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Semi-supervised Unpaired Medical Image
Segmentation Through Task-affinity Consistency
Jingkun Chen, Jianguo Zhang, Senior Member, IEEE , Kurt Debattista and Jungong Han, Member, IEEE

Abstract— Deep learning-based semi-supervised learn-
ing (SSL) algorithms are promising in reducing the cost
of manual annotation of clinicians by using unlabelled
data, when developing medical image segmentation tools.
However, to date, most existing semi-supervised learning
(SSL) algorithms treat the labelled images and unlabelled
images separately and ignore the explicit connection be-
tween them; this disregards essential shared information
and thus hinders further performance improvements. To
mine the shared information between the labelled and un-
labelled images, we introduce a class-specific representa-
tion extraction approach, in which a task-affinity module
is specifically designed for representation extraction. We
further cast the representation into two different views
of feature maps; one is focusing on low-level context,
while the other concentrates on structural information.
The two views of feature maps are incorporated into the
task-affinity module, which then extracts the class-specific
representations to aid the knowledge transfer from the
labelled images to the unlabelled images. In particular, a
task-affinity consistency loss between the labelled images
and unlabelled images based on the multi-scale class-
specific representations is formulated, leading to a signif-
icant performance improvement. Experimental results on
three datasets show that our method consistently outper-
forms existing state-of-the-art methods. Our findings high-
light the potential of consistency between class-specific
knowledge for semi-supervised medical image segmenta-
tion. The code and models are to be made publicly available
at https://github.com/jingkunchen/TAC.

Index Terms— Semi-supervised, Segmentation, Contex-
tual, Structural, Task-affinity, Consistency.
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THE precise segmentation of organs, tissues, and lesions
on medical images plays an important role in medical

diagnosis and treatment. Deep neural networks based on the
supervised learning paradigm have been firmly established as a
powerful tool in image segmentation [39]. However, obtaining
exhaustive annotations on medical images for learning remains
a major challenge. With the development of deep learning,
semi-supervised learning (SSL) has been increasingly em-
ployed in clinical research, given its comparable performance
to fully supervised learning [24] by training on a combination
of a small amount of labelled images and large amounts of
unlabelled ones.

Previous SSL algorithms have successfully improved the
medical image segmentation accuracy, where consistency
regularization [30] and pseudo-labeling [35] based algo-
rithms have arisen as the two main streams. For consistency
regularization-based methods, the predictions for the individ-
ual image under different augmentations, dropout and stochas-
tic perturbations are made consistent. Despite their promising
performance, two augmented versions of the same image are
often utilized as paired images to regularize a pair of outputs to
be identical (shown in Fig. 1 (A)), where the explicit common
characteristics of the organs in both the labelled and unlabelled
images such as texture, structure, colour and intensity are not
highlighted. There is no direct knowledge transfer between the
unpaired instances, i.e., a labelled image and an unlabelled
image (shown in Fig. 1 (B)). For the traditional consistency
learning methods, a popular approach is to generate two
images by applying two different augmentations to the same
image, and then force the network to produce similar outputs.
When the generalisation ability of the model is weak, it is
difficult to ensure that two different unlabelled augmented
images can contribute to the optimisation of the model as it
is possible that the two images will be far from each other in
the feature space due to the weak generalisation power [40].
Alternatively, pseudo-labeling methods [13], [25] utilize the
supervised pretrained networks to generate pseudo-labels for
the unlabelled images to retrain the network. By providing
more explicit supervision, these methods generally outperform
consistency regularization methods if the pseudo-labels are
good enough to provide correct supervision as the labelled
ones. However, pseudo-labeling still treats unpaired images
independently, i.e., labelled images for supervised learning,
unlabelled images for pseudo-labeling learning. Effectively,
using unpaired data to improve segmentation capabilities is not
straightforward because of two unsolved problems identified
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A: Paired Images (An image and its augmented version)
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Fig. 1: The difference between paired images and unpaired images in
semi-supervised learning. (A) is using paired images (an image and
its augmented version). (B) is using unpaired images (two different
images, one is a labelled image and one is an unlabelled image).

from the current SSL literature. The first issue is how to solve
the problem that consistency regularization methods with two
different augmentations from one unlabelled image may have
a negative effect on optimising the network when the gener-
alisation ability of the model is weak. The second unsolved
problem is which kinds of representations can be used to build
a bridge from the labelled images to the unlabelled images and
how to use them.

Until now, the knowledge transfer between the unpaired im-
ages has not yet been widely explored in SSL for medical im-
age segmentation. In segmentation tasks, there is a significant
difference between the different kinds of feature maps from
the original layers and the enhancement layers. Combining
such complementary information on the same organ usually
improves the medical image segmentation performance [50]. It
is also possible to construct different descriptions of the same
image in the feature layer with different enhancement modules
to highlight different information, i.e., constructing one kind
of feature map that focuses on the contour of the target area
and another feature map that focuses on the texture of the
target area. Moreover, the different descriptive characteristics
of different patients, such as the texture, colour, intensity,
and structure, whether it is a labelled image or an unlabelled
image, tend to have the same characteristics. For example,
the appearance of the left atrium in images from different
patients often presents similar texture, colour and intensity.
In convolutional neural networks, we hope such texture and
intensity information can be extracted from the feature maps
as for an image, the shape, texture, colour, intensity and other
information of the same organ of different patients should
be roughly the same and can also be used as discriminative

information for learning.
Inspired by the above, in this paper, we propose a novel SSL

unpaired medical image segmentation framework, explicitly
extracting the representations from labelled images to super-
vise feature extraction of unlabelled images. We construct
two different types of feature maps to highlight different
information about the target region, for example, structural
affinity features focus on the structure of the target region and
contextual affinity features focus on the context of the target
region. In our approach, these two different feature maps are
used together for consistency learning of both labelled and
unlabelled data. The ground truth masks of the labelled images
and the estimated masks of the unlabelled images are com-
bined with the structural and contextual affinity feature maps
to highlight target region representation at the feature level; we
refer to this as class-specific knowledge in the following. To
extract the class-specific knowledge from contextual affinity
features and structural affinity features in the network, a new
loss function, termed as task-affinity loss, is introduced. Task-
affinity loss optimises the target area representations in the
training process. We evaluate our method on three multi-class
medical segmentation tasks, including 2D cardiac, 3D left
atrium and 3D hippocampus segmentation tasks. On all three
datasets, our proposed algorithm consistently outperforms the
state-of-the-art methods compared. The main contributions of
this paper are:

1) We proposed a novel semi-supervised segmentation
framework by designing a class-specific knowledge
extraction mechanism, which transfers class-specific
knowledge from contextual and structural affinity fea-
tures from labelled to unlabelled images.

2) A module is specifically introduced to model the consis-
tency of class-specific knowledge between the unpaired
images on the multi-scale contextual and structural affin-
ity features in semi-supervised segmentation. To the best
of our knowledge, this is the first attempt to enable direct
knowledge transfer for unpaired images in SSL.

3) We demonstrate the wider applicability of our method
to the different backbones of both 2D and 3D networks
in multi-class segmentation tasks. Compared to existing
methods, our method achieves the best results in DSC in
all conducted experiments. In particular, by performing
multiple independent evaluations, the performance of
our method shows higher reliability with much lower
variance on the three datasets.

II. RELATED WORK

SSL has been an active topic of research for the last
decades. A large number of methods have been proposed
before and after the emergence of deep learning. Compared to
supervised learning methods, one of the key challenges of SSL
is how to effectively utilize the unlabelled training images.
Depending on the backbones and whether the adversarial
training is adopted or not, existing semi-supervised learning
methods can be roughly divided into CNN-based [36], graph-
based [41], transformer-based [22] and GAN-based [46] [18]
methods. However, in this paper, we focus on developing new
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strategies of how the knowledge could be better transferred
or regularised between the labelled and unlabelled sets. To
this point, we broadly categorized existing SSL methods into
pseudo-labeling and consistency regularization depending on
the strategies of knowledge leveraging between the two sets.
In this section, we follow this categorisation and review these
methods highly relevant to ours.

A. Pseudo-Labeling
One earlier pseudo-labeling method for SSL was developed

by Lee et al. [13], which uses a model to predict pseudo
labels for a large number of unlabelled images to improve
performance. Such a prediction is in turn used as a (pseudo)
ground truth to fine-tune the network. This enables the in-
volvement of unlabelled training data in the whole learning
pipeline. However, as pseudo labels are usually noisy, a
mechanism needs to be in place to select the most informative
unlabelled training data for refining the networks. Therefore,
the subsequent research has focused on strategies for selecting
useful unlabelled images. A common practice of selection
mechanisms is to filter out the wrong pixels by using the
confidence of pseudo-label predictions, such as uncertainty
measurements [20], [33], adversarial learning [37], [17], and
selection of valuable pixels [36], [25]; however, these methods
only rely on the confidence prediction from the softmax layer
and are not informative enough to provide reliable guidance for
unlabelled images in supervised learning. In our work, instead
of focusing on designing optimisation strategies to improve
the quality of pseudo labels, we take a different perspective
that explores the shared class-specific information in features
between the unpaired images, with the aim of transferring the
knowledge from the labelled images to the unlabelled ones.

B. Consistency Regularization
In the context of deep neural networks, the conceptual idea

of consistency regularization is from Bachman et al., [1],
i.e., the predictions should be robust to different perturbations
of the input samples. The process adds data enhancement
and stochastic perturbations to the input but does not permit
changes in the predictions. In medical image segmentation,
Cui et al. [6] introduced the mean-teacher framework by
constraining the outputs of the same image under different
noise perturbations. In [19], the geometric transformation con-
sistency loss is used to optimise the network for skin lesions,
optic disc, and liver tumors. Bortsova et al. [3] proposed a
siamese segmentation network on chest x-ray images. They
introduced a separate layer to minimize the distance of outputs
from the different transformations at the output. Luo et al. [22]
introduced a dual-task consistency regularization to minimize
the distance of the signed distance maps and the directly
estimated masks of the left atrium and pancreas segmentation.

In the context of semi-supervised medical image segmen-
tation, although deep learning has achieved promising results,
most of the methods advocate the use of paired images
(two augmented versions of the same image) but pay lit-
tle attention to the unpaired images (images from differ-
ent patients). Our method extends the existing consistency

regularization method but preserves the consistency between
unpaired images. Alongside class-specific regions at different
feature layers, our method allows the knowledge transfer
from labelled images to unlabelled images, thereby improving
the performance of semi-supervised learning, based on the
unpaired consistency which is not yet explored before.

III. METHOD
The framework of our proposed unpaired semi-supervised

learning method is shown in Fig. 2. The backbone of our
framework is an encoder-decoder structure. As each specific
type of region largely shares the same key information across
different images (e.g. the atrium always has a thicker wall,
a similar texture and a variable shape across subjects [9]),
we hypothesize class-specific information should be similar
across the regions of the same interest in the feature maps
regardless whether it is labelled or not. Therefore, to make
use of this class-specific information, we design a module
called task-affinity module (as shown in Fig. 2) to transfer the
class-specific knowledge from labelled images to unlabelled
ones. We note that, unlike existing consistency-based methods,
our method enables knowledge transfer between the unpaired
images. The purpose of the task-affinity module is to transfer
the class-specific knowledge between the same class regions
in different layers across the unpaired images. Therefore, the
class-specific knowledge extracted from the labelled images
can be used to supervise the unlabelled images in the training
process. Details of the proposed framework, task-affinity mod-
ule, unpaired consistency regularization loss and the unpaired
training strategies are described below.

A. Class-specific Representation
The key of our framework is to transfer the class-specific

knowledge from the labelled images to the unlabelled images.
In the segmentation task, recent studies [5], [16] have revealed
that the feature maps in a network could reflect the saliency
of the class of interest in a multi-class setting. However, the
class agnostic representations are insensitive to class labels
[45], in principle, it can’t be used to build the consistency
of features between the unpaired images. Different from it,
we aim to extract transferable knowledge by building class-
specific representations. We use the CAM-based methods
[44], [47] to visualise the feature maps. Fig. 3 shows feature
maps and the masks of the labelled images and unlabelled
images. The salient area corresponding to the target class
has the same characteristics both for labelled and unlabelled
images. In Fig. 3 (b), a feature map can show regions with
distinct characteristics, e.g. the area of higher luminance is the
representation of the left atrium, while the low-luminance area
represents the background. For labelled images, we leverage a
ground truth mask to extract the correct salient region in the
feature maps, which contain accurate class-specific knowledge.
But for unlabelled images, we use the estimated mask to
extract the salient region. The estimated mask may have false
positive and false negative areas, which may point to the
features of the other classes, so using the estimated masks
to extract the region of interest in the feature maps may not
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Fig. 2: The proposed semi-supervised task-affinity learning framework for segmentation. The modules in the green boxes and the solid lines
with arrows are for contextual affinity learning; the modules in the blue boxes and the dashed lines with arrows are for structural affinity
learning. Our framework consists of the task-affinity module with an encoder-decoder structure as the backbone. In the task-affinity module,
the ground truth masks and estimated masks are used separately on the labelled images and unlabelled images to locate the class-specific
regions from the contextual affinity feature and the structural affinity feature. Features from class-specific regions are then compressed into
vectors (the different embeddings’ colours indicate different classes) for unpaired images affinity consistency learning.

always be correct (as shown in the blue boxes in Fig. 3 (c)).
By comparing Fig. 3 (b) with (c), the labelled images and
unlabelled images have similar regions of interest with respect
to the same class in the feature layer. According to the mask
in (c), the labelled images can perfectly draw the target class
region in the feature maps. However, the estimated masks of
unlabelled images cannot always be good enough to show the
region of interest in the feature maps. In the case when the
accuracy of the estimated mask for the unlabelled image is
poor for a particular class (e.g., left atrium), the features from
this masked region will differ significantly from the features
computed from the ground-truth masked region (e.g., mask
for left atrium) for the labelled image. This large inconsistency
will provide a strong supervision signal in the training process.

Since our input data (whether labelled or unlabelled) be-
longs to the same distribution, and predictions are made
through the same network, the corresponding feature of the
same class from the different images should be salient due
to the similar contextual information (as shown in Fig. 3 (b)).
The class-specific representations can be used with the ground
truth masks of the labelled images to build a reference, which
optimises the inaccurately estimated mask of the unlabelled
images at the feature level. In this way, we consider this class-
specific knowledge in the feature maps can be encoded as a
bridge for the knowledge transfer between the unpaired images
in semi-supervised learning. Therefore, through the guidance
of class-specific knowledge from labelled images, the false
positive and false negative regions of unlabelled images can
potentially be eliminated.

To achieve this, the salient regions in feature maps are first
localised using segmentation masks, i.e., ground truth masks of
the labelled images and the estimated masks of the unlabelled
images to localise feature regions. In our case, we encode
class-specific knowledge through the task-affinity module, and
expand it in a layer-wise manner as follows:

（a）

（b）

（c）

Labelled Labelled Unlabelled Unlabelled

Fig. 3: Feature maps and the masks of labelled/unlabelled images.
From left to right are the labelled and unlabelled images. From top
to bottom are (a) original images, (b) feature maps and (c) ground
truth masks of the labelled images and estimated mask of unlabelled
images. In row (b), the class-specific region in the feature maps
is located in the red boxes. The blue boxes in row (c) show the
false positive and false negative masks of the unlabelled images. The
area inside the blue box will be gradually refined as the training
progresses.

T ci =
∑
w,h,z

(
xi ⊙M c

)
/
∑
w,h,z

M c. (1)

Eq. 1 is the ith class-specific representation (T ci ) generated
by the task-affinity module, where xi denotes the learned
feature maps. M c denotes the mask on the cth class. For the
labelled images, the class-specific knowledge can be extracted
via the ground truth mask, while, for the unlabelled images,
the estimated mask from the network is used for the extraction.
⊙ is the Hadamard product, w, h, z are the width, length, and
height of the feature map xi, respectively (for the 2D tasks, we
use w and h to calculate T ci ). The class-specific representation
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is then normalized by the area of the corresponding class.
We separate the labelled and unlabelled images and adopt

different strategies to handle them. For the labelled images,
the ground truth mask can provide correct supervision when
calculating the T ci . However, for the unlabelled images, the
estimated mask cannot always be good enough to extract the
region of interest. With the training of the network, based
on the correct T ci from the labelled images and their ground
truth masks, the T ci generated by the estimated mask and the
unlabelled images will gradually become consistent.

B. Structural and Contextual Affinity Modules

Contextual (e.g., texture and intensities) and structural in-
formation (e.g., shapes) are two distinct types of cues used to
characterize regions of interest in medical images [14], [15].
For example, the left atrium in MR images shows thicker
walls and smoother endocardial surface [10]. Recent work also
demonstrates that segmentation of the region of interest can
benefit from highlighting its structural information [7], [18].
They both consist of features at different layers, upon which
the affinity features are constructed. Therefore, we introduce
contextual and structural affinity modules to construct these
two kinds of features.

To highlight the structural view of the features, we design
a structural enhancement layer [2] and apply it to the encoder
feature maps (Fig. 4) to construct a structural enhancement
map, formulated as:

α = σ
(
fψ

(
ReLU

(
fx̄

(
x̄i
)
+ fx

(
xi
))))

, (2)

where, fx, fx̄ and fψ are the 1 × 1 × 1 convolution layers
(1 × 1 convolution for 2D tasks) that offer a channel-wise
pooling to retaining the salient features [42], [43], xi and x̄i

are the ith pair of the encoder and decoder feature maps. σ
is the sigmoid activation function to restrict the range to [0,1]
[44]. The output α is then applied to the encoder feature maps
to highlight the region of interest x̂i (structural affinity features
in the following sections) as:

x̂i = α× xi. (3)

A detailed architecture of the structural enhancement layer
is shown in Fig. 4. In the representation extraction process, the
feature xi generated by the encoder layers will be concatenated
(along the feature channel dimensions) with the feature map
x̄i of the same size from the decoder layers, and then fed to a
fusion module composed of a ReLU layer followed by a 1 × 1
× 1 convolution layer, (1 × 1 for 2D tasks). The output of the
fusion module is then fed to a sigmoid function, whose output
is further applied to the encoder layers as x̂i that suppresses
the response in the irrelevant background area. Finally, it is
merged into the decoder layer at the corresponding position
through a skip connection. This structural enhancement mod-
ule provides different feature representations and focuses on
the structure of the target region (shown in Fig. 5 (c)).

Feature maps before and after applying this layer reflect
two different characteristics of the class-specific regions at the
feature level, therefore, resulting in two views of the feature

Fig. 4: The proposed structural enhancement layer. fx, fx̄ and fψ
are the 1 × 1 × 1 convolution layers, ⊕ is the addition function, ⊗
is the multiplication formula. After applying this layer, the structural
information is more prominent as shown in Fig. 5 (c).

maps. Fig. 5 shows examples illustrating the difference of such
feature maps with respect to the same image. In Fig. 5 (c), it
is evident that the contour of the target region is sharpened,
thus providing a strong structural cue/view for that class. Fig.
5 (d) shows that feature maps that highlight the contextual
texture-like patterns, resulting from the variations of texture
and intensity in the original images. It has been previously
demonstrated that such contextual information can promote
robust and better segmentation results [12].

In our work, we assume that this class-specific information
should be consistent at the feature level often with different
scales resulting from a sequence of convolutions. More impor-
tantly, we show that this information can be used as a piece
of prior knowledge to provide supervision for model learning
across the unpaired images.

(a) (b) (c) (d)

Fig. 5: From left to right are (a) original images, (b) ground truth
labels, (c) feature maps emphasizing the structural information, and
(d) feature maps focusing on the contextual information. In (c), the
contour of the target area is more obvious. In (d), the texture of the
target area is the major cue. In (c) and (d), different colours mean
different values, similar colours reflect similar features, such as blue
and red.

To make full use of the information from those two dif-
ferent views of features, we introduce two different types of
representations: contextual representation (E) and structural
representation (S). Let xk ∈ [x1, · · ·, xK ] be the contextual
affinity feature maps of K scales and x̂k ∈ [x̂1, · · ·, x̂K ]
be the corresponding structural feature maps of those scales.
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The corresponding region of the interest can be marked by
the ground truth masks of the labelled images and estimated
masks of the unlabelled images by resizing to the same size
with the corresponding feature maps as M c

k ∈ [M c
1 , · · ·,M c

K ].
Then multi-scale Ec

k ∈ [Ec
1, · · ·, Ec

K ] and multi-scale Sck ∈
[Sc1, · · ·, ScK ] for the cth class are computed in the same way
as T by Eq. 4 and Eq. 5:

Ec
k =

∑
w,h,z

(xk ⊙M c
k) /

∑
w,h,z

M c
k , (4)

Sck =
∑
w,h,z

(x̂k ⊙M c
k) /

∑
w,h,z

M c
k . (5)

Finally, the overall affinity features is defined as the summa-
tion of the multi-scale [Ec

1, · · ·, Ec
K ] and [Sc1, · · ·, ScK ] for the

all the classes, collecting two different types of information.

C. Unpaired Consistency Loss
Let El and Eu (Sl and Su) denote the class-specific repre-

sentations computed from Eq. 4 and 5 for contextual (struc-
tural) representations from labelled and unlabelled images
respectively. Intuitively, for unlabelled images, their class-
specific representations for both the structural and contextual
views should be consistent with those from the labelled ones;
i.e., Eu (Su) should be similar to El (Sl) at the feature
level, coined as affinity consistency in our text. Fig. 6 shows
the affinity learning between the labelled images and the
unlabelled images. It is noted that both El and Sl are computed
based on ground-truth masks, therefore providing a strong
supervision signal for learning information from unlabelled
images. Naturally, medical images are decoupled into a multi-
scale representation in CNNs. Therefore, task-affinity con-
sistency should be applied at multiple scales. Overall, we
introduce and formulate a loss to incorporate this unpaired
multi-scale consistency as follows:

R =
τ1
C

C∑
c

K∑
k

∥(Ec
k,l − Ec

k,u)∥22

+
τ2
C

C∑
c

K∑
k

∥(Sck,l − Sck,u)∥22,

(6)

where l denotes the labelled images, u represents the unla-
belled images. K is the number of layers corresponding to
different scales, where the affinity consistency is computed.
For each layer i, we employ the L2 distance to measure
the similarity between the class-specific representations of
the labelled images and the class-specific representations of
unlabelled images on class c. The final consistency loss is
accumulated over all the C target classes and is normalized
by the total number of classes C. τ1 and τ2 are two hyperpa-
rameters to control the trade-off between the contextual affinity
loss and the structural affinity loss.

D. Total Loss
Our final loss L is a combination of the supervised loss

for the labelled images and the task-affinity consistency loss

between the labelled and unlabelled images. It is formulated
as follows:

L =
∑
xl,yl

Ls(xl, yl) +
∑
xu

∑
xl,yl

R((xu, ye), (xl, yl)), (7)

where Ls denotes the supervised loss on labelled samples;
Dice loss is used in our experiment. R denotes the consistency
loss between the labelled samples and unlabelled samples. xl
is a labelled image with ground truth masks yl, whilst xu
denotes an unlabelled image with the online estimated masks
ye. It is worth noting that our SSL method is designed for the
features of the network; It could be applied to both the 2D
and 3D networks, as will be demonstrated in the experimental
section.

IV. EXPERIMENT

A. Datasets and Settings

Our method is evaluated on three different datasets, ranging
from atrium segmentation to hippocampus segmentation. It
involves both binary and multi-class segmentation tasks. The
datasets are: the two-class 3D left atrium segmentation dataset
[34], the three-class 3D hippocampus segmentation dataset
[27] and the four-class 2D MS-CMR segmentation dataset [4],
[38]. For each dataset, when doing semi-supervised learning,
a subset of training images is randomly selected as labelled
images with a fixed split ratio, the rest is treated as unlabelled.
For a more robust estimation, this random split is repeated
eight times, and average performances are reported together
with standard deviations for each dataset to show both the
performance gain and reliability. To the best of our knowledge,
our protocol with repeated random split for a fixed split ratio
is more rigorous than those evaluation protocols using a single
run with a specific split adopted by most of the state-of-the-art
methods [18], [22], and [36].

1. Two-class 3D left atrium segmentation.
This is a dataset presented at the MICCAI 2018 Atrial Seg-
mentation Challenge [34], termed 3D-LASeg in our experi-
ments. Atrium segmentation is an important task for clinicians
to assess the level of atrial fibrillation, a common type of
arrhythmia in heart diseases. However, due to the low contrast
between the atrial cavity and the surrounding background, it is
challenging to segment the left atrial directly from 3D scans.
The organizer of the challenge provided 100 3D Gadolinium-
Enhanced Magnetic Resonance Imaging scans, as well as their
corresponding 3D binary masks of the left atrial cavity. Note
that this split is conducted across patient IDs such that no
patient scans in the testing set are seen in the training. In our
experiment, this dataset is repeated eight times for evaluation.
Specifically, following the state-of-the-art methods [22], [18],
[36], 80 3D scans are used for training, and 20 scans for
testing. 10% (8 scans) and 20% (16 scans) are used as labelled
images, and the rest of the training set is the unlabelled training
images.

2. Three-class 3D hippocampus segmentation.
The dataset is provided by Vanderbilt University Medical
Center [27] and contains a total of 260 adult 3D MRIs. The
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Fig. 6: The proposed affinity learning for the labelled images and unlabelled images, is applied to the contextual affinity features and
structural affinity features respectively.

TABLE I: Average metrics of two class 3D left atrium segmentation task.

Method Scans used Metrics Cost
L U DSC (%) ↑ JSI (%)↑ 95HD (mm) ↓ ASD (mm) ↓ Params(M)

VNet[23] (sup) 80 0 89.32±1.86 81.83±1.98 8.06±2.43 1.50±0.15 9.45
VNet (inf ) 8 0 77.12±5.05 65.34±5.29 19.87±4.09 4.19±1.34 9.45
VNet (inf ) 16 0 83.84±2.61 73.86±2.85 12.86±2.51 2.37±0.29 9.45

MT[29] 8 72 79.74±5.43 68.58±6.43 15.28±4.33 3.03±0.86 9.45
EM[32] 8 72 81.00±5.37 70.11±6.16 13.90±3.60 3.02±1.13 9.45
ICT[31] 8 72 80.29±5.95 69.60±6.87 14.81±3.91 2.94±0.83 9.45

UAMT[36] 8 72 83.91±3.29 73.31±4.28 14.74±3.27 4.10±0.81 9.45
SASSNET[18] 8 72 84.11±3.64 74.22±4.00 12.08±2.53 2.70±0.56 20.47

DTC[22] 8 72 83.90±3.42 73.63±3.99 12.65±3.18 2.90±0.89 9.45
Ours 8 72 84.73±2.45 74.38±3.43 11.45±1.88 2.72±0.69 9.47

MT[29] 16 64 82.32±3.84 71.81±4.74 14.06±3.15 2.39±0.36 9.45
EM[32] 16 64 83.72±2.83 73.26±3.49 12.03±2.36 2.42±0.29 9.45
ICT[31] 16 64 84.66±4.01 74.60±5.23 11.59±3.10 2.23±0.41 9.45

UAMT[36] 16 64 86.02±2.36 76.47±2.94 10.43±1.98 2.75±0.45 9.45
SASSNET[18] 16 64 86.45±2.76 77.04±3.47 10.52±2.33 2.21±0.21 20.47

DTC[22] 16 64 84.02±4.01 74.44±4.81 12.41±3.45 2.15±0.36 9.45
Ours 16 64 87.75±1.49 78.60±2.18 9.45±1.57 2.04±0.30 9.47

TABLE II: Average metrics of three class 3D hippocampus segmentation task.

Method
Scans used Metrics Cost

L U DSC (%) ↑ 95HD (mm) ↓ Params (M)body head body head
VNet[23] (sup) 210 0 81.18±1.21 82.02±1.43 1.98±0.19 2.07±0.16 9.45

VNet (inf ) 10 0 73.89±4.77 73.59±1.66 2.65±0.32 2.97±0.69 9.45
MT[29] 10 200 67.84±6.72 72.68±5.72 4.60±2.41 3.77±1.40 9.45
EM[32] 10 200 66.59±13.92 71.64±4.60 5.00±3.87 4.37±3.53 9.45
ICT[31] 10 200 57.95±18.39 63.88±10.92 7.76±6.59 7.56±3.16 9.45

UAMT[36] 10 200 72.59±5.48 74.34±2.73 2.93±0.74 6.91±2.07 9.45
SASSNET[18] 10 200 70.20±3.85 72.06±3.81 2.86±0.35 2.87±0.35 20.47

DTC[22] 10 200 72.41±2.32 74.21±3.15 2.64±0.39 2.69±0.28 9.45
Ours 10 200 75.22±1.81 76.55±1.38 2.61±0.31 2.52±0.23 9.47

TABLE III: Average metrics of four class 2D MS-CMRSeg task.

Method Scans used Metrics Cost

L U DSC (%) ↑ 95HD (mm) ↓ Params (M)RV myo LV RV myo LV
UNet[26] (sup) 35 0 90.38±0.97 78.03±1.03 73.30±4.70 4.78±1.87 4.30±1.27 9.68±3.25 2.47

UNet (inf ) 7 0 83.44±4.11 66.85±3.58 59.92±2.94 14.34±6.70 11.00±4.84 19.75±2.36 2.47
MT[29] 7 28 84.91±3.49 67.94±4.59 65.70±5.29 11.36±6.43 9.49±3.94 15.87±3.29 2.47
EM[32] 7 28 84.63±1.91 67.96±3.77 64.39±4.80 11.64±6.44 9.13±3.65 17.80±3.21 2.47
ICT[31] 7 28 84.68±2.79 68.72±3.95 66.19±3.93 12.38±5.48 9.37±3.69 15.90±2.30 2.47

UAMT[36] 7 28 83.19±3.03 67.61±4.74 64.85±4.72 11.26±6.02 11.41±4.92 17.76±3.27 2.47
SASSNET[18] 7 28 85.19±2.57 70.15±4.35 64.99±4.04 12.14±7.56 9.22±4.23 16.87±5.32 5.23

DTC[22] 7 28 80.02±4.22 67.70±4.29 61.02±4.81 7.30±1.97 9.08±3.04 19.81±2.92 2.47
Ours 7 28 88.31±1.44 72.68±2.11 68.91±3.09 13.47±4.95 7.15±4.57 19.50±7.67 3.19
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hippocampus head and body are delineated for each scan. All
scans are captured as a 3D T1-weighted MPRAGE sequence
with a Philips Achieva scanner. The voxel size of each scan is
1.0 mm3. In our experiment, we use 210 images as the training
set and the remaining 50 images as the testing set. As with
the previous dataset, the 210/50 random split is conducted
eight times for a robust performance assessment. In the 3D
segmentation task, our method is further tested in a more
challenging case in which 5% of training data is used for
supervised learning, and the rest of the training images are
treated as unlabelled.

3. Four-class 2D MS-CMR segmentation.
This dataset is the one used for the MS-CMRSeg 2019 [4],
[38] contest and contains 45 patient cases with cardiomyopa-
thy. Each case contains LGE MRI (Late-gadolinium enhance-
MRI), T2-weight MRI, and bSSFP MRI (balanced Steady-
State Free Procession-MRI) modalities; three-class segmenta-
tion masks are presented: left ventricle, myocardium, and right
ventricle. The multi-organ segmentation of the LGE CMR
image is more challenging because it is difficult to delineate
the contour of the myocardium on the LGE image alone, and to
get a more accurate boundary, it is usually necessary to rely on
other modal information, i.e., the bSSFP modality [21], [28].
In our experiment, we use only the LGE modality, a harder
task than the contest setting. Note that the resolution of the
3D scan along the z-dimension is too small, as each LGE
raw case has 10-16 slices. Therefore, a 2D segmentation task
is conducted on this dataset, and segmentation is performed
on each of the 2D slices. For a fair comparison, in testing,
performances are reported on 3D cases. For this dataset,
the ratio of the training and test split is set to 35/10 and
such a random split is repeated eight times with performance
averaged over all the splits. For the 35 cases in the training
set in each split, 20% (7 cases) are used as labelled images
and the remaining 80% (28 cases) are treated as unlabelled
images. Again, there is no overlap in patient IDs between the
training and testing sets.

B. Network and Implementation Details

To evaluate the performance of our method, 3D VNet [23]
and 2D UNet [26] are employed as the backbones for 3D and
2D segmentation tasks respectively.

In each iteration, the training batch is a half-and-half
combination of labelled and unlabelled images. It is worth
noting that, in our framework, we do not use the memory bank
as in [49] to store the feature representations as building a
memory bank requires significant storage; instead, we directly
extract the class-specific representations in real time in each
training mini-batch and do not store those representations from
the labelled cases, because using this batch-wise sampling
method could achieve similar performance with the use of
memory bank as in [43]. In this way, our strategy will reduce
the costs, and thus a GPU with 12G of RAM is sufficient
to run our model. The unpaired images are separately fed to
the network after a z-score normalization. The SGD optimiser
is used in the training process with a momentum of 0.9
and weight decay of 0.0001. The learning rate decays via

’poly’ learning rate policy: (1−epoch/epochmax)
0.9 [11]. We

apply three augmentations during training: randomly flipping,
rotation, and cropping. For the cropping, the patches of size
112 × 112 × 80 are cropped for the left atrium task (the
same setting as in [22], [18] and [36]), 224 × 224 for cardiac
segmentation (the same setting as in [4] and [5]) and 32 × 32
× 64 for the hippocampus task. τ1 and τ2 are set to 0.5 and 1
consistently in all experiments for the two 3D tasks, and are
set to 1 and 1 for the 2D task. The effects of those parameters
are also tested in the ablation study. For the two-class 3D left
atrium segmentation task, we follow exactly the same setting
as in [32], [18], [22], and the same evaluation metrics: DSC,
JSI, 95HD and ASD. For the three-class 3D hippocampus
segmentation task and four-class 2D MS-CMRSeg task, due
to the multi-class comparison, we show the performance in
terms of the commonly used metrics DSC and 95HD.

C. Comparison with State-of-the-arts

Our method is compared to six state-of-the-art semi-
supervised segmentation methods, including Mean Teacher
[29] (MT), Adversarial Entropy Minimization [32] (EM),
Interpolation Consistency Training [31] (ICT), Uncertainty-
aware Self-ensembling Model [36] (UAMT), the Shape-aware
approach [18] (SASSNET) and the Dual-task Consistency
approach [22] (DTC). The published code of each method
was used for the implementation in this experiment.

For each split, we also report performances of backbones
in two purely supervised learning cases: 1) using all the scans
with provided labels for training (denoted as sup); 2) only
using the selected labelled images for training, i.e., without
using any unlabelled images for that split, denoted as inf.
Ideally, the performances of sup and inf could serve as the
upper bound and lower bound of the performances of all the
methods compared, namely, MT, EM, ICT, UAMT, SASSNET,
DTC and Ours, in each semi-supervised setting.

We would like to highlight that, to date, two-class medical
segmentation tasks are the most commonly used to evaluate
methods in semi-supervised settings; while multi-class (2+)
segmentation tasks, although more challenging, are much less
explored for semi-supervised learning. In our comprehensive
study, we compared our method against others in a larger scale
manner, from 2 to 4 classes medical image segmentation tasks.

1) Results of 2-class 3D left atrium segmentation task:
Table I tabulates the results obtained by respectively using
20% (16/64 split) and 10% (8/72 split) of the 80 scans as
labelled during training. It could be observed that our method
outperforms all others in 7 out of 8 cases, and is the second-
best in terms of ASD when using an 8/72 split (Table I).
Specifically, in terms of the most commonly used metric, our
method outperforms all others for both 10% (8/72 split) and
20% (16/64 split) settings, e.g. a 1.15% increase (87.75% vs.
86.45%) in DSC when comparing with SASSNET using 16/64
split; for the 8/72 split, performance increases from 84.11%
to 84.73%. In particular, it is worth noting that the standard
deviations of our method are the lowest, 2.45% when using
10% images as labelled and 1.49% by using 20% images
as labelled. This clearly demonstrates that our method is
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TABLE IV: The effect of contextual/structural module in left atrium segmentation task.

Left Atrium Scans used Metrics
labelled Unlabelled DSC (%) ↑ JSI (%) ↑ 95HD (mm) ↓ ASD (mm) ↓

w/o structural module 8 72 83.71±3.00 73.06±4.03 12.73±2.11 3.03±0.80
w/o contextual module 8 72 83.45±2.99 72.91±3.88 12.67±2.77 2.72±0.60

contextual and structural modules 8 72 84.73±2.45 74.38±3.43 11.45±1.88 2.72±0.69
w/o structural module 16 64 86.32±2.36 77.00±2.90 10.65±2.43 2.24±0.42
w/o contextual module 16 64 85.27±4.70 75.80±5.63 11.86±4.13 2.05±0.36

contextual and structural Modules 16 64 87.75±1.49 78.60±2.18 9.45±1.57 2.04±0.30

TABLE V: The effect of contextual/structural module using ten scans in hippocampus segmentation task.

Hippocampus
Scans used Metrics

L U DSC (%) ↑ 95HD (mm) ↓
body head body head

w/o structural module 10 200 68.49±9.58 77.35±0.71 4.24±2.83 2.71±0.35
w/o contextual module 10 200 68.55±7.98 76.01±1.96 4.15±2.29 2.80±0.46

Contextual and Structural Modules 10 200 75.22±1.81 76.55±1.38 2.61±0.31 2.52±0.23

TABLE VI: The effect of contextual/structural module using seven scans in MS-CMRSeg task.

Method
Scans used Metrics

L U DSC (%) ↑ 95HD (mm) ↓
RV myo LV RV myo LV

w/o structural module 7 28 87.59±1.58 71.78±2.41 68.12±4.65 13.37±4.80 7.74±3.24 13.80±5.34
w/o contextual module 7 28 87.69±1.42 72.23±2.07 67.60±2.63 16.03±4.02 7.56±3.96 20.01±5.44

Contextual and Structural Modules 7 28 88.31±1.44 72.68±2.11 68.91±3.09 13.47±4.95 7.15±4.57 19.50±7.67

robust to different random splits at the same ratio, showing a
better generalisation ability. In terms of JSI, 95HD and ASD,
our method also achieves the best results, and the number
of parameters is comparable to the backbone with a slight
increase of 0.02M, which does not introduce many additional
parameters. We also conducted Wilcoxon t-tests on DSC and
95HD, and all the p-values are less than 0.05, indicating our
improvement is statistically significant.

2) Results of 3-class 3D hippocampus segmentation task:
Our method is compared to the others on a three-class 3D
hippocampus segmentation task, a task usually more challeng-
ing than two-class segmentation in semi-supervised learning.
Performances for each of the segmentation targets (head and
body) are reported in Table II with only 5% of training
data labelled (10 cases). Again, for the sake of performance
calibration, we also report the performances when all the
training data are used as labelled (denoted as sup), and the
performances when 5% are used as labelled during training
without using any unlabelled data (denoted as inf ).

Compared to the performance of VNet (inf ), i.e. 73.59% by
purely supervised learning, both DCT and UAMT successfully
improve the performance by leveraging the unlabelled images.
However, it is also interesting to note that other methods,
including MT, EM and ICT, present a lower performance than
the VNet (inf ) baseline. In particular, the performance of ICT
has dropped a lot and the standard deviation is large (10.92%)
for the hippocampus task. This low performance of ICT might
be attributed to the fact that the mean teacher needs to get
an update from the students model. When there is a limited
number of labelled images for training (as low as 5% in this
case), the student may not get enough supervision, which will
degrade the performance of the teacher module. Therefore a
co-optimisation between teacher and student by simply sharing
weights will not necessarily lead to a better model than the

baseline. On the contrary, our method achieves the highest
performance among all the methods compared in the semi-
supervised segmentation with only 5% of the images used
as labelled; specifically compared to the VNet (inf ) baseline,
it obtains an improvement of 2.96% for the head region,
and 1.33% for the body region in terms of DSC. The p-
values of Wilcoxon t-tests on DSC and 95HD are less than
0.05. This clearly demonstrates that the proposed task-affinity
consistency is very effective in learning to transfer knowledge
between the labelled and unlabelled images (i.e., unpaired),
even in semi-supervised multi-class segmentation settings.

3) Results of 4-class 2D MS-CMRSeg task: Our method is
further tested and compared to other methods on a 4-class
segmentation task in a 2D setting. Table III shows the results
of all the methods, together with the two baselines using
purely supervised learning. Due to the low resolution of z-
axis, we use a 2D UNet [26] as backbone. 2D single slices
for a patient were fed into the 2D network for segmentation,
and those segmented slices were then rearranged into a 3D
volume to evaluate the segmentation performance for that
patient. Since we set the number of feature channels in the 2D
network to 4 times that of the 3D network, therefore, we need
to introduce more parameters when calculating the structural
affinity features (2.47M to 3.19M). Compared to the other
methods, our method performs the best in most of the cases,
e.g. when comparing to the SASSNET, our method improves
the performance by 3.12% (RV), 2.53% (myo), 3.92%(LV) in
terms of DSC, with much lower variance, which indicates that
our method can achieve better and more stable results than the
state-of-art methods. We again conducted Wilcoxon t-tests on
DSC and 95HD, with p-values being all less than 0.05, which
indicates our improvement is statistically significant.
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TABLE VII: The effect of hyper-parameters in mean and std of DSC of LA segmentation: τ1 and τ2.

τ1 0.25 0.5 0.75 1
τ2 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1

mean 86.05 86.99 87.03 86.81 86.96 87.03 86.66 87.75 86.78 86.64 87.24 87.14 86.65 86.52 86.78 86.36
std 2.84 2.33 2.08 2.49 2.14 1.89 2.15 1.49 1.95 2.50 2.02 1.75 2.43 2.31 1.82 2.35

D. Ablation Studies

In this section, we further conduct a set of experiments
to test the effects of different components of our framework
including the structural and contextual modules, the influence
of the hyperparameters such as the weights in the Eq.6
balancing the trade-off between the structural and contextual
modules, as well as the effect of scales in the affinity learning.

1) The effect of structural affinity module: We test the effects
of with and without using the structural affinity module,
on four different cases following our state-of-the-art com-
parisons: 1) using 16 scans as labelled in the left atrium
segmentation task; 2) using 8 scans only as labelled in the
LA segmentation task; 3) using 10 scans as labelled in the
hippocampus segmentation task; 4) using 7 scans as labelled
on the MS-CMRSeg task. Results are shown in Table IV,
V and VI. It could be seen that in the LA segmentation
task (10% and 20% labelled cases), using the contextual
module outperforms the model without the structural module.
For example, the model performance in terms of DCS using
the structural and contextual modules can improve by 1.43%
and 1.02% (from 86.32% to 87.75% in LA segmentation
with 16 scans as labelled, and 83.71% to 84.73% in LA
segmentation with 8 scans as labelled) respectively. For the
hippocampus segmentation and MS-CMRSeg task, the model
with the structural module outperforms the model w/o the
structural module in terms of the mean value of DSC, i.e., with
an improvement of 2.97% and 0.8% separately. In terms of the
95HD, the structural module is not a clear advantage on some
region tasks. However, by taking all testing cases together,
the structural module clearly improves the performance in a
majority of the cases.

2) The effect of contextual affinity module: We also tested
the effect of the contextual module, and results are included
in Tables IV, V and VI. Similar conclusions can be drawn
for the effect of the contextual module. Models including the
contextual module outperform the models that do not use
it in most of the cases. It could be seen that contextual-
only (w/o structural) works slightly better than structural-only
(w/o contextual), whilst structural-only works better in a few
cases in 95HD. The combination of these two modules works
best overall, which implicitly suggests the two modules are
complementary.

3) The effect of the number of blocks in affinity learning:
The different depths of blocks can explore different kinds
of information, the higher layers learn more high-level dis-
criminative representations, while earlier layers capture more
general and low-level visual information [51], [52]. In our
method, we explore the effect of the different number of
blocks in affinity learning. As shown in Fig. 2, our affinity
learning is applied to the features on four blocks, denoted
as B1, B2, B3 and B4. Due to the sequential convolution in

Fig. 7: The effect of number of blocks: from left to right: 1) No
Blocks; 2) B1; 3) B2; 4) B3; 5) B4, 6) B1-2; 7) B1-3; 8) All.

our method, different blocks extract features at different scales
and the combination of those features presents a multi-scale
representation of the input, with B1 corresponding to a coarser
scale and B4 to a finer scale. To explore the effect of the
number of blocks used in affinity learning, we systemically
vary the number of blocks (the value of K in Eq.6) used in
our affinity learning, by recursively adding one block to B4;
thus presenting four cases for testing 1) no blocks, 2) B1, 3)
B2, 4) B3, 5) B4, 6) B1+B2 (denoted as B1-2), 7) B1+B2+B3
(denoted as B1-3) and 8) B1+B2+B3+B4 (denoted as All). We
test the performance of the model in all of those cases when
taking 16 scans as labelled on the LA segmentation task. Box
plots of the results over eight random splits are shown in Fig.
7. It could be observed that when only one block is used for
affinity learning, the performance (the average of DSC over 8
runs) of the later blocks is generally higher than that of the
earlier blocks. Adding more blocks in general could improve
the results. In particular, our approach using all the blocks
outperforms without using affinity learning significantly, i.e.,
from 83.84% to 87.75%.

4) The effect of weights balancing structural and contextual
affinity modules: It is noted that the weights τ1 and τ2 in
Eq. 6 are used to control the trade-off between the structural
module and the contextual module in the consistency loss. To
test their effects, we systematically vary the values of τ1 and
τ2 within the range of [0, 1] with a step of 0.25, and conduct
the experiments on the left atrium segmentation task with 16
scans used as labelled. Results averaged over eights random
splits are listed in Table VII. It could be observed that, the
performances with respect to different weight values of τ1 and
τ2 remain relatively stable, and the model with τ1 = 0.5 and
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τ2 = 1 achieves slightly better performance.
5) The performance of different ratios of the labelled data:

We evaluated the LA dataset with 2.5%, 5%, 10%, 20%, 40%,
50% of the training data over eight independent runs. The
results are shown in Fig. 8. It can be seen that our method
improves the DSC in all settings (42.06%, 36.79%, 7.61%,
3.91%, 1.41%, 0.67% improvement with 2.5%, 5%, 10%,
20%, 40%, 50% of the training data). Thus, our task-affinity
consistent approach demonstrates its potential as a semi-
supervised segmentation algorithm in practical applications
with both a small number of and a large number of labelled
data.

Fig. 8: Plot of the mean DSC w.r.t different ratio of the training
set over the LA Dataset (2.5%, 5%, 10%, 20%, 40% and 50% of
the labelled data for training), with the blue line representing our
baseline: supervised learning, the red line representing our proposed
method.

6) The effect of the enhancement backbone: We developed
variants of other compared methods by inserting our enhance-
ment module into their original version and conduct all the
experiments by using the LA dataset with 20% labelled data.
Our method is compared with those variants of state-of-the-art
methods. The results are summarized in Tab. VIII. Our method
outperforms all six methods with the variant backbone.

TABLE VIII: Enhancement backbone comparison with
state-of-the-art methods on LA dataset with 20% labelled

data.

Method DSC (20% labelled cases)
VNet (sup) 89.316±1.863
VNet (inf ) 83.00±3.57

MT 83.88±4.32
EM 82.91±5.11
ICT 84.31±4.59

UAMT 85.46±3.86
SASSNET 86.16±2.77

DTC 85.91±3.63
Ours 87.75±1.49

V. VISUALIZATION

Figure 9 visually compares the segmentation boundaries of
different methods in the LA segmentation task. For clarity, the
first row (A) compares our method with the DTC, SASSNET,
and UAMT methods. The second row (B) shows the com-
parison between our method and ICT, EM, and MT methods.
Both the ground truth mask and the segmented boundary of our
method are imposed on the copies in both rows. The predicted
boundaries of the atrium by our method are more accurate than
others, i.e., much closer to the ground truth masks.

Fig. 9: Visual comparison of segmentation boundaries of different
methods, marked in different colours. For clarity, we split the
compared methods into two sets: 1) DTC, SASSNET, and UAMT
shown in the first row; 2) ICT, EM, and MT compared in the second
row. Each column shows the results on two copies of the same image,
with our result (green) and ground truth (red) imposed on both copies
of the same image. It could be clearly seen that our method produces
a much better segmentation boundary than all others.

VI. CONCLUSION
In this paper, we have proposed a novel semi-supervised

method based on task-affinity consistency regularization in the
feature maps. The structural affinity module and contextual
affinity module are introduced to separate the structural infor-
mation and contextual information at the feature level. This
separation method can be used to transfer the class-specific
knowledge from the labelled images to the unlabelled images.
Because our task affinity consistency regularization method
is based on the feature maps. It becomes easier to apply to
other mainstream segmentation networks, which indicates the
usability and scalability of the method. At the same time, our
method achieves the best on DSC and achieves superior results
to other methods on most of the other metrics in LA (10%
and 20% labelled setting), MS-CMRseg and HP segmentation
tasks.
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