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ABSTRACT: Graph-based descriptors, such as bond-order matrices and adjacency
matrices, offer a simple and compact way of categorizing molecular structures;
furthermore, such descriptors can be readily used to catalog chemical reactions (i.e.,
bond-making and -breaking). As such, a number of graph-based methodologies have
been developed with the goal of automating the process of generating chemical
reaction network models describing the possible mechanistic chemistry in a given set
of reactant species. Here, we outline the evolution of these graph-based reaction
discovery schemes, with particular emphasis on more recent methods incorporating
graph-based methods with semiempirical and ab initio electronic structure calculations,
minimum-energy path refinements, and transition state searches. Using representative examples from homogeneous catalysis and
interstellar chemistry, we highlight how these schemes increasingly act as “virtual reaction vessels” for interrogating mechanistic
questions. Finally, we highlight where challenges remain, including issues of chemical accuracy and calculation speeds, as well as the
inherent challenge of dealing with the vast size of accessible chemical reaction space.

■ INTRODUCTION
The concept of a chemical reaction network (CRN) provides a
unifying theory linking experimental and computational studies
of chemical reactivity in complex systems.1−12 Consider a
reaction vessel in a laboratory, a catalytic reactor in an
industrial plant,13−15 the upper atmosphere of an extra-solar
planet,16−18 or the interface between dust grains and air in our
own upper atmosphere,19,20 these are all environments where
chemical reactions will occur and may involve large numbers of
different reactive species, participating in equally large numbers
of chemical reactions which may span several orders-of-
magnitude in reaction rates. However, despite their apparent
differences in chemistry and reactivity, all of these examples
can be mapped onto a CRN describing the full collection of
reactants, products, and reaction thermodynamic and kinetic
parameters; as such, CRNs provide a simplifying framework
enabling chemists to understand how an experimentally
observed collection of chemical product species emerges
from the initial soup of reactants in a reaction vessel (Figure
1).
At this point, it is useful to define a CRN; in the following

discussion, a CRN is defined as a network in which the nodes
(or vertices) correspond to unique chemical species and the
edges correspond to the set of possible chemical reactions that
interconvert the chemical species.1,3,7−9,21−27 Each node is
typically defined by labeling the corresponding molecular
species, as well as the corresponding thermodynamic proper-
ties such as Gibbs free energy.28 Similarly, each edge (reaction)
in the CRN is defined by identifying the reactants and
products of the reaction, and the kinetic characteristics

(namely, the activation free energy barrier or the reaction
rate).28,29 It is worth noting that CRNs can be defined as either
(i) using nodes that identify the chemical structure of all N
atoms in the entire reaction system or (ii) using nodes that
identify the individual molecular species generated in the
reaction systems. These two approaches are somewhat
interchangeable, albeit demanding different “book-keeping”,
and we make no particular distinction in what follows.
Importantly, the identifying characteristics of the nodes and

edges in a CRN (namely, the thermodynamic and kinetic
properties of all species and reactants) can, in principle, be
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Figure 1. Chemical reaction networks (CRNs) serve to connect (a)
experimental synthesis and characterization of reactive systems to (b)
ab initio characterization of individual elementary reaction steps.
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evaluated using the machinery of ab initio quantum chemistry
and statistical mechanics; for example, free energies of
molecular species can be readily evaluated using the usual
rigid-rotor/harmonic oscillator model, while reaction rates can
be accessed in the first instance via transition state theory
(TST).28−31 Importantly, these CRN characteristics enable
one to perform direct kinetic simulations starting from some
assumed initial concentrations of all molecular species; in other
words, once a CRN is fully defined and characterized it can be
used to predict the ensemble-level emergent behavior of the
system, including transient species concentrations and long-
time equilibrium product distributions. These same properties
can, of course, typically be observed by observations of the
corresponding experimental setup; in other words, the concept
of the CRN, and its generation by ab initio quantum chemistry,
provides a direct link between computation and experiment.
So, as noted above, complex chemical reaction set-ups

(spanning from highly controlled, laboratory-based reaction
set-ups to unobserved reactions occurring on ice grains in
interstellar space)16,17,32−37 can in principle be mapped onto
CRNs. However, now consider turning this viewpoint on its
head; if we can directly generate a CRN describing and
characterizing the full set of reactions and chemical species in
some reactive system, then we would have an in silico method
which is capable of predicting how complex chemical systems
will evolve. In such cases, CRNs parametrized by ab initio
quantum chemistry then serve as “virtual reaction vessels”
which can be used to mirror and predict experimental studies
of complex chemical reaction systems (Figure 1) before the
potential effort and expense of real-world experimentation.

However, this challenge demands new, more efficient, and
more accurate simulation tools to provide automated work-
flows capable of delivering computational-based insights into
experimental CRNs; as we describe below, this offers a wide
range of emerging opportunities for computational chemists.
The generation of thermodynamic and kinetic data for all of

the elementary chemical reactions in a CRN using methods
based on ab initio quantum chemistry is itself an enormously
active field of research; several relevant challenges in this area
are discussed later. However, the focus of this article is instead
o n a u t o m a t i c r e a c t i o n d i s c o v e r y
(ARD)7,9,10,12,25,27,32,38−41,41−50 methods that can be used to
“grow” a CRN (namely, the set of all reactive chemical species
and the allowed chemical reactions).
After emerging several decades ago, somewhat in parallel

with computational methodologies for organic retrosyn-
thesis,11,24,51−58 computational ARD is an increasingly useful
approach to address challenges in molecular reaction design
and development; a number of excellent articles have focused
on ARD from the viewpoint of retrosynthesis and chem-
informatics, wherein molecular structural detail is often
replaced with string-based representations of molecular species
and reactions.11,24,51,53,56,59−62 In contrast, the past decade or
so has seen a rapid growth in ARD methodologies which focus
on using molecular structural models, in combination with ab
initio quantum chemistry, as the drivers for CRN generation
and characterization. For the purposes of this articles, we note
that such approaches broadly fall into two different categories:
(i) those that employ molecular dynamics or related sampling
methods to generate new molecular species and (ii) those that

Figure 2. Overview of (a) PES-driven ARD schemes (e.g., AFIR, ab initio nanoreactor, SHS, and TSSCDS), and (b) graph-driven ARD schemes
(e.g., single- and double-ended graph-driven sampling [SEGDS, DEGDS respectively], NetGen, RMG, YARP).
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use discretized molecular representations, in the form of
adjacency matrices or bond-order matrices (generically
referred to as graphs here), to enable generation of CRN
components (Figure 2).
Within the first class of methods, a particularly well-known

example is the ab initio nanoreactor approach developed by
Martinez and co-workers.40,63 Here, a simulation cell
containing a set of initial molecular reactants is modeled
using ab initio molecular dynamics, with periodic application of
an artificial “piston” being used to drive molecules together in
order to form new product species; mapping and tracking
unique molecular species allows one to subsequently build up a
picture of the sampled CRN. This approach has been applied
to a wide range of different molecular systems, ranging from
the classic Urey−Miller-type system (describing the emergence
of complex organic molecules from simple precursors)64 to the
decomposition of energetic materials such as nitromethane.65

A different approach to integrating molecular dynamics (MD)
simulations and CRN generation is provided by the “transition
state search using chemical dynamics simulations” (TSSCDS)
method of Martińez-Nuñ́ez;39,43−46 here, high-energy (or high-
temperature) MD simulations (employing semiempirical or ab
initio PESs to enable correct description of electronic structure
changes during chemical reactions) are initiated for a given
molecular species (or collection of species), driving the making
or breaking of chemical bonds. Unique species and reactions
are subsequently catalogued in order to iteratively build a
CRN. Other examples of ARD methods which fall into this
category include the artificial force induced reaction (AFIR)
method,49 in which molecular species are driven together
during geometry optimization on a potential energy surface
(PES) which incorporates an effective potential term that is
increasingly biased toward molecular close contacts. The
elegant simplicity of AFIR means that it has been widely
applied to a range of different reaction examples, including
selected steps in homogeneous catalytic reaction cycles.66,67

Like AFIR, the scaled hypersphere searching (SHS)47,50

method also introduces a distortion of the underlying PES,
this time in the form of an effective force that quantifies PES
anharmonicity (and hence likely low-barrier reaction routes);
this approach has been fruitfully used to investigate molecular
systems (such as formaldehyde, propyne, and alanine) and has
also been adapted as the basis of a metadynamics sampling
scheme for high-dimensional systems.68 More complete
reviews of these methodologies can be found else-
where.10,12,47,48

Our own work in this field22,32,69−73 and the focus of this
article is exclusively on methods which fall into the second
CRN generation category (Figure 2), being based on concepts
of molecular graphs. As described below, graphs such as
adjacency matrices offer a compact description of the chemical
bonding in a collection of molecules; put simply, such graphs
identify which atoms are bonded and which are not. Given this
concept, chemical reactions can then be viewed as matrix
operations which change the bonding graph, resulting in new
bond arrangements and new chemical species; as such, CRNs
can be built from sequences of bonding-graph changes to
quickly enable exploration of chemical space. However, using
such graph-based strategies, it is clear that the magnitude of
sampled chemical reaction space can quickly become unwieldy
as the size of the system grows; in the simplest case of a binary
bonding graph, there are 2N(N−1)/2 possible bonding arrange-
ments. So, one key difference between many graph-based

CRN-generation methods is the approach taken to truncate the
growth of the CRN in order to limit exploration to the region
of chemical interest. In the well-known reaction mechanism
generator (RMG), a set of reaction templates (describing
allowed chemical reactions) are iteratively applied to a set of
reactant species to generate a growing CRN; here,
experimentally parametrized thermodynamic (e.g., enthalpy
changes) and kinetic parameters (e.g., rate constants) are used
to provide initial assessments of CRN characteristics, providing
a route toward monitoring kinetic convergence of the CRN as
a function of reaction set.3,38,58,74−76 The work of Zimmerman
and co-workers offers a different strategy;41,42 here, allowed
connectivity changes (typically user-defined given a target
CRN problem) are used to generate product species for a
given set of reactants, and subsequent automated ab initio
schemes for robust MEP and TS characterization (e.g.,
growing-string method)77 are used to build up a quantum-
chemical-based picture of a CRN within the region of chemical
space defined by the allowed connectivity changes. As a further
example, the work of Kim and co-workers23,24,78 employs a
sequence of steps integration molecular fragmentation,
formation of new bonds between different fragments using a
basin-hopping scheme, followed by postscreening sorting of
different molecular species and conformers. The resulting
CRN can be subsequently explored and characterized using
graph-based shortest-path schemes to identify plausible
reaction pathways. Furthermore, the approach developed by
Savoie and co-workers,79 and implemented in “Yet another
reaction program” (YARP), is to enumerate reaction products
based on graph-driven changes to connectivity, followed by fast
screening based on semiempirical methods to simplify the
resulting CRN and identify plausible reaction channels. Finally,
we note here the recent report of the Chemoton software by
Reiher and co-workers,80 which integrates connectivity-based
reaction generation, conformational sampling, and novel TS-
finding algorithms to provide a highly automated workflow
merged with ab initio quantum chemistry calculations. There
are clear similarities among these, and other, connectivity-
based schemes, yet the continued emergence and refinement of
these strategies demonstrates that there is scope for further
development and optimization for addressing challenging
technological problems across wider-ranging fields from
combustion chemistry, chemical degradation, atmospheric
chemistry, and interstellar chemistry.
Our recent research similarly employs molecular graphs to

drive exploration of chemical reaction space in either a “single-
ended” (known reactants only) or “double-ended” (known
reactants and target product species) fashion; following earlier
reports of a CRN-generation method based on Hamiltonian
dynamics,70,73 we have subsequently expanded our approach to
use generic reaction templates and to enable targeted
generation of CRNs and reaction mechanisms which
definitively lead to target products.32,71,72 In the following
sections, we give a brief overview of these simulation
techniques and highlight several recent applications. Based
on our experiences to date, we also highlight a number of
common challenges in these calculations, before concluding
with some new possibilities for computationally discovered
CRNs.

■ THEORY
In this section, we outline the key computational methods
which we have employed in graph-driven ARD, including both
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Hamiltonian based dynamics schemes, and single- and double-
ended CRN generation methods; further details are given in
the references provided.
Molecular Graphs. The key driver underlying several ARD

algorithms, including our work described below, is the
molecular graph defining the connectivity (i.e., bonding) of
atoms in a system under investigation. For an N-atom system, a
molecular graph is generically defined as an N × N matrix in
which the off-diagonal elements Gij identify the bonding
characteristics between atoms i and j; the diagonal elements Gii
may, optionally, define characteristics of each atom (e.g.,
atomic number), although this is often not a requirement.
As noted above, several ARD methods have been proposed

and employed that are based on the concepts of molecular
graphs; depending on the exact context and method, these can
be defined in different ways. For example, the method used in
the YARP code79 is based on using bond-order matrices, where
the element Gij identifies the bond-order (e.g., Gij = 1 for
single-bonds, Gij = 2 for double-bonds); such an approach
readily enables one to keep track of atomic valences. In our
work,22,32,69−73 we use the simpler adjacency matrix, defined as

G
r r

r r

1, if

0, if
ij

ij ij

ij ij

cut

cut
=

>

l
m
oooo
n
oooo (1)

Here, rij is the distance between atoms i and j in a given
molecular structure, and rijcut defines a cutoff distance. As such,
Gij defined in eq 1 simply identifies whether or not two atoms i,
j are bonded or not, as judged by a standard geometric
definition. Typically, we define the cutoff distance as rijcut =
α(Ri + Rj), where Ri,j are the covalent radii of the respective
atoms and α is a parameter to build in some flexibility in
accounting for bond lengths in different molecular systems
(typically α ≃ 1.1−1.2). Examples of such graphs, calculated
for the H2CO system, are shown in Figure 3, where the
discretization of chemical space by graphs is emphasized.
Molecular graphs of the form given in eq 1 offer a number of

computational advantages in forming the basis of ARD
schemes. For example, such matrices offer a straightforward
discretization of chemical space: Differently bonded chemical
species correspond to different bonding graphs, enabling
simple comparison and enumeration of different molecules in a
“virtual reactor”. From a computational viewpoint, graphs have

the additional advantage of generally being sparse (with large
numbers of zero matrix elements) and easy to manipulate or
interrogate using well-developed graph processing algo-
rithms.81

In the ARD algorithms developed in our recent work, we use
the discrete space provided by molecular graphs to drive
exploration of chemical reactions and hence generate CRNs.
Specifically, we typically begin with an input set of reactant
molecules (which depend on the problem at hand), defining an
initial bonding graph G; subsequently, we generate sequences
of reactive events (defined via reaction classes as defined
below) in order to modify the chemical bonding (and hence
graph G) in the system. This generation of new graphs can be
done in several different modes, typically single-ended
generation (in which only the initial reactants are defined70,73)
or double-ended generation (in which both reactants and
target products are defined).32,71,72 For all of the new graphs
generated, we can obtain corresponding atomic coordinates
using a “back transformation” enabled by an artificial PES
referred to as a graph-restraining potential (GRP), as described
below.
Before discussing the details of our ARD approaches, it is

worth noting that methodologies based on graphs have
associated disadvantages too. Perhaps most importantly,
graphs reduce a 3D molecular structure to a discretized 2D
representation; as such, all information about molecular
conformation is lost. This is highlighted in Figure 3c, where
the cis and trans conformers of HCOH are shown as
corresponding to different regions of conformational space,
but the same region of the discretized graph space. For simple
molecular reactants, or systems in which reactive molecules are
generally rigid (such as many organometallic complexes), the
limited conformational flexibility means that this simplifying
approximation can often be overlooked. For more complex
molecular reactive species, conformational flexibility will
inevitably force the user to decide how to treat this. In this
regard, the two main approaches can be described as either (i)
using sampling strategies such as MD or Monte Carlo, in
combination with standard empirical force-fields (where
applicable) to generate all unique and relevant molecular
conformations, and include each conformer as a separate node
in the generated CRN or (ii) using a single conformer
(typically a local minimum on the PES or the globally minimal
conformation on the PES where available) as a representative

Figure 3. Panels (a−c) represent different regions of chemical space, naturally discretized by defining the bonding graphs shown; for example,
panel (a) represents the configurational space of all systems which have the bonding graph shown (corresponding to formaldehyde). In panel (c),
we note that the bonding graph shown describes both cis and trans isomers of HCOH; as such, simple bonding-graph schemes fail to distinguish
conformational isomers and may require further postprocessing to account for conformational differences.
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example of a given molecular reactant. The former approach is
obviously more computationally demanding (requiring gen-
eration of possibly large numbers of conformers and
assessment of their relative energetics), whereas the latter
can potentially introduce uncertainty in the accuracy of
calculated thermodynamic and kinetic features in the CRN
(by ignoring the thermodynamic and kinetic role of
interconversion between different conformers or conformer-
specific reactivity). As discussed below, the challenge of
conformational flexibility remains an unsolved problem; it
seems likely that the solution would be strongly system-
specific.
Reaction Classes and Valence Constraints. As well as

defining the connectivity of a given molecular structure, graphs
can also quite straightforwardly be employed to define reaction
classes (also known as reaction templates or reaction
families)57−59,70 and their operation on a given molecular
structure. In our approach, in common with previously
demonstrated schemes noted above, we adopt the strategy of
defining an allowed set of chemical reactions by defining the
corresponding bond-change matrices associated with each
reaction class (Figure 4). We note that these reaction classes
can be defined quite generically; for example, as shown in
Figure 4, atomic association/dissociation reactions can be
defined by 2 × 2 matrices describing the connectivity before
and after the reaction. Similarly, diatomic dissociation
reactions can be defined using 3 × 3 generic matrices, again
describing bonding before and after (alternatively, one can
define a single “bond-order change” matrix by defining the
product and reactant reaction class graphs). In such a way,
these generic reaction classes can be applied to any set of
atoms that match the target pattern in the initial bonding
matrix. For the case of two-atom reactions, it is clear that only
two possibilities exist here (i.e., association and dissociation):
For three- and four-atom reactions, the size of the reaction
class library will obviously grow; however, it is straightforward
to introduce “chemical knowledge” into the reaction class

library, for example, by removing selected reaction classes that
might be expected to have a low probability for a given
chemical system.
Once reaction classes are defined, these reactions can then

be “applied” to a given reactant structure, resulting in the
generation of new product species with altered bonding
matrices. As noted above, this approach forms the basis of a
number of successful computational strategies for autogenerat-
ing CRNs and for discovering new reactions; the different
schemes that are based on graphs differ primarily in either the
approach taken to generate CRNs (for example, using either
complete enumeration of all reaction outcomes79 or focusing
on more defined regions of reaction space),70,73 as well as the
different strategies used to characterize CRNs (for example,
using parametrized thermodynamics3,38,58,74−76 or ab initio
energy calculations).41,42,77 Again, details for the various graph-
driven strategies can be found in the original reports and recent
excellent reviews.10,12,47,48

However, a common theme, and one of the useful strengths
associated with a graph-based strategy, is the ability to quickly
identify “nonchemical” reaction products that exhibit non-
physical chemical bonding patterns. An example of this is
shown in Figure 4; assuming that we had judged that the
dissociation of a lone oxygen atom from formaldehyde to be a
very unlikely event (for example, based on chemical intuition
or previous knowledge of bond energetics), then any reaction
that results in an oxygen coordination number of “zero” can be
immediately discounted during the ARD calculation. This
“reaction rejection” can be readily achieved using the bonding
matrix of the product system, without having to perform ab
initio energy evaluations or other expensive assessments.
Finally, it is worth noting that the discretization of chemical
reaction space provided by bonding matrices also enables other
rejection schemes to be readily incorporated; for example, it is
straightforward to focus on generating reactions which only
involve a defined subset of “active” atoms in a given reactant, a

Figure 4. Overview of reaction class definitions, as employed in our recent work.22,32,69−73 The left-hand panel shows the initial and final bonding
graphs for three representative two- or three-atom reactions, namely, (1) dissociation, (2) association, and (3) diatomic dissociation. Here, the
bonding matrices show the connectivity for atoms (i, j) or (i, j, k) before and after a given reaction is applied to a reactant set; by selecting a
reaction class and related atomic indices, one can automatically induce reactions on a system’s bonding graph to generate new products. The right-
hand side shows illustrative examples of this scheme. Starting from formaldehyde, application of reaction class (1) to atoms (i, j) = (1, 3) results in
a valid product structure (assuming that the allowed valence range of hydrogen includes zero). Similarly, applying reaction class (3) to atoms (i, j,
k) = (1, 3, 4) results in dissociation of molecular hydrogen, which is again considered here to be a valid structure. However, applying reaction class
(1) to (i, j) = (1, 2) would here be rejected as a valid reaction, assuming that the allowed valence range of oxygen does not include zero. These
examples illustrate how application of generic reaction classes, combined with standard valence constraints, can be used to quickly build a CRN.
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feature which is more challenging to achieve using MD-based
schemes.
Graph-Driven Sampling Schemes. We now highlight

how, based on the concepts of bonding graphs and reaction
classes, we have in the past few years explored several different
computational schemes which are aimed not at explicit
enumeration of all molecular components in a CRN, but
rather toward generating more tailored mechanistic hypotheses
for specific reactive (or catalytic) systems.
Dynamic Strings. In our initial work,70,71,73 we showed how

ARD can be mapped onto the molecular dynamics of a
“dynamic reaction string” connecting configurations that are
restrained to regions of chemical space defined by endpoint
bonding graphs. Here, we define an effective Hamiltonian that
describes the kinetic energy and PES of such a restrained
reaction path, as follows:

H
m

m
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p r a b G G
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p b r r a G G

( , ; , ; , )
2

2 2
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This classical Hamiltonian describes a reaction string
comprising a total M = P + 2 configurations in the (3Na −
6)-dimensional space of a given reactive system containing Na
atoms. The two endpoints of the string (rr, rp) are connected
by a series of P intermediate configurations, in a similar
manner as in the familiar NEB method.82−87 In our work,
rather than defining the P intermediate configurations in the
(3Na − 6) Cartesian coordinates of the system, we instead
chose to use a set of Fourier coefficients a that are themselves
associated with a set of conjugate momenta b; our reason for
this choice at the time was based on seeking improved stability
of time-evolution in the intermediate images.70,73 The
endpoints also have associated momenta (pr, pp); as such,
the first three terms in eq 2 represent the total classical kinetic
energy of the endpoints and the intermediate Fourier
coefficients (which are associated with a fictitious mass μ).
The PES associated with eq 2 is
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Here, the first two terms are the PES values at the string
endpoints; the third term is the corresponding PES values at
the intermediate images, in addition to a NEB-like spring term
that helps avoid “kinks” along the reaction path. The positions
of the intermediate images are derived from the endpoint
coordinates and the set of Fourier coefficients a.70,73

The final two terms in eq 3,W(rr; Gr) andW(rp; Gp), define
GRP functions. This empirical function lies at the heart of
several of our recent studies; in short, this PES termW(r; G) is
designed to be a minimum only if the configuration r is
definitively consistent with the given bonding graph G. If the
bonding matrix associated with the current configuration r
does not match that in G, then W(r; G) provides a force that
drives r toward regions of space in which the bonding matrix
evaluated from any configuration matches the target bonding
matrix G.

With the definition of the classical Hamiltonian of eq 2, it is
possible to derive equations-of-motion describing the time
evolution of the reaction endpoints and the intermediate
images (or Fourier coefficients). The PES of eq 3 ensures that
the endpoints are restrained by the GRP to regions of
configuration space that are consistent with the bonding graphs
Gr and Gp, whereas the intermediate images will roughly
approximate an MEP connecting the two endpoints. As such,
eq 2 does not inherently sample chemical reactions; for a given
fixed pair of endpoint graphs (Gr, Gp), the Hamiltonian
enables sampling of the configuration space of a reaction string
connecting endpoint configurations consistent with the defined
graphs. So, to enable sampling of chemical reactions and MEP-
like reaction strings, we use a series of periodic “hops” in the
graph space; here, one of the predefined reaction classes
described above is selected, as well as a corresponding set of
reactive atoms, and one of the endpoint graphs is then updated
to reflect this change. This change in endpoint graph must be
consistent with atomic valence constraints, as described above.
From eq 2, it is clear that forces from the GRP terms act to
push the configuration into the region of space consistent with
the new bonding graph. This cycle of MD sampling and
periodic endpoint graph changes is repeated for a range of
different initial molecular reactants, for example, incorporating
new species generated in earlier trajectories. The result of this
simulation approach is generation of a CRN describing the
sampled molecular species, as well as good initial guesses for
the MEP connecting different reactants and products (i.e.,
snapshots of the reaction string). This information can then be
used in standard schemes to evaluate thermodynamic and
kinetic properties for all generated reactions.
This MD-based approach is naturally quite computationally

demanding, requiring one to perform string-based MD
simulations on PESs which enable treatment of bond-making
and -breaking processes.70,73 To address this challenge, we
have previously employed fast semiempirical or parametrized
PESs in these MD simulations, for example, using density
function tight-binding (DFTB)88 or the ReaxFF force-field.89

Single- and Double-Ended Graph-Driven Sampling. The
Hamiltonian-based system described above enables one to
generate and characterize quite complex CRNs; as shown
below, applications to systems such as homogeneous catalysis
by organometallic complexes illustrates the potential of this
strategy. However, the requirement to perform many PES
evaluations at each MD time step (i.e., for the M images in the
reaction string) places significant computational demands on
this strategy, even using faster semiempirical methods.71 In
addition, depending on how frequently graph moves are
performed, the reaction string system can spend a considerable
amount of time simply sampling configuration space, rather
than performing the chemical reaction space sampling required
for CRN generation.
To address this computational expense, our recent work has

taken the approach of replacing the reaction string with a single
representative configuration defined by a reactant graph
Gr;

22,32,72 starting from this configuration, repeated application
of randomly selected reaction classes on randomly selected
subsets of atoms (subject to user-defined atomic valence
constraints) generates sequences of bonding graphs which
represent the chemically accessible space of the system. For
each new graph that is generated, a corresponding set of
atomic Cartesian coordinates can be generated by performing
optimization under the action of the GRP, starting from the
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previous system configuration; this approximate new structure
can be subsequently optimized (e.g., using semiempirical
methods) to generate accurate molecular structures. Finally,
unique reactant/products pairs can be cataloged to build up a
CRN, and the initial/final configurations generated at each
graph move step can be used as endpoint configurations for
further MEP and TS-finding calculations. This general strategy,
of iteratively generating new products using walks in chemical
graph space, is common to a number of different graph-based
strategies, with differences typically observed in the definitions
of the relevant graphs, generation of real-space configurations,
and imposition of molecular valence and bonding constraints.
In the following, we will refer to this strategy as single-ended
graph-driven search (SEGDS; Figure 5).
However, while variants of SEGDS-type schemes have been

demonstrated previously,3,7,10,23,24,38,41,42,58,74−76,78,79 an im-
portant underlying challenge in such methods is the sheer scale
of the chemical search space (as also discussed later). For even
a moderately complex chemical system, containing a few tens
of atoms, the number of possible unique reaction products
grows dramatically with system size, even if one employs
typical valence-constraint schemes to remove chemically
irrelevant molecules. Employing bond-based schemes to
focus attention on reactions involving “few-bond” changes
(for example, reactions that only break/form a maximum of
two bonds in a given elementary step)79 further helps limit the
chemical reaction space, but the fact remains that complete
enumeration of all relevant reactions in a complex system
might often be beyond the scope of current computational
power.
However, it is worth noting that a common goal in ARD

simulation studies is often not to generate or fully enumerate
an entire CRN but instead to seek out mechanisms which lead
from well-defined reactants to target products. To answer such
mechanistic questions, which are common in important fields
ranging from organic synthesis to organometallic catalysis,
single-ended approaches may not be necessary to answer the
question at hand; instead, a more focused approach is required
for generating “mechanistic hypotheses” given target reactants
and products.
To deliver this goal, we have modified SEGDS to create a

double-ended graph-driven sampling (DEGDS) algorithm; the
aim here is to take as input a set of reactant species and a target
product molecule, as well as to identify entire mechanisms (i.e.,
sequences of reaction classes and reactive atoms) which
connect these structural endpoints.32,72 The key to DEGDS is
to cast the problem of mechanism proposal as an optimization

problem that can be readily addressed using standard discrete
optimization strategies. First, following the discussion of
reaction classes and reactive atoms in section, we note that a
mechanism can be straightforwardly encoded as a sequence of
integers that defines (i) the reaction class at each step in a
mechanism and (ii) the indices of those atoms that participate
in each reaction step. As illustrated in Figure 5, starting from
some input reactants (with bonding graph Gi), the result of
operating with such a reactivity sequence is a new graph G
given by

G G R I( )r
i

N
m i

i
1

( )
r

= +
= (4)

Here, Nr elementary steps is the maximum allowed number of
elementary steps in a proposed reaction mechanism and m(i)
labels the elementary reaction class occurring at reaction step i.
Ii labels the set of atomic indices participating in reaction step
i. Finally, Rm(i) denotes the graph operation performed by
reaction class m(i), as illustrated in Figure 4. This sequence of
reaction classes and reactive-atom indices provides a
convenient discrete space defining a mechanism.
In order to seek out mechanisms that definitively lead to

formation of a known target product, we define an
optimization function F that is constructed such that it is
exactly zero when a molecule in the graph generated by the
operation of the current reaction/atom sequence matches the
target product molecule; as such, to identify the set of
reactions and associated atoms that lead from reactants to
products, we simply perform optimization of the integer
sequence comprising the set of reaction classes m(i) and
reactive atomic indices I(i), using F as our cost function. This
can be achieved using any number of different optimization
algorithms; to date, we have exclusively used simulated
annealing (SA).32,72

The definition of F is somewhat flexible, and to date we have
used two different approaches. In our initial simulations using
DEGDS, we simply defined F using element-wise comparison
between the bonding graphs for the target product and that
produced by applying the sequence of current reaction classes
and reactive indices:

F G G( )
j i

N

ij ijP,
2

a

=
> (5)

This simple least-squares function will obviously be zero when
every bonding-matrix element in G matches that in the target
product graph Gp. However, this cost-function has important

Figure 5. Comparison of (a) SEGDS and (b) DEGDS. In the single-ended scheme, repeated application of reaction classes to different sets of
reactive atomic indices generates a large number of different structures (shown here as circular nodes) connected through elementary reaction steps
(shown here as connections); characterization of each generated reaction using, for example, ab initio quantum chemistry or AI/ML, ultimately
enables chemical insight. In the double-ended scheme, plausible mechanisms are generated that definitively connect input reactants to a target
product; repeated generation and characterization of different mechanisms enables one to home in the “most likely” reaction mechanism based on
thermodynamic and/or kinetic grounds.
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disadvantages, particularly for complex reaction systems. In
particular, it requires one to unambiguously define the target
bonding pattern of all molecules in the target product system,
and it also neglects to account for atomic permutational
invariance. For example, in complex many-molecule systems
such as the interstellar reactions considered below,32 defining
the bonding pattern of all molecules in the product set is not
relevant; one might only interested in formation of a particular
given species, without particular regard to the rest of the
product species. Furthermore, for complex reactive systems,
there will be a large number of different mechanistic
possibilities that might form a given target product; for
example, in the interstellar reactions discussed below, there are
different routes to form benzene using different carbon and
hydrogen atoms from different reactant species. However, the
cost function of eq 5 does not correctly reflect this
permutational symmetry and instead requires that the indices
of atoms comprising the final product are known in advance;
mechanistic proposals that form the correct target product, but
from a different set of index-labeled atoms from the input
target product, would be flagged as having F > 0 (and hence
not identified as plausible mechanisms) because eq 5 does not
respect the fact that a given target product could potentially be
formed from different subsets of reactant atoms and molecules.
To address these issues, we have recently modified our initial

strategy to employ optimization functions of the form:

F n n n nmin ( ) ( ) 1 ( )k
k

i

n

i
k

i
k

p
1

2= + [ ]
=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
(6)

Here, when calculating the optimization function Fp for a given
product bonding-graph G, we scan over all product molecules
k in the system (as can be readily identified from the bonding
graph itself). The first term in eq 6 is only evaluated when
molecule k has the same number of atoms (nk) as that in the
target product structure (n). When this condition is met, the
“effective distance” between molecule k and the target product
molecule is given as the sum of squared-differences between
the eigenvalues of the mass-weighted bonding graphs. When
the number of atoms in k is not the same as that in the target
product, we simply assign a large value Fp = Δas a penalty
term. The final value of Fp is the minimum value of the
calculated terms among the set of molecules in G. This cost
function has the significant advantage that it places emphasis
on seeking out mechanisms that form a single user-defined
product structure, without regard to the remainder of the
reaction system. In addition, Fp is permutationally invariant to
atomic indices, such that the target product can be formed by
any combination of atoms (as long as they have the correct
desired atomic masses).
Once a mechanism with F = 0 (or Fp = 0) has been

obtained, atomic coordinates for all intermediate structures can
be generated using the GRP, as employed previously in our
Hamiltonian-based scheme. With atomistic models of all
reaction intermediates in hand, further quantum-chemistry-
based analyses can be performed, such as evaluating the energy
changes and activation energies at each reaction step. By
comparing these physical quantities across a large number of
proposed mechanisms, different mechanistic proposals can be
identified as being more or less likely; furthermore, DEGDS
can also be used to generate a CRN in the same way as

Figure 6. Outline of graph-based ARD study of cobalt-catalyzed hydroformylation of C2H4. The assumed reactants are shown at the top, alongside
the expected products. ARD simulations based on our proposed dynamic string method73 generated 32 different molecular structures contained
within the catalytic cycle; some of the most relevant structures are shown here, labeled 1−12. Those structures shown in solid circles (1−8) are the
key intermediates and products of the expected Heck−Breslow reaction mechanism, whereas representative side products (9−12) are shown in
dashed-line circles.
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SEGDS, although the resulting CRN structure would be
naturally biased toward the region of chemical space that
contains structures along the paths to the target product.
Finally, we note that it is, in principle, possible to modify the
cost function F to account for the thermodynamic and kinetic
characteristics of different mechanisms, driving the search for
“more plausible” mechanisms rather than ranking proposed
mechanisms in a postprocessing step. This alternative approach
requires fast methods of assessing the energies and activation
energies of different intermediates and reactions, respectively,
for which AI/ML methods described below may prove useful;
work in this direction is ongoing.

■ APPLICATIONS
Here, we highlight several recent applications of the methods
above to ARD; emphasizing our interest in reaction
mechanisms and chemical dynamics, we describe applications
of the dynamic string and DEGDS methods to complex
reactive systems, before highlighting ongoing work on
multicomponent reactions and protein folding mechanisms.
Catalysis. A key target for ARD simulations is the analysis

of catalytic reactions in homogeneous or heterogeneous
systems; given the enormous importance of catalysis across
both academic and industrial chemistry settings, this emphasis
is no surprise. As such, a number of ARD studies have
investigated CRNs for catalytic species, both homogeneous
and heterogeneous;3,12,15,22,43,67,70,71,90−99 as described below,
the rise of AI/ML techniques in catalyst analysis, coupled to
ARD, is a growing area.90,94,97,100−102

The hydroformylation of small alkenes, such as ethene and
propene, by cobalt carbonyl complexes has served as a useful
benchmark system for several different computational ARD
schemes,23,43,66,103 including our own work.71,73 In this
reaction (Figure 6), HCo(CO)4 serves as a catalysis for
hydroformylation of alkenes into aldehydes; for example, a
number of studies have focused on conversion of ethene into
propaldehyde. This reaction follows the well-known Heck−
Breslow mechanism,104 in which HCo(CO)4 loses a CO ligand
to become HCo(CO)3; the ethene subsequently coordinates
to Co and inserts into the Co−H bond. Addition and insertion
of CO, following by coordination and dissociation of molecular
hydrogen, then leads to elimination of the aldehyde product
and the regeneration of HCo(CO)3. From the computational
point-of-view, this reaction is quite useful to study. The
mechanism is well-studied,103,105,106 and an experimental
reaction rate law is known,103,107 enabling direct verification
through simulations of the constructed CRN. Furthermore, the
system is small enough that DFT calculations can be readily
performed for elementary reactions steps, while at the same
time semiempirical methods can be used to somewhat reliably
enable PES exploration during application of ARD schemes.
Our initial investigation of this system,73 used the “dynamic

string” approach described above to generate a CRN
describing the hydroformylation of ethene by HCo(CO)4
(Figure 6). Here, we employed DFTB as the underlying PES
for our string calculations, generating an initial CRN
comprising 31 unique chemical structures connected by 32
chemical reactions. For all reactions, the reactants and
products were geometry-optimized by DFT; subsequently,
Hessian matrices were calculated, enabling evaluation of
relative free energies within the standard rigid-rotor/harmon-
ic-oscillator partition function approximation. Furthermore, for
each reaction in the generated CRN, a representative snapshot

of the dynamics string was used as a starting point for MEP
refinement using NEB;82−87 following this, the TS for each
reaction was optimized and characterized, enabling evaluation
of activation energies and corresponding rates (using
TST).28−31

As shown in Figure 6, the resulting hydroformylation CRN
contains all of the structural intermediates and elementary
reactions one might expect to see based on the Heck−Breslow
mechanism. In particular, structures 1−8 in Figure 6 represent
the key intermediates in the Heck−Breslow mechanism,
forming aldehyde product 8 (we note that “spectator”
molecules in each structure are not illustrated for clarity).
However, it is also worth noting that a number of side
reactions are also generated during the course of our dynamic
string simulations, such as structure 9 (formed by insertion of
CO into the Co−H bond of HCo(CO)4) and structure 10
(formed by addition of H2 to HCo(CO)3); furthermore, we
note that other possible products, such as ethane (structure
12), are also generated within the CRN, highlighting the
possibility to explore “off-path” reactions in catalytic cycles.
Following complete characterization of all molecular

structures and reaction paths, we subsequently performed
microkinetics simulations using Gillespie’s stochastic simu-
lation algorithm (SSA).108−110 These simulations, performed
under experimentally realistic conditions of species concen-
tration and temperature, enabled evaluation of the rate of
formation of the product aldehyde species; performing a series
of independent SSA simulations for a series of different
concentrations of each reactant species (i.e., HCo(CO)4, CO,
H2 and C2H4) enabled identification of the overall rate law for
the catalytic cycle. Our calculated rate law was broadly in line
with previous experimental observations111 and theoretical
predictions,103 for example, demonstrating and inverse
dependence on the square of the concentration of carbon
monoxide (and we note that these kinetics simulation results
were later further refined by Martińez-Nuñ́ez).43 Furthermore,
the microkinetics simulations were also extremely useful in
providing much clearer insight into the mechanism, principally
by enabling calculation of the reactive flux through each
reaction in the CRN; such simulations were also used to
identify a “minimal” CRN that was found to contain the
expected Heck−Breslow catalytic cycle. Overall, therefore,
these results serve as a clear demonstration of the power of
ARD simulations in linking the worlds of quantum-chemical
calculations to experimentally observable kinetics.
As a final comment, we note that we have subsequently

investigated the same hydroformylation reaction using
DEGDS.71 As noted above, DEGDS seeks a reaction path
connecting reactants (in this case, the catalyst plus reactants
H2, CO and C2H4) and products (in this case, the
reconstituted catalyst and the aldehyde product). In our
simulations, we generated 47 candidate reaction mechanisms
and subsequently screened them using DFTB calculations;
here, we evaluated two different descriptors quantifying the
“roughness” of the reaction energy landscape for every
mechanism, enabling a rough ranking of different proposals
on the assumption that avoiding formation of intermediates
with large energetic change relative to the previous step is
desirable in catalytic processes. Closer investigation of the
fewest “best ranked” mechanisms (for example, using NEB
calculations for each reaction step in the proposed mechanism
to identify approximate activation energies) then revealed that
the expected Heck−Breslow mechanism was indeed identified
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in the set of “best” candidate mechanisms; these results
therefore demonstrate how a combination of ARD simulations
and semiempirical energy evaluations can allow fast initial
assessment of candidate reaction mechanisms in complex
systems, and current work is ongoing to exploit this strategy in
broader catalyst design studies.
Interstellar Chemistry. As a further application of our

DEGDS scheme for mechanistic proposal, we have recently
studied the formation of benzene in the interstellar medium.32

The formation of complex organic molecules (COMs) in the
interstellar medium and in planetary atmospheres is a diverse
and rapidly expanding field of interest that draws heavily on
understanding the chemistry of organic radicals, neutral
molecules, and ions;2,16,33−35,37 in addition, reactions on
surfaces are increasingly studied as sources of COMs in
interstellar dust clouds.17 The formation of benzene and higher
polycyclic aromatic hydrocarbons (PAHs) is particularly
interesting, given the challenges in understanding the origins
of such complex species and the potential for more broadly
understanding the emergence of complex chemistry in hostile
environments.16,35,37

In our DEGDS-based ARD study, we focused on
investigating the formation of benzene (C6H6) from a broad
variety of smaller precursor molecules such as C2H, C2H2,
C4H3, and C4H6. The formation of benzene in the interstellar
medium has been previously postulated to result from different
pathways, including ion−molecule reactions and barrierless

radical reactions.16,18,33,112−114 As such, this system, with its
diverse set of possible reactants and reaction mechanisms,
serves as another useful tool to investigate the performance of
ARD methods.
In our DEGDS simulations of benzene formation, we

generated 2230 different candidate reaction mechanisms
forming benzene; these simulations used different sets of
initial small-molecule reactants, with the largest systems
studied containing 96 atoms and eight different reactant
species. As in our DEGDS study of hydroformylation, we
prescreened the plausibility of all mechanisms by calculating
descriptors quantifying the energetic “roughness” of each
reaction mechanism. In addition, given the supposed low-
temperature environments (∼10 K) in which the relevant
benzene formation paths occur in the interstellar medium, we
also focused our attention on “barrierless” mechanisms by
ignoring reaction mechanisms with high-energy intermediates
relative to reactants. The ultimate outcome of this screening
process was the identification of around 12 unique mechanisms
that formed benzene from different sets of reactants. The
elementary reaction steps in each proposed mechanism were
then subject to NEB MEP refinements and TS identification at
the DFT level.
Figure 7 illustrates four of the key mechanisms identified

from this ARD/screening strategy. Importantly, we did indeed
identify a barrierless reaction mechanism that formed benzene
by addition of C2H to trans-1,3-butadiene, followed by ring-

Figure 7. Four representative reaction mechanisms forming benzene from different initial reactant species, as identified in DEGDS simulations.32

Mechanism (a), discovered by our ARD simulations, corresponds to that previously identified based on experimental data.16
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closure, hydrogen transfer and hydrogen dissociation (Figure
7a); this is the same mechanism of benzene formation that had
previously been postulated16 based on experiments. Further
reactions (Figure 7b,c) were, after NEB refinement, ultimately
found to have small barriers to initial addition of C2H2,
precluding their further consideration as candidate reaction
mechanisms in very-low-temperature environments. Finally, we
note that mechanism Figure 7d, forming benzene from
addition of C2H and C2H2, was ultimately found to be
barrierless and to have lower activation energies than the
proposed mechanism Figure 7a. However, we also noted that
the C4H3 species formed by initial addition of C2H and C2H2
is in fact known to undergo a 1,2-hydrogen shift reaction to
form iso-C4H3; this lower-barrier side reaction was not
captured by our DEGDS simulation (which focuses on
definitive formation mechanisms, rather than broader CRN
scanning). As such, this result suggests that further work is
required to both simultaneously postulate reaction mecha-
nisms while also accounting for other plausible side-reactions;
a combination of both single- and double-ended ARD schemes
seems like a sensible compromise here. Nevertheless, the
screening and identification of the accepted mechanism of
benzene formation in these simulations is highly promising of
the potential power of these simulations, especially given the
complexity of the studied input reactant sets. As a final
comment, it is worth emphasizing that these simulations
focused exclusively on neutral−neutral molecular reactions,
whereas reactions involving charged species are also likely to
play an important role in the ISM; modifying DEGDS
simulations to account for charged species could be achieved
by different routes, for example, by explicitly accounting for
different charge states of molecular intermediates in ab initio
calculations or by introducing charge information into the
mechanism search itself; these are ongoing projects.
New Applications: Multicomponent Reactions and

Protein Folding. Finally in this section, we highlight two
ongoing projects deploying ARD (primarily using DEGDS) to
generate candidate mechanisms for complex systems; we
anticipate reporting results of these simulations soon.
First, recent work has begun to explore the challenges

associated with ARD in the context of multicomponent
reactions (MCRs).115−117 MCRs enable construction of
complex organic molecular structures through assembly of
several molecular components, typically in a “cascade” or

“domino” sequence of reactions wherein newly generated
products at each step enable new reactivity in subsequent
steps. MCRs are an increasingly fruitful route toward “green”
chemical syntheses of complex organic molecules, offering high
atom-efficiency and “one-pot” strategies that are desirable in
organic synthesis.118 Our own interest in MCRs stems
primarily from the methodological ARD challenges they afford,
as illustrated in Figure 8; here, we show a representative
DEGDS simulation for the Strecker synthesis (see, for
example, ref 119), a prototype MCR involving (in this
example) reaction of benzaldehyde with ammonia, hydrogen
cyanide and water. The mechanism of the Strecker synthesis is
well-studied; the first “sequence” in the mechanism precedes
with nucleophilic attack by NH3 followed elimination of water
and reaction with a cyanide ion, yielding an intermediate
aminonitrile species; in a subsequent sequence, protonation,
subsequent nucleophilic attack by water, and elimination of
ammonia yield the related (non-natural) amino acid. As such,
the entire sequence of elementary steps in the Strecker reaction
involves more than ten reaction steps, as well as multiple
protonation/deprotonation reactions.
Under such conditions, using computational methods to

identify appropriate mechanistic proposals is extremely
challenging. First, the large number of independent reaction
steps suggests that extensive CRN exploration is a necessity to
ensure that all appropriate intermediates and reaction
mechanisms are accessible. Second, methods based on
stochastic selection of “next reactions”, such as SEGDS and
DEGDS, struggle with these complex mechanisms due to the
sheer number of possibilities for reactivity at each reaction
step; specifically, although we have found that DEGDS can
reliably generate a mechanism forming the target product, the
stochastic selection of reactions and reactive atoms means that
the majority of the proposed reaction steps involve reactions
that are “out of sequence” in the overall mechanism. Finally,
we note that multiple protonation/deprotonation steps,
although common in organic reaction mechanisms, are
nontrivial to account for. For example, a typical valence
constraint in graph-driven methods is to enforce hydrogen
atoms to have a valence of one, but this precludes generation
of H+ during deprotonation steps, requiring instead a reaction
partner to host the errant proton. This is, of course, chemically
sensible (protons do not just walk off on their own in typical
condensed-phase chemical reactions), but the demand to

Figure 8. (a) Overview of Strecker reaction of benzaldehyde, yielding the related non-natural amino acid structure. (b) Representative DEGDS
simulation of the same reaction; although DEGDS can readily identify reactions leading from reactants to products, it is often found that reactions
are “out of sequence” in the overall mechanism, or nonrealistic intermediates, such as OH, are generated.
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incorporate proton acceptors in the reactive system further
increases complexity and hence increases the challenge of
ARD. In summary, we suggest that MCRs, such as the Strecker
reaction, stand as important challenges to computational ARD
schemes; further developments in this area could have an
impact on direct design of new MCRs in the important field of
sustainable chemistry.
Second, as a different example of how graph-driven ARD

schemes can be used to study kinetic systems, we highlight
very recent work in our group aimed at using DEGDS to fold
model proteins. For a given known protein structures, one can
calculate an adjacency matrix at the level of amino acid
residues; as a result, the same DEGDS methodology which has
been applied to different chemical reaction systems can
similarly be applied to generate protein-folding pathways,
starting from random-coil structures and ultimately leading to
the target folded structure. Initial work in this domain is
promising, demonstrating that DEGDS can readily generate
protein-folding walks in adjacency-graph space; further work is
now underway to validate the DEGDS-generated paths for a
variety of different proteins.

■ CHALLENGES TO REACTION-DISCOVERY
SIMULATIONS

The examples above demonstrate what is currently possible
using ARD methods based on graph-based strategies; given the
impressive strides taken, in both reaction discovery and related
methods such as MEP and TS finding, it should be clear that
an enormous breadth of “chemical questions” are now
accessible by such methods, spanning from interrogation of
gas-phase reaction mechanisms in interstellar and combustion
settings, to detailed study of catalytic cycles in homogeneous
and heterogeneous systems.
However, large challenges remain in further popularizing the

application and high-throughput automation of reaction-
discovery schemes; in the following, we give a personal outline
of current challenges that are particularly relevant to reaction
networks for complex molecular systems.
The Accuracy Problem. While enumerating possible

reactants and products in complex CRNs is all well and
good, the ultimate goals of gaining chemical insight or

experimental rationalization can only be achieved when
combined with characterization of the thermodynamic and
kinetic parameters of each elementary reaction. This typically
requires ab initio or semiempirical calculations, particularly
geometry optimization (of reactants and products), TS finding,
and free-energy evaluations.
While commonly used PES methods, such as DFT and

DFTB, can often give good representations of the molecular
structures of reaction endpoints, as well as TS geometries, a
key problem in connecting quantitative CRN simulations to
experimental studies lies in the requisite accuracy of energy
evaluations. Accurate energy evaluations are particularly
important when predicting the relative energies of TSs and
reactants/products. If one adopts standard TST to calculate
the reaction rates, then the relationship between the rate and
the activation energy for the reaction, ΔG⧧, is

k T
k T

( ) e G T k T
TST

B ( )/ B=
(7)

where T is the temperature. If the “exact” activation energy,
ΔGe

⧧(T), was known, then the relative reaction rate predicted
by some ab initio calculation method giving rise to the
activation energy ΔGc

⧧(T) is

k T
k T
k T

( )
( )
( )

e G T k T
rel

TST
c

TST
e

( )/ B= =
(8)

where ΔΔG⧧ = ΔGc(T) − ΔGe(T) is the difference between
the calculated and “exact” activation energies. This exponential
dependence of the reaction rate (and the relative rates) on the
activation energy can lead to large errors in predicted rates for
elementary steps in CRNs. For example, at T = 300 K, an error
of 5 kJ mol−1 in an ab initio calculated activation energy would
lead to a relative rate of either 0.13 or 7.46, depending on
whether the calculated activation energy is under- or
overestimated relative to the “correct” activation energy; as a
result, subsequent kinetics modeling based on such rates could
lead to quite different time scales compared to experimental
observations.
This simple argument illustrates the clear challenge of

accurately modeling reaction rates in CRNs. As is well-known,

Figure 9. (a) Correlation plot showing ANN-predicted and actual DFT calculated barriers for a test set of around 6500 reactions; the ANN
illustrated here was trained in the same way as described recently.121 (b) ANN prediction performance, compared to DFT activation energies, for
two reactions (starting from the same reactants but leading to different products). Energies are given in kcal mol−1.
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depending on calculation type, errors in DFT-based activation
energies may be up to several tens of kJ mol−1; even the most
accurate ab initio methods can have residual errors of a few kJ
mol−1. As such, the explicit time scales associated with ab initio
generated CRNs need to be carefully considered.
In addressing this accuracy challenge, the obvious solution is

to use increasingly accurate ab initio calculation approaches, for
example, moving up the “Jacob’s ladder” of DFT func-
tionals.120 However, as noted below, computer-generated
CRNs can rapidly become very large, with significant numbers
of molecular species and reactions that must be characterized;
in such cases, using high-accuracy ab initio methods for analysis
of all species and reactions is not currently possible. An
attractive alternative that has rapidly emerged over recent years
is to use artificial-intelligence/machine-learning (AI/ML)
strategies.94,121−131 For example, a number of different groups,
including ours, have shown that, given sufficient data, one can
train models such as artificial neural networks (ANNs) or
Gaussian process regression (GPR) to accurately predict
activation energies for elementary chemical reactions given as
input only the reactant and product structures (hence circum-
venting accurate characterization of the TS). Typically, these
AI/ML schemes use molecular descriptors for the reactants/
products based on structural connectivity, most commonly the
extended-connectivity (or Morgan) fingerprints;132 of course,
as in many AI/ML applications, a range of different strategies
have also been investigated. As representative performance
levels, it is found that AI/ML schemes for activation energy
prediction can achieve root-mean-square errors of 3 kcal mol−1
(i.e., 12.6 kJ mol−1) or less when compared to the reference
(typically DFT) ab initio training data;123,125,129,130,133 this
level of performance is typical of what can be achieved using
curated organic chemistry data sets, such as that reported by
Grambow et al., containing 104 reaction examples or more.122

This is illustrated in Figure 9, which illustrates the predictive
performance of an ANN trained to predict activation energies
using the Grambow data set,122 with the descriptors for each
reaction taking the form of Morgan dif ference fingerprints (i.e.,
the change in Morgan fingerprint upon moving from reactants
to products) plus additional information about the energy
change of reaction (typically calculated at DFT level). The
RMSE prediction error for such a model is 3.8 kcal mol−1 (i.e.,
15.9 kJ mol−1), which is comparable to previous work in this
field; this achievable level of accuracy is also illustrated for two
reaction examples in Figure 9. As also shown in recent work,121

this level of accuracy can be sufficient to provide a qualitative
picture of CRN kinetics, but care must be taken in validating
results and assessing quantitative predictions.
However, while these simulations demonstrate that AI/ML

can accurately capture structural reactivity trends in activation
energies, it is worth noting that DFT energies are typically used
as the target training data here, meaning that the AI/ML
naturally inherits the underlying inaccuracies of the ab initio
approach employed. This suggests that there is a future
opportunity to develop new AI/ML schemes which minimize
the number of training examples required to achieve a high
degree of accuracy; for example, if an accurate AI/ML could be
trained using just a couple of thousand reactions, then much
higher accuracy ab initio schemes could be used to generate the
requisite training data. The development of such low-data AI/
ML methods is an active area of research and will surely
transfer to the domain of CRN prediction in the coming years.
In addition, the incorporation of known experimental data, such

as reaction rates or formation enthalpies, into data sets for AI/
ML training could have a similarly important impact, provided
that the challenges of training using mixed-origin data can be
adequately addressed.
As a final point, it is worth noting that inaccuracies in

activation energies are not the only source of error in CRN
characterization. In particular, the true reaction rate for a given
elementary reaction can be written as134

k T T k T( ) ( ) ( )TST= (9)

where α(T) is the temperature-dependent transmission
coefficient, which corrects the TST rate kTST(T) for the
influence of dynamical recrossing events. As such, the standard
TST assumption that α(T) = 1 can itself introduce a significant
error in those cases when TS recrossing effects (such as that
caused by significant solvent interactions) are large. Correcting
for such effects demands evaluation of α(T); this is in itself a
computationally expensive exercise, requiring thermal averag-
ing of a number of MD trajectories (typically on an ab initio
PES or reactive force-field model) initiated at the TS in order
to evaluate the flux-side correlation function. To address this
inefficiency, we have recently shown135 how α(T) can be
accurately and efficiently approximated using a reaction-path
Hamiltonian (RPH)136 model parametrized using information
available from standard NEB optimization of the MEP;
importantly, we have also demonstrated that RPH construction
can be further accelerated by using a variety of Hessian
propagation schemes, thereby avoiding expensive ab initio
Hessian calculations for a dense set of intermediate
images.137,138 As shown in Figure 10 for the example reaction
of molecular hydrogen association at the cobalt center in
HCo(CO)3, relatively simple Hessian update schemes
combined with MD simulations using the RPH model enable
accurate approximation of α(T), even for reactions in which
recrossing is quite significant. Such methods demonstrate how
one can improve on the treatment of TST rate theory in a

Figure 10. (a) MEP for the insertion of molecular hydrogen H2 at the
cobalt center of HCo(CO)3, the active catalytic species in the Heck−
Breslow hydroformylation previously studied by ARD simulations. (b)
Calculated flux-side correlation functions given by a standard RPH
simulation (requiring multiple Hessian matrix evaluations along the
MEP) and by our recent work in which Hessian propagation schemes
(in this case, Powell−symmetric−Broyden [PSB]) are used to build
the RPH.135
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simple computational scheme; although we note that the
challenge of accurately modeling the underlying PES remains.
Finally, it is worth noting that anharmonic models for
calculating molecular free energies have also been developed
and tested, thereby reducing errors introduced by treating
molecules as harmonically oscillating rigid rotors; work in this
field remains active but yet again is tempered by the demands
for PES accuracy.139,140

The Transition-State Problem. Related to the challenge
of accurate modeling of reactions is the problem of TS
location; this is an important prerequisite for TST and
transmission-coefficient evaluations on the road to accurate
reaction rates. Given the central role the TS plays in reactions,
an enormous number of different TS-finding schemes have
been developed over the years, including (but not limited to)
the synchronous transit method141 and eigenvector-following
schemes.142 In many standard applications, these approaches
can work well; however, in the setting of CRN generation,
where one could potentially be generating hundreds or
thousands of unique elementary chemical reactions, TS-finding
can present challenges to high-throughput automation. For
example, TS-finding algorithms can be quite sensitive to the
initial configuration; as such, preconditioning schemes can be
useful, aiming to preferentially orientate molecules in space
before TS-finding begins.69 Furthermore, give numerical noise
in typical self-consistent-field-type calculations, accurately
converging TS geometries to unambiguously identify single
negative eigenvalues is often challenging too.
As such, TS-finding on the scale demanded for automated

CRN generation still requires some development to provide
robust strategies for restarting TS searches with intelligent
initial configurations (perhaps generated by ML schemes
trained using examples of identified TS structures); in addition,
in light of the discussion on accuracy above, it is clear that TS-
finders that minimize the required number of force and
Hessian matrix evaluations will remain in demand as
computationally accurate energy evaluation schemes are
increasingly employed. Finally, it is worth noting that
conformational flexibility in reactant species must also be
accounted for, especially for more complex molecular systems
and where different energetically accessible conformers might
reasonably be expected to have quite different reactivity.
The Search-Space Problem. Put simply, the chemical

reaction space explored during CRN generation can be
enormous. In the simplest case of an N-atom reactive system,
an upper limit to the number of different chemical species that
can be generated is 2N(N−1)/2, accounting for all possible bond
arrangements and ignoring the distinction between single and
multiple bonds. The number of “sensible” (or physically
realizable) available structures will certainly be less than this
upper bound but may still also be an enormous number of
different molecular species.
In any case, the vast growth in the size of chemical space as

the complexity and size of a “virtual reaction vessel” increases
places significant demands on computational chemistry. As
noted above, high-throughput, automated workflows (merging
reaction discovery, TS finding, and quantum chemical
calculations) are increasingly being used to address such
challenges, although even these workflows will eventually
buckle under the challenge of accurately characterizing large
CRNs. Furthermore, such automated high-throughput CRN
generation comes at enormous computational expense, as well

as real-world energy-consumption costs that should not be
overlooked.
As noted above, AI/ML schemes potentially offer new

opportunities to address challenges associated with the size of
chemical space in CRNs. Rapid evaluation of reaction
thermodynamics and kinetics using trained ML models can
clearly accelerate CRN generation; a number of examples of
this strategy have now been reported, as noted above. More
broadly, however, AI could offer a way to intelligently explore
chemical reaction space starting from a given set of reactant
species. Here, for example, using probabilistic models that
capture the same sort of rational understanding of functional
groups and common reaction classes that is embodied in the
typical organic synthesis expert, an AI could aim to predict the
“most physically plausible” set of onward reactions, rather than
the more brute-force CRN generation that is characterized by
many graph-based approaches at present. This incorporation of
“chemical common sense” is already appearing in many ARD
schemes, for example, in the form of bond and atomic valence
constraints being used to limit formation of unusual molecular
species; integration of AI/ML, trained on large computational
and/or experimental reactive databases, could further boost
this strategy.
The “Stamp-Collecting” Problem. As demonstrated

here, using efficient algorithms for chemical space exploration,
combined with the sheer computing power and storage
capacity available to typical computational chemists, we are
quickly moving into a position in which we can generate
enormous CRNs for complex and diverse sets of reactant
molecules. CRNs containing many thousands (or more) of
species and reactions could quickly become quite standard,
providing detailed reaction models of a variety of different
chemical processes.
Two important questions are “When should we stop? How

do we know when our autogenerated CRNs are satisfactorily
complete and accurate that we can sufficiently answer physical
questions posed?”. This may be considered an obsolete
question, given that computational chemists typically have
access to enormous computational storage resources, but it is
worth bearing in mind when starting CRN generation that
relentless reaction sampling might be wasting valuable
resources which could be used in a more focused fashion, as
we have already noted above in regard to the energy cost of
computing time.
This idea, seeking to avoid simply “stamp-collecting”

chemical reactions, itself presents opportunities. For example,
perhaps a centralized curated database of previously generated
reactions and/or reaction templates could help constant
repetition in generating and characterizing already known
reactions; a “Google maps” for reactive chemistry, generated
by ab initio quantum chemistry, would provide a valuable
resource for CRNs and AI/ML methods alike. Furthermore, in
the age of open data, enabling free, perpetual access to such a
resource could have further transformative impacts for science
as a whole. From this viewpoint, as noted in this article, it
seems that we increasingly have access to the computational
tools required to generate such a road map of chemical
reactivity “from the ground up”.

■ CONCLUSIONS
In this article, we have highlighted a series of projects aimed at
developing and investigating new simulation methods to study
complex reactive systems; in particular, we have focused on
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simulation strategies based on the concept of bonding graphs.
These mathematical structures form a useful starting point for
a number of algorithms developed over the last couple of
decades; however, the growth of AI/ML methods, in addition
to increasingly inexpensive high-performance computing
hardware to enable ab initio electronic structure calculations,
mean that new opportunities for ARD methods have rapidly
advanced in the past decade or so. Such ARD schemes are now
increasingly available to study complex chemical reactions;
addressing some of the challenges posed here could further
boost this research field. In the long term, as the interaction
between theory and experiment (through concepts of CRNs)
is strengthened, one can envisage the growth of “digital twins”
of reactive chemical set-ups, providing integration of “real
world” and “virtual” data; this could be a significant boost to
design of molecular functional systems, such as new green
catalysts. The central concept of CRNs, as well as the
continued growth of computational ARD schemes, is surely
increasingly set to drive this field forward.
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