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Abstract

Despite the increasing sophistication of numerical models of hot Jupiter atmospheres, the large timescale
separation required in simulating the wide range in electrical conductivity between the dayside and nightside has
made it difficult to run fully consistent magnetohydrodynamic (MHD) models. This has led to many studies that
resort to drag parameterizations of MHD. In this study, we revisit the question of the Lorentz force as an effective
drag by running a series of direct numerical simulations of a weakly rotating, poorly conducting flow in the
presence of a misaligned, strong background magnetic field. We find that the drag parameterization fails once the
timescale associated with the Lorentz force becomes shorter than the dynamical timescale in the system, beyond
which the effective drag coefficient remains roughly constant, despite orders-of-magnitude variation in the Lorentz
(magnetic) timescale. We offer an improvement to the drag parameterization by considering the relevant
asymptotic limit of low conductivity and strong background magnetic field, known as the quasi-static MHD
approximation of the Lorentz force. This approximation removes the fast timescale associated with magnetic
diffusion, but retains a more complex version of the Lorentz force, which could be utilized in future numerical
models of hot Jupiter atmospheric circulation.

Unified Astronomy Thesaurus concepts: Astrophysical fluid dynamics (101); Exoplanet atmospheres (487);
Magnetohydrodynamics (1964); Hot Jupiters (753)

1. Introduction

Hot Jupiters (HJs) are gas giant exoplanets, with masses
similar to that of Jupiter, which orbit close enough to their host
star that they are generally expected to be tidally locked
(Seager 2010; Heng & Showman 2015). The proximity to their
host stars is also expected to partially ionize the upper
atmospheres of HJs, leading to the interaction between the
atmospheric flows and any present magnetic fields (Perna et al.
2010a, 2010b; Batygin & Stevenson 2010; Koskinen et al. 2010;
Menou 2012; Koskinen et al. 2014). Their relatively large profile
when obscuring their host star, as well as their short orbital
periods, make them ideal candidates for transiting observations.
In the last two decades, these observations have given us access
to a great amount of information about their atmospheres,
including some insight into their atmospheric dynamics—
indirectly via hot spot migrations (Knutson et al. 2007, 2008;
Zellem et al. 2014; Bell et al. 2021) and more directly using the
blueshifting of spectra observed at the terminators (Louden &
Wheatley 2015; Ehrenreich et al. 2020). Their discovery, and the
subsequent observation of atmospheric dynamics, prompted the
creation of a whole subfield devoted to the numerical modeling
of the atmospheres of HJs and their close relatives. These models
range in sophistication and intent, from quasi-two-dimensional
shallow water models (Cho et al. 2003; Langton &
Laughlin 2007; Cho 2008; Showman & Polvani 2011; Perez-
Becker & Showman 2013; Heng & Workman 2014; Hindle

et al. 2019) to three-dimensional general circulation models
(GCMs; Showman & Guillot 2002; Dobbs-Dixon & Lin 2008;
Menou & Rauscher 2009; Showman et al. 2009; Perna et al.
2010a; Rauscher & Menou 2010; Heng et al. 2011; Batygin
et al. 2013; Rauscher & Menou 2013; Rogers & Komacek 2014;
Rogers & Showman 2014; Rogers & McElwaine 2017).
One of the largest obstacles in modeling these atmospheres is

the large conductivity contrast between the dayside and the
nightside, due to the large differences in temperature (Perna et al.
2010a; Rogers & Komacek 2014; Heng & Showman 2015). The
timescale of diffusion for induced magnetic fields is proportional to
this conductivity, resulting in numerical models needing to resolve
small timescales in the nightside, along with large timescales to
capture large-scale structures in the atmosphere. Very large
timescale separations can be impractical for numerical simulations,
and as a result, many modelers resort to a parameterization of
magnetic effects that does not directly resolve the magnetic
diffusion timescale. The most common approach begins by
assuming that any induced magnetic field is a small, rapidly
diffusing perturbation around a strong background magnetic field.
This leads to a timescale associated with the Lorentz force that is
equal to rs- -Be

1
0

2, where σe is the electrical conductivity, B0 is the
strength of the background magnetic field, and ρ is the fluid
density (Davidson 1995; Knaepen & Moreau 2008;
Davidson 2013). Modelers then substitute the Lorentz force with
a drag term with an associated timescale t rs= - -Bedrag

1
0

2 (Perna
et al. 2010a; Menou 2012; Rauscher & Menou 2012; Komacek &
Showman 2016; Koll & Komacek 2018; Kreidberg et al. 2018;
Arcangeli et al. 2019), which can also vary in space (Rauscher &
Menou 2013; Beltz et al. 2021). For small values of σe the
resulting drag timescale is not restrictive for the numerics. Studies
that have implemented what is dubbed as MHD drag have found
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that the structure of the atmospheric circulation significantly
changes when the drag timescale is similar to or smaller than the
relevant dynamical timescale.

There are, however, reasons to question the validity of MHD
drag. Recent attempts at modeling the full MHD equations in
3D GCMs, albeit with some simplifications, have shown that,
although magnetic effects do reduce the strength of atmo-
spheric jets (as a drag would), they also cause different
morphological changes in the flow, which make the authors
question whether the correct prescription is a drag (Rogers &
Komacek 2014; Rogers 2017). Furthermore, the authors find
that the ohmic dissipation measured in their MHD models is
more than an order of magnitude smaller than would be
predicted by a drag term. In an independent study, Heng &
Workman (2014) arrive at a similar conclusion about MHD
drag by studying the shallow water MHD model. See also
Pothérat & Klein (2017) for a similar discussion in the context
of MHD experiments. Indeed, as we will see in the next
section, when considering the approximation of the Lorentz
force in the relevant limits of low conductivity and large
background magnetic field, one can show that a drag-like term
appears in two-dimensional flows, but in three-dimensional
flows this is not the case (Davidson 1995, 2013). Whether this
approximation can be further reduced to a drag is unclear. The
uncertainty of both the drag timescale as well as the validity of
the drag prescription itself, combined with their significant
effects on the atmospheric circulation, makes this a central
issue in the modeling of HJ atmospheres and impacts our
understanding and expectation of their atmospheric circulation.

In this study, we introduce a simplification of MHD in the
low conductivity limit and revisit the question of the Lorentz
force as an effective drag. In Section 2, we consider an
approximation to the full MHD equations in the relevant limits
of low conductivity and strong background magnetic field,
called quasi-static MHD (QMHD). In particular, we focus on
the form of the approximate Lorentz force and discuss its
properties and potential relation to a drag-like term, whose
validity we quantify using an effective drag coefficient. In
Section 3, we describe the numerical setup and introduce an
integral length scale along the magnetic field, as a measure of
the anisotropy in the flow. Then, in Section 4 we measure the
anisotropy and effective drag coefficient in a series of direct
numerical simulations of QMHD turbulence in an idealized
setup. We find that the drag parameterization with associated
timescale t rs= - -Bedrag

1
0

2 works well for runs in which the
dynamical timescale is shorter than that associated with the
Lorentz force. Beyond this, when the Lorentz force is
sufficiently strong, the flow becomes anisotropic and the
effective drag coefficient levels off. Finally, in Section 5 we
summarize our results and propose QMHD as an intermediate
model, bridging the gap between the simplicity of a drag and
the complexity of the full MHD equations, to be used in future
GCMs of HJs.

2. Rotating, Weakly Conducting MHD

We aim to keep our fluid description of HJ atmospheres as
simple as possible in an effort to focus purely on the dynamical
effects of the Lorentz force. This means we will be ignoring
many realistic features of HJ atmospheres, including stratifica-
tion, radiation, day-night forcing contrast due to tidal locking,
compressibility, and kinetic plasma effects. Given their
moderate temperatures, HJ atmospheres are also likely partially

ionized (Perna et al. 2010a; Batygin & Stevenson 2010;
Koskinen et al. 2014). However, except at very low pressures,
the ions and neutrals are expected to be highly coupled due to
collisions, meaning that a single-fluid description is an
appropriate characterization (Perna et al. 2010a; Benavides &
Flierl 2020). We thus begin by considering incompressible
magnetohydrodynamics (MHD) with uniform density (and no
buoyancy variations), subject to rotation Ω and a uniform,
steady background magnetic field B0. We are effectively
considering a three-dimensional volume of an HJ atmosphere
that is smaller than both the stratification scale height set by the
entropy gradient and also the length scale of variation in the
background magnetic field. Further simplifications will be
achieved by considering two relevant limits, low electrical
conductivity, and a strong background magnetic field.
The effect of electrical conductivity on the dynamics is

quantified by the magnetic Reynolds number Rem, a dimen-
sionless parameter comparing the magnetic diffusion timescale
to the timescale associated with the evolving flow
(Davidson 2013). We define h=Re ℓum , where
h m s= -

e0
1( ) is the magnetic diffusivity, μ0 is the magnetic

permeability, ℓ is a dominant length scale of the flow, and u is a
velocity scale. If Re 1m , the diffusion and dissipation of
induced magnetic fields is significant. HJs with daysides cooler
than roughly 1800 K are expected to have magnetic Reynolds
number smaller than one throughout most of their atmospheres
(Perna et al. 2010a; Hindle et al. 2021), although this
assumption could break down on the dayside of the hotter
HJs at lower pressures (Menou 2012; Rogers & Koma-
cek 2014). Importantly, dynamo instabilities are not present in
flows with Re 1m , and thus do not convert kinetic energy to
magnetic energy, resulting in a decaying induced magnetic
field b and a negligible Lorentz force, j× b, where

m=  ´-j b0
1 , in the absence of a magnetic field generated

elsewhere.
However, in the presence of a background magnetic field

(from a deeper dynamo region or from the host star), the flow
can act to exchange kinetic for magnetic energy by shearing
this field, inducing currents and magnetic fields. In a flow with
low conductivity, the strength of this induced magnetic
field scales like ~b Re Bm 0, and thus the Lorentz force scales
like m s´ + ~ µ- -j b B Re B ℓ Bm e0 0

2 1
0

1
0
2∣ ( )∣ (Davidson 1995;

Knaepen & Moreau 2008; Davidson 2013). This is the origin of
τdrag discussed in Section 1. We estimate the relevance of the
Lorentz force in the dynamics by comparing the strength of the
Lorentz force to the nonlinear advection term in the momentum
equation, giving us our main control parameter in this study,
known as the interaction parameter:

m r
s
r

º =N Re
B

u

ℓB

u
. 1m

e0
2

0
2

0
2

( )

Despite Re 1m , if m rB u0 0( ) is large enough such that
N 1, then the Lorentz force can significantly affect the dynamics.
Some recent studies have estimated magnetic field strengths for
HJs and found magnitudes similar to that of Jupiter, but possibly
up to 50 times greater for larger radius HJs, suggesting that this
limit could be relevant for some HJs (Reiners & Christensen 2010;
Rogers 2017; Yadav & Thorngren 2017; Hindle et al. 2021).
Flows with Re 1m and ~ N 1( ) have the distinct

property that the induced magnetic field is quickly diffused
away, yet the Lorentz force is not negligible. This limit is

2
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referred to as the quasi-static approximation to MHD (which
we call “QMHD” henceforth; Moffatt 1967; Sommeria &
Moreau 1982; Davidson 1995; Knaepen & Moreau 2008;
Davidson 2013), and has been studied mainly in metallurgy
and in MHD experiments due to the typically low conductivity
of liquid metals (Alemany et al. 1979; Sommeria 1988; Gallet
et al. 2009; Klein & Pothérat 2010; Pothérat & Klein 2014;
Baker et al. 2018), although recent numerical studies on its
turbulent properties and anisotropy have been done as well
(Zikanov & Thess 1998; Burattini et al. 2008; Favier et al.
2010, 2011; Reddy & Verma 2014; Verma 2017). After
nondimensionalizing the equations of MHD using the uniform
density ρ, ℓ, and u, and taking the limits above, one is left with
a single dynamical equation for the velocity





¶
¶

+  =- - ´

-   +

- W

-

v
v v x v

x v F
t

p Ro

N , 2B

1

2 20

( · ) ˆ

( ˆ · ) ( )

*

where p* is the total pressure modified by rotation and magnetic
pressure, Ro−1≡ 2Ωℓ/u is the inverse Rossby number
(quantifying the relative strength of the Coriolis force), 

Wx̂

and x
B0ˆ are unit vectors in the direction of rotation and the

background magnetic field, respectively, and F is a generic
forcing term that can include dissipation such as viscosity and a
body force (to be specified in Section 3). The background
magnetic field is fixed in time and is uniform in space, such that

 ´ =  ´ =B xB 0B
0 0

0ˆ . Care must be taken if considering
a spatially dependent background magnetic field B0(x), as the
resulting equation will not be the same. See the discussion in
Section 5. This equation is accompanied with the incompres-
sibility condition ∇ · v= 0. The induced magnetic field can be
found using a diagnostic relation

= - -b x v, 3B2 0( ˆ · ) ( )

which would be h= - -b B v0
2( · ) in dimensional

variables.
In QMHD, the Lorentz force operator,

º -  - v x vN , 4B2 20( ) ( ˆ · ) ( )

acts to dissipate kinetic energy from any motion that varies
along the direction of the background magnetic field. In two-
dimensional flows, with an in-plane B0, it can be shown that
 v( ) becomes = - ^ v vND

B
2

0( ) ˜ (up to an irrelevant gradient
field), where v̂B0 is the projection of the velocity perpendicular

to the background field and  òº - -v v vL dx B1 0˜ (Davidson
1995, 2013). These two properties would, at first glance, seem
to justify the use of a drag parameterization. However, most
HJs are expected to be tidally locked, resulting in order one
Rossby numbers (Showman et al. 2010), which is not low
enough for strong two-dimensionalization of these flows (and
we are not considering the effects of strong stratification or
large aspect ratio). In three dimensions, there are various
reasons to question the use of a drag term as an approximation
to the Lorentz force in QMHD. First of all, the Lorentz force
 v( ) acts to create anisotropy in the flow by removing energy
from motions that vary along the magnetic field, but does not
affect motions that are invariant along that direction. This is in

sharp contrast to a drag in which any motion is affected equally
and in an isotropic way. Second, a drag term removes linear
momentum from the system, whereas the Lorentz force in the
QMHD approximation does not (in the absence of no-slip
boundary conditions). This can have profound effects on the
time evolution of the system. Finally, a drag term removes
energy anywhere in space where v≠ 0, whereas  v( ), despite
removing energy in a spatially averaged sense, may locally
inject energy into the flow (Figure 1).
Despite these differences,  v( ) does remove energy from the

flow, and is linear in v, so there is hope that the much simpler
prescription of  as a drag could be approximately valid in certain
regimes. One can arrive at a potential justification for this by
expressing v( ) in Fourier space in terms of wavenumbers parallel
(k∥) and perpendicular (k⊥) to the background magnetic field,
resulting in   - å +^

-
^v kN k k k k e, k x

k
i2 2 1 2( ) ˆ ( ) ( · ), where v̂ is the

Fourier transform of v. We see that, if  ^v kkmax ,k∣ ˆ∣( ) happens for
k∥� |k⊥|, then we can approximate » = - v v vc Ndrag 0( ) ( ) ,
with c0 being an order one constant ranging from c0≈ 1/2, when
the max occurs near k∥∼ |k⊥|, to c0≈ 1, when the max occurs for
k∥? |k⊥|. The latter might be relevant in a thin atmosphere where
the background magnetic field projects significantly onto the thin
direction and the flow contains large horizontal structures
perpendicular to the background magnetic field.
In order to investigate the validity of the Lorentz force as a

drag in a quantitative way, we introduce an effective drag
coefficient Deff,

º -
á ñ
á ñ
v v

v
D , 5eff 2

· ( )
∣ ∣

( )

where 〈 · 〉 denotes a temporal and spatial average at steady
state. If  v( ) does indeed act like a drag, at least in a volume-
averaged sense, then we would expect Deff∝N. However, if
this is not the case, then Deff will deviate from N. á ñv v· ( ) is
the ohmic dissipation rate, so that Deff represents the ratio of
ohmic dissipation to (twice) the kinetic energy in the flow.
In the next section we introduce a series of direct numerical

simulations of QMHD turbulence, which we use to investigate
how  acts to create anisotropy, and how that, in turn, affects
the validity of  approximated as a drag. In particular, we use
these simulations to determine how the effective drag
coefficient depends on the interaction parameter N.

3. Methods

We performed direct numerical simulations of the QMHD
system, Equation (2), in a triply-periodic domain using a
modified version of the Geophysical High-Order Suite for
Turbulence (GHOST; Mininni et al. 2011; Benavides 2021), a
pseudo-spectral code with a fourth-order Runge–Kutta scheme
for time integration and a two-thirds dealiasing rule. The
generic forcing term F comprised of a hyperviscous term,
−ν∇4v, which acts to dissipate kinetic energy at the smallest
scales, and a body forcing term f, which is random (white in
time) and injects energy into the flow at a constant rate ε and at
a single length scale ℓf, both of which are input parameters
(Chan et al. 2012). The hyperviscosity lets us use lower
resolutions while maintaining numerical accuracy, and has
been shown to have no significant effect on the turbulent
properties of 3D turbulence as long as the power of the gradient
is small enough, as is the case here (Agrawal et al. 2020).

3
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The axis of rotation was chosen to be in the direction
 =Wx zˆ ˆ, whereas the direction of the background magnetic
field was chosen to be perpendicular to it, in the x-direction,

 =x xB0ˆ ˆ. The misalignment between the rotation axis and
background field is supposed to reflect a generic case, since
there is no reason to expect alignment between the two outside
the dynamo region (e.g., a dipole field from the interior dynamo
region). In some cases misaligned rotation and background
field can have significant consequences on the dynamics
(Benavides et al. 2022), so we performed runs at other
misalignment angles, θ, defined to be the angle the background
field makes with the rotation axis (Table 1). These runs show
that our results do not depend strongly on the misalignment
angle, as long as it is not zero or small.

Since  dissipates motion that varies along x, we expect
anisotropy to develop in our domain, manifested by structures
along the x-direction, which are larger than in the perpendicular
directions. In order to accommodate the form of , and the
resulting anisotropy, we make a few specific choices in our
implementation. First of all, we perform the same set of runs for
various values of Lx, the domain size in the x-direction. The
domain size in the perpendicular direction is fixed at
Ly= Lz= 2πL, whereas we perform sets of runs with Lx= 2πL,

4πL, and 8πL. Second, the forcing function f does not vary along
the x-direction, so that the forcing does not project onto , which
would immediately dissipate the energy being forced. Since such
two-dimensional forcing results in three-dimensional instabilities,
the resulting flow is still approximately isotropic when N= 1.
The numerical model is nondimensionalized by L and ε,

such that the domain size in the directions perpendicular to B0
is 2π and the forcing function has an injection rate equal to one.
In all of our runs, we have ν= 2× 10−6, Ω= 2, and ℓf= 2π/kf,
where kf= 9 (we randomly force modes k such that

Figure 1. Snapshots from the Lx = 8πL runs (Table 1) of the field-aligned vorticity w =  ´ vx̂ · ( ) (lower left, in blue and red) and the ohmic dissipation v v· ( )
(upper right, in black and red) for increasing values of the interaction parameter N (Equation (1)). Figures 1(b)–(d) represent runs with approximately equal values of
volume-averaged ohmic dissipation and Deff (Equation (5)). The red colors represent positive values whereas the blue and black represent negative values. All
snapshots use the same color bar scale for each given field.

Table 1
Summary of the Runs Performed for This Work

Lx Nx θ N # of Runs

2πL 256 30°, 60°, 90° 2 × 10−3 −200 33
4πL 512 90° 2 × 10−1 −300 8
8πL 1024 90° 2 × 10−1 −600 8

Note. All runs have (in simulation units, nondimensionalized by L and ε)
ν = 2 × 10−6, Ω = 2, and ℓf = 2π/kf, where kf = 9. This corresponds to an
inverse Rossby number of Ro−1 = 1.98, and an effective Reynolds number of
Re = 14,973. Nx represents the number of grid points in the x-direction. All
runs have 256 grid points in both the y and z directions.

4
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8< |k|< 10, making kf= 9). The dominant length scale in the
problem is ℓ= ℓf/2, if we consider the size of a typical vortex
produced by the forcing. The velocity scale is defined using
u= (εℓ)1/3= ℓ

1/3= (π/9)1/3. These values of ℓ and u result in
an inverse Rossby number of Ro−1= 1.98, and an effective
Reynolds number of Re= 14,973, where nºRe uℓ3 is based
on the hyper-dissipation used in our model. Although we do
not know typical values for viscosity on HJs, given the high
temperatures present, we expect it to be very small.
Furthermore, with scales of motion on the order of thousands
of kilometers and velocities on the order of meters per second
or more, we believe that the Reynolds numbers will be much
larger than one. We thus expect small scale instabilities (e.g.,
shear instabilities) as well as buoyancy-based instabilities to be
present, leading to turbulence. All of our runs have a resolution
of 256 in each direction perpendicular to the background field.
See Table 1 for a list of the runs performed in our study. Note
that, although we are varying N over many orders of magnitude
(including possibly N? 1), QMHD is the limit of MHD with
vanishing magnetic Reynolds number, which always holds
true. Therefore, N? 1 requires m rB u0 0( ) to be much larger
than one.

Each simulation is run until a statistical steady state is
reached, at which point the time-averages are taken until the
error estimate (considering covariance) levels off. For each run
we calculate the effective drag coefficient Deff, as well as an
integral length scale in the x-direction, defined as

ò
ò p

=ℓ
E k dk

k E k dk2
, 6x

x x

x x x

( )

( ) ( )
( )

where E(kx) is the time-averaged, one-dimensional energy
spectrum in the x-direction. Note that these integrals also
include contributions from the kx= 0 mode. ℓx gives an
estimate of the dominant length scale in the x-direction (in units
of L), and will be used as a quantitative measure of anisotropy
developing in the domain. In an isotropic system we would
expect ~ℓ ℓx f .

4. Results

4.1. Anisotropy

Our simulations show that significant anisotropy develops in
the flow once N 1 (Figures 1 and 2). For N< 1 the Lorentz
force is negligible and does not affect the dynamics, resulting
in approximately isotropic flow with »ℓ ℓ1.33x f . The larger-
than-one prefactor likely comes from the fact that the x-
invariant structures formed by the forcing are unstable to three-
dimensional perturbations at many length scales. Another thing
to note is that the onset of anisotropy does not depend on
domain size or misalignment angle.

As N increases beyond one, the Lorentz force dissipates
structures that vary along the x-direction, acting more strongly
on those with small length scales. This results in more
elongated structures as N increases (Figure 1). ℓx grows until all
kx(= k∥)> 0 modes are stable and the flow becomes exactly
two dimensional at a critical value N2D, where µN Lx2D

2

(Zikanov & Thess 1998; Thess & Zikanov 2007; Favier et al.
2010; Gallet & Doering 2015). The effects of N2D are seen for
N<N2D—finite domain size effects appear when ℓ Lx x
(Figure 2). The exact two dimensionalization will also depend
on the Reynolds number, with N2D increasing with Reynolds

number (Gallet & Doering 2015). Given the large physical
extent and Reynolds numbers of astrophysical flows, we do not
expect the two dimensionalization to be a relevant physical
phenomenon. Therefore, to avoid these effects which we
believe to be irrelevant for our motivation, we consider larger
domains, which allow us to push N2D to larger values, and
therefore begin to approach the astrophysically relevant
regimes.
The runs on larger domains reveal a power-law dependence of

ℓx with N, with an observed anisotropy scaling of ~ℓ Nx
1 2

(Figure 2). This agrees with previous scaling predictions, such as
that by Sommeria & Moreau (1982), who considered  as
an along-field diffusion k» = ¶ v v vxdiff

2( ) ( ) , with k ~
s r^B ℓ0

2 2 and ℓ⊥∼ ℓf based on our forcing. In an eddy turnover
time τeddy, motions with horizontal extent ℓ⊥ would diffuse
vertically with a diffusion length of kt~ µ µ^ℓ B ℓx eddy 0

^N ℓ1 2 . This scaling can also be arrived at by considering the
wavenumbers whose turbulent timescales match that of the
Lorentz force, and are therefore damped away. This gives

~ ~k u k k Nk kx
2 3 2 2( ) , resulting in ~ ~-

^ ^k k ℓ ℓx x
1 4 3 4 3

N1 2. The slightly different scaling for ℓ⊥ comes from the
dependence of τeddy on ℓ⊥, based on 3D homogeneous and
isotropic turbulence assumptions (Frisch 1995), which is not
considered in the diffusivity argument.
For 1= N< N2D the anisotropy is such that the flow is

almost two dimensional (e.g., Figure 1 (d)). Previous studies
looking at turbulent energy cascades have found that inverse
energy cascades (associated with two-dimensional hydrody-
namics) appear before exact two-dimensionalization (Smith
et al. 1996; Celani et al. 2010; Alexakis 2011; Deusebio et al.
2014; Sozza et al. 2015; Benavides & Alexakis 2017; Alexakis
& Biferale 2018; Pouquet et al. 2019). However, in our runs we
do not see any scale coarsening in the directions perpendicular
to the background field. This is due to the rotation in the z-
direction, coupling the horizontal and out-of-plane velocities,
which results in a system with a forward cascade of energy
(Benavides et al. 2022). If rotation were to be weaker, we
would expect the formation of an inverse cascade. Indeed, this
seems to be occurring for the θ= 30° run, where the projection
of the rotation perpendicular to the background field is smaller,

Figure 2. The integral length scale ℓx (Equation (6)), in units of L, as a function
of the interaction parameter N (Equation (1)), for various box sizes and
misalignment angles. In gray we show 1.33 times the forcing length scale
range. Anisotropy develops once N > 1, and this does not depend on the
domain size or misalignment angle. For N > 1 and sufficiently large domains
that do not suffer from finite size effects (when <ℓ Lx x, see the axis on right),
we find that ~ℓ Nx

1 2 (red, dashed line).
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resulting in weaker in-plane rotation rate. The inverse cascade
for this case results in larger horizontal scales ℓ⊥, which we
believe pushes N2D to lower values (Figure 2, light blue). On
the other hand, for cases with very fast rotation, the Taylor–
Proudman theorem would manifest itself as flow becoming
invariant along the z-direction, resulting in a series of shear
layers varying in the third direction, y, and a suppressed energy
cascade (Benavides et al. 2022). This latter case might be more
relevant for the transition regions of gas giant planets like
Jupiter and Saturn, where the conditions for QMHD are also
likely satisfied, but where rotation rates are significantly larger
than those of HJs.

4.2. Effective Drag

An increase in ℓx implies a decrease in the x-derivative found
in , thereby effectively lowering the ohmic dissipation.
However, the decrease in the x-derivative occurs as we increase
N, which also appears in . What is the combined effect on Deff

of N increasing but the x-derivative decreasing? Figure 3 shows
the effective drag coefficient Deff as we vary the control
parameter N.

For N< 1, while the flow is approximately isotropic, we see
a good agreement with Deff∝ N, suggesting that a drag-like
parameterization could correctly capture the dynamics and
ohmic dissipation in this regime, at least in a volume-averaged
sense. Indeed, Deff≈ N/2, which seems to validate the
arguments made in the end of Section 2 for a max energy
occurring when k∥∼ |k⊥|, as expected for the 3D instability of
the forced 2D structures. However, as anisotropy develops for
N 1, the structures that dissipate the most energy appear at
larger scales (Figure 1) and Deff begins to deviate from the one-
to-one line. Much like the anisotropy, the deviation from the
one-to-one line near N∼ 1 does not depend on the domain size
or misalignment angle.

It is not clear a priori what the behavior of Deff should be
beyond this point. For the Lx= 2πL runs, Deff begins to
decrease beyond N∼ 1. However, this is a result of the finite
domain size and proximity to N2D. By looking at successively

larger Lx runs, we probe what would happen in a more realistic
setting. Figure 3 suggests that, for large Lx, the effective drag
coefficient Deff levels off and remains roughly constant, despite
orders of magnitude increase in N. We found that this behavior
and value of Deff does not depend strongly on the Reynolds
number. Figures 1 (b)–(d) show snapshots of runs that have
approximately the same effective drag coefficient, while
representing three orders of magnitude for N. Structures change
in such a way so as to keep Deff roughly constant, given the
increase in N.
Given our findings from Figure 2, we can see why this

behavior is a result of the anisotropy scaling ~ℓ Nx
1 2.

Combining Equations (4) and (5), we can reframe Deff as a
velocity-weighted average of wavenumbers:

=D N
k

k
, 7x

eff

2

2
⎜ ⎟
⎛
⎝

⎞
⎠

( )

where = + +k k k kx y z
2 2 2 2. When N> 1, we would expect

< = +^k k k kx y z
2 2 2 2, so that we can replace k2 with k̂2 in

Equation (7). Assuming k⊥ does not vary significantly, since
the forcing remains the same and no large-scale structures form
in the flow, we can approximate it with p~^

-k ℓ2 f
1. Finally,

substituting p= -k ℓ2x x
2 2( ) , we end up with

» ~ ~
^

-
-D N

ℓ

ℓ
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2
1

⎜ ⎟
⎛
⎝

⎞
⎠

( )

In other words, the effective drag coefficient is N divided by the
anisotropy of the flow squared. Since we know how the
anisotropy scales with N, we can get Deff as a function of N,
which in the anisotropic limit of 1= N= N2D turns out to be a
constant.
Recall that Deff is proportional to the ohmic dissipation rate,

so that a leveling off of Deff also represents the same behavior
for the ohmic dissipation.6 A similar plateauing behavior has
been observed for the ohmic dissipation in HJ GCM runs with
increasing temperatures (Rogers & Komacek 2014). The
authors attribute this to a change in dynamics as Rem increases
past one at lower pressures. However, they note that at higher
pressures, and for some of the lower temperature runs where
the plateau begins, Rem is still low, so it is possible that the
QMHD effects seen here might be present and partially
responsible for what is observed.
Although Figure 3 seems to suggest that a drag prescription

for  is valid for N< 1, we emphasize that the effective drag
coefficient is only a volume-averaged measure of this validity.
As mentioned in Section 2, unlike a true drag term, the Lorentz
force operator only dissipates the volume-averaged energy and
can locally cause energy increase in certain regions, similar to a
diffusion term. This fact is visible in Figure 1 and is quantified
in Figure 4, which shows, for a single snapshot in time, the
probability density function (PDF) in space of the alignment of
velocity and the Lorentz force in terms of the dot product
º  v v v va · ( ) (∣ ∣∣ ( )∣) for the four snapshots seen in

Figure 1, as well as for some runs with lower N. A true drag
term would result in a delta function distribution around
a=−1 (blue, dotted–dashed line). However, Figure 4 shows

Figure 3. The effective drag coefficient Deff (Equation (5)) vs. interaction
parameter N (Equation (1)), for various box sizes and misalignment angles. For
N < 1, the effective drag coefficient is proportional to N (black, dashed line),
and seems to follow N/2 (black, dotted–dashed line), suggesting that a drag
formulation could be valid, with c0 ≈ 1/2, as expected for an energy maximum
near k∥ ≈ |k⊥|. However, the curve levels off and deviates significantly from
the drag prediction by orders of magnitude when N > 1, independent of
domain size and misalignment angle θ. For N ? 1, the effective drag drops as
the flow becomes exactly two-dimensionalized at N2D; this limit does depend
on the domain size (see Section 4).

6 The kinetic energy is approximately the same for all runs here, partly due to
the presence of a forward cascade. This might change in the case of weaker
rotation and subsequent formation of an inverse cascade.
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values of a between −1 and 1 even for the runs with N< 1,
suggesting both positive and negative contributions to the local
energy balance due to the Lorentz force, while clearly showing
overall energy dissipation given by the peaking PDFs for
a=−1. All of this suggests that, although a drag might capture
the energy balance correctly (albeit, only for N< 1), this
approximation will not result in the same spatial structures—a
drag is not the same as an along-field diffusion. That said,
large-scale HJ atmosphere simulations might not resolve along-
field scales very well. If one considers under-resolving as an
effective averaging of such scales, then our results could justify
the implementation of an effective drag.

5. Conclusions

In this study, we considered the turbulent dynamics of
rotating MHD in the presence of a background magnetic field,
in the combined limit of Re 1m and m rB u 10 0( ) , termed
QMHD. Motivated by approaches used in the study of HJ
atmospheres, we have shown that a drag parameterization
of the Lorentz force operator  fails once the ratio of the
dynamical timescale to the Lorentz timescale, quantified by the
interaction parameter N, is larger than one. This happens
because the Lorentz force dissipates structures that vary along
the background field, creating anisotropy in the flow, which in
turn acts to reduce the ohmic dissipation, thereby reducing the
effective drag. The development of anisotropy with increasing
N is such that the effective drag coefficient remains constant for
N> 1, despite N varying by orders of magnitude. The leveling
off of Deff for N> 1 has significant implications for simulations
parameterizing  as a drag, since we see values of Deff

deviating by orders of magnitude from what would be
predicted if one assumes = = - v v vc Ndrag 0( ) ( ) . This
could also result in severely overestimating the amount of
ohmic dissipation, as well as misrepresenting the true dynamics
of HJ atmospheres. Although we have shown more generally
that the drag prescription does not fully represent the form of
the Lorentz force at low conductivities, we are aware of the
various difficulties in performing a GCM run with full MHD,
motivating the use of MHD drag. It would be of interest to see

if our results on effective drag carry through to full MHD or
QMHD GCMs, and if the implementation of an MHD drag of
the form =x xD N Nmin ,eff 0( ) { ( ) }, with N0 being a constant of
order one, is valid.
The main motivation for a drag parameterization of the Lorentz

force comes from the restrictively small timescales associated with
very large magnetic diffusivities (low electrical conductivity). The
drag timescale is much larger than the timescale associated with
magnetic diffusion, allowing modelers to bypass this problem.
While we have found that a drag parameterization fails for N> 1,
we want to emphasize that the same timescale advantage exists in
the QMHD limit, despite the more complicated form of the operator
associated with the Lorentz force. This will hopefully motivate the
use of the QMHD approximation in models of HJ atmospheres.
Even for the case of a spatially dependent background magnetic
field or conductivity, its implementation would be straightforward if
one considers separately the Lorentz force m  ´ ´- b B x00

1( ) ( )
and the induced magnetic field b=−∇−2(η(x)−1∇× (v×B0(x))).
An alternative that might be easier to implement would be to
approximate−∇−2 with some horizontal length scale ℓ̂2, similar to
what was done when considering v( ) as an along-field diffusivity,

k» = ¶ v v vxdiff
2( ) ( ) , with k s r~ ^B ℓ0

2 2 (Sommeria &
Moreau 1982). Although the expression for  (Equation (4))
would be modified in the presence of a spatially dependent
background magnetic field, we expect our results to hold for those
cases, as well.
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