost in

an abstraction, and which will be used in combination with

consistency. We provide the definition of an optimization

problem and we illustrate preliminary results on our moti-

vating example showing how a measure of consistency and

a measure of information loss capture different aspects and

properties of an abstraction. Throughout the paper, we will

illustrate ideas relying on a motivating example, for which
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Figure 1: Smoking (S) and cancer (C), at different levels.

(a) A simple model, considering the environment (E). (b)

Abstracting away from the environment. (c) A sketch of the

relationship between the original model and its abstracted

version.

we will provide formal details in the appendix.

Related Literature. Abstraction, i.e., the capacity to

model a phenomenon with different degrees of detail is

ubiquitous in science; in AI, it is fundamental to re-

duce computational complexity of decision-making and

has found important applications in the development of

intelligent agents playing complex games at superhuman

level [Kroer and Sandholm, 2018].

In the context of SCMs, Rubenstein et al. [2017] proposed

to relate causal models via a (τ -ω)-transformation which

connects the space of joint outcomes of all the variables of

two SCMs. The requirement of consistency is expressed in

terms of interventional consistency: a (τ -ω)-transformation

is an exact transformation if it commutes with respect

to a set of interventions of interest. The notion of (τ -ω)-
transformation has been refined in Beckers and Halpern

[2019], Beckers et al. [2020] through stronger definitions

meant to rule out degenerate forms of abstractions that

would have been admitted under the original definition.

An alternative modelling of abstraction relying on category

theory has been proposed by Rischel [2020], Rischel and

Weichwald [2021]. Here, an abstraction is defined at two

levels: first, as a mapping between the variables of two

SCMs; and, second, as mappings between the outcomes

of the variables. This setup also admits a way to quantify

the degree of approximation or error between two SCMs in

case interventional consistency were not to hold. Our work

builds over this framework, relying on the rigorous defini-

tion of abstraction and the operative definition of abstrac-

tion error.
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Figure 2: Different abstraction problems. (a) Given two

SCMs, learn their relative abstraction. (b) Given an SCM,

learn an abstracted model and their relative abstraction. (c)

A trivial solution to (b).

2 PRELIMINARIES

2.1 STRUCTURAL CAUSAL MODELS

Definition 1 (SCM [Pearl, 2009]) A structural causal

model (SCM) M is a tuple 〈X ,U ,F , P (U)〉 with an

underlying directed acyclic graph (DAG) GM where:

• X is a finite set of N endogenous random variables

Xi; each variable Xi is associated with a finite set

M[Xi] = {x1, x2, ..., xN} of outcomes; we use the

boldface notationX ⊆ X for subsets of variables, and

M[X] =
∏

Xi∈X
M[Xi] for the Cartesian product of

the sets of outcomes of the variables in X.

• U is a finite set of N exogenous random variables Ui,

one for each endogenous variable Xi; each variable

Ui is associated with a set M[Ui] = {u1, u2, ..., uN}
of outcomes.

• F is a finite set of N modular measurable structural

functions fi, one for each endogenous variable Xi;

a structural function fi : M[PA(Xi)] × M[Ui] →
M[Xi], where PA(Xi) ⊆ X \Xi defines determinis-

tically the value of the random variable Xi given the

values of the variables in the set PA(Xi) and Ui.

• P (U) is a joint probability distributions over the ex-

ogenous variable Ui.

Endogenous variables represents variables of interest, ex-

plained by deterministic mechanisms; exogenous variables

capture stochastic factors of variance beyond the control

of a modeler. Several common assumptions underlying this

definition are explicitly stated in Appendix A.

Example. Let us define a simple toy SCM M for the lung

cancer scenario we introduced earlier:

• X = {E, S,C} is the set of endogenous variables

containing three binary variables representing respec-

tively level of stress due to the environment, habit of

smoking, and presence of lung cancer;



• U = {UE , US, UC} is the set of exogenous variables

containing three binary variables;

• F = {fE, fS, fC} is the set of structural functions

such that E = fE(UE), S = fS(E,US), and C =
fC(E, S, UC);

• P (U) = P (UE , US, UC) is the joint probability distri-

bution over the exogenous variables.

Figure 1a can now be given a formal reading as the DAG

GM underlying the model we have just defined. Notice that,

according to the conventions in the field, the figure shows

only the endogenous variables. �

SCMs allow for the rigorous definition of interventions:

Definition 2 (Intervention) Given a SCM M, a set of

variable X ∈ X together with an associated set of values

x, such that for each Xi ∈ X there is a xi ∈ M[Xi], an

intervention ι : do(X = x) is an operator on a SCM that

replaces the structural functions fi with the constants xi.

Graphically, an intervention ι mutilates the original DAG

GM by removing all incoming edges in Xi and replacing

fi with xi. Thus, the intervention ι on the SCM M induces

a new post-interventional model Mι.

In a SCM, the probability distributions over the exoge-

nous variables can be pushforwarded over the endogenous

variables, thus defining joint probabilities PM(X) over

X ⊆ X . Furthermore, the finite dimensionality of the out-

come sets of the variables in M allows us to represent a

SCM as a tuple 〈M[X ],M[φX ]〉, where M[X ] is the set

of sets M[Xi] ∪ {∗} and M[φX ] is the set of mechanisms

encoding the conditional distribution of an outcome as a

stochastic matrix M[φXi
] representing a stochastic map

from M[PA(Xi)] to M[Xi] [Rischel, 2020]. Notice that

the collection of sets M[X ] includes the singleton set {∗}
which is necessary to express the mechanisms on endoge-

nous variables Xi that are roots in the DAG GM.

Example. Let us represent our model M in terms of sets

and stochastic matrices:

• M[X ] is given by the singleton set {∗} and the three

binary sets M[E] = M[S] = M[C] = {0, 1};

• M[φX ] is given by the column-stochastic matrices

M[φE ] with shape 2 × 1, M[φS ] with shape 2 × 2,

and M[φC ] with shape 2× 4.

The formal definition of M is available in Appendix D.1.

�

2.2 ABSTRACTION

Definition 3 (Abstraction [Rischel, 2020]) Let M =
〈M[X ],M[φX ]〉 and M′ = 〈M′[X ′],M′[φX′ ]〉 be two

SCMs. An abstraction α from M to M′ is a tuple

〈R, a, αi〉 where:

• R ⊆ X defines a subset of relevant variables in M;

• a : R → X ′ is a surjective function mapping relevant

variables R in M to variables in M′;

• αi : M[a−1(X ′
i)] → M′[X ′

i] is a collection of sur-

jective functions, one for each variable in M′, map-

ping the outcomes of variable(s) a−1(X ′
i) onto the out-

comes of variable X ′
i .

An abstraction α defines an (asymmetric) relation from a

base or low-level model model M to an abstracted or high-

level model model M′.

Example. Let us consider again our toy model M
along with a simplified SCM M′ defined over two bi-

nary sets M′[S′],M′[C′] and two stochastic matrices

M′[φS′ ],M′[φC′ ]. We can now institute an abstraction α

from M to M′ by defining:

• R = {S,C}, evaluating only nodes S and C in M as

relevant to our abstraction;

• a : R → X ′ mapping S 7→ S′, C 7→ C′ specifying

how variables in the two levels are related;

• αS′ : M[S] → M′[S′] and αC′ : M[C] → M′[C′].

Figure 1c is an illustration of the abstraction we have just

defined. The formal definition of M′ is available in Ap-

pendix D.2, while the definition of α is in Appendix D.3.

�

The definition of abstraction is paired with a requirement

of interventional consistency.

Definition 4 (Zero-error abstraction [Rischel, 2020])

An abstractionα from M to M′ is a zero-error abstraction

if, for all disjoint sets X′,Y′ in X ′, the following diagram

commute:

Mι[a
−1(X′)] Mι[a

−1(Y′)]

M′
ι′ [X

′] M′
ι′ [Y

′]

M[φ̃
a
−1(Y′)]

αX′

M
′[φ̃Y′ ]

αY′

that is, αY′ ◦ M[φ̃a−1(Y′)] = M′[φ̃Y′ ] ◦ αX′ for all

possible interventions ι on a−1(X′), where M[φ̃a−1(Y′)]

and M′[φ̃Y′ ] are the stochastic matrices derived from the

SCMs encoding the relevant distribution.



The interpretation of commutativity is straightforward: an

abstraction α is a zero-error abstraction if, for any in-

tervention ι on a−1(X′), we can obtain the same result

in two ways: (i) by abstracting to the high-level post-

interventional model and then computing the distribution

of interest via a high-level mechanism; or, (ii) by comput-

ing a distribution via a low-level mechanism first, and then

abstracting to high-level.

Example. Let us consider the abstraction α between M
and M′ defined above. Let us consider the following two

disjoint subsets in X ′: X′ = {S′} and Y
′ = {C′}. This

implies we will be considering interventions ι of the form

do(S = s). To evaluate commutativity we then consider

the following diagram:

Mι[S] Mι[C]

M′
ι′ [S

′] M′
ι′ [C

′]

[

0.88 0.38
0.12 0.62

]

[

1 0
0 1

]

[

0.88 0.38
0.12 0.62

]

[

1 0
0 1

]

It is immediate to see that the diagram commute. A detailed

explanation of the diagram is in Appendix D.4. �

Non-commutativity. In case an abstraction diagram

were not to commute, we could quantify the discrepancy be-

tween the upper and the lower path using Jensen-Shannon

distance (JSD) [Cover, 1999] as:

Eα(X
′,Y′) = max

ι
DJSD(αY′ ◦M[φ̃a−1(Y′)],

M′[φ̃Y′ ] ◦ αX′).
(1)

over all interventions ι on a−1(X′). A definition of JSD is

given in Appendix B.

The choice of using JSD was proposed in Rischel [2020],

and justified on the ground that, when composing abstrac-

tions, JSD guarantees that the overall error is bounded by

the sum of the component errors [Rischel, 2020, Rischel

and Weichwald, 2021]. From this measure of error on a sin-

gle diagram, it is possible to define an overall abstraction

error as follows.

Definition 5 (Abstraction Error [Rischel, 2020]) Let α

be an abstraction from a model M to a model M′. Then

the abstraction error is:

e(α) = sup
X′,Y′⊆X ′

Eα(X
′,Y′) (2)

for all disjoint non-empty and non-independent subsets

X
′,Y′ ⊆ X ′.

Example. Let us consider the same base model M and

suppose we are given an alternative abstracted model M′′,

identical to M′ except for the mechanism M′′[φC′′ ] which

is now encoded by the matrix

[

0.8 0.3
0.2 0.7

]

. Let us relate

M and M′′ via the previous abstraction α. We then obtain

Eα(S
′′, C′′) ≈ 0.077. Moreover, since the S′′, C′′ are the

only two disjoint subsets inM′′, we also get that the overall

abstraction error e(α) ≈ 0.077. The formal definition of

M′′ is available in Appendix D.5, the computation of the

abstraction error in Appendix D.6. �

3 LEARNING ABSTRACTIONS

The definition of abstraction error provides us with a rigor-

ous way to analyze the quality of an abstraction. We could

then consider expressing the problem of learning new ab-

stractions (or improving on existing ones) by defining the

optimization problem:

min
α

e(α) (3)

over the space of abstractions α = 〈R, a, α〉, and, implic-

itly, over the space of SCMs M′ implied by such an ab-

straction.

Hierarchy of problem. If we make the optimization vari-

ables in Equation 3 explicit, we obtain:

min
|X ′| ∈ N

|M′[X ′
i]| ∈ N

M′[φX′
i
] ∈ S(|M′[X ′

i]| , |M
′[PA(X ′

i)]|)
R ⊆ X

a ∈ S{0,1}(|X
′| , |X |)

αX′
i
∈ S{0,1}(|M

′[X ′
i]| ,

∣

∣M[a−1(X ′
i)]

∣

∣)

e(α)

(4)

under the constraints:

s.t. GM′ is acyclic

a1T
|X | > 1

αX′
i
1
T

|M[a−1(X′
i
)]| > 1

where S(a, b) is the space of column-stochastic matrices

with dimension a × b, S{0,1}(a, b) is the space of binary

column-stochastic matrices with dimension a × b, 1T
k is a

column vector of length k of ones.

Notice how the first three lines of optimization variables

account for the learning of model M′, while the last three

lines account for the learning of the abstraction α; more-

over, the first constraint enforces acyclicity, while the last

two constraints enforce surjectivity. We can identify differ-

ent classes of problems according to the variables that are

given, as summarized in Table 1 in Appendix C.



The problem in Equation 4 is defined over integer domains,

and constitutes a combinatorial optimization problem. We

will leave the discussion of its complexity and of efficient

algorithms to future work; in our motivating example, given

its limited size, we are able to find solutions by enumera-

tion.

Loss function. The objective in the optimization problem

of Equation 3 might be insufficient for learning a meaning-

ful abstraction. In a problem where we can learn the ab-

stractionα and the abstracted modelM′ (like in Figure 2b),

a trivial optimal solution would be to learn an abstraction

α that maps everything to a singleton SCM (as in Figure

2c). By mapping all the variables in M to a single variable,

and mapping all possible outcomes of the variables M[Xi]
to a single value, commutativity is trivially preserved and

e(α) = 0. This is due to the fact that a zero abstraction

error only guarantees that by commuting abstraction and

mechanisms we will obtain the same result, but it does not

take into account the amount of information that is given

up in an abstraction.

We then suggest rewriting the objective function as:

min
α

e(α) + λi(α)
(5)

where i(α) is a measure of information loss due to the ab-

straction, and λ ∈ R is a trade-off parameter.

Measure of information loss. Different measure of in-

formation loss may be considered; customized measures

may weigh the information loss proportionally to the impor-

tance of different subsystems, emphasizing the contribution

of specific (observational or interventional) conditional dis-

tributions.

Here we propose a simple generic measure based on the

discrepancy between the observational joint distribution

PM(X ) of the low-level model M and the observational

joint distribution P̂M(X ) that we would reconstruct invert-

ing the abstraction α. We define the inverse of a function

αX′
i

as:

α∗
X′

i

= ℓ1,col(α
T
X′

i

) (6)

where ℓ1,col is an ℓ1-normalization along the columns, and

·T is the transpose operator. Although for binary column-

stochastic matrices this inverse is just the conventional

Moore-Penrose pseudoinverse, the formulation in Equation

6 highlights the rationale behind this choice. By using a

transpose, we require to map back a high-level outcome

to a low-level outcome; however, multiple low-level out-

come may be mapped to a single high-level outcome; by

using a ℓ1-normalization we evenly spread the probability

among all possible low-level outcomes, in accordance with

Laplace’s principle of insufficient reason [Jaynes, 1957].

If R = XM, we can then define a global inverse as:

α∗ =
⊗

X′
i
∈X

M′

α∗
X′

i

, (7)

where ⊗ is the Kronecker product. If R ⊂ XM, we need

to account for non-relevant variables. Let R̄ be the set of

non-relevant variables, and let r be the cardinality |M[R̄]|;
then we can compute the global inverse as:

α∗ =
1
T
r

r
⊗





⊗

X′
i
∈X

M′

α∗
X′

i



 (8)

where 1T
r is a column vector of length r of ones.

Example. Let us consider our motivating example for the

abstraction α from M to M′, and compute the global in-

verse α∗:

α∗ =

[

.5

.5

]

⊗

[

1 0
0 1

]

⊗

[

1 0
0 1

]

The explicit computation of α∗ is given in Appendix D.7.

�

Finally, in analogy with abstraction error, we can define our

information loss measure as:

i(α) = DJSD(PM(X ), α∗(PM′ )(X ))). (9)

Example. The information loss for our motivating exam-

ple is:

i(α) ≈ 0.44.

Exact computations are reported in Appendix D.8. �

Information loss provides a different criterion for evaluat-

ing abstraction, and it allows us to quantify two ways in

which a base model and an abstracted model may diverge.

Information loss as discrepancy between distributions.

Interventional consistency is concerned with interventional

quantities and mechanisms; it does not take into account

marginal distributions on root variables in the DAG of the

models, or conditional distributions that do not correspond

to any mechanism. Information loss, on the other hand, is

measured with respect to the joint distribution of the mod-

els and it is sensitive to the values of all the distributions.

Disregarding the value of marginal distributions makes an

interventionally-consistent abstraction more robust with re-

spect to shifts in the underlying population which are en-

coded in probabilities over the root nodes; in an interven-

tional settings this a desirable properties. However, if we

were to work in an observational setting, and we were in-

terested in making predictions, especially in the anti-causal

direction, a proper reconstruction of the populations may

be in order.



Example. The abstractionα from M to M′ turned out to

have zero abstraction error e(α) = 0, but quite a high infor-

mation loss i(α) ≈ 0.44. This is not surprising if we look

at the difference between the marginal distribution over the

variableS: the two models were likely inferred over popula-

tions with almost diametrically opposed smoking patterns.

Exact values for the marginals are given in Appendix D.9.

This would of course impact observational inferences that

we may want to perform on the two models. For instance,

if we would like to estimate the (anti-causal) probability

that a patient is a smoker, given her cancer status, we could

come to different conclusions. See Appendix D.10 for a

computation of these conditionals. �

Better abstraction for predictive tasks may then be learned

by trying to negotiate interventional consistency and infor-

mation loss.

Example. If we keep our models M and M′ fixed, it

may come to no surprise that an alternative abstraction β

that swaps the outcomes of the variables in M and M′

could achieve a lower information loss of i(β) ≈ 0.31, al-

though at the cost of not being interventionally consistent

anymore, e(β) = 0.22. Complete definition of β is given

in Appendix D.11. �

Example. If in our optimization we can learn a different

abstracted model, it would be possible to suggest an alterna-

tive M′′′ with a distribution on M′′′[S′′′] that, while retain-

ing interventional consistency, reduces the information loss

of the abstraction α to i(α) ≈ 0.24. Complete definition

of M′′′ is given in Appendix D.13. �

Information loss as quantification of uncertainty due to

reduction in resolution. Furthermore, information loss

may act as a proxy to quantify how much detail is lost

through abstraction. Reducing the number of variables in

an abstracted model, or restricting the range of outcomes of

the same variables, implies more uncertainty in the recon-

struction of the joint distribution over the base model via

the inverse α∗. Notice, however, that information loss is a

function of the reconstructed probability, not of the number

of variables or their cardinality; if the base joint distribution

over a set of variables is already maximally uncertain, there

will be no information loss in coarsening these variables to-

gether. Abstracting a model to a singleton like in Figure

2c would then be sensible when the uncertainty of the base

model is so high that we would not lose much by working

on the abstracted singleton model and then reconstructing

the original distribution.

Example. Let us consider the original base low-level

model M, and let us instantiate a singleton model Ms, to-

gether with the trivial abstraction γ from M to Ms. This

abstraction has zero abstraction error e(γ) = 0, and an in-

formation loss of i(γ) ≈ 0.37. Notice that the information

loss i(γ) is less that the information loss for the abstrac-

tion α from M to M′, despite M′ being defined on more

variables; this is due to the fact that the joint distribution

reconstructed via the inverse α∗ is further from the original

joint distribution than the maximally uncertain distribution

reconstructed via the inverse γ∗. However, information loss

i(γ) is higher than the information loss for the abstraction

α from M to M′′′; in this case, the mapping to M′′′ suc-

cessfully exploits the higher number of variables and their

cardinality to retain statistical information from the base

model. The exact definition of the singleton model Ms is

available in Appendix D.14, the abstraction γ in Appendix

D.15. �

4 DISCUSSION

In this paper, we considered the problem of learning ab-

stractions between SCMs: we introduced a taxonomy of

optimization problems, we highlighted the limitation of fo-

cusing only on consistency, we proposed a tentative defini-

tion of an information loss quantity, and we illustrated the

relevance of such a measure. Future work will take into ac-

count evaluating the complexity of the identified problem,

justifying a proper information loss measure, evaluating its

properties and trade-offs, and proposing heuristics for the

learning problem.
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A SCM ASSUMPTIONS

In our definition of SCM we make the following assump-

tions:

1. (Finite Variables) We explicitly assumed that a SCM

is defined on a finite number of N endogenous vari-

ables.

2. (Unique Exogenous Variable (UEV)) With no loss of

generality [Beckers and Halpern, 2019], we assumed

a single exogenous variable associated with each en-

dogenous variable.

3. (Non-independent Exogenous Variables) We do not as-

sume exogenous variables to be independent. This al-

lows the exogenous variables to define a latent struc-

ture.

4. (Modularity) The mechanisms encoded by the struc-

tural functions are independent of each other. This as-

sumption is necessary to specify perfect interventions.

5. (Measurability) The structural functions encoding the

mechanisms are measurable functions. This assump-

tion is necessary to guarantee that we can pushforward

the probability distributions over the exogenous vari-

ables onto the endogenous variables.

6. (Acyclicity) Every SCM M admits an underlying

graph GM = 〈V,E〉, where V = X ∪ U is the set

of vertices given by endogenous and exogeonous vari-

ables, and E is the set of edges determined by the

structural functions in F ; precisely, for each structural

function fi, and for each variable Y ∈ PA(Xi) ∪
{Ui}, we will introduce and edge from Y to Xi. No-

tice that, under this construction, the set PA(Xi) can

be given the graph-theoretic reading of parents of Xi.

We assume that the graph GM is acyclic.

7. (Finite Domains) Following Rischel [2020] we will

assume that the domain of each endogenous variable

M[Xi] = {x1, x2, ..., xni
} is finite. This assumption

is necessary to admit a representation of a SCM in

terms of sets and stochastic matrices.

Notice that Assumption (3) and (6) imply that our SCM is

semi-Markovian. For further discussion of these properties

see, for instance, Pearl [2009].

B DEFINITION OF JENSEN-SHANNON

DISTANCE

Here we provide a summary definition of Kullback–Leibler

divergence and Jensen-Shannon distance between two dis-

crete probability distributions. For a more generic treatment

of probability distances and their properties, we refer the

reader to Cover [1999].

Definition 6 (Kullback–Leibler (KL) divergence) Let p

and q be two probability mass functions defined on the

same domain X , such that p(x) > 0 for all x ∈ X . The

Kullback–Leibler (KL) divergence from p to q is defined as:

dKL(p; q) =
∑

x∈X

p(x) log
q(x)

p(x)
.

Definition 7 (Jensen-Shannon (JSD) distance) Let p and

q be two probability mass functions defined on the same

domain X , such that p(x) > 0 and q(x) > 0 for all x ∈ X .

The Jensen-Shannon distance between p and q is defined

as:

DJSD(p, q) =
1

2
dKL(p;m) +

1

2
dKL(q;m),

where m = 1
2p+

1
2q.

C HIERARCHY OF LEARNING

PROBLEMS

Table 1 reports a listing of relevant abstraction learning

problems.

D MOTIVATING EXAMPLE

Here is a full specification of the motivat-

ing example we used throughout the pa-

per. Code for these models is available at

https://github.com/FMZennaro/CategoricalCausalAbstraction/blob/main/P1%20-%20Motivating%20Example.ipynb.

D.1 LOW-LEVEL MODEL M

Let our low-level model M be defined by

https://github.com/FMZennaro/CategoricalCausalAbstraction/blob/main/P1%20-%20Motivating%20Example.ipynb


M M′ Abstraction Problem

|X ′| |M′[X ′
i]| M′[φX′

i
] R a αX′

i

given given given given given given given Assessment problem: everything is fully specified. We

want to check the degree of consistency and information

loss.

given given given given given given - Completion/fixing problem: everything is specified

except for some or all mappings between outcomes. We

want to design or fix the binary stochastic matrices (αX′
i
)

that minimize a loss.

given given given given - - - Abstraction design problem: only the models are given.

We want to decide how to map low-level variables to

high-level variables (R and a) and design the binary

stochastic matrices (αX′
i
) that minimize a loss.

given given given - - - - Abstraction and mechanism design problem: the base

model is completely specified, while for the abstracted

model we only have the variables and their domains. We

want to find high-level mechanisms (M′[φX′
i
]), how to

map low-level variables to high-level variables (R and a)

and design the binary stochastic matrices (αX′
i
) that

minimize a loss.

given given - - - - - Abstraction and granularity design problem: the base

model is completely specified, while for the abstracted

models we only know the variables it is defined over, but

not their domain or their mechanisms. We want to decide

the cardinality of the domain of the high-level variables

(|M′[X ′
i]|), find high-level mechanisms (M′[φX′

i
]), how

to map low-level variables to high-level variables (R and

a) and design the stochastic-binary matrices (αX′
i
) that

minimize a loss.

given - - - - - - Abstracted model design problem: we are only given the

base model. We want to design an abstracted model and

an abstraction in all their details so that they minimize a

loss.

- given given given - - - Inverse abstracted model design problem

Table 1: Hierarchy of abstraction learning problems.



• M[X ] containing the following sets:

– {∗}

– M[E] = {0, 1}

– M[S] = {0, 1}

– M[C] = {0, 1}

• M[φX ] given by the following column-stochastic ma-

trices:

– M[φE ]: stochastic map from {∗} to M[E] en-

coded by matrix

[

0.8
0.2

]

representing PM(E);

– M[φS ]: stochastic map from M[E] to M[S]

encoded by matrix

[

0.8 0.6
0.2 0.4

]

representing

PM(S|E);

– M[φC ]: stochastic map from M[E] ×
M[S] to M[C] encoded by matrix
[

0.9 0.8 0.4 0.3
0.2 0.4 0.6 0.7

]

representing

PM(C|E, S).

D.2 HIGH-LEVEL MODEL M′

Let the high-level model M′ be defined by:

• M′[X ′] containing the following sets:

– {∗}

– M′[S′] = {0, 1}

– M′[C′] = {0, 1}

• M′[φX′ ] given by the following column-stochastic ma-

trices:

– M′[φS′ ]: stochastic map from {∗} to M′[S′] en-

coded by matrix

[

0.2
0.8

]

representing PM′(S′);

– M′[φC′ ]: stochastic map from M′[S′] to

M′[C′] encoded by matrix

[

0.88 0.38
0.12 0.62

]

rep-

resenting PM′(C′|S′).

D.3 ABSTRACTION α

Let the abstraction α from M to M′ be defined by

• R = {S,C};

• a : R → X ′ mapping S 7→ S′, C 7→ C′;

• α given by the collection of maps:

– αS′ : M[S] → M′[S′] encoded by matrix
[

1 0
0 1

]

;

– αC′ : M[C] → M′[C′] encoded by matrix
[

1 0
0 1

]

.

D.4 COMMUTING DIAGRAM FOR

ABSTRACTION α WHEN CONSIDERING

SETS S′ AND C′

Let us evaluate the commutativity of abstraction α from

M to M′ when considering the disjoint sets S′ and C′. We

consider the following diagram:

Mι[S] Mι[C]

M′
ι′ [S

′] M′
ι′ [C

′]

[

0.88 0.38
0.12 0.62

]

[

1 0
0 1

]

[

0.88 0.38
0.12 0.62

]

[

1 0
0 1

]

where:

• the left vertical arrow

[

1 0
0 1

]

encodes the abstrac-

tion αS′ mapping deterministically values of S to val-

ues of S′;

• the upper horizontal arrow

[

0.88 0.38
0.12 0.62

]

encodes a

(virtual) mechanism M[φ̃C ] from S to C; notice that

this mechanism is computed as PM(C|do(S)) and, as

such, it is different from the given mechanism M[φC ]
which instead encodes PM(C|E, S);

• the right vertical arrow

[

1 0
0 1

]

encodes the abstrac-

tion αC′ mapping deterministically values of C to val-

ues of C′;

• the lower horizontal arrow

[

0.88 0.38
0.12 0.62

]

encodes

a (virtual) mechanism M′[φ̃C′ ] from S′ to C′; this

mechanism is computed as PM′(C′|do(S′)) and, in

this case, it is the same as the given mechanism

M′[φC′ ] which encodes PM′(C′|S′).

D.5 HIGH-LEVEL MODEL M′′

Let an alternative high-level model M′′ be defined by:

• M′′[X ′′] containing the following sets:

– {∗}

– M′′[S′′] = {0, 1}

– M′′[C′′] = {0, 1}

• M′′[φX′′ ] given by the following column-stochastic

matrices:

– M′′[φS′′ ]: stochastic map from {∗} to M′′[S′′]

encoded by matrix

[

0.2
0.8

]

representing

PM′′(S′′);



– M′′[φC′′ ]: stochastic map from M′′[S′′] to

M′′[C′′] encoded by matrix

[

0.8 0.3
0.2 0.7

]

rep-

resenting PM′′(C′′|S′′).

D.6 ABSTRACTION ERROR e(α) FOR α FROM

M TO M′′

Let us consider the two disjoint subsets in X ′′: {S′′} and

{C′′}. To evaluate the abstraction error Eα(S
′′, C′′) of the

abstraction α from M to M′′ we consider the following

diagram:

Mι[S] Mι[C]

M′′
ι′′ [S

′′] M′′
ι′′ [C

′′]

[

0.88 0.38
0.12 0.62

]

[

1 0
0 1

]

[

0.8 0.3
0.2 0.7

]

[

1 0
0 1

]

and we evaluate:

Eα(S
′′, C′′) =max{DJSD([0.88, 0.12], [0.8, 0.2]),

DJSD([0.38, 0.62], [0.3, 0.7])}

≈0.077.

D.7 INVERSE α∗

Let us compute the global inverse α∗:

α∗ =
1

2

[

1
1

]

⊗ α∗
S′ ⊗ α∗

C′ .

The inverses α∗
S′ and α∗

C′ are trivially identities. The global

inverse α∗ is then given by:

α∗ =

[

.5

.5

]

⊗

[

1 0
0 1

]

⊗

[

1 0
0 1

]

=

























.5
.5

.5
.5

.5
.5

.5
.5

























where, for readability, we omitted writing zeros in the last

matrix. Notice how the matrix α∗ expresses our uncertainty

in reconstructing M from M′: for instance, the first col-

umn of the matrix α∗ encodes the fact that the joint values

(S′ = 0, C′ = 0) could be evenly mapped to the joint val-

ues (E = 0, S = 0, C = 0) or (E = 1, S = 0, C = 0).

D.8 INFORMATION LOSS i(α) FOR α FROM M
TO M′

In order to compute the information loss, we need to evalu-

ate first the joint distribution on the base model:

PM(E, S,C) =

























0.576
0.064
0.064
0.096
0.096
0.024
0.024
0.056

























,

then the joint distribution on the abstracted model:

PM′(S′, C′) =









0.176
0.024
0.304
0.496









,

and last reconstruct the distribution over E, S,C via α∗:

α∗(PM′)(E, S,C) =

























0.088
0.012
0.152
0.248
0.088
0.012
0.152
0.248

























.

Finally, we can compute the actual information loss as:

DJSD(PM(E, S,C), α∗(PM′)(E, S,C)) ≈ 0.44.

D.9 MARGINAL P (S) IN M AND M′

Let us evaluate the marginal distribution for the smoking

variable (S) in the two models M and M′. In the base

model we have:

PM(S) =
∑

E,C

PM(E, S,C) =

[

0.76
0.24

]

.

In the abstracted model we are given:

PM′(S′) =

[

0.2
0.8

]

.

The marginal distribution reconstructed via α∗ is trivially:

α∗(PM)(S) =
∑

E,C

α∗(PM′)(E, S,C) =

[

0.2
0.8

]

.



D.10 CONDITIONAL P (S|C) IN M AND M′

Let us evaluate the conditional distribution of the smoking

variable (S) given the cancer variable in the two models M
and M′. In the base model we have:

PM(S|C) =
PM(S,C)

PM(C)
=









0.88
0.37
0.12
0.63









.

In the base model, no-cancer is highly correlated with not-

smoking, and having cancer is correlated with smoking. If

we were to make this inference in the base model M and

then abstract the outcome via αS′ , we would map the out-

come S = 0 to S′ = 0, and S = 1 to S′ = 1.

However, if we were to abstract the condition via αC′ , we

would first map the condition C = 0 to C′ = 0, and C = 1
to C′ = 1; then if we were to compute the conditional in

the abstracted model we would get:

PM′(S′|C′) =
PM′(S′, C′)

PM′(C′)
=









0.37
0.05
0.63
0.95









.

Thus, in this case we would infer smoking with high prob-

ability for any value of the cancer variable.

D.11 ABSTRACTION β

Let the abstraction β from M to M′ be defined by

• R = {S,C};

• b : R → X ′ mapping S 7→ S′, C 7→ C′;

• β given by the collection of maps:

– βS′ : M[S] → M′[S′] encoded by matrix
[

0 1
1 0

]

;

– βC′ : M[C] → M′[C′] encoded by matrix
[

0 1
1 0

]

.

D.12 INVERSE β∗

The inverses β∗
S′ and β∗

C′ remain exchange matrices. The

global inverse β∗ is then given by:

β∗ =

[

.5

.5

]

⊗

[

0 1
1 0

]

⊗

[

0 1
1 0

]

=

























.5
.5

.5
.5

.5
.5

.5
.5

























where, for readability, we omitted writing zeros in the last

matrix.

D.13 HIGH-LEVEL MODEL M′′′

Let us consider a third high-level model M′′′ be defined

by:

• M′′′[X ′′′] containing the following sets:

– {∗}

– M′′′[S′′′] = {0, 1}

– M′′′[C′′′] = {0, 1}

• M′′′[φX′′′ ] given by the following column-stochastic

matrices:

– M′′′[φS′′′ ]: stochastic map from {∗} to

M′′′[S′′′] encoded by matrix

[

0.8
0.2

]

represent-

ing PM′′′(S′′′)

– M′′′[φC′′′ ] : stochastic map from M′′′[S′′′] to

M′′′[C′′′] encoded by matrix

[

0.88 0.38
0.12 0.62

]

representing PM′′′ (C′′′|S′′′)

D.14 HIGH-LEVEL MODEL M∫

Let the singleton high-level model Ms be defined by

• Ms[X ] containing the following set:

– {∗}

• M
s[φ∗] given by the following column-stochastic ma-

trix:

– Ms[φ∗] : stochastic map from {∗} to {∗} en-

coded by matrix
[

1
]

D.15 ABSTRACTION γ

Let the abstraction γ from M to Ms be defined by:



• R = {E, S,C};

• c : R → X s mapping E 7→ {∗}, S 7→ {∗}, C 7→ {∗};

• γ given by the map:

– γ∗ : M[S]×M[E]×M[C] → {∗} encoded by

matrix
[

1 1 1 1 1 1 1 1
]

.

D.16 INVERSE γ∗

The global inverse γ∗ is trivially:

γ∗ =

























.125

.125

.125

.125

.125

.125

.125

.125
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