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Abstract—Tree crown detection plays a vital role in 

forestry management, resource statistics and yields 
forecasting. RGB high-resolution aerial images have 
emerged as a cost-effective source of data for tree crown 
detection. To address the challenges in the detection using 
UAV optical images, we propose a one-stage object detection 
network, TCDNet. First, the network provides an attention 
enhancement feature extraction module to enable the model 
to distinguish between tree crowns and their complex 
backgrounds. Second, an efficient loss is introduced to 
enable it to be aware of the overlap between adjacent trees, 
thus effectively avoiding misdetection. The experimental 
results on two publicly available datasets show that the 
proposed network outperforms state-of-art networks in 
terms of precision, recall and mean average precision. 

Index Terms—Convolutional neural networks, remote 
sensing, unmanned air vehicle, tree crown detection 

I. INTRODUCTION 

ree crown detection plays an important role in forestry and 
ecosystem research. The traditional methods of tree 

inventory involve field-based measurements, which is resource 
intensive and time demanding [1]. In recent years, remote 
sensing (RS) technology has been shown to be a less time-
consuming tool for tree investigation. For this purpose, satellite, 
manned aircrafts and more recently, unmanned aerial vehicle 
(UAV) have been the most common platforms used for data 
acquisition. Satellite imagery (e.g., Sentinel-1, Sentinel2 and 
Landsat 8) suffers from insufficient spatial resolution, which 
renders the individual tree barely detectable [2, 3]. Manned 
aircraft is expensive and requires a huge amount of official 
paperwork and authorized licenses [4]. An UAV, e.g., a drone 
is considered to be an alternative, as it is cost-saving, 
lightweight, flexible, and easily manipulated. 

Multi and hyperspectral images [5, 6], Light Detection and 
Ranging (LiDAR) data [7], or their combinations [8, 9] have 
been the preferred data source, and thus extensively 
investigated. However, these data are costly and could not be 
easily processed due to their high dimensionality. Alternatively, 

RGB images are cost efficient and easier to process in the 
absence of three-dimensional information of the tree crown.  

Unfortunately, there are few studies on overlap in crown 
detection. All these studies directly exploit general object 
detection networks [10-12] based on deep convolutional neural 
network (CNN) [13] to detect tree crowns in RS scenes. Santos 
et al. [14] evaluated the performance of three detection methods, 
i.e., Faster R-CNN, YOLOv3 and RetinaNet, for individual tree 
detection. Weinstein et al. [15] also utilized RetinaNet to detect 
the tree crowns, achieving a promising precision. Oh et al. [16] 
applied a YOLO object detection model to detect and count 
cotton plants. Jintasuttisak et al. [17] exploited YOLO-V5 
detection framework for detecting date palm trees. However, 
these methods fail to consider the issues that exclusively exist 
in the task of UAV based tree crowns detection as follows: 

1) There exists the ambiguity in tree crowns detection using 
RS images, where it could be difficult to distinguish the trees of 
interest from their background as they tend to share the similar 
colour (e.g., grey-green) or under shade, as shown in Fig. 1(a). 

2) Trees tend to grow densely, and trees that are close together 
may overlap. Furthermore, certain tree crowns are occluded due 
to camera angle view or distance, bringing more challenge to 
accurately detect individual crowns, as shown in Fig. 1(b). 

 
 

 
 
 
 

                                (a)                              (b) 
Fig. 1. Uncertainty in tree crown detection in RS scenes. Key: Green 
boxes denote the correct detection, and red boxes denote the missed 
and incorrect detection.  

We refer the above two issues as the uncertainty in the task 
of tree crown detection with UAV, which requires to be 
considered when applying general object detectors to RS scenes. 
In the letter, we address such uncertainty by proposing an 
uncertainty-aware one-stage detection framework based on 
YOLO-X in [18]. We select YOLO-X based on its three 
prominent advantages: 1) Sensitive in detecting small objects 
(tree crowns in our task), avoiding the misdetection of some 
crowns with small size; 2) Robust to the variation of crown 
shape, which can generalize to different species of trees; and 3) 
Compared with two-stage detectors, it provides favourable 
tradeoff between accuracy and inference speed, which is 
suitable for UAV monitoring. To deal with the ambiguity that 
trees and background are not easy to distinguish, we make use 
of an attention strategy by integrating them to each branch at 
the end of the feature fusion module in YOLOX, enabling the 
model to pay more attention to the required tree crowns while 
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alleviating the influence of complex background. In addition, 
we introduced an effective loss, which measures the extent of 
overlapping and occlusion between two crowns during the 
model learning, thus increasing the robustness of our model. 

The main contributions of our work are summarized as 
follows: 

1) We propose a robust and efficient model, TCDNet, 
specifically for tree crowns detection using UAV optical 
imagery. To the best of our knowledge, we are the first to 
address the uncertainty exclusively exists in RS tree crown 
detection.  

2) We propose an attention enhancement PAN module, 
AEPAN, to highlight the significant feature information of the 

target tree crowns. This module further enhances the feature 
aggregation through fusion channel and spatial attention, thus 
focusing more on tree crowns while mitigating the impact of 
similar background and shade patterns. 

3) We introduce an occlusion aware loss, which effectively 
reduces incorrect detection caused by the mutual overlap and 
occlusion between tree crowns. 

4) To evaluate the superiority of the proposed network, we 
performed extensive experiments on two datasets containing 
tree crowns with varying sizes and from different geographical 
locations, comparing our method with other state-of-the-art 
methods qualitatively and quantitatively.

  

 

 

 

 

 

 

Fig. 2.  The overall architecture of our proposed TCDNet.

II. PROPOSED TARGET DETECTION METHOD 

The proposed TCDNet aims at solving the problems caused 
by the unique characteristics of RS tree crown images, e.g., the 
small size of tree crowns, the ambiguity regions of overlapping 
trees, and the similarity between crowns and background (or 
shade pattern) in RS images. 

The overall framework of TCDNet (as shown in Fig. 2) 
comprises three main modules: Backbone using DarkNet53 
with a spatial pyramid pooling (SPP) layer; AEPAN; and 
decoupled head. The DarkNet extracts the multi-scale features 
using SPP, which is able to capture the multi-scale 
representation of tree crowns from UAV images. The output 
multi-scale feature maps are then fed to the AEPAN module. 
AEPAN explores strong contextual features of the UAV images 
from top down and strong localization features of the target 
from the bottom up. These aggregate parameters of different 
detection layers to fully extract features. Finally, decouple head 
is used to identify the target locations and target class from the 
input features, where the refined loss function which takes into 
account the overlapping of tree crowns is designed to supervise 
the training process, thus increasing the robustness of the model.  

A. Backbone  
  YOLOX is a one-stage object detection network newly 

proposed by the Megvii Research Institute [18], which achieves 
a promising performance in terms of inference speed and 

accuracy. We employ the YOLOX as our basic architecture. As 
an anchor-free detection method, there is no need to set anchor 
parameters.  The backbone of our network is CSPDarkNet53, a 
combination of CSPNet and DarkNet53. It starts with the Focus 
module (F) (see Fig. 2) by transferring the spatial to the channel 
dimension without information loss. The CSP block consisting 
of a bottleneck structure and three convolutions is then used for 
feature extraction and selection. The feature maps from 
previous layer are computed into two parallel branches, and the 
number of channels is reduced to generate two new feature 
maps. The two maps are then concatenated as the output. The 
DarkNet53 architecture consists of 53 layers and contains 5 
CSP blocks followed by convolution. It assumes the input 
image size is 640 × 640 , and the size of successive output 
features are 320 × 320 ,	160 × 160 , 80 × 80 ,	40 × 40	and	
20 × 20,	respectively.	Moreover,	a	SPP layer is embedded to 
extract features at variable scales through maximum polling of 
different pooling kernel sizes. SPP improves the receptive field 
of the network and is also robust to the object deformation. In 
our work, we extract three feature maps of 80 × 80,	40 × 40	
and	20 × 20	for feeding to the feature fusion. 

B. Attention enhancement feature fusion module 
 Due to the characteristics of CNN that the more 

convolutional layers are stacked, the larger the receptive field 
of features is, and the more semantics and less low-level 
information are extracted. The classification of tree crowns 
heavily depends on semantics, and the localization is more 
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relevant to the receptive field of feature maps. To balance the 
classification and localization, a top-down and bottom-up 
multi-scale feature aggregation strategy PAN is exploited to 
fuse the features with different scales. However, due to the high 
similarity between tree crowns and their background in the RS 
images, the traditional PAN sometimes fails to capture the 
significant information of tree crowns, leading to a high 
probability of the background being detected as a target.  

To solve the problem, we designed an attention enhancement 
PAN module, namely AEPAN. As shown in Fig. 3, the core 
module in AEPAN is a hybrid block that integrates an efficient 
attention mechanism to the CSP module of different branches, 
referred to as EACSP. The EACSP block allows the model to 
focus on the saliency of the tree crowns while suppressing 
background inference. We employ a dual attention strategy 
CBAM [19] due to its simplicity and effectiveness. This 
attention module is composed of two parts: spatial and channel-
wise attention.  Given an intermediate feature map in the CNN, 
CBAM injects the attention map along two independent 
dimensions, i.e., channel and spatial, and multiply the attention 
by input feature map to perform adaptive feature enhancement. 
Such attention enhancement feature is capable of capturing the 
important features and suppressing unnecessary ones. Fig. 2 
illustrates the structure of SCACSP, where H, W, and C 
represent the dimensions of the feature map. 
 
 

 
 
 
 
 
 

 
 
 

Fig. 3. Structure of SCACSP. 
Specifically, the output features 𝐹 of CSP module are first 

aggregated using global maximum pooling and average pooling 
to generate spatial descriptors 𝐹!"#$  and 𝐹"%&$ . The two 
descriptors are then fed to a shared multi-layer perceptron 
network and merged using element-wise summation. The 
channel attention is computed as 

CA(F) = σ(MLP(AvgPool(F)) +MLP(MaxPool(F)))           
                 = 𝜎(𝑊!(𝑊"(𝐹#$%& )) +𝑊!(𝑊"(𝐹'#(& ))),              (1) 

where σ  denotes the sigmoid function. 𝑊'  and 𝑊(  are the 
multilayer perceptron (MLP) weights that are shared for both 
inputs, where the ReLU activation function is followed by 𝑊'. 
Multilayer Perceptron (MLP) represents two fully connected 
shared layers. The generated channel attention is multiplied by 
𝐹 to obtain the channel attention feature map 𝐹), i.e., 
                              			𝐹) 	= 𝐶𝐴(𝐹)	⊗ 𝐹.                                       (2) 

After obtaining 𝐹) , the spatial attention is computed by 
applying average-pooling and max-pooling along the channel 
dimension, resulting in two descriptors 𝐹!"#)  and  𝐹"%&)  . Such 
pooling operations highlight informative tree crown regions. 
The outputs are then concatenated to generate a feature 
descriptor and fed to a convolution layer to generate spatial 
attention map. The spatial attention is computed as 

				𝑆𝐴(𝐹)) = 𝜎(𝐶𝑜𝑛𝑣(𝐹𝑚𝑎𝑥𝑆 ;𝐹𝑎𝑣𝑔𝑆 )) .                  (3) 
The spatial attention map and 	𝐹) are element-wise multiplied 
to obtain the final attention enhanced feature 𝐹01, i.e., 

                                  𝐹*&+ = 𝑆𝐴(𝐹′) ⊗ 𝐹).                               (4) 
    We integrate the attention strategy to all three CSP modules 
(with different feature scales), where multiscale salient feature 
information in tree crown RS images is well retained.     

C. Decouple head and occlusion aware loss 
Unlike other one-stage object detection methods, YOLOX 

replaces coupled detection heads with decoupled detection 
heads, which greatly improves the speed of convergence. In 
addition, dynamic top-k strategy named SimOTA and anchor-
free detectors are also added [20]. After the feature fusion 
module, i.e., AEPAN, we forward three attention enhanced 
features to the decouple heads to obtain detection results. 

The loss function of TCDNet contains three parts, i.e., 
                     𝐿 = 𝜆!𝐿,-. + 𝜆/𝐿012 + 𝜆3𝐿110( ,                       (5) 

where L234  denotes the classification loss, L567  denotes the 
objectness loss (reflecting the confidence score of object 
presence), and L6658  denotes the bounding box regression 
score loss; and where λ(, λ9 and λ: are the weight coefficients 
(we set λ( , λ9  and λ:  to 1, 1 and 5, respectively). The 
objectness loss is due to an incorrect prediction of box-object 
IoU, and teaches the network to predict a correct IoU, i.e., 
eventually pushing the IoU toward 1. In our case, the objectness 
and classification losses are calculated using binary cross-
entropy loss (BCE), i.e.,    

         𝐿(𝑦4 , 𝑦5C) = −[𝑦4 log(𝑦5C) + (1 − 𝑦4) log(1 − 𝑦5C)],         (6) 
where 𝑦4 and 𝑦5C denotes the ground truth and prediction.  

As shown in Fig.4, if we use IoU loss to calculate the 
regression loss of the bounding box, the IoU value between P 
and B is larger than the one between P and T. The box P will 
move to box B during the training, which causes the missed 
detection of the true box T. However, if the aspect ratio of the 
boundary is to be preserved, the box P is obviously more similar 
to box T. Thus, the estimated CIoU value between P and T is 
larger than the one between P and B, which moves the box P 
close to T during the training. The CIoU loss function L;<5= is 
defined as                                      

                       𝐿&607 = 1 − 𝐼𝑜𝑈 + 8!91,1"#;
,!

+ 𝛼𝜈 ,                      (7) 
                          𝐼𝑜𝑈 = |+⋂>|

|+⋃>|
  ,                                              (8) 

			𝜈 = @
A!
(arctanB

$%

ℎ$%
− 𝑎𝑟𝑐𝑡𝑎𝑛B

ℎ
)/  ,                            (9) 

                                  𝛼 = >
((@ABC)E	>

  .                           (10)       
where b and bgt respectively denote the centre points of the 
predicted and the ground-truth box. 𝜌 is the Euclidean distance 
between the two centre points, and 𝑐  denotes the diagonal 
distance of the smallest closure area that contains both the 
predicted box and the ground-truth box. 𝛼  is the weight 
function and the penalty term 𝜈 is used to measure the similarity 
via the aspect ratio. 𝑤 and ℎ  are respectively the width and 
height of bound box. CIoU loss takes into account the distance 
between the target and the anchor, the overlap rate and the scale, 
which thus makes the target box regression more stable and 
robust to overlapping and occlusions. 
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Fig.4. Illustration of the CIoU Loss. Key: Green box denotes ground truth T, 

blue box denotes the overlapping ground truth B, and red box denotes 
prediction P. 

III. EXPERIMENTS AND RESULTS 

A. Datasets 

We used two publicly available datasets, Neon Tree Crowns 
dataset [21] and Bayberry Tree dataset [22]. For Neon Tree 
Crowns dataset, we downloaded and collated 169 images of 
size 400×400 with the corresponding annotations from 
https://zenodo.org/record/59145 54#.YwYeJXZBy3C,which is a 
subset of Neon Tree Crowns dataset. This dataset contains 
canopy images of different species in multiple regions. For each 
geographic site a NEON four letter code (e.g HARV -> Harvard 
Forest) is provided. The Bayberry Tree dataset consists of 284 
high-definition RS images with labels and size of 1024×682, 
acquired during January 23rd to 24th, 2019 from Dayangshan 
Forest Park, Yongjia County, Zhejiang Province. The images 
are collected using DJI Phantom4 drone for aerial photography. 
In each dataset, we confirm the accuracy of the annotation of 
each canopy, and each image is provided with geographic 
information about the tree in the image. 

B. Training Details 
We conducted all experiments using Pytorch toolbox on a PC 

with NVIDIA Tesla P100. We randomly divided images from 
two datasets into training and test set at a ratio of 7:3, 
respectively. The size of input images is scaled to 640 × 640, 
using RandomAffine, RandomFlip, and the contrast conversion 
online enhancement strategy for data augmentation. The model 
loads the weights trained on the VOC dataset during model 
training. To protect the weights from being destroyed, we 
trained the network for 50 epochs by freezing feature extraction 
layers with an initial learning rate of 0.001 and a batch size of 
4. We then trained the entire network with a learning rate of 
0.0001, a mini-batch size of 4 for 50 epochs. During the training, 
we use the Adam optimizer, and set the momentum and weight 
decay to 0.9 and 0.0005, respectively. In all experiments, we 
set the IOU threshold to 0.5. When the overlapping area 
between the prediction box and the ground-truth exceeds 50%, 
the prediction box is considered to be correct. When calculating 
all metrics results, we set the confidence threshold to 0.5.  

C. Evaluating Metric 
To quantitatively assess the performance of our TCDNet for 

detecting tree crowns, the general three metrics of recall, 
precision and mean average precision (mAP) are used. Recall 
is defined as the ratio of correctly detected objects by the model 
in all ground-truth objects, and precision refers to the ratio of 
the correctly detected objects by the model in all detected 
objects. The recall and precision rates are computed as 

	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = CD
CDEFD

 ,                              (11) 

                                  𝑅𝑒𝑐𝑎𝑙𝑙 = CD
CDEFG

  ,                              (12) 

where TP denotes the number of tree crowns correctly detected, 
FP denotes the number of other objects detected as tree crowns, 
and FN is the number of tree crowns that are not detected.  

The mAP represents the average value of each class average 
precision (AP), i.e., the area under the precision-recall rate (R- 

R) curve, which is defined as  
																													𝑚𝐴𝑃 = !

G
∑ ∫ 𝑃(𝑅)𝑑𝑅!

"
G
4H! 	,                         (13) 

where N denotes the number of detected classes. In our case, as 
N is 1, mAP is equivalent to AP.  
D. Experimental Results and Analysis 

In order to evaluate the effectiveness of the proposed method, 
different state-of-the-art object detection networks are 
employed for comparison, including Faster-RCNN [11], SSD 
[27], YOLOV3, YOLOV4 and YOLOX. Each method was 
trained with two datasets using the VOC pre-trained weights.  
The experimental results are shown in Table 1. 

TABLE Ⅰ. PERFORMANCE COMPARISONS ON TWO DATASETS 
Datasets Model Precision recall mAP 

Neon Tree 
Crowns 

Faster-RCNN 50.17% 31.57% 39.73% 
SSD 63.47% 33.72% 45.83% 
YOLOV3 67.63% 38.11% 49.14% 
YOLOV4 65.33% 43.03% 54.34% 
YOLOX 69.57% 45.25% 57.99% 
TCDNet 70.53% 46.90% 58.49% 

 Faster-RCNN 77.62% 70.55% 75.12% 
 SSD 85.17% 80.76% 82.45% 

Bayberry YOLOV3 80.15% 86.61% 87.31% 
Tree YOLOV4 86.21% 92.68% 93.52% 

 YOLOX 87.34% 94.80% 96.30% 
 TCDNet 87.98% 95.41% 96.76% 

There are two key modules within TCDNet, i.e., AEPAN 
module and CIoU loss. To validate the effectiveness of these 
two improvements, we perform an ablation study. In the 
proposed model, AEPAN aggregates the salient information by 
adding the attention module.  CIoU loss is introduced to replace 
IoU loss, enabling the network to be aware of the relation 
between close trees. We performed 4 sets of ablation 
experiments: 1) Using baseline YOLOX; 2) Replacing PAN 
with AEPAN; 3) Replacing PAN with AEPAN and using CIoU 
loss; and 4) Using TCDNet. All hyperparameters were retained 
constant throughout the experiment. 

TABLE Ⅱ. RESULTS OF ABLATION STUDY 
Datasets Model Precision Recall mAP 

 YOLOX 69.57% 45.25% 57.99% 
Neon Tree AEPAN 70.24% 45.67% 58.39% 
Crowns  CIoU  70.12% 45.49% 58.32% 

 TCDNet 70.53% 45.90% 58.49% 
 YOLOX 87.34% 94.80% 96.30% 

 
Bayberry Tree 

AEPAN 87.11% 95.07% 96.42% 
CIoU 87.51% 95.23% 96.62% 

 TCDNet 87.98% 95.41% 96.76% 

 

 

 

 

 

Fig. 5.  The loss curve during training (Left): Training on Neon Tree Crowns 
dataset; and (Right): Training on Bayberry Tree dataset. 

Table Ⅱ shows that the proposed TCDNet achieves a 
constantly improvement in terms of precision, recall and mAP. 
Compared with YOLOX using PAN, the introduction of 
AEPAN module increases the mAP by 0.40% and 0.12% on the 
two datasets, respectively. The CIoU loss function improves 
mAP on the two datasets by 0.33% and 0.32%, respectively. 



 
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 

 5 5 

Furthermore, the value of CIoU loss is constantly lower than 
IoU on both datasets during training (shown in Fig. 5).  Overall, 
the proposed TCDNet using AEPAN and CIoU has greatly 
improved the performance for tree crowns detection using RS 
imagery compared with the original YOLOX. 

In order to show the effectiveness of our methods compared 
with the original YOLOX, we visualized the detection results 
in the images under different environments using YOLOX and 
our method, respectively. The experimental results are shown 

in Fig. 6. The first row and the second row are the detection 
results using YOLOX and TCDNet, receptively. There are 
serious problems such as miss detection and inaccurate 
detection using YOLOX. This is due to: 1) High similarity 
between tree crowns and their background; and 2) Overlapping 
of tree crowns. Our TCDNet has succeeded in solving these two 
problems and detects almost all the targets missed by YOLOX 
in the images from both two datasets. Therefore, the TCDNet 
has excellent detection performance in terms of accuracy and 
robustness, which is well generalized to other RS scenarios

 
 
 

 
 

                                     
 
 
 
                       
                                            
Fig. 6. Comparison of detection results of using YOLOX and TCDNet on two datasets. Images of first two columns from Neon Tree Crowns dataset; and images 
from the remaining columns from Bayberry dataset. The top row shows detection results using the original YOLOX, and the bottom row shows detection results 
using our TCDNet. Key: Green boxes denote the correct detection, and red boxes denote the missed and incorrect detection. 
 

IV. CONCLUSION 

We proposed a one-stage object detection network to detect 
tree crown using UAV imagery. Aiming at the problems of 
missed/false detection caused by the high similarity between 
tree crowns and their background, the attention enhanced 
module is integrated to the multi-scale feature fusion layer. 
Using the CIoU loss instead of the IoU loss enables the model 
more robust to the missed detection due to the occlusion 
between tree crowns. The experimental results on two datasets 
verify the effectiveness of each module was designed as well as 
the entire framework. In future, we will apply our method to the 
practical applications of forestry resource surveys. 
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