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Abstract
In this paper, we are concerned with a non-asymptotic analysis of
sampling algorithms used in nonconvex optimization. In particular, we
obtain non-asymptotic estimates in Wasserstein-1 and Wasserstein-2
distances for a popular class of algorithms called Stochastic Gra-
dient Langevin Dynamics (SGLD). In addition, the aforementioned
Wasserstein-2 convergence result can be applied to establish a non-
asymptotic error bound for the expected excess risk. Crucially, these
results are obtained under a local Lipschitz condition and a local dissi-
pativity condition where we remove the uniform dependence in the data
stream. We illustrate the importance of this relaxation by presenting
examples from variational inference and from index tracking optimization.
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1 Introduction
We consider a nonconvex stochastic optimization problem

minimize U(θ) := E[f(θ,X)],

where θ ∈ Rd and X is a random element. We aim to generate an estimate θ̂
such that the expected excess risk E[U(θ̂)]− infθ∈Rd U(θ) is minimized. The
optimization problem of minimizing U is closely linked to the problem of
sampling from a target distribution which concentrates around the minimizers
of U . It is, therefore, important to investigate the Langevin dynamics based
algorithms and their sampling behaviour in the context of optimization. The
latter is the primary focus of this article.

The Langevin SDE is given by

dZt = −h(Zt)dt+
√

2β−1dBt, t > 0, (1)

with a (possibly random) initial condition θ0, where h := ∇U , β > 0, and
(Bt)t≥0 is a d-dimensional Brownian motion. Under mild conditions, it is
well-known that SDE (1) admits as a unique invariant measure πβ(θ) �
exp(−βU(θ)). Moreover, πβ concentrates around the minimizers of U when
β takes sufficiently large values (see, e.g., [1]). To sample from πβ , a stan-
dard approach is to approximate the Langevin SDE (1) by using an Euler
discretization scheme, which serves as a sampling algorithm and is known as
the unadjusted Langevin algorithm (ULA) or Langevin Monte Carlo (LMC).
Theoretical guarantees for the convergence of ULA in Wasserstein distance and
in total variation have been obtained under the assumption that U is strongly
convex with globally Lipschitz gradient [2–4]. Extensions which include locally
Lipschitz gradient and higher order algorithms can be found in [5], [6] and [7].

In practice, however, the gradient h is usually unknown and one only has an
unbiased estimate of h. A natural extension of ULA, which was introduced in
[8] in the context of Bayesian inference and which has found great applicability
in this type of stochastic optimization problems, is the Stochastic Gradient
Langevin Dynamics (SGLD) algorithm. More precisely, fix an Rd-valued random
variable θ0 representing its initial value and let (Xn)n∈N be an i.i.d. sequence,
the SGLD algorithm corresponding to SDE (1) is given by, for any n ∈ N,

θλ0 := θ0, θλn+1 := θλn − λH(θλn, Xn+1) +
√

2λβ−1ξn+1, (2)
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where λ > 0 is often called the stepsize or gain of the algorithm, β > 0 is the
so-called inverse temperature parameter, H : Rd × Rm → Rd is a measurable
function and (ξn)n∈N is an independent sequence of standard d-dimensional
Gaussian random variables. The properties of the i.i.d. process (Xn)n∈N are
given below.

For a strongly convex objective function U , [9], [10], [11], and [6] obtain
non-asymptotic bounds in Wasserstein-2 distance between the SGLD algorithm
and the target distribution πβ . While [6] assumes the stochastic gradient H
is a linear combination of h and (Xn)n∈N, which allows bounded conditional
bias, a general form of H with non-Markovian (Xn)n∈N is considered in [9].
For the case where U is nonconvex, one line of research is to consider a
dissipativity condition. The first such non-asymptotic estimate is provided by
[12] in Wasserstein-2 distance although its rate of convergence is λ5/4n which
depends on the number of iterations n. Improved results are obtained in [13],
by using a direct analysis of the ergodicity of the overdamped Langevin Monte
Carlo algorithms. While a faster convergence rate is achieved in [13] compared
to [12], it is still dependent on n. Recently, [14] obtained a convergence rate
1/2 in Wasserstein-1 distance. Its analysis relies on the construction of certain
auxiliary continuous processes and the contraction results in [15]. Another line
of research is to assume a convexity at infinity condition of U . [16] and [17]
obtain convergence results in Wasserstein-1 distance by using the contraction
property developed in [18]. In both convex and nonconvex settings, the non-
asymptotic analysis of the Langevin diffusion can be extended to a wider class
of diffusions under certain conditions, see [19] and references therein.

In this paper, we establish non-asymptotic convergence results in Theorem
2.4 and Corollary 2.5 for the SGLD algorithm (2) in Wasserstein-1 and
Wasserstein-2 distances, respectively. Moreover, by using a similar splitting
approach as in [12], the Wasserstein-2 convergence result can then be applied
to establish a nonasymptotic error bound for the expected excess risk, which is
provided in Corollary 2.8. These main results are obtained under the relaxed
conditions as stated in Assumptions 2 and 3 below. Crucially, we relax substan-
tially the assumptions of dissipativity and Lipschitz continuity on the stochastic
gradient H(θ, x) by allowing non-uniform dependence in x.

To illustrate the applicability of the proposed algorithm under the local
assumptions, examples from variational inference (VI) and from index track-
ing optimization are considered, which represent key paradigms in statistical
machine learning and financial mathematics. In the VI example, a nonconvex
objective function is considered, and it can be shown that its stochastic gra-
dient, denoted by H(θ, u), satisfies the local dissipativity and local Lipschitz
conditions. To the best of the authors’ knowledge, this is the first time that non-
asymptotic guarantees are provided for a concrete variational inference example
due to the local nature of the aforementioned dissipativity and Lipschitz condi-
tions which stem from the lack of a uniform bound in u. As for the example
from index tracking optimization, the mean squared tracking error is considered
as the objective function (see, e.g. [20], [21]). Reparametrization is performed
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to remove the constraints on the parameter θ, which results in a nonconvex
objective function. In addition, as this example can be viewed as an online
regression problem, a uniform bound of the data stream is unavailable. How-
ever, one can check that the stochastic gradient, denoted by H(θ, z), satisfies
the local dissipativity and local Lipschitz conditions but not the corresponding
global ones.

We conclude this section by introducing some notation. Let (Ω,F , P ) be a
probability space. We denote by E[X] the expectation of a random variable
X. For 1 ≤ p < ∞, Lp is used to denote the usual space of p-integrable
real-valued random variables. The Lp-integrability of a random variable X
is defined as E[|X|p] < ∞. Fix an integer d ≥ 1. For an Rd-valued random
variable X, its law on B(Rd) (the Borel sigma-algebra of Rd) is denoted by
L(X). For a positive real number a, we denote by bac its integer part. For
a vector b ∈ Rd, denote by bT its transpose. Scalar product is denoted by
〈·, ·〉, with | · | standing for the corresponding norm. Let f : Rd → R be a
twice continuously differentiable function. Denote by ∇f , ∇2f and ∆f the
gradient of f , the Hessian of f and the Laplacian of f , respectively. For any
integer q ≥ 1, let P(Rq) denote the set of probability measures on B(Rq). For
µ, ν ∈ P(Rd), let C(µ, ν) denote the set of probability measures ζ on B(R2d)
such that its respective marginals are µ, ν. For two probability measures µ and
ν, the Wasserstein distance of order p ≥ 1 is defined as, for any µ, ν ∈ P(Rd),
Wp(µ, ν) := infζ∈C(µ,ν)

(∫
Rd
∫
Rd |θ − θ

′|pζ(dθdθ′)
)1/p.

2 Main results and comparisons
Let f : Rd × Rm → R be a measurable function. It satisfies E[|f(θ,X)|] <∞
for all θ ∈ Rd, where X is a random variable with probablity law L(X). Let
U : Rd → R defined by U(θ) := E[f(θ,X)] be a continuously differentiable
function with gradient denoted by h := ∇U . Moreover, define

πβ(A) :=

∫
A
e−βU(θ) dθ∫

Rd e
−βU(θ) dθ

, A ∈ B(Rd), (3)

with
∫
Rd e

−βU(θ) dθ <∞.
Denote by (Gn)n∈N a given filtration representing the flow of past infor-

mation, and denote by G∞ := σ(
⋃
n∈N Gn). Fix m ≥ 1. Let (Xn)n∈N be an

Rm-valued, (Gn)-adapted process with Xn ∼ L(X) for all n ∈ N. It is assumed
throughout the paper that θ0, G∞ and (ξn)n∈N are independent. Next, we
introduce our main assumptions.

Fix β > 0. For each λ > 0, the SGLD algorithm is given by, for any n ∈ N,

θλ0 := θ0, θλn+1 := θλn − λH(θλn, Xn+1) +
√

2λβ−1ξn+1, (4)

where H : Rd × Rm → Rd is a measurable function and (ξn)n∈N is an
independent sequence of standard d-dimensional Gaussian random variables.
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Then, we present our assumptions. The first assumption describes the
requirement on the moment of the initial parameter θ0. Moreover, it is stated
that stochastic gradient H(θ, ·) is assumed to be unbiased.

Assumption 1. |θ0| ∈ L4. The process (Xn)n∈N is i.i.d.. Moreover, it holds
that E[H(θ,X0)] = h(θ).

Our second assumption describes the requirement on the moment of the
initial data X0 and on the regularity of the stochastic gradient with respect to
its first and second arguments. As a result, growth estimates are derived.

Assumption 2. There exist η : Rm → [1,∞) with (1 + |X0|)η(X0) ∈ L4 and
positive constants L1, L2 such that, for all x, x′ ∈ Rm and θ, θ′ ∈ Rd,

|H(θ, x)−H(θ′, x)| ≤ L1η(x)|θ − θ′|,
|H(θ, x)−H(θ, x′)| ≤ L2(η(x) + η(x′))(1 + |θ|)|x− x′|.

Remark 2.1. Assumption 2 implies, for all θ, θ′ ∈ Rd,

|h(θ)− h(θ′)| ≤ L1E[η(X0)]|θ − θ′| . (5)

Also, Assumption 2 implies

|H(θ, x)| ≤ L1η(x)|θ|+ L2η̄(x) +H?, (6)

where η̄(x) = (η(x) + η(0))|x| and H? := |H(0, 0)|. Moreover, under
Assumptions 1 and 2, the gradient h(θ) = E[H(θ,X0)] for all θ ∈ Rd, is
well-defined.

The proof of the statements in Remark 2.1 is postponed to Appendix C.
Our next assumption is a dissipativity condition for stochastic gradients.

We note that this and the previous assumption significantly relax the analogous
requirements found in the literature, e.g. see [12], [14] and references therein.

Assumption 3. There exist a measurable (symmetric matrix-valued) function
A : Rm → Rd×d and a measurable function b̂ : Rm → R such that for any
x ∈ Rm, y ∈ Rd, 〈y,A(x)y〉 ≥ 0 and for all θ ∈ Rd and x ∈ Rm,

〈H(θ, x), θ〉 ≥ 〈θ,A(x)θ〉 − b̂(x).

The smallest eigenvalue of E[A(X0)] is a positive real number a > 0 and
E[b̂(X0)] := b > 0.

Remark 2.2. By Assumptions 1 and 3, one obtains a dissipativity condition
of h, i.e., for any θ ∈ Rd, 〈h(θ), θ〉 ≥ a|θ|2 − b.
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Remark 2.3. We emphasize that we call the process (Xn)n≥0 as ‘data’, follow-
ing the convention [9, 14]. This can represent ‘data’ in the classical meaning
but also can represent, e.g., samples from variational approximations in the
Bayesian inference setting (see Section 3.1). In the latter case, its statistical
properties are straightforward to assess (since the variational approximation is
a design choice) and our assumptions are easier to verify as shown in Sec. 3.1.

We next state our main result, which fully characterises the convergence in
Wasserstein-1 distance of the law of the SGLD at its n-th iteration, which is
denoted by L(θλn), to the target measure πβ . Define first

λmax := min

{
min{a, a1/3}

16(1 + L1)2 (E [(1 + η(X0))4])
1/2

,
1

a

}
, (7)

where L1 and a are defined in Assumptions 2 and 3, respectively.

Theorem 2.4. Let Assumptions 1, 2 and 3 hold. Then, there exist constants
ċ, C1, C2, C3 > 0 such that, for every β > 0, 0 < λ ≤ λmax, and n ∈ N,

W1(L(θλn), πβ) ≤ C1e−ċλn/2(E[|θ0|4] + 1) + (C2 + C3)
√
λ,

where ċ is given in (23), C1, C2, C3 are given explicitly in (28). More-
over, for any ε > 0, if we choose λ ≤ ε2

4(C2+C3)2 ∧ λmax, and n ≥
C?e

C?(1+d/β)(1+β)

ε2ċ

(
1 + 1

(1−e−ċ)2

)
ln
(
C?e

C?(1+d/β)(1+β)

ε

(
1 + 1

1−e−ċ

))
with C? >

0 independent of d, β, n, then W1(L(θλn), πβ) ≤ ε.

By further observing a trivial functional inequality, one can state an analo-
gous result in Wasserstein-2 distance, which matches the rate obtained in [17]
but which is known to be suboptimal.

Corollary 2.5. Let Assumptions 1, 2 and 3 hold. Then, there exist constants
ċ, C4, C5, C6 > 0 such that, for every β > 0, 0 < λ ≤ λmax, and n ∈ N,

W2(L(θλn), πβ) ≤ C4e−ċλn/4(E[|θ0|4] + 1) + (C5 + C6)λ1/4,

where ċ is given in (23), C4, C5, C6 are given explicitly in (29). More-
over, for any ε > 0, if we choose λ ≤ ε4

16(C5+C6)4 ∧ λmax, and

n ≥ C?e
C?(1+d/β)(1+β)

ε4ċ

(
1 + 1

(1−e−ċ/2)4

)
ln
(
C?e

C?(1+d/β)(1+β)

ε

(
1 + 1

1−e−ċ/2

))
with C? > 0 independent of d, β, n, then W2(L(θλn), πβ) ≤ ε.

Remark 2.6. By (28) and (29), one notes that the constants C2 and C5 are
of order

√
d/β, and this implies that large values of d on the upper bound can

be controlled by large values of β. However, the constants C1, C3, C4, C6 have
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exponential dependence on d and β, rather than d/β, due to the contraction
result in [15, Theorem 2.2]. Furthermore, one notes that the undesirable depen-
dence on d, which is derived under a geometric drift condition (and which,
in turn, is implied by a dissipativity condition such as Assumption 3), can
be found, typically, in extreme cases, i.e. pathological examples of theoretical
nature. This appears not to be the case in many practical applications.

Remark 2.7. In the case where H(θ, x) = h(θ) for all θ ∈ Rd and x ∈
Rm, i.e. when the stochastic gradient coincides with the full gradient, Theorem
2.4 and Corollary 2.5 provide the full non-asymptotic convergence results of
the unadjusted Langevin algorithm (ULA) under dissipativity and Lipschitz
continuity assumptions.

Let θ̂ := θλn, where θλn denotes the n-th iteration of the SGLD algorithm
(4). Then, an upper bound for the expected excess risk E[U(θλn)]− infθ∈Rd U(θ)
can be obtained by using the following splitting: E[U(θλn)] − infθ∈Rd U(θ) =(
E[U(θλn)]− E[U(Z∞)]

)
+(E[U(Z∞)]− infθ∈Rd U(θ)), where Z∞ ∼ πβ with πβ

defined in (3). By using Corollary 2.5, an upper bound for the first term on the
RHS of the above equality can be obtained as explained in [12, Lemma 3.5].
The second term on the RHS of the above equality can be upper bounded by
applying [12, Proposition 3.4]. The precise statement with explicit constants is
provided below.

Corollary 2.8. Let Assumptions 1, 2 and 3 hold. Then, there exist constants
ċ, C]1, C

]
2, C

]
3 > 0 such that, for every β > 0, 0 < λ ≤ λmax, n ∈ N,

E[U(θλn)]− inf
θ∈Rd

U(θ) ≤ C]1e−ċλn/4 + C]2λ
1/4 + C]3,

where ċ is given in (23), C]1, C
]
2, C

]
3 are given explicitly in (31)

and (32). Moreover, for any ε > 0, if we choose β ≥ βε ∨
3d
ε log

(
eL1E[η(X0)]

ad (b+ 1) (d+ 1)
)

with βε denoting the root of the

function f ](β) = log(β+1)
β − ε

3d , λ ≤ ε4

81(C]2)4
∧ λmax, and n ≥

C?e
C?(1+d/β)(1+β)

ε4ċ

(
1 + 1

(1−e−ċ/2)4

)
ln
(
C?e

C?(1+d/β)(1+β)

ε

(
1 + 1

1−e−ċ/2

))
with

C? > 0 independent of d, β, n, then E[U(θλn)]− infθ∈Rd U(θ) ≤ ε.

Remark 2.9. By (32), one observes that C]3 vanishes as β tends to infin-
ity. This implies that πβ converges to a distribution which concentrates on
the minimizers of U for large enough β. This result provides a nonasymptotic
bound for this concentration – thus, sampling from πβ solves the optimiza-
tion problem of minimizing U . However, for a large β, it would require a
large number of iterations for the SGLD algorithm to reach a given pre-
cision level measured using expected excess risk, see the expression for the
lower bound of n in Corollary 2.8. This is due to a slow convergence of the
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Langevin dynamics (1) to the target distribution πβ as the contraction constant
ċ is inversely related to β, see (23), which, in turn, lead to a slow conver-
gence of SGLD to πβ. There is thus a trade-off between the precision of the
approximation and the efficiency of the algorithm. Consequently, one may set
β = βε ∨ 3d

ε log
(
eL1E[η(X0)]

ad (b+ 1) (d+ 1)
)

so as to achieve a given preci-
sion level for the expected excess risk while ensuring that the SGLD algorithm
takes the smallest possible number of iterations to sample approximately from
πβ (also within the given precision level). Furthermore, for any precision level,
once the value for β is specified, one may calculate the upper bound of λ using
the expression given in Corollary 2.8 and then set the upper bound as the value
of λ for the efficiency of the algorithm as λ is negatively related to n.

The proofs of Theorem 2.4, Corollary 2.5, 2.8 are postponed to Section 4.
Furthermore, the explicit expressions for the constants in the main results are
summarised in Table D1 and D2.

2.1 Related work and discussions

Table 1 Comparison of Theorem 2.4 and Corollary 2.5 with [12, Proposition 3.3], [17,
Theorem 1.4] and [14, Theorem 2.5].

Smoothness Contractivity Var(H(θ,X0)) Data Results

[12]

Globally
Lipschitz H in
θ uniformly in

x

Uniform in x
dissipativity of H

Bounded by
C|θ|2 i.i.d. W2(L(θλn), πβ) ≤ Cλ5/4n

[17] Globally
Lipschitz h

Convexity at
infinity of h

Bounded by
C|θ|2λα,
α > 0

i.i.d.
W1(L(θλn), πβ) ≤ Cλα/2,

W2(L(θλn), πβ) ≤ Cλα/4

[14]
Globally

Lipschitz H in
θ and x

Uniform in x
dissipativity of H — L-

mixing W1(L(θλn), πβ) ≤ Cλ1/2

This
paper

Locally
Lipschitz H in

θ and x

Local
dissipativity of H — i.i.d.

W1(L(θλn), πβ) ≤ Cλ1/2,

W2(L(θλn), πβ) ≤ Cλ1/4

Under the preceding Assumptions 1, 2 and 3, a convergence result in W1

distance with rate 1/2 is given in Theorem 2.4, while in Corollary 2.5, a
convergence result in W2 distance with rate 1/4 is provided. [9, Theorem 3.10]
provides a convergence result in W2 distance under similar assumptions in
the convex setting, i.e. with Assumption 3 replaced by a strong convexity
requirement. Moreover, the analysis of Theorem 2.4 follows a similar approach
as in [14], while its framework is crucially extended by assuming local Lipschitz
continuity of H in Assumption 2, and non-uniform estimates with respect to
the x variable in Assumption 3.

Next, we mainly focus on the comparison of our work with [12] and [17].
In [12, Proposition 3.3], a finite-time convergence result of the SGLD algo-
rithm (4) in Wasserstein-2 distance is provided, and the rate of convergence
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is shown to be λ5/4n with n the number of iterations. To obtain this result,
a dissipativity condition [12, Assumption (A.3)] is proposed. In [12, Assump-
tion (A.1)], the quantities f(0, ·) and H(0, ·) are assumed to be bounded, where
U(θ) = E[f(θ,X0)] and H(·, ·) = ∇θf(·, ·), θ ∈ Rd. In addition, it requires the
finiteness of an exponential moment of the initial value [12, Assumption (A.5)]
and the Lipschitz continuity of H in θ [12, Assumption (A.2)]. While Corollary
2.5 improves the convergence rate provided in [12] in the sense that our rate of
convergence does not depend on the number of iterations, we further require a
local Lipschitz continuity of H(θ, x) in x. However, compared to [12, Assump-
tion (A.3)], we allow the dissipativity condition without imposing the uniformity
in x in Assumption 3, and we require only polynomial moments of the initial
value θ0. Furthermore, in Assumption 2, we relax the (global) Lipschitz con-
dition of H in θ by allowing the Lipschitz constant to depend on x. We note
that [12, Assumption (A.4)] can be obtained by using Assumptions 1 and 2.

Further, we compare our results with those in [17]. Compared to [17,
Theorem 1.4] with α = 1, Theorem 2.4 achieves the same rate in W1 without
assuming that the variance of the stochastic gradient is controlled by the
stepsize [17, Assumption 1.3]. To obtain Theorem 2.4, we assume a Lipschitz
continuity of H in Assumption 2, while [17, Theorem 1.4] requires a Lipschitz
continuity of h [17, Assumption 1.1]. This latter condition on h is implied by
our Assumption 2 as indicated in Remark 2.1. It is typical though, for many
real applications, that the full gradient h is unknown, and crucially one can
check conditions only for H (as in Assumption 2) and not for h. This is also
apparent in Section 3 where Assumptions 2 and 3 are easily checkable for
various examples. The same cannot be said for the corresponding conditions
regarding h. In a recent update of [17], it is noted in [17, Section 5.3] that
the requirements for [17, Theorem 1.4] can be potentially relaxed by replacing
the convexity at infinity condition with a uniform dissipativity condition. This
observation coincides with the results obtained in [14, Theorem 2.5], when one
considers i.i.d. data, while we further generalise this framework by requiring
only a local dissipativity condition, i.e. Assumption 3.

3 Applications
In this section, we use xTy for any x, y ∈ Rd for the inner product (instead of
〈x, y〉) to make the notation compact.

3.1 Variational inference for Bayesian logistic regression
Variational inference (VI) aims at approximating a posterior distribution p(w|x),
where w is the quantity of interest and x is the data, using a parameterized
family of distributions which is often called the variational family and is denoted
by qθ(w) [22]. Thus, the VI approach converts an inference problem into an
optimization problem, where the objective function is typically nonconvex. This
enables us to apply our results to the VI problem and come up with theoretical
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guarantees. We present one such example below and provide guarantees for the
application of the VI approach by using the conclusions of our main theorem.

Consider a probabilistic model consisting of a likelihood p(w|x) and a prior
p(w). Here we implicitly assume the existence of probability density functions
which are used to identify the corresponding probability distributions. To
ease the notation, for a distribution p, its marginal, conditional and joint
distributions are also denoted by p, however dependencies on appropriate
state variables are explicitly declared. Furthermore, recall that given a joint
distribution p(w, x), one observes that for any distribution q(w), x ∈ Rm̄,
m̄ ≥ 1, the following holds

log p(x) =

∫
Rd
q(w) log

(
p(w, x)

q(w)

)
dw +

∫
Rd
q(w) log

(
q(w)

p(w|x)

)
dw

= Ew∼q log
p(w, x)

q(w)
+ KL(q(w)‖p(w|x)), (8)

where the first term in (8) is usually denoted in VI literature by ELBO(q). The
aim is to choose a suitable approximating family qθ parameterized by θ, so as
to minimize the KL divergence of the two distributions qθ(w) and p(w|x), for
a given x, over θ. This turns out to be equivalent to maximizing ELBO(qθ)
since log p(x) is fixed. One can decompose ELBO(qθ) = l1(θ) + l2(θ) where
l1(θ) = Ew∼qθ [log p(w, x)] and l2(θ) is the entropy of qθ. Moreover, we suppose
there exists a transformation Tθ such that Tθ(u)

d
= w. As a result, one obtains

l1(θ) := Eu∼s[log p(Tθ(u), x)], and similarly, l2(θ) := −Eu∼s[log q(Tθ(u))].
This is called reparameterization trick in VI literature [23–26]. By using this
technique, one can obtain stochastic estimates of ∇θ(l1(θ) + l2(θ)) and then
use SGLD algorithm to maximize ELBO(qθ).

We consider an example from Bayesian logistic regression [22]. Suppose a
collection of data points X = {(zi, yi)}i=1,...,n is given, where zi ∈ Rd and yi ∈
{0, 1} for all i. Denote by Zi = (zi, yi) for all i, then X = {Zi}i=1,...,n. Assume
Gaussian mixture prior to define a multimodal distribution characterized by
p(w,X ) = π0(w)

∏n
i=1 p(Zi|w), where π0(w) is the prior given by π0(w) �

exp(−f̄(w)) = e−|w−â|
2/2 + e−|w+â|2/2 with f̄(w) = |w − â|2/2 − log(1 +

exp(−2âTw)), â ∈ Rd, |â|2 > 1 and p(Zi|w) = (1/(1 + e−z
T
i w))yi(1 − 1/(1 +

e−z
T
i w))1−yi is the likelihood function. Moreover, take a variational distribution

parameterized by θ, which is given as qθ(w) � e−|w−θ|
2/2 + e−|w+θ|2/2. Then,

maximizing l1(θ) + l2(θ) = Ew∼qθ [log p(w,X )− log qθ(w)] in θ is equivalent to
maximizing the following:

Ew∼qθ
[
−|w − â|2/2 + log(1 + exp(−2âTw))

+

n∑
i=1

(−yi log(1 + e−z
T
iw) + (yi − 1) log(1 + ez

T
iw))

]
+ Ew∼qθ

[
|w − θ|2/2− log(1 + exp(−2θTw))

]
. (9)
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Further, the reparameterization technique is applied by considering the mapping
Tθ(u) := 1{v=1}(Cu+m)+1{v=0}(Cu−m) where v ∼ Ber(q) and θ = (C,m, q).
Here, we fix C = Id/4, q = 7/8, and thus Tθ(u) = 1{v=1}(u/4+θ)+1{v=0}(u/4−
θ). Then, for u ∼ s where s is the standard Gaussian distribution, the expression
in (9) becomes

l1(θ) + l2(θ) =
7

8
Eu∼s

[
−|u/4 + θ − â|2/2 + log(1 + exp(−2âT(u/4 + θ)))

+

n∑
i=1

(−yi log(1 + e−z
T
i (u/4+θ)) + (yi − 1) log(1 + ez

T
i (u/4+θ)))

]

+
1

8
Eu∼s

[
−|u/4− θ − â|2/2 + log(1 + exp(−2âT(u/4− θ)))

+

n∑
i=1

(−yi log(1 + e−z
T
i (u/4−θ)) + (yi − 1) log(1 + ez

T
i (u/4−θ)))

]

+
7

8
Eu∼s

[
|u/4 + θ − θ|2/2− log(1 + exp(−2(θTu/4 + |θ|2)))

]
+

1

8
Eu∼s

[
|u/4− θ − θ|2/2− log(1 + exp(−2(θTu/4− |θ|2)))

]
.

(10)

In what follows, we derive the stochastic gradient expression for the cost
function defined in Eq. (10). We note that, stochasticity in this example comes
from sampling u variables and constructing empirical expectation estimates,
rather than subsampling data points.

Proposition 3.1. Let the objective function of the VI example be defined in
(10). Moreover, let u be a standard d-dimensional Gaussian random variable,
and let (un)n∈N be a sequence of i.i.d. standard d-dimensional Gaussian ran-
dom variables. In addition, assume |θ0| ∈ L4. Let H : Rd × Rd → Rd be the
stochastic gradient of (10) given by

H(θ, u) =
θ

2
+
u

4
− 3

4
â+

â

4

(
7

1 + e2âT(u/4+θ)
− 1

1 + e2âT(u/4−θ)

)
+

1

8

n∑
i=1

(
−6ziyi +

7zi

1 + e−z
T
i (u/4+θ)

− zi

1 + e−z
T
i (u/4−θ)

)
− 7(u+ 8θ)

16(1 + e2(θTu/4+|θ|2))
− u− 8θ

16(1 + e2(θTu/4−|θ|2))
.

(11)

Then, H satisfies Assumptions 1, 2, and 3. More precisely, Assumption 2 holds
with L1 = 1, L2 = 1/4, η(u) = 9/2 + 8e|u|

2/32 +
∑n

i=1 |zi|2 + 4|â|2 + 3|u|2/8,
and moreover, E[(1 + |u|)4η4(u)] <∞. Assumption 3 holds with A(u) = Id/4

and b̂(u) = (9|u|2/4 + 121|â|2/4) + 49n
∑n

i=1 |zi|2/8 + 7n/4.
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The proof of Proposition 3.1 is postponed to Appendix B. Moreover, the
meaning of this result is that we can verify, in a practical variational inference
example, that our local assumptions are satisfied, therefore in this instance of
nonconvex optimization problem, the theoretical guarantees we provide in this
paper regarding SGLD provably hold. This is a significant improvement over
previous results which are based on global Lipschitz assumptions, which fail to
hold for this simple, yet very illustrative, example.

3.2 Index tracking
We consider the problem of index tracking, which can be formulated precisely
as follows (see, e.g., [21, Eqn. (3), (4), and (8)]):

min
θ
U(θ) := min

θ

E

(Y − N∑
i=1

gi(θ)Xi

)2
+ η̂|θ|2

 , (12)

where θ ∈ RN , U : RN → R, and Z = (Y,X1, . . . , XN ) is an RN+1-valued
random variable with Y ∈ R denoting the return of the target index, Xi ∈
R, i = 1, . . . , N denoting the return of the i-th asset. Moreover, η̂ > 0 is the
regularization constant, and gi(θ) represents the weight of asset i in the portfolio
given explicitly by gi(θ) = eθi∑N

k=1 e
θk
, for all θ ∈ RN . One notes that for any

θ ∈ RN , i = 1, . . . , N , gi(θ) ∈ (0, 1). Moreover, for any θ ∈ RN , m = 1, . . . , N ,
one obtains

∂θmU(θ) = 2η̂θm + 2E

(Y − N∑
i=1

gi(θ)Xi

)
gm(θ)

N∑
i 6=m

gi(θ)(Xi −Xm)

 .
(13)

Proposition 3.2. Let the objective function U be defined in (12). Denote by
L(Z) the probability law of Z. Let (Zn)n∈N be a sequence of i.i.d. random vari-
ables with probability law L(Z). Assume |θ0| ∈ L4, and |Z| ∈ L12. Moreover,
let H : RN × RN+1 → RN be the stochastic gradient of (12) given by

H(θ, z) := (H1(θ, z), . . . ,HN (θ, z)), (14)

where z := (y, x1, . . . , xN ) ∈ RN+1, Hm : RN × RN+1 → R, m = 1, . . . , N .
The explicit expressions for Hm, m = 1, . . . , N are given as follows:

Hm(θ, z) = 2η̂θm + 2

(
y −

N∑
i=1

gi(θ)xi

)
gm(θ)

N∑
i 6=m

gi(θ)(xi − xm). (15)

Then, the following holds:
(i) The function U is in general nonconvex.
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(ii) The stochastic gradient H satisfies Assumptions 1, 2, and 3. More pre-
cisely, Assumption 2 holds with L1 = 6N , L2 = 4

√
N(N + 1), η(z) = η̂ +(

1 + |y|+
∑N

i=1 |xi|
)(

1 +
∑N

i 6=m(|xi|+ |xm|)
)
. Assumption 3 holds with

A(z) = η̂IN and b̂(z) = η̂−1N
((
|y|+

∑N
i=1 |xi|

)∑N
i 6=m(|xi|+ |xm|)

)2

.

The proof of Proposition 3.2 is postponed to Appendix B. One notes that
the stochastic gradient H(θ, z) fails to satisfy the global conditions as the
index tracking optimization (12) can be viewed as an online optimization
problem where a uniform bound of the data z is unavailable. However, it is
shown in Proposition 3.2 that, for any θ ∈ RN , z ∈ RN+1, H(θ, z) satisfies the
local Lipschitz condition (Assumption 2) and the local dissipativity condition
(Assumption 3). Moreover, Proposition 3.2 implies that our main results hold for
the nonconvex optimization problem (12), which provide theoretical guarantees
for the SGLD algorithm to find the approximate minimizers.

4 Proof Overview
In this section, we explain the main idea of proving Theorem 2.4 and Corollary
2.5. We proceed by introducing suitable Lyapunov functions for the analysis
of moment estimates of the SGLD algorithm (4). This is done with the help
of a continuous-time interpolation of the original recursion (4), which results
in a continuous-time process whose laws at discrete times are the same as
those of the SGLD. We further introduce a couple of auxiliary continuous-time
process, which are used for the derivation of preliminary results. The proof of
the main results then follows. We defer all proofs to Appendix C and focus on
the exposition of main ideas.

4.1 Introduction of suitable Lyapunov functions and
auxiliary processes

We start by defining, for each p ≥ 1, the Lyapunov function Vp by Vp(θ) :=
(1 + |θ|2)p/2, θ ∈ Rd, and similarly vp(ω) := (1 + ω2)p/2, for any real ω ≥ 0.
Notice that these functions are twice continuously differentiable and

sup
θ

(|∇Vp(θ)|/Vp(θ)) <∞, lim
|θ|→∞

(∇Vp(θ)/Vp(θ)) = 0. (16)

Let PVp denote the set of µ ∈ P(Rd) satisfying
∫
Rd Vp(θ)µ(dθ) <∞.

Consider the Langevin SDE (Zt)t∈R+
given by

dZt := −h(Zt)dt+
√

2β−1dBt (17)

with Z0 := θ0 ∈ Rd, where h := ∇U and (Bt)t≥0 is a standard d-dimensional
Brownian motion. Denote by (Ft)t≥0 the natural filtration of (Bt)t≥0, and
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we assume that (Ft)t≥0 is independent of G∞ ∨ σ(θ0). Moreover, denote by
F∞ := σ(

⋃
t≥0 Ft).

We next introduce the auxiliary processes which are used in our analysis.
For each λ > 0, Zλt := Zλt, t ∈ R+, where the process (Zt)t∈R+

is defined in
(17). We also define B̃λt := Bλt/

√
λ, t ≥ 0. We note that (B̃λt )t≥0 is a Brownian

motion and

dZλt := −λh(Zλt ) dt+
√

2λβ−1dB̃λt , Zλ0 := θ0.

The natural filtration of (B̃λt )t≥0 is denoted by (Fλt )t≥0 with Fλt := Fλt, t ∈ R+.
Note that (Fλt )t≥0 is independent of G∞ ∨ σ(θ0).

Then, define the continuous-time interpolation of the SGLD algorithm (4) as

dθ̄λt := −λH(θ̄λbtc, Xdte) dt+
√

2λβ−1dB̃λt , θ̄λ0 := θ0. (18)

In addition, one notes the law of the interpolated process coincides with the law
of the SGLD algorithm (4) at grid-points, i.e. L(θ̄λn) := L(θλn), for each n ∈ N.
Hence, crucial estimates for the SGLD can be derived by studying equation
(18).

Furthermore, consider a continuous-time process ζs,v,λt , t ≥ s, which denotes
the solution of the SDE

dζs,v,λt := −λh(ζs,v,λt )dt+
√

2λβ−1dB̃λt , ζs,v,λs := v ∈ Rd.

Definition 4.1. Fix n ∈ N. For any t ≥ nT , define ζ̄λ,nt := ζ
nT,θ̄λnT ,λ
t , where

T := b1/λc.

Intuitively, ζ̄λ,nt is a process started from the value of the SGLD process
(18) at time nT and run until time t ≥ nT with the continuous-time Langevin
dynamics.

4.2 Preliminary estimates
It is a classic result that SDE (17) has a unique solution adapted to (Ft)t∈R+

,
since h is Lipschitz-continuous by (5). Note that the second moments of the
SDE (17) and of the target distribtuion πβ are finite, see [12, Lemma 3.2] and
[4, Proposition 1-(ii)]. For results of SDEs under local Lipschitz conditions, see,
e.g. [27] and [28].

In order to obtain the convergence results, we first establish the moment
bounds of the process (θ̄λt )t≥0. This result proves that second and fourth
moments of the process (θ̄λt )t≥0 are uniformly bounded, therefore well-behaved.

Lemma 4.2. Let Assumptions 1, 2 and 3 hold. For any 0 < λ < λmax given
in (7), n ∈ N, t ∈ (n, n+ 1],

E
[
|θ̄λt |2

]
≤ (1− aλ(t− n))(1− aλ)nE

[
|θ0|2

]
+ c1(λmax + a−1) ,
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where

c1 := c0 + 2d/β, c0 := 4λmaxL
2
2E
[
η̄2(X0)

]
+ 4λmaxH

2
? + 2b. (19)

In addition, supt E
[
|θ̄λt |2

]
≤ E

[
|θ0|2

]
+ c1(λmax + a−1) < ∞. Similarly, one

obtains

E
[
|θ̄λt |4

]
≤ (1− aλ(t− n))(1− aλ)nE

[
|θ0|4

]
+ c3(λmax + a−1),

where

c3 := (1 + aλmax)c2 + 12d2β−2(λmax + 9a−1),

c2 := 4bM2 + 152(1 + λmax)3

×
(
(1 + L2)4E

[
(1 + η̄(X0))4

]
+ (1 +H?)

4
)

(1 +M)2,

M := max{(8ba−1 + 48a−1λmax(L2
2E
[
η̄2(X0)

]
+H2

? ))1/2,

(128a−1λ2
max(L3

2E
[
η̄3(X0)

]
+H3

? ))1/3}.

(20)

Moreover, this implies supt E|θ̄λt |4 <∞.

The uniform bound achieved in Lemma 4.2 for the fourth moment of the
process (θ̄λt )t≥0 enables us to obtain a uniform bound for V4(θλt ) as presented
in the following corollary.

Corollary 4.3. Let Assumptions 1, 2 and 3 hold. For any 0 < λ < λmax given
in (7), n ∈ N, t ∈ (n, n+ 1],

E[V4(θ̄λt )] ≤ 2(1− aλ)btcE[V4(θ0)] + 2c3(λmax + a−1) + 2,

where c3 is given in (20).

Next, we turn our attention to the process (ζ̄λ,nt )t∈R. We first present a
drift condition associated with the SDE (17), which will be used to obtain the
moment bounds of the process ζ̄λ,nt .

Lemma 4.4 ([14, Lemma 3.6]). Let Assumptions 1 and 3 hold. Then, for each
p ≥ 2, θ ∈ Rd,

∆Vp(θ)/β − 〈h(θ),∇Vp(θ)〉 ≤ −c̄(p)Vp(θ) + c̃(p),

where c̄(p) := ap/4 and c̃(p) := (3/4)apvp(Mp) with Mp := (1/3 + 4b/(3a) +
4d/(3aβ) + 4(p− 2)/(3aβ))1/2.

The following lemma provides explicit upper bounds for Vp(ζ̄
λ,n
t ) in the

case p = 2 and p = 4.
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Lemma 4.5. Let Assumptions 1, 2 and 3 hold. For any 0 < λ < λmax given
in (7), t ≥ nT , n ∈ N, one obtains the following inequality

E[V2(ζ̄λ,nt )] ≤ e−aλt/2E[V2(θ0)] + 3v2(M2) + c1(λmax + a−1) + 1,

where the process ζ̄λ,nt is defined in Definition 4.1 and c1 is given in (19).
Furthermore,

E[V4(ζ̄λ,nt )] ≤ 2e−aλtE[V4(θ0)] + 3v4(M4) + 2c3(λmax + a−1) + 2,

where c3 is given in (20).

4.3 Proof of the main theorems
We are now ready to establish our main results. Recall that, our goal is to
establish a non-asymptotic bound for W1(L(θλn), πβ).

We first split W1(L(θλn), πβ) as follows by using triangle inequality:
W1(L(θλn), πβ) ≤W1(L(θ̄λn),L(Zλn)) +W1(L(Zλn), πβ). We aim at bounding the
two terms on the right hand side separately. To achieve this, we first introduce
a functional which is crucial to obtain the convergence rate in W1. For any
p ≥ 1, µ, ν ∈ PVp ,

w1,p(µ, ν) := inf
ζ∈C(µ,ν)

∫
Rd

∫
Rd

[1 ∧ |θ − θ′|](1 + Vp(θ) + Vp(θ
′))ζ(dθdθ′), (21)

and it satisfies trivially W1(µ, ν) ≤ w1,p(µ, ν). The case p = 2, i.e. w1,2, is used
throughout the section. The result below states a contraction property of w1,2.

Proposition 4.6. Let Assumptions 1, 2 and 3 hold. Let Z ′t, t ∈ R+ be the
solution of (17) with initial condition Z ′0 = θ′0 which is independent of F∞
and satisfies |θ′0| ∈ L2. Then,

w1,2(L(Zt),L(Z ′t)) ≤ ĉe−ċtw1,2(L(θ0),L(θ′0)),

where the constants ċ and ĉ are given in Lemma 4.11.

Proof One notes that [15, Assumption 2.1] holds with κ = L1E[η(X0)] due to Remark
2.1. [15, Assumption 2.2] holds with V = V2 due to Lemma 4.4. Moreover, [15,
Assumptions 2.4 and 2.5] hold due to (16). Thus, [15, Theorem 2.2, Corollary 2.3]
hold under Assumptions 1, 2 and 3. Then, the desired result can be obtained by using
the same argument as in the proof of [14, Proposition 3.14]. �

Now recall T := b1/λc defined in Definition 4.1. By using the contraction
property provided in Proposition 4.6, one can construct the non-asymptotic
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bound between L(θ̄λt ) and L(Zλt ) in W1 distance by decomposing the error
using the auxiliary process ζ̄λ,nt :

W1(L(θ̄λt ),L(Zλt )) ≤W1(L(θ̄λt ),L(ζ̄λ,nt )) +W1(L(ζ̄λ,nt ),L(Zλt )). (22)

By the definition of λmax given in (7), we have that 0 < λ ≤ λmax ≤ 1, which
implies 1/2 < λT ≤ 1. An upper bound for the first term in (22) is obtained
below.

Lemma 4.7. Let Assumptions 1, 2 and 3 hold. For any 0 < λ < λmax given
in (7), t ∈ (nT, (n+ 1)T ],

W2(L(θ̄λt ),L(ζ̄λ,nt )) ≤
√
λ(e−an/4C̄2,1E[V2(θ0)] + C̄2,2)1/2,

where C̄2,1 and C̄2,2 are given in (C12).

Then, the following Lemma provides the bound for the second term in (22).

Lemma 4.8. Let Assumptions 1, 2 and 3 hold. For any 0 < λ < λmax given
in (7), t ∈ (nT, (n+ 1)T ],

W1(L(ζ̄λ,nt ),L(Zλt )) ≤
√
λ(e−ċn/2C̄2,3E[V4(θ0)] + C̄2,4),

where C̄2,3, C̄2,4 are given in (C13).

By using similar arguments as in Lemma 4.8, one can obtain the non-
asymptotic estimate in W2 distance between L(ζ̄λ,nt ) and L(Zλt ), which is given
in the following corollary.

Corollary 4.9. Let Assumptions 1, 2 and 3 hold. For any 0 < λ < λmax given
in (7), t ∈ (nT, (n+ 1)T ],

W2(L(ζ̄λ,nt ),L(Zλt )) ≤ λ1/4(e−ċn/4C̄∗2,3E1/2[V4(θ0)] + C̄∗2,4),

where C̄∗2,3, C̄∗2,4 are given in (C14).

Finally, by using the inequality (22) and the results from previous lemmas,
one can obtain the non-asymptotic bound between L(θ̄λt ) and L(Zλt ), t ∈
(nT, (n+ 1)T ], in W1 distance.

Lemma 4.10. Let Assumptions 1, 2 and 3 hold. For any 0 < λ < λmax given
in (7), t ∈ (nT, (n+ 1)T ],

W1(L(θ̄λt ),L(Zλt )) ≤ (C̄
1/2
2,1 + C̄

1/2
2,2 + C̄2,3 + C̄2,4)

√
λ(e−ċn/2E[V4(θ0)] + 1),
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where C̄2,1, C̄2,2 are given in (C12) (Lemma 4.7), and C̄2,3, C̄2,4 are given in
(C13) (Lemma 4.8).

Before proceeding to the proofs of the main results, the constants ċ and ĉ
from Proposition 4.6 are given in an explicit form.

Lemma 4.11. The contraction constant ċ > 0 in Proposition 4.6 is given by

ċ := min{φ̄, c̄(2), 4c̃(2)εc̄(2)}/2, (23)

where c̄(2) = a/2, c̃(2) = (3/2)av2(M2) with M2 given in Lemma 4.4, φ̄ is
given by

φ̄ :=

(
b̄
√

8π/(βK1) exp

((
b̄
√
βK1/8 +

√
8/(βK1)

)2
))−1

, (24)

and moreover, ε > 0 can be chosen such that following inequality is satisfied

ε ≤ 1∧

(
4c̃(2)

√
2βπ/K1

∫ b̃

0

exp

((
s
√
βK1/8 +

√
8/(βK1)

)2
)

ds

)−1

, (25)

where K1 := L1E[η(X0)], b̃ := 2
√

2c̃(2)/c̄(2)− 1 and b̄ :=

2
√

4c̃(2)(1 + c̄(2))/c̄(2)− 1.
The constant ĉ > 0 is given by ĉ := 2(1 + b̄) exp(βK1b̄

2/8 + 2b̄)/ε.

Now, we are ready to prove our first main result, namely Theorem 2.4.

Proof of Theorem 2.4 One notes that, by using λT > 1/2, Lemma 4.10 and
Proposition 4.6, for t ∈ (nT, (n+ 1)T ]

W1(L(θ̄λt ), πβ) ≤W1(L(θ̄λt ),L(Zλt )) +W1(L(Zλt ), πβ)

≤ (C̄
1/2
2,1 + C̄

1/2
2,2 + C̄2,3 + C̄2,4)

√
λ(e−ċn/2E[V4(θ0)] + 1)

+ ĉe−ċλtw1,2(θ0, πβ)

≤ (C̄
1/2
2,1 + C̄

1/2
2,2 + C̄2,3 + C̄2,4)

√
λ(e−ċn/2E[V4(θ0)] + 1)

+ ĉe−ċλt
[
1 + E[V2(θ0)] +

∫
Rd
V2(θ)πβ(dθ)

]
≤ 2e−ċn/2(λ

1/2
max(C̄

1/2
2,1 + C̄

1/2
2,2 + C̄2,3 + C̄2,4) + ĉ)(1 + E[|θ0|4])

+ ĉe−ċn/2
[
1 +

∫
Rd
V2(θ)πβ(dθ)

]
(1 + E[|θ0|4])

+
√
λ(C̄

1/2
2,1 + C̄

1/2
2,2 + C̄2,3 + C̄2,4).

(26)
The above result implies, for any n ∈ N,

W1(L(θ̄λ(n+1)T ), πβ) ≤ C1e
−ċ(n+1)/2(1 + E[|θ0|4]) + (C2 + C3)

√
λ, (27)
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where

C1 := 2eċ/2
[
(λ

1/2
max(C̄

1/2
2,1 + C̄

1/2
2,2 + C̄2,3 + C̄2,4) + ĉ) + ĉ

(
1 +

∫
Rd
V2(θ)πβ(dθ)

)]
= O

(
eC?(1+d/β)(1+β)

(
1 +

1

1− e−ċ

))
,

C2 := C̄
1/2
2,1 + C̄

1/2
2,2 = O

(
1 +

√
d

β

)
,

C3 := C̄2,3 + C̄2,4 = O

(
eC?(1+d/β)(1+β)

(
1 +

1

1− e−ċ

))
(28)

with ċ, ĉ given in Lemma 4.11, C̄2,1, C̄2,2 given in (C12) (Lemma 4.7), C̄2,3, C̄2,4

given in (C13) (Lemma 4.8), C? > 0 independent of d, β, n. One notes that the above
estimate (27) is established for (θ̄λ(n+1)T )n∈N. To obtain a non-asymptotic error bound

for (θ̄λ(n+1))n∈N, we set (n+1)T to n+1 on the LHS of (27), and set n+1 to (n+1)/T

on the RHS of (27). By using λ(n+ 1) ≤ (n+ 1)/T , it follows that, for any n ∈ N,

W1(L(θλn+1), πβ) ≤ C1e
−ċλ(n+1)/2(1 + E[|θ0|4]) + (C2 + C3)

√
λ.

Moreover, for ε > 0, if we choose λ and n such that λ ≤ λmax,
C1e
−ċλn/2(1 + E[|θ0|4]) ≤ ε/2, (C2 + C3)

√
λ ≤ ε/2, where λmax is given

in (7), then W1(L(θλn), πβ) ≤ ε. This implies λ ≤ ε2

4(C2+C3)2 ∧ λmax,

λn ≥ 2
ċ ln

2C1(1+E[|θ0|4])
ε . More precisely, by using (28), one obtains n ≥

C?e
C?(1+d/β)(1+β)

ε2ċ

(
1 + 1

(1−e−ċ)2

)
ln
(
C?e

C?(1+d/β)(1+β)

ε

(
1 + 1

1−e−ċ
))

, where ċ is the
contraction constant of the Langevin diffusion (17) given explicitly in Lemma 4.11.

�

Next, we prove our second result Corollary 2.5, i.e., a uniform bound in W2

distance.

Proof of Corollary 2.5 By using (C11) in Lemma 4.7, Corollary 4.9 and Proposi-
tion 4.6, one obtains

W2(L(θ̄λt ), πβ) ≤W2(L(θ̄λt ),L(Zλt )) +W2(L(Zλt ), πβ)

≤W2(L(θ̄λt ),L(ζ̄λ,nt )) +W2(L(ζ̄λ,nt ),L(Zλt )) +W2(L(Zλt ), πβ)

≤
√
λ(e−an/4C̄2,1E[V2(θ0)] + C̄2,2)1/2

+ λ1/4(e−ċn/4C̄∗2,3E
1/2[V4(θ0)] + C̄∗2,4)

+
√

2w1,2(L(Zλt ), πβ)

≤ λ1/4(λ
1/4
maxC̄

1/2
2,1 + λ

1/4
maxC̄

1/2
2,2 + C̄∗2,3 + C̄∗2,4)(e−ċn/4E[V4(θ0)] + 1)

+ ĉ1/2e−ċλt/2
√

2w1,2(θ0, πβ),

Further calculations yield,

W2(L(θ̄λt ), πβ)

≤ λ1/4(λ
1/4
maxC̄

1/2
2,1 + λ

1/4
maxC̄

1/2
2,2 + C̄∗2,3 + C̄∗2,4)(e−ċn/4E[V4(θ0)] + 1)
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+
√

2ĉ1/2e−ċλt/2
(

1 + E[V2(θ0)] +

∫
Rd
V2(θ)πβ(dθ)

)1/2

≤ 2e−ċn/4(λ
1/2
max(C̄

1/2
2,1 + C̄

1/2
2,2 ) + λ

1/4
max(C̄∗2,3 + C̄∗2,4) +

√
2ĉ1/2)(1 + E[|θ0|4])

+
√

2ĉ1/2e−ċn/4
[
1 +

∫
Rd
V2(θ)πβ(dθ)

]
+ λ1/4(λ

1/4
maxC̄

1/2
2,1 + λ

1/4
maxC̄

1/2
2,2 + C̄∗2,3 + C̄∗2,4),

where the last inequality holds due to λT > 1/2. Thus, for any n ∈ N, it follows that

W2(L(θλn), πβ) ≤ C4e−ċλn/4E[|θ0|4 + 1] + (C5 + C6)λ1/4

where

C4 := 2
(
λ

1/2
max(C̄

1/2
2,1 + C̄

1/2
2,2 ) + λ

1/4
max(C̄∗2,3 + C̄∗2,4) +

√
2ĉ1/2

)
+
√

2ĉ1/2
(

1 +

∫
Rd
V2(θ)πβ(dθ)

)
= O

(
eC?(1+d/β)(1+β)

(
1 +

1

1− e−ċ/2

))

C5 := λ
1/4
maxC̄

1/2
2,1 + λ

1/4
maxC̄

1/2
2,2 = O

(
1 +

√
d

β

)
,

C6 := C̄∗2,3 + C̄∗2,4 = O

(
eC?(1+d/β)(1+β)

(
1 +

1

1− e−ċ/2

))
,

(29)

with ċ, ĉ given in Lemma 4.11, C̄2,1, C̄2,2 given in (C12) (Lemma 4.7), C̄∗2,3, C̄
∗
2,4

given in (C14) (Lemma 4.9), C? > 0 independent of d, β, n.
Moreover, for ε > 0, if we choose λ and n such that, λ ≤ λmax,

C4e−ċλn/4E[|θ0|4 + 1] ≤ ε/2, (C5 + C6)λ1/4 ≤ ε/2, where λmax is given
in (7), then W2(L(θλn), πβ) ≤ ε. This implies λ ≤ ε4

16(C5+C6)4 ∧ λmax,

λn ≥ 4
ċ ln

2C4(1+E[|θ0|4])
ε . More precisely, by using (29), one obtains n ≥

C?e
C?(1+d/β)(1+β)

ε4ċ

(
1 + 1

(1−e−ċ/2)4

)
ln
(
C?e

C?(1+d/β)(1+β)

ε

(
1 + 1

1−e−ċ/2

))
, where ċ is

the contraction constant of the Langevin diffusion (17) given explicitly in Lemma
4.11. �

Finally, we move on to prove our result on nonconvex optimization, namely,
Corollary 2.8.

Proof of Corollary 2.8 To obtain an upper bound for the expected excess risk
E[U(θλn)]− infθ∈Rd U(θ), one considers the following splitting

E[U(θλn)]− inf
θ∈Rd

U(θ) =
(
E[U(θλn)]− E[U(Z∞)]

)
+

(
E[U(Z∞)]− inf

θ∈Rd
U(θ)

)
, (30)

where Z∞ ∼ πβ with πβ defined in (3). By using [12, Lemma 3.5], Remark 2.1,
Lemma 4.2, and Corollary 2.5, the first term on the RHS of (30) can be bounded by

E[U(θλn)]− E[U(Z∞)]

≤
(
L1E[η(X0)](E[|θ0|2] + c1(λmax + a−1)) + L2E[η̄(X0)] +H?

)
W2(L(θλn), πβ)

≤
(
L1E[η(X0)](E[|θ0|2] + c1(λmax + a−1)) + L2E[η̄(X0)] +H?

)
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×
(
C4e−ċλn/4E[|θ0|4 + 1] + (C5 + C6)λ1/4

)
≤ C]1e

−ċλn/4 + C]2λ
1/4,

where

C]1 := C4

(
L1E[η(X0)](E[|θ0|2] + c1(λmax + a−1)) + L2E[η̄(X0)] +H?

)
E[|θ0|4 + 1],

C]2 := (C5 + C6)
(
L1E[η(X0)](E[|θ0|2] + c1(λmax + a−1)) + L2E[η̄(X0)] +H?

)
,

(31)

with ċ given in (23), C4, C5, C6 given in (29) and c1 given in (19). Moreover, the
second term on the RHS of (30) can be estimated by using [12, Proposition 3.4],
which gives, E[U(Z∞)]− infθ∈Rd U(θ) ≤ C]3, where

C]3 :=
d

2β
log

(
eL1E[η(X0)]

a

(
bβ

d
+ 1

))
. (32)

Finally, one obtains E[U(θλn)] − infθ∈Rd U(θ) ≤ C]1e
−ċλn/4 + C]2λ

1/4 + C]3,

where ċ is given in (23), and C]1 = O
(
eC?(1+d/β)(1+β)

(
1 + 1

1−e−ċ/2

))
, C]2 =

O
(
eC?(1+d/β)(1+β)

(
1 + 1

1−e−ċ/2

))
, C]3 = O((d/β) log(C?(β/d + 1))) with C? > 0

a constant independent of n, d, β.
Moreover, for ε > 0, if we choose β such that C]3 ≤ ε/3, then choose λ such that

λ ≤ λmax with λmax given in (7) and C]2λ
1/4 ≤ ε/3, and finally choose n such that

C]1e
−ċλn/4 ≤ ε/3, consequently, we obtain E[U(θλn)]− infθ∈Rd U(θ) ≤ ε. This implies

β ≥ βε ∨ 3d
ε log

(
eL1E[η(X0)]

ad (b+ 1) (d+ 1)
)
, where βε is the root of the function

f ](β) =
log(β+1)

β − ε
3d , β > 0, i.e. f ](βε) = 0. Indeed, since

C]3 ≤
d

2β
log

(
eL1E[η(X0)]

ad
(b+ 1) (d+ 1) (β + 1)

)
,

by setting d
2β log

(
eL1E[η(X0)]

ad (b+ 1) (d+ 1)
)
≤ ε/6 and d

2β log (β + 1) ≤ ε/6, one

obtains C]3 ≤ ε/3. Noticing that log(β+1)
β is decreasing in β yields the desired result.

Furthermore, calculations yield λ ≤ ε4

81(C]2)4
∧ λmax, and λn ≥ 4

ċ ln
3C]1
ε . More pre-

cisely, n ≥ C?e
C?(1+d/β)(1+β)

ε4ċ

(
1 + 1

(1−e−ċ/2)4

)
ln
(
C?e

C?(1+d/β)(1+β)

ε

(
1 + 1

1−e−ċ/2

))
,

where ċ is the contraction constant of the Langevin diffusion (17) given explicitly in
Lemma 4.11. �

5 Conclusions
We have provided non-asymptotic estimates for the SGLD which explicitly
bounds the error between the target measure and the law of the SGLD in
Wasserstein-1 and 2 distances. These results further allow us to establish a non-
asymptotic error bound for the expected excess risk. Moreover, the theoretical
findings enable us to obtain theoretical guarantees for fundamental problems
in machine learning and in financial mathematics: Nonasymptotic error bounds
for nonconvex optimization problems. We have shown that our assumptions are
verifiable for a large class of practical problems. In particular, we demonstrate



Springer Nature 2021 LATEX template

22 Nonasymptotic bounds for SGLD under local conditions in nonconvex optimization

this by providing two important applications: (i) variational inference for
Bayesian logistic regression (VI), (ii) index tracking optimization. We believe
that our results provide a detailed understanding of the sampling behaviour of
SGLD even when it is examined within the context of nonconvex optimization.

Appendix A Additional Lemmata
Lemma A.1. Let Assumptions 1, 2 and 3 hold. For any t ∈ (nT, (n + 1)T ],
n ∈ N and k = 1, . . . ,K + 1, K + 1 ≤ T , one obtains

E
[∣∣∣h(ζ̄λ,nt )−H(ζ̄λ,nt , XnT+k)

∣∣∣2] ≤ e−aλt/2σ̄ZE[V2(θ0)] + σ̃Z ,

where

σ̄Z := 8L2
2σ̂Z , σ̃Z := 8L2

2σ̂Z(3v2(M2) + c1(λmax + a−1) + 1),

σ̂Z := E[(η(X0) + η(E[X0]))2|X0 − E[X0]|2].
(A1)

Proof Recall Ht = Fλ∞ ∨ Gbtc. One notices that

E
[∣∣∣h(ζ̄λ,nt )−H(ζ̄λ,nt , XnT+k)

∣∣∣2]
= E

[
E
[ ∣∣∣h(ζ̄λ,nt )−H(ζ̄λ,nt , XnT+k)

∣∣∣2∣∣∣∣HnT ]]
= E

[
E
[ ∣∣∣E [H(ζ̄λ,nt , XnT+k)

∣∣∣HnT ]−H(ζ̄λ,nt , XnT+k)
∣∣∣2∣∣∣∣HnT ]]

≤ 4E
[
E
[ ∣∣∣H(ζ̄λ,nt , XnT+k)−H(ζ̄λ,nt ,E [XnT+k|HnT ])

∣∣∣2∣∣∣∣HnT ]]
≤ 4L2

2σ̂ZE
[(

1 +
∣∣∣ζ̄λ,nt ∣∣∣)2

]
,

where the first inequality holds due to Lemma A.3 and σ̂Z := E[(η(X0) +
η(E[X0]))2|X0 − E[X0]|2]. Then, by using Lemma 4.5, one obtains

E
[∣∣∣h(ζ̄λ,nt )−H(ζ̄λ,nt , XnT+k)

∣∣∣2] ≤ 8L2
2σ̂ZE

[
V2(ζ̄λ,nt )

]
≤ e−aλt/2σ̄ZE[V2(θ0)]+σ̃Z ,

where σ̄Z := 8L2
2σ̂Z and σ̃Z := 8L2

2σ̂Z(3v2(M2) + c1(λmax + a−1) + 1). �

Lemma A.2. Let Assumptions 1, 2 and 3 hold. For any t > 0, one obtains

E
[∣∣∣θ̄λt − θ̄λbtc∣∣∣2] ≤ λ(e−aλbtcσ̄Y E[V2(θ0)] + σ̃Y ),
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where

σ̄Y := 2λmaxL
2
1E[η2(X0)]

σ̃Y := 2λmaxL
2
1E[η2(X0)]c1(λmax + a−1) + 4λmaxL

2
2E[η̄2(X0)]

+ 4λmaxH
2
? + 2dβ−1.

(A2)

Proof For any t > 0, we write the difference
∣∣∣θ̄λt − θ̄λbtc∣∣∣ and use (a+ b)2 ≤ 2a2 + 2b2

which yields

E
[∣∣∣θ̄λt − θ̄λbtc∣∣∣2] = E

∣∣∣∣∣−λ
∫ t

btc
H(θ̄λbtc, Xdte)ds+

√
2λ

β
(B̃λt − B̃λbtc)

∣∣∣∣∣
2


≤ λ2E
[(
L1η(Xdte)|θ̄

λ
btc|+ L2η̄(Xdte) +H?

)2
]

+ 2dλβ−1,

where the inequality holds due to Remark 2.1 and by applying Lemma 4.2, one obtains

E
[∣∣∣θ̄λt − θ̄λbtc∣∣∣2] ≤ 2λ2L2

1E[η2(X0)]E[|θ̄λbtc|
2] + 4λ2L2

2E[η̄2(X0)] + 4λ2H2
? + 2dλβ−1

≤ λ((1− aλ)btcσ̄Y E[V2(θ0)] + σ̃Y ),

where σ̄Y := 2λmaxL
2
1E[η2(X0)] and σ̃Y := 2λmaxL

2
1E[η2(X0)]c1(λmax + a−1) +

4λmaxL
2
2E[η̄2(X0)] + 4λmaxH

2
? + 2dβ−1. �

Lemma A.3. Let G,H ⊂ F be sigma-algebras. Let p ≥ 1. Let X,Y be Rd-
valued random vectors in Lp such that Y is measurable with respect to H ∨ G.
Then, E1/p [ |X − E[X|H ∨ G]|p| G] ≤ 2E1/p [ |X − Y |p| G].

Proof See [29, Lemma 6.1]. �

Appendix B Proofs of the results in 3
Proof of Proposition 3.1 By using (10), it can be shown by direct calculations
that H defined in (11) satisfies Assumption 1.

One notes that (11) can be rewritten as

H(θ, u) =

n∑
i=1

Hi(θ, u)

=

n∑
i=1

(
1

n

(
θ

2
+
u

4
− 3

4
â+

â

4

(
7

1 + e2â
T(u/4+θ)

− 1

1 + e2â
T(u/4−θ)

)
− 7(u+ 8θ)

16(1 + e2(θTu/4+|θ|2))
− u− 8θ

16(1 + e2(θTu/4−|θ|2))

)
+

1

8

(
−6ziyi +

7zi

1 + e−z
T
i (u/4+θ)

− zi

1 + e−z
T
i (u/4−θ)

))
,
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where Hi : Rd ×Rd → Rd for each i = 1, . . . , n. To verify Assumption 3, which is the
(local) dissipativity condition, one calculates, for any θ ∈ Rd, u ∈ Rd

θTHi(θ, u) =
1

n

(
|θ|2

2
+
uTθ

4
− 3

4
âTθ +

âTθ

4

(
7

1 + e2â
T(u/4+θ)

− 1

1 + e2â
T(u/4−θ)

)

− 7(uTθ + 8|θ|2)

16(1 + e2(θTu/4+|θ|2))
− uTθ − 8|θ|2

16(1 + e2(θTu/4−|θ|2))

)

+
1

8

(
−6yiz

T
i θ +

7zTi θ

1 + e−z
T
i (u/4+θ)

− zTi θ

1 + e−z
T
i (u/4−θ)

)

≥ 1

n

(
|θ|2

2
− 3|uTθ|

4
− 11

4
|âTθ|

)
− 7

4
|zTi θ| −

7

4

≥ 1

4n
|θ|2 − 1

n

(
9|u|2

4
+

121

4
|â|2
)
− 49n

8
|zi|2 −

7

4
,

which implies

θTH(θ, u) ≥ 1

4
|θ|2 −

(
9|u|2

4
+

121

4
|â|2
)
− 49n

8

n∑
i=1

|zi|2 −
7n

4
.

Thus the (local) dissipativity condition holds with A(u) = Id/4 and b̂(u) = (9|u|2/4 +
121|â|2/4) + 49n

∑n
i=1 |zi|

2/8 + 7n/4.
As for the Lipschitz conditions in Assumption 2, one notices that 1 +

e2(θTu/4+|θ|2) = e−|u|
2/32(e|u|

2/32 + e2|θ+u/8|
2

), then

∇θHi(θ, u) =
1

n

(
Id
2
− ââT

2

(
7e2â

T(u/4+θ)

(1 + e2â
T(u/4+θ))2

+
e2â

T(u/4−θ)

(1 + e2â
T(u/4−θ))2

)

−
(

7Id

2(1 + e2(θTu/4+|θ|2))
− Id

2(1 + e2(θTu/4−|θ|2))

)

+

(
7e|u|

2/32e2|θ+u/8|
2

(u+ 8θ)(uT + 8θT)

32(e|u|2/32 + e2|θ+u/8|2)2

+
e|u|

2/32e2|θ−u/8|
2

(u− 8θ)(uT − 8θT)

32(e|u|2/32 + e2|θ−u/8|2)2

))

+
ziz

T
i

8

(
7e−z

T
i (u/4+θ)

(1 + e−z
T
i (u/4+θ))2

+
e−z

T
i (u/4−θ)

(1 + e−z
T
i (u/4−θ))2

)
,

which implies Assumption 2 holds with L1 = 1 and η(u) = 9/2+8e|u|
2/32+

∑n
i=1 |zi|

2+

4|â|2 + 3|u|2/8. On the other hand,

∇uHi(θ, u) =
1

n

(
1

4
Id −

ââT

8

(
7e2â

T(u/4+θ)

(1 + e2â
T(u/4+θ))2

− e2â
T(u/4−θ)

(1 + e2â
T(u/4−θ))2

)

−
(

7Id

16(1 + e2(θTu/4+|θ|2))
+

Id

16(1 + e2(θTu/4−|θ|2))

)

+

(
7e|u|

2/32e2|θ+u/8|
2

(u+ 8θ)(−uT/16 + (uT/2 + 4θT)/8)

16(e|u|2/32 + e2|θ+u/8|2)2
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+
e|u|

2/32e2|θ−u/8|
2

(u− 8θ)(uT/16 + (4θT − uT/2)/8)

16(e|u|2/32 + e2|θ−u/8|2)2

))

+
ziz

T
i

32

(
7e−z

T
i (u/4+θ)

(1 + e−z
T
i (u/4+θ))2

− e−z
T
i (u/4−θ)

(1 + e−z
T
i (u/4−θ))2

)
,

which implies Assumption 2 holds with L2 = 1/4 and η(u) = 9/2 + 8e|u|
2/32 +∑n

i=1 |zi|
2 + 4|â|2 + 3|u|2/8. �

Proof of Proposition 3.2 First, we show that the objective function U defined
in (12) is not necessarily convex. We consider the case where N = 2, and similar
arguments can be applied for N ≥ 2. By using (13), the Hessian matrix of U , denoted
by ∇2U , is given by:

∇2U(θ) =

(
2η̂ +M(θ) −M(θ)
−M(θ) 2η̂ +M(θ)

)
, θ ∈ R2

where M(θ) := 2g2
1(θ)g2

2(θ)E[(X2−X1)2] + 2g1(θ)g2(θ)(1− 2g1(θ))E[(Y − g1(θ)X1−
g2(θ)X2)(X2 −X1)]. Then, for any v = (v1, v2) ∈ R2 \ {(0, 0)}, it follows that

〈v,∇2U(θ)v〉 = 2η̂|v|2 +M(θ)(v1 − v2)2,

which is not necessarily nonnegative for all θ ∈ R2. To see this, we consider the
following example. Let

E[X1] = 0.03, E[X2] = 0.04, E[Y ] = 0.033,

Var(X1) = 5× 10−5, Var(X2) = 2× 10−4, Var(Y ) = 5.5× 10−5,

Cov(X1, X2) = 10−5, Cov(X1, Y ) = 5× 10−6, Cov(X2, Y ) = −9× 10−5,

which implies E[Y X2] = 1.23× 10−3, E[X1X2] = 1.21× 10−3, E[X1Y ] = 9.95× 10−4,
E[X2

1 ] = 9.5× 10−4. Then, set η̂ = 10−6, v = (1, 0). For θ = (1, ln 2), i.e., g1(θ) = 1/3,
one obtains,

M(θ) = 2g1(θ)g2
2(θ)(3g1(θ)− 1)E[(X2 −X1)2]

+ 2g1(θ)g2(θ)(1− 2g1(θ))E[(Y −X1)(X2 −X1)]

= 2g1(θ)g2(θ)(1− 2g1(θ))E[(Y X2 −X1X2 − Y X1 +X2
1 )] = − 1

270000
,

which indicates 〈v,∇2U(θ)v〉 = − 23
13500000 < 0. In addition, for θ = (1, 1), i.e.

g1(θ) = 1/2, one obtains

M(θ) = 2g1(θ)g2
2(θ)(3g1(θ)− 1)E[(X2 −X1)2]

+ 2g1(θ)g2(θ)(1− 2g1(θ))E[(Y −X1)(X2 −X1)]

= 2g1(θ)g2
2(θ)(3g1(θ)− 1)E[(X2 −X1)2] ≥ 0.

which implies 〈v,∇2U(θ)v〉 ≥ 0. Thus, one concludes that U is in general nonconvex.
Next, we prove that the stochastic gradientH given in (14) satisfies Assumptions 1,

2, and 3. Recall the explicit expressions for Hm, m = 1, . . . , N are given as follows:

Hm(θ, z) = 2η̂θm + 2

(
y −

N∑
i=1

gi(θ)xi

)
gm(θ)

N∑
i6=m

gi(θ)(xi − xm).
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It is easily checkable that Assumption 1 holds. To see Assumption 3 is satisfied, one
calculates the following: for any θ ∈ RN , z ∈ RN+1,

〈θ,H(θ, z)〉 =

N∑
m=1

θmHm(θ, z) ≥ η̂|θ|2 − η̂−1N

(|y|+ N∑
i=1

|xi|

)
N∑
i 6=m

(|xi|+ |xm|)

2

.

Assumption 2 is also satisfied. Indeed, for any m = 1, . . . , N , θ, θ′ ∈ RN , z ∈ RN+1,
it follows that

|Hm(θ, z)−Hm(θ′, z)| ≤ 2η̂|θm − θ′m|

+ 2

∣∣∣∣∣∣
(
y −

N∑
i=1

gi(θ)xi

)
gm(θ)

N∑
i 6=m

gi(θ)(xi − xm)

−

(
y −

N∑
i=1

gi(θ
′)xi

)
gm(θ′)

N∑
i6=m

gi(θ
′)(xi − xm)

∣∣∣∣∣∣
≤ 6
√
N

η̂ +

(
|y|+

N∑
i=1

|xi|

)
N∑
i 6=m

(|xi|+ |xm|)

 |θ − θ′|,
where the last inequality holds due to the following: for any m = 1, . . . , N , θ, θ′ ∈ RN .

|gm(θ)− gm(θ′)| ≤
√
N |θ − θ′|.

Then, one obtains |H(θ, z) − H(θ′, z)| ≤ 6Nη(x)|θ − θ′|, where η(z) = η̂ +(
1 + |y|+

∑N
i=1 |xi|

)(
1 +

∑N
i 6=m(|xi|+ |xm|)

)
. Similarly, for any m = 1, . . . , N ,

θ ∈ RN , z, z′ ∈ RN+1, one obtains

|Hm(θ, z)−Hm(θ, z′)| ≤ 2

∣∣∣∣∣∣
(
y −

N∑
i=1

gi(θ)xi

)
gm(θ)

N∑
i 6=m

gi(θ)(xi − xm)

−

(
y′ −

N∑
i=1

gi(θ)x
′
i

)
gm(θ)

N∑
i 6=m

gi(θ)(x
′
i − x

′
m)

∣∣∣∣∣∣
≤ 4(N + 1)

|y′|+ N∑
i=1

|x′i|+
N∑
i 6=m

(|xi|+ |xm|)

 |z − z′|
≤ 4(N + 1)(η(z) + η(z′))|z − z′|,

which further implies |H(θ, z)−H(θ, z′)| ≤ 4
√
N(N + 1)(η(z) + η(z′))|z − z′|. �

Appendix C Proofs of the results in Section 2
and 4

Proof of Remark 2.1 To prove (5), one notices that by using Assumptions 1 and 2

|h(θ)− h(θ′)| ≤ E[|H(θ,X0)−H(θ′, X0)|] ≤ L1E[η(X0)]|θ − θ′|.

Then, to prove (6), one calculates by using Assumption 2

|H(θ, x)| ≤ |H(θ, x)−H(0, x)|+ |H(0, x)−H(0, 0)|+ |H(0, 0)|
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≤ L1η(x)|θ|+ L2(η(x) + η(0))|x|+ |H(0, 0)|
≤ L1η(x)|θ|+ L2η̄(x) +H?,

where η̄(x) := (η(x) + η(0))|x|, and H? := |H(0, 0)|. �

Proof of Lemma 4.2 For any n ∈ N and t ∈ (n, n + 1], define ∆n,t := θ̄λn −
λH(θ̄λn, Xn+1)(t− n). By using (18), it is easily seen that for t ∈ (n, n+ 1]

E
[
|θ̄λt |2

∣∣∣θ̄λn ] = E
[
|∆n,t|2

∣∣∣θ̄λn ]+ (2λ/β)d(t− n).

Then, by using Assumptions 1, 2, 3 and Remark 2.1, one obtains

E
[
|∆n,t|2

∣∣∣θ̄λn ] = |θ̄λn|2 − 2λ(t− n)E
[〈
θ̄λn, H(θ̄λn, Xn+1)

〉 ∣∣∣θ̄λn ]
+ λ2(t− n)2E

[
|H(θ̄λn, Xn+1)|2

∣∣∣θ̄λn ]
≤ |θ̄λn|2 − 2λ(t− n)

〈
θ̄λn,E [A(X0)] θ̄λn

〉
+ 2λ(t− n)b

+ λ2(t− n)2E
[
|L1η(Xn+1)|θ̄λn|+ L2η̄(Xn+1) +H?|2

∣∣∣θ̄λn ]
≤ (1− 2aλ(t− n))|θ̄λn|2 + 2λ2(t− n)2L2

1E
[
η2(X0)

]
|θ̄λn|2

+ 4λ2(t− n)2L2
2E
[
η̄2(X0)

]
+ 4λ2(t− n)2H2

? + 2λ(t− n)b,

where the last inequality is obtained by using (a+ b)2 ≤ 2a2 + 2b2, for a, b ≥ 0 twice.
For λ < λmax < a/(2L2

1E
[
η2(X0)

]
),

E
[
|∆n,t|2

∣∣∣θ̄λn ] ≤ (1− aλ(t− n))|θ̄λn|2 + λ(t− n)c0,

where c0 := 4λmaxL
2
2E
[
η̄2(X0)

]
+ 4λmaxH

2
? + 2b. Therefore, one obtains

E
[
|θ̄λt |2

∣∣∣θ̄λn ] ≤ (1− aλ(t− n))|θ̄λn|2 + λ(t− n)c1,

where c1 := c0 + 2d/β and the result follows by induction. To calculate a higher
moment, denote by Uλn,t := {2λβ−1}1/2(B̃λt − B̃λn), for t ∈ (n, n+ 1], one calculates

E
[
|θ̄λt |4

∣∣∣θ̄λn ] = E
[(
|∆n,t|2 + |Uλn,t|2 + 2

〈
∆n,t, U

λ
n,t

〉)2 ∣∣∣θ̄λn ]
= E

[
|∆n,t|4 + |Uλn,t|4 + 2|∆n,t|2|Uλn,t|2 + 4|∆n,t|2

〈
∆n,t, U

λ
n,t

〉
+4|Uλn,t|2

〈
∆n,t, U

λ
n,t

〉
+ 4

(〈
∆n,t, U

λ
n,t

〉)2 ∣∣∣θ̄λn ]
≤ E

[
|∆n,t|4 + |Uλn,t|4 + 6|∆n,t|2|Uλn,t|2

∣∣∣θ̄λn ]
≤ (1 + aλ(t− n))E

[
|∆n,t|4

∣∣∣θ̄λn ]+ (1 + 9/(aλ(t− n)))E
[
|Uλn,t|4

]
.

(C3)

where the last inequality holds due to 2uv ≤ ε̇u2 + ε̇−1v2, for u, v ≥ 0 and ε̇ > 0 with
u = |∆n,t|2, v = 3|Uλn,t|2, ε̇ = aλ(t− n), and due to the independence of Uλn,t and θ̄

λ
n.

Then, by using the Cauchy-Schwarz inequality, one obtains

E
[
|∆n,t|4

∣∣∣θ̄λn ]
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= E
[(
|θ̄λn|2 − 2λ(t− n)

〈
θ̄λn, H(θ̄λn, Xn+1)

〉
+ λ2(t− n)2|H(θ̄λn, Xn+1)|2

)2 ∣∣∣θ̄λn ]
= E

[
|θ̄λn|4 + 4λ2(t− n)2

(〈
θ̄λn, H(θ̄λn, Xn+1)

〉)2

+ λ4(t− n)4|H(θ̄λn, Xn+1)|4 − 4λ(t− n)
〈
θ̄λn, H(θ̄λn, Xn+1)

〉
|θ̄λn|2

+ 2λ2(t− n)2|θ̄λn|2|H(θ̄λn, Xn+1)|2

−4λ3(t− n)3
〈
θ̄λn, H(θ̄λn, Xn+1)

〉
|H(θ̄λn, Xn+1)|2

∣∣∣θ̄λn ]
≤ |θ̄λn|4 + E

[
6λ2(t− n)2|θ̄λn|2|H(θ̄λn, Xn+1)|2 − 4λ(t− n)

〈
θ̄λn, H(θ̄λn, Xn+1)

〉
|θ̄λn|2

−4λ3(t− n)3|H(θ̄λn, Xn+1)|2
〈
θ̄λn, H(θ̄λn, Xn+1)

〉
+ λ4(t− n)4|H(θ̄λn, Xn+1)|4

∣∣∣θ̄λn ] .
By Remark 2.1, the independence of Xn+1 and θ̄λn, and by using (u + v + ν)s ≤
2s−1(u + v)s + 2s−1νs ≤ 22s−2(us + vs) + 2s−1νs for u, v, ν ≥ 0, s ≥ 1, it follows
that, for q ≥ 1,

E
[
|H(θ̄λn, Xn+1)|q

∣∣∣θ̄λn ] ≤ 2q−1Lq1E
[
ηq(X0)

]
|θ̄λn|q + 22q−2Lq2E

[
|η̄q(X0)

]
+ 22q−2Hq

? .

(C4)

By using Assumption 3 and by taking q = 2, 3, 4 in (C4), one obtains

E
[
|∆n,t|4

∣∣∣θ̄λn ] ≤ (1− 4aλ(t− n))|θ̄λn|4 + 4bλ(t− n)|θ̄λn|2

+ 12λ2(t− n)2L2
1E
[
η2(X0)

]
|θ̄λn|4 + 16λ3(t− n)3L3

1E
[
η3(X0)

]
|θ̄λn|4

+ 8λ4(t− n)4L4
1E
[
η4(X0)

]
|θ̄λn|4

+ 24λ2(t− n)2
(
L2

2E
[
η̄2(X0)

]
+H2

?

)
|θ̄λn|2

+ 64λ3(t− n)3
(
L3

2E
[
η̄3(X0)

]
+H3

?

)
|θ̄λn|

+ 64λ4(t− n)4
(
L4

2E
[
η̄4(X0)

]
+H4

?

)
which implies, by using λ < λmax

E
[
|∆n,t|4

∣∣∣θ̄λn ] ≤ (1− 3aλ(t− n))|θ̄λn|4 + 4bλ(t− n)|θ̄λn|2

+ 24λ2(t− n)2
(
L2

2E
[
η̄2(X0)

]
+H2

?

)
|θ̄λn|2

+ 64λ3(t− n)3
(
L3

2E
[
η̄3(X0)

]
+H3

?

)
|θ̄λn|

+ 64λ4(t− n)4
(
L4

2E
[
η̄4(X0)

]
+H4

?

)
.

(C5)

For |θ̄λn| > (8ba−1 + 48a−1λmax(L2
2E
[
η̄2(X0)

]
+H2

? ))1/2, we have

− aλ(t− n)

2
|θ̄λn|4 + 4bλ(t− n)|θ̄λn|2 + 24λ2(t− n)2

(
L2

2E
[
η̄2(X0)

]
+H2

?

)
|θ̄λn|2 < 0.

(C6)
Similarly, for |θ̄λn| > (128a−1λ2

max(L3
2E
[
η̄3(X0)

]
+H3

? ))1/3

− aλ(t− n)

2
|θ̄λn|4 + 64λ3(t− n)3

(
L3

2E
[
η̄3(X0)

]
+H3

?

)
|θ̄λn| < 0. (C7)
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Denote by

M := max{(8ba−1 + 48a−1λmax(L2
2E
[
η̄2(X0)

]
+H2

? ))1/2,

(128a−1λ2
max(L3

2E
[
η̄3(X0)

]
+H3

? ))1/3}.
(C8)

Moreover, denote by An,M := {ω ∈ Ω : |θ̄λn(ω)| > M}. Then, by substituting (C6),
(C7) into (C5), one obtains,

E
[
|∆n,t|41An,M

∣∣∣θ̄λn ] ≤ (1− 2aλ(t− n))|θ̄λn|41An,M

+ 64λ4(t− n)4
(
L4

2E
[
η̄4(X0)

]
+H4

?

)
1An,M .

Similarly, we have

E
[
|∆n,t|41Ac

n,M

∣∣∣θ̄λn ] ≤ (1− 2aλ(t− n))|θ̄λn|41Ac
n,M

+ 4bλ(t− n)M2
1Ac

n,M

+ 24λ2(t− n)2
(
L2

2E
[
η̄2(X0)

]
+H2

?

)
M2

1Ac
n,M

+ 64λ3(t− n)3
(
L3

2E
[
η̄3(X0)

]
+H3

?

)
M1Ac

n,M

+ 64λ4(t− n)4
(
L4

2E
[
η̄4(X0)

]
+H4

?

)
1Ac

n,M
.

Combining the two cases yields

E
[
|∆n,t|4

∣∣∣θ̄λn ] ≤ (1− 2aλ(t− n))|θ̄λn|4 + λ(t− n)c2, (C9)

where c2 := 4bM2 + 152(1 + λmax)3
(

(1 + L2)4E
[
(1 + η̄(X0))4

]
+ (1 +H?)4

)
(1 +

M)2with M given in (C8). Substituting (C9) into (C3), one obtains

E
[
|θ̄λt |4

∣∣∣θ̄λn ] ≤ (1 + aλ(t− n))(1− 2aλ(t− n))|θ̄λn|4

+ (1 + aλ(t− n))λ(t− n)c2 + 12d2λ2β−2(t− n)2(1 + 9/(aλ(t− n)))

≤ (1− aλ(t− n))|θ̄λn|4 + λ(t− n)c3,

where c3 := (1 + aλmax)c2 + 12d2β−2(λmax + 9a−1). Finally, for any n ∈ N, t ∈
(n, n+ 1], 0 < λ ≤ λmax, one obtains,

E
[
|θ̄λt |4

]
≤ (1− aλ(t− n))E

[
|θ̄λn|4

]
+ λ(t− n)c3

≤ (1− aλ(t− n))(1− aλ)E
[
|θ̄λn−1|4

]
+ λmaxc3 + λc3

≤ (1− aλ(t− n))(1− aλ)2E
[
|θ̄λn−2|4

]
+ λmaxc3 + λc3(1 + (1− aλ))

≤ . . .

≤ (1− aλ(t− n))(1− aλ)nE
[
|θ0|4

]
+ c3(λmax + 1/a),

which completes the proof. �

Proof of Lemma 4.5 For any p ≥ 1, application of Ito’s lemma and taking
expectation yields

E[Vp(ζ̄λ,nt )] = E[Vp(θ̄λnT )] +

∫ t

nT
E

[
λ

∆Vp(ζ̄λ,ns )

β
− λ〈h(ζ̄λ,ns ),∇Vp(ζ̄λ,ns )〉

]
ds.
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Differentiating both sides and using Lemma 4.4, we arrive at

d

dt
E[Vp(ζ̄λ,nt )] = E

[
λ

∆Vp(ζ̄λ,nt )

β
− λ〈h(ζ̄λ,nt ),∇Vp(ζ̄λ,nt )〉

]
≤ −λc̄(p)E[Vp(ζ̄λ,nt )] + λc̃(p),

which yields

E[Vp(ζ̄λ,nt )] ≤ e−λ(t−nT )c̄(p)E[Vp(θ̄λnT )] + c̃(p)/c̄(p)
(

1− e−λc̄(p)(t−nT )
)

≤ e−λ(t−nT )c̄(p)E[Vp(θ̄λnT )] + c̃(p)/c̄(p).

Now for p = 2, by using Lemma 4.2, Corollary 4.3 and Lemma 4.4, we obtain

E[V2(ζ̄λ,nt )] ≤ e−λ(t−nT )c̄(2)E[V2(θ̄λnT )] + c̃(2)/c̄(2)

≤ (1− aλ)nT e−λ(t−nT )c̄(2)E[V2(θ0)] + c̃(2)/c̄(2) + c1(λmax + a−1) + 1

≤ e−aλt/2E[V2(θ0)] + 3v2(M2) + c1(λmax + a−1) + 1,

where the last inequality holds due to 0 ≤ 1 − z ≤ e−z for z ≥ 0 and c̄(2) = a/2.
Similarly, for p = 4, one obtains

E[V4(ζ̄λ,nt )] ≤ e−λ(t−nT )c̄(4)E[V4(θ̄λnT )] + c̃(4)/c̄(4)

≤ 2(1− aλ)nT e−λ(t−nT )c̄(4)E[V4(θ0)] + c̃(4)/c̄(4) + 2c3(λmax + a−1) + 2

≤ 2e−aλtE[V4(θ0)] + 3v4(M4) + 2c3(λmax + a−1) + 2,

where the last inequality holds due to 0 ≤ 1− z ≤ e−z for z ≥ 0 and c̄(4) = a. �

Proof of Lemma 4.7 To handle the first term in (22), we start by establishing an
upper bound in Wasserstein-2 distance and the statment follows by noticingW1 ≤W2.
By employing synchronous coupling, using (18) and the definition of ζ̄λ,nt in Definition
4.1, one obtains, for any t ∈ (nT, (n+ 1)T ],∣∣∣ζ̄λ,nt − θ̄λt

∣∣∣ ≤ λ ∣∣∣∣∫ t

nT

[
H(θ̄λbsc, Xdse)− h(ζ̄λ,ns )

]
ds

∣∣∣∣
≤ λ

∣∣∣∣∫ t

nT

[
H(θ̄λbsc, Xdse)−H(ζ̄λ,ns , Xdse)

]
ds

∣∣∣∣
+ λ

∣∣∣∣∫ t

nT

[
h(ζ̄λ,ns )−H(ζ̄λ,ns , Xdse)

]
ds

∣∣∣∣
≤ λL1

∫ t

nT
η(Xdse)

∣∣∣θ̄λbsc − ζ̄λ,ns ∣∣∣ ds+ λ

∣∣∣∣∫ t

nT

[
h(ζ̄λ,ns )−H(ζ̄λ,ns , Xdse)

]
ds

∣∣∣∣ ,
where the last inequality holds due to Assumption 2. Now taking squares of both
sides, using (a+ b)2 ≤ 2a2 + 2b2 for a, b > 0, and then taking expectations lead to

E
[∣∣∣ζ̄λ,nt − θ̄λt

∣∣∣2] ≤ 2λL2
1

∫ t

nT
E
[
η2(X0)

]
E
[∣∣∣θ̄λbsc − ζ̄λ,ns ∣∣∣2] ds

+ 2λ2E

[∣∣∣∣∫ t

nT

[
h(ζ̄λ,ns )−H(ζ̄λ,ns , Xdse)

]
ds

∣∣∣∣2
]
.

where the expectation splits over terms in the first integral due to the independence
of Xdse from the rest of the random variables. Using λT ≤ 1, Lemma A.2 and
(a+ b)2 ≤ 2a2 + 2b2 once again, we obtain
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E
[∣∣∣ζ̄λ,nt − θ̄λt

∣∣∣2] ≤ 4λL2
1E
[
η2(X0)

] ∫ t

nT
E
[∣∣∣θ̄λbsc − θ̄λs ∣∣∣2]ds

+ 4λL2
1E
[
η2(X0)

] ∫ t

nT
E
[∣∣∣θ̄λs − ζ̄λ,ns ∣∣∣2] ds

+ 2λ2E

[∣∣∣∣∫ t

nT

[
h(ζ̄λ,ns )−H(ζ̄λ,ns , Xdse)

]
ds

∣∣∣∣2
]

≤ 4λL2
1E
[
η2(X0)

]
(e−aλnT σ̄Y E[V2(θ0)] + σ̃Y )

+ 4λL2
1E
[
η2(X0)

] ∫ t

nT
E
[∣∣∣θ̄λs − ζ̄λ,ns ∣∣∣2] ds

+ 2λ2E

[∣∣∣∣∫ t

nT

[
h(ζ̄λ,ns )−H(ζ̄λ,ns , Xdse)

]
ds

∣∣∣∣2
]
. (C10)

where σ̄Y and σ̃Y are provided in (A2). Next, we bound the last term in (C10)
by partitioning the last integral. Assume that nT + K < t ≤ nT + K + 1 where
K + 1 ≤ T,K ∈ N. Thus we can write∣∣∣∣∫ t

nT

[
h(ζ̄λ,ns )−H(ζ̄λ,ns , Xdse)

]
ds

∣∣∣∣ =

∣∣∣∣∣
K∑
k=1

Ik +RK

∣∣∣∣∣
where Ik :=

∫ nT+k
nT+(k−1)[h(ζ̄λ,ns )−H(ζ̄λ,ns , XnT+k)]ds, and RK :=

∫ t
nT+K [h(ζ̄λ,ns )−

H(ζ̄λ,ns , XnT+K+1)]ds. Taking squares of both sides∣∣∣∣∣
K∑
k=1

Ik +RK

∣∣∣∣∣
2

=

K∑
k=1

|Ik|2 + 2

K∑
k=2

k−1∑
j=1

〈Ik, Ij〉+ 2

K∑
k=1

〈Ik, RK〉+ |RK |2,

Finally, we take expectations of both sides. Define the filtration Ht = Fλ∞ ∨ Gbtc. We
first note that for any k = 2, . . . ,K, j = 1, . . . , k − 1,

E
[
〈Ik, Ij〉

]
= E

[
E[〈Ik, Ij〉|HnT+j ]

]
,

= E

[
E

[〈∫ nT+k

nT+(k−1)
[H(ζ̄λ,ns , XnT+k)− h(ζ̄λ,ns )]ds,

∫ nT+j

nT+(j−1)
[H(ζ̄λ,ns , XnT+j)− h(ζ̄λ,ns )]ds

〉∣∣∣∣∣HnT+j

]]
,

= E

[〈∫ nT+k

nT+(k−1)
E
[
H(ζ̄λ,ns , XnT+k)− h(ζ̄λ,ns )

∣∣∣HnT+j

]
ds,

∫ nT+j

nT+(j−1)
[H(ζ̄λ,ns , XnT+j)− h(ζ̄λ,ns )]ds

〉]
= 0.

By the same argument E〈Ik, RK〉 = 0 for all 1 ≤ k ≤ K. Therefore, the last term of
(C10) is bounded as

2λ2E

[∣∣∣∣∫ t

nT

[
h(ζ̄λ,ns )−H(ζ̄λ,ns , Xdse)

]
ds

∣∣∣∣2
]

= 2λ2
K∑
k=1

E
[
|Ik|2

]
+ 2λ2E

[
|RK |2

]
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≤ 4e−aλnT/2λ(σ̄ZE[V2(θ0)] + σ̃Z),

where the last inequality holds due to Lemma A.1 and σ̄Z and σ̃Z are provided in
(A1). Therefore, the bound (C10) becomes

E
[∣∣∣ζ̄λ,nt − θ̄λt

∣∣∣2] ≤ 4λL2
1E
[
η2(X0)

] ∫ t

nT
E
[∣∣∣θ̄λs − ζ̄λ,ns ∣∣∣2] ds

+ 4e−aλnT/2λ(L2
1E
[
η2(X0)

]
σ̄Y + σ̄Z)E[V2(θ0)]

+ 4λ(L2
1E
[
η2(X0)

]
σ̃Y + σ̃Z).

Using Grönwall’s inequality leads

E
[∣∣∣ζ̄λ,nt − θ̄λt

∣∣∣2] ≤ λe4L2
1E[η2(X0)]

[
4e−aλnT/2(L2

1E
[
η2(X0)

]
σ̄Y + σ̄Z)E[V2(θ0)]

+4(L2
1E
[
η2(X0)

]
σ̃Y + σ̃Z)

]
.

which implies by λT ≥ 1/2,

W 2
2 (L(θ̄λt ),L(ζ̄λ,nt )) ≤ E

∣∣∣ζ̄λ,nt − θ̄λt
∣∣∣2 ≤ λ(e−an/4C̄2,1E[V2(θ0)] + C̄2,2), (C11)

where

C̄2,1 := 4e4L
2
1E[η2(X0)](L2

1E
[
η2(X0)

]
σ̄Y + σ̄Z),

C̄2,2 := 4e4L
2
1E[η2(X0)](L2

1E
[
η2(X0)

]
σ̃Y + σ̃Z)

(C12)

with σ̄Y , σ̃Y provided in (A2) and σ̄Z , σ̃Z given in (A1). �

Proof of Lemma 4.8 To upper bound the second term W1(L(ζ̄λ,nt ),L(Zλt )) in
(22), we adapt the proof from Lemma 3.18 in [14]. Recall the definition of w1,2 given
in (21), and the fact that W1(µ, ν) ≤ w1,2(µ, ν) for any µ, ν ∈ PV2

. By Proposition
4.6, one obtains, for any t ∈ (nT, (n+ 1)T ],

W1(L(ζ̄λ,nt ),L(Zλt )) ≤
n∑
k=1

W1(L(ζ̄λ,kt ),L(ζ̄λ,k−1
t ))

≤
n∑
k=1

w1,2(L(ζ
kT,θ̄λkT ,λ
t ),L(ζ

kT,ζ̄λ,k−1
kT ,λ

t ))

≤ ĉ
n∑
k=1

exp(−ċ(n− k))w1,2(L(θ̄λkT ),L(ζ̄λ,k−1
kT )),

which implies, by using Cauchy-Schwarz inequality, Young’s inequality, Lemma 4.7,
Corollary 4.3 and Lemma 4.5,

W1(L(ζ̄λ,nt ),L(Zλt )) ≤ ĉ
n∑
k=1

exp(−ċ(n− k))W2(L(θ̄λkT ),L(ζ̄λ,k−1
kT ))

[
1 +

{
E[V4(θ̄λkT )]

}1/2

+
{
E[V4(ζ̄λ,k−1

kT )]
}1/2

]
≤ (
√
λ)−1ĉ

n∑
k=1

exp(−ċ(n− k))W 2
2 (L(θ̄λkT ),L(ζ̄λ,k−1

kT ))
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+ 3
√
λĉ

n∑
k=1

exp(−ċ(n− k))
[
1 + E[V4(θ̄λkT )] + E[V4(ζ̄λ,k−1

kT )]
]

≤
√
λĉ

n∑
k=1

exp(−ċ(n− k))(e−a(k−1)/4C̄2,1E[V2(θ0)] + C̄2,2)

+ 3
√
λĉ

n∑
k=1

exp(−ċ(n− k))
[
1 + E[V4(θ̄λkT )] + E[V4(ζ̄λ,k−1

kT )]
]

≤
√
λe−min{ċ,a/4}nnĉ(emin{ċ,a/4}C̄2,1E[V2(θ0)] + 12E[V4(θ0)])

+
√
λ

ĉ

1− exp(−ċ) (C̄2,2 + 12c3(λmax + a−1) + 9v4(M4) + 15)

≤
√
λ(e−min{ċ,a/4}n/2C̄2,3E[V4(θ0)] + C̄2,4)

=
√
λ(e−ċn/2C̄2,3E[V4(θ0)] + C̄2,4),

where the last inequality holds by applying the inequality e−αn(n+ 1) ≤ 1 +α−1, for
α > 0 with α = min{ċ, a/4}/2, and the last equality holds by noticing min{ċ, a/4} = ċ
with ċ given in (23). The explicit expressions for the constants C̄2,3, C̄2,4 are given
below:

C̄2,3 := ĉ

(
1 +

2

ċ

)
(ea/4C̄2,1 + 12)

C̄2,4 :=
ĉ

1− exp(−ċ) (C̄2,2 + 12c3(λmax + a−1) + 9v4(M4) + 15)

(C13)

with C̄2,1, C̄2,2 given in (C12), ĉ, ċ given in Lemma 4.11, c3 given in (20), and M4

given in Lemma 4.4. �

Proof of Corollary 4.9 One notices that W2 ≤
√

2w1,2, then, by using similar
arguments as in the proof of Lemma 4.8, one obtains

W2(L(ζ̄λ,nt ),L(Zλt ))

≤
n∑
k=1

W2(L(ζ̄λ,kt ),L(ζ̄λ,k−1
t ))

≤
n∑
k=1

√
2w

1/2
1,2 (L(ζ

kT,θ̄λkT ,λ
t ),L(ζ

kT,ζ̄λ,k−1
kT ,λ

t ))

≤
√

2ĉ

n∑
k=1

exp(−ċ(n− k)/2)W
1/2
2 (L(θ̄λkT ),L(ζ̄λ,k−1

kT ))

[
1 +

{
E[V4(θ̄λkT )]

}1/2

+
{
E[V4(ζ̄λ,k−1

kT )]
}1/2

]1/2

≤ λ−1/4
√

2ĉ

n∑
k=1

exp(−ċ(n− k)/2)W2(L(θ̄λkT ),L(ζ̄λ,k−1
kT ))

+ λ1/4
√

2ĉ

n∑
k=1

exp(−ċ(n− k)/2)

[
1 +

{
E[V4(θ̄λkT )]

}1/2
+
{
E[V4(ζ̄λ,k−1

kT )]
}1/2

]
≤
√

2ĉλ1/4e−min{ċ,a/4}n/2n(emin{ċ,a/4}/2C̄
1/2
2,1 E1/2[V2(θ0)] + 2

√
2E1/2[V4(θ0)])
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+
√

2ĉλ1/4 1

1− exp(−ċ/2)
(C̄

1/2
2,2 + 2

√
2c3(λmax + a−1)1/2 +

√
3v

1/2
4 (M4) +

√
15)

≤ λ1/4(e−min{ċ,a/4}n/4C̄∗2,3E
1/2[V4(θ0)] + C̄∗2,4)

= λ1/4(e−ċn/4C̄∗2,3E
1/2[V4(θ0)] + C̄∗2,4),

where

C̄∗2,3 :=
√

2ĉ (1 + 4/ċ) (ea/8C̄
1/2
2,1 + 2

√
2)

C̄∗2,4 :=

√
2ĉ

1− exp(−ċ/2)
(C̄

1/2
2,2 + 2

√
2c3(λmax + a−1)1/2 +

√
3v

1/2
4 (M4) +

√
15),

(C14)

with C̄2,1, C̄2,2 given in (C12), ĉ, ċ given in Lemma 4.11, c3 given in (20), and M4

given in Lemma 4.4. This completes the proof. �

Proof of Lemma 4.10 By using Lemma 4.7 and 4.8, one obtains

W1(L(θ̄λt ),L(Zλt )) ≤W1(L(θ̄λt ),L(ζ̄λ,nt )) +W1(L(ζ̄λ,nt ),L(Zλt ))

≤
√
λ(e−an/8C̄

1/2
2,1 E1/2[V2(θ0)] + C̄

1/2
2,2 )

+
√
λ(e−ċn/2C̄2,3E[V4(θ0)] + C̄2,4)

≤ (C̄
1/2
2,1 + C̄

1/2
2,2 + C̄2,3 + C̄2,4)

√
λ(e−ċn/2E[V4(θ0)] + 1).

�

Proof of Lemma 4.11 To obtain the contraction constant ċ, we apply the argu-
ments in the proof of [15, Theorem 2.2] to SDE (17). More precisely, we replace h(r)
in [15, Eqn. (5.14)] by

h(r) :=
β

4

∫ r

0
sκ ds+ 2Q(ε)r, (C15)

where κ = L1E[η(X0)] and Q(ε) are given in [15, Eqn. (2.24)], and replace [15, Eqn.
(2.25)] by (4c̃(2)ε)−1 ≥ β

2

∫R1

0

∫ s
0 exp

(
β
4

∫ s
r uκ du+ 2Q(ε)(s− r)

)
dr ds. Then, fol-

lowing the proof of [15, Theorem 2.2], one can derive the expressions for ċ: ċ :=
min{φ, c̄(2), 4c̃(2)εc̄(2)}/2, where c̄(2) = a/2, c̃(2) = (3/2)av2(M2) with M2 given
in Lemma 4.4, φ is given by φ−1 :=

∫R2

0

∫ s
0 exp

(
β
4

∫ s
r uκ du+ 2Q(ε)(s− r)

)
dr ds

with R2 given in [15, Eqn. (2.29)], and ε ∈ (0, 1] is required to satisfy ε−1 ≥
2βc̃(2)

∫R1

0

∫ s
0 exp

(
β
4

∫ s
r uκ du+ 2Q(ε)(s− r)

)
dr ds with R1 given in [15, Eqn.

(2.29)]. To simply the expressions for φ and ε, we follow the proof of [14, Lemma 3.24],
and thus (23), (24), (25) can be obtained.

To obtain an explicit expression for ĉ, one first notes that, by using (C15), [15,
Eqn. (5.4)] becomes: for any r ∈ [0, R2], r exp(−βκR2

2/8 − 2Q(ε)R2) ≤ Φ(r) ≤
2f(r) ≤ 2Φ(r) ≤ 2r. Then, in view of [14, Eqn. (60)], and by applying the same
arguments as in the proof of [14, Lemma 3.24], one obtains C9 := C11/C10 ≤ ĉ :=

2(1 + R2) exp(βK1R
2
2/8 + 2R2)/ε, where R2 = b̄ := 2

√
4c̃(2)(1 + c̄(2))/c̄(2)− 1,

K1 := L1E[η(X0)], and ε is given in (25). �

Appendix D Table of constant
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Table D1 Analytic expressions of constants

Constant Full expression

Lemma 4.4
Mp

√
1/3 + 4b/(3a) + 4d/(3aβ) + 4(p − 2)/(3aβ)

c̄(p) ap/4

c̃(p) (3/4)apvp(Mp)

Lemma 4.7

C̄2,1 4e
4L2

1E
[
η2(X0)

](
2λmaxL

4
1
(
E
[
η2(X0)

] )2 + 8L2
2E[(η(X0) + η(E[X0]))2|X0 − E[X0]|2]

)

C̃2,2

4e
4L2

1E
[
η2(X0)

](
2λmaxL

4
1
(
E[η2(X0)]

)2c1(λmax + a−1)

+4λmaxL
2
1L

2
2E[η2(X0)]E[η̄2(X0)] + 4λmaxH

2
?L

2
1E
[
η2(X0)

]
+ 2dβ−1L2

1E
[
η2(X0)

]
+8L2

2E[(η(X0) + η(E[X0]))2|X0 − E[X0]|2](3v2(M2) + c1(λmax + a−1) + 1)
)

Lemma 4.8 C̄2,3 ĉ
(
1 + 2

ċ

)
(ea/4C̄2,1 + 12)

C̄2,4
ĉ

1−exp(−ċ) (C̄2,2 + 12c3(λmax + a−1) + 9v4(M4) + 15)

Corollary 4.9 C̄∗2,3
√

2ĉ
(
1 + 4

ċ

)
(ea/8C̄

1/2
2,1 + 2

√
2)

C̄∗2,4
√

2ĉ
1−exp(−ċ/2)

(C̄
1/2
2,2 + 2

√
2c3(λmax + a−1)1/2 +

√
3v

1/2
4 (M4) +

√
15)

Theorem 2.4
C1 2eċ/2

[
(λ

1/2
max(C̄

1/2
2,1 + C̄

1/2
2,2 + C̄2,3 + C̄2,4) + ĉ) + ĉ

(
1 +

∫
Rd V2(θ)πβ(dθ)

)]

C2 C̄
1/2
2,1 + C̄

1/2
2,2

C3 C̄2,3 + C̄2,4

Corollary 2.5
C4 2

(
λ

1/2
max(C̄

1/2
2,1 + C̄

1/2
2,2 ) + λ

1/4
max(C̄∗2,3 + C̄∗2,4) +

√
2ĉ1/2

)

C5 λ
1/4
maxC̄

1/2
2,1 + λ

1/4
maxC̄

1/2
2,2

C6 C̄∗2,3 + C̄∗2,4

Corollary 2.8
C
]
1 C4

(
L1E[η(X0)](E[|θ0|

2] + c1(λmax + a−1)) + L2E[η̄(X0)] +H?

)
E[|θ0|

4 + 1]

C
]
2 (C5 + C6)

(
L1E[η(X0)](E[|θ0|

2] + c1(λmax + a−1)) + L2E[η̄(X0)] +H?

)

C
]
3

d
2β

log

(
eL1E[η(X0)]

a

(
bβ
d

+ 1
))

Table D2 Constants in Lemma 4.2 and Lemma 4.11, and their dependency on key
parameters

Constant Key parameters

d β Moments of X0
c1 O(1 + d/β) O(1 + d/β) O(E[(1 + |X0|)η(X0)])

c3 O(1 + (d/β)2) O(1 + (d/β)2) O(E3/2[(1 + |X0|)
4η4(X0)])

ċ

 32
√
π(1+a2)(1+β)

a2√β

(
1 + 1√

L1E[η(X0)]

)
e

(
8C?(a,b)(1+βL1E[η(X0)])(1+ d

β
)+ 16
βL1E[η(X0)]

)
−1

1

ĉ O

√ β
L1E[η(X0)]

(1 + d
β

)2e

(
12C?(a,b)(1+βL1E[η(X0)])(1+ d

β
)+ 16
βL1E[η(X0)]

)1
1C?(a, b) := (1 + 2/a)(1 + a + b).
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