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Photocatalytic reduction of CO2 to carbon fuels is an

important target but highly challenging to achieve.

Here, we report the efficient photoconversion of CO2

into formic acid over a Ga(III)-based metal–organic

framework (MOF) material using triethanolamine as

the sacrificial agent. Under light irradiation and at

room temperature, photoreduction of CO2 over

MFM-300(Ga) yields formic acid with a selectivity of

100%, a high productivity of 502 ± 18 μmol·gcat
−1·h−1,

and excellent catalytic stability. In situ electron para-

magnetic resonance spectroscopy reveals that MFM-

300(Ga) promotes the generation of CO2
•− radical

anions as a reaction intermediate driven by strong

binding and activation of CO2molecules at the bridg-

ing –OH sites within the pore. This study represents

the first example of a Ga(III)-based MOF catalyst for

CO2 reduction.
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Introduction
The development of efficient photocatalysts to convert

CO2 into value-added chemicals has attracted much

interest.1,2 In addition to TiO2, various Ga-based semicon-

ductors, such as GaN, GaP, Ga2O3, and ZnGa2O4, have

been widely investigated as photocatalysts to drive this

reaction.3–7 However, their wide optical bandgap (Eg)

restricts the use of solar light mainly to the ultraviolet

region, and, more importantly, their nonporous nature

limits the mass transport of CO2. This impedes charge

transfer between catalyst and substrate and also leads to

the undesirable recombination of photogenerated elec-

trons and holes.8 A number of strategies have been

exploited to improve the photocatalytic performance of

Ga-based semiconductors. For example, doping of metals

(e.g., Ge, Zn) or nonmetals (e.g., N, Si) can narrow

the bandgap and improve the light-harvesting efficiency
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of the resultant material.9–12 Fabrication of ultrathin

nanosheets, nanowires, or porous structures can increase

the surface area and CO2 uptake.13–15 Meanwhile the

introduction of a cocatalyst, noble metal nanoparticles,

or a second semiconductor to construct Z-scheme

or heterojunction-type systems can promote electron

transfer.10,16–18 However, the photocatalytic efficiency

over state-of-the-art Ga-based semiconductors remains

limited, and only gaseous products such as CH4 and CO

are produced. For example, a top-performing hetero-

structure of Au/Al2O3/p-GaN shows a photocatalytic

productivity for CO of 230 μmol·g−1·h−1.4

Metal–organic framework (MOF) materials incorporate

active sites fixed uniformly in 3D space, thus preventing

aggregation of catalytic centers and potentially enhanc-

ing charge separation. MOFs are therefore emerging as

important photocatalysts for the reduction of CO2, show-

ing potential to overcome the barriers of conventional

semiconductors.19,20 For example, the intrinsic micropo-

rosity and catalytically active sites confined in MOFs

can form unique “microreactors” to promote the adsorp-

tion and activation of CO2 via the formation of strong

host–guest interactions.21 More importantly, the backbone

of MOFs consisting of infinite metal-ligand linkages
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Figure 1 | Characterisation and crystal structure of MFM-300(Ga). (a) The UV-DRS spectrum of MFM-300(Ga) with

Tauc plot (insert); (b) SEM image of MFM-300(Ga) with TEM image (insert); (c) high-resolution XPS spectrum of Ga

2p, and (d) 71Ga{1H} D-HMQC 2D MAS NMR spectrum of MFM-300(Ga) and corresponding 1D direct excitation 71Ga

(top) and 1H (left) MASNMR spectra, recorded at 20.0 Twith aMAS frequency of 60 kHz; crystal structure of MFM-300

(Ga): (e) octahedral [GaO4(OH)2]; (f) ligand; (g and h) views of binding sites (bridging –OH groups) for adsorbed CO2

molecules within MFM-300(Ga) studied by In situ synchrotron X-ray single-crystal diffraction.25 Host–guest hydrogen

bonds and intermolecular dipole interactions are highlighted in cyan and yellow, respectively.
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can facilitate efficient ligand-to-metal-charge-transfer

(LMCT), thus prolonging the excitation lifetime by boost-

ing the isolation and utilisation of photoinduced elec-

trons.22 A number of MOF systems have been tested for

photoreduction of CO2,
19,20 and Ti-based MOFs are partic-

ularly attractive.23,24 In contrast, to date, no Ga-based MOF

has been shown to exhibit activity for CO2 conversion, and

we report here the first example for the efficient photore-

duction of CO2. Under light irradiation and at room tem-

perature, MFM-300(Ga) catalyzes the conversion of CO2

into formic acid with a 100% selectivity and an excellent

productivity up to 502 ± 18 μmol·gcat
−1·h−1, significantly

higher than conventional Ga-based semiconductors and

among the best-behaving MOF-based photocatalysts for

this reaction. Importantly, in situ electron paramagnetic

resonance (EPR) spectroscopy confirms that the CO2

radical anion (CO2
•−) is generated as an intermediate to

the production of formic acid over MFM-300(Ga).

Results and Discussion
MFM-300(Ga), [Ga2(OH)2(L)] (H4L = biphenyl-3,3ʹ,5,5ʹ-
tetracarboxylic acid) was chosen for the photoreduction

of CO2 due to its high stability, high adsorption, and

strong binding of CO2 molecules via the formation of

hydrogen bonds to the bridging –OH groups in

the pore.25 MFM-300(Ga) is comprised of chains of

[GaO4(OH)2]∞ octahedra linked by cis-μ2-OH groups,

and these chains are further bridged by tetracarboxylate

ligands to forma ‘wine rack’open framework.Desolvated

MFM-300(Ga) shows a Brunauer–Emmett–Teller (BET)

surface area of 1064 m2·g−1 and an uptake of CO2 of

5.00 mmol·g−1 at 298 K and 1 bar (see Supporting

Information Figure S1). The purity of the bulk material

has been confirmed by powder X-ray diffraction (PXRD)

(see Supporting Information Figure S2) and

thermogravimetric analysis (see Supporting

Information Figure S3a). Scanning electron microscopy

(SEM) and transmission electron microscopy (TEM)

show that crystals of MFM-300(Ga) exhibit cuboid-

shaped morphology with an average size of 15 μm
(Figure 1b). High-resolution X-ray photoelectron spec-

troscopy (XPS) analysis of MFM-300(Ga) shows the

peaks of Ga 2p1/2, 2p3/2, 3d3/2, and 3d5/2 at 1145.5,

1118.6, 21.2, and 20.7 eV, respectively, consistent with the

trivalent Ga(III) (Figure 1c, see Supporting Information

Figure S4). Solid-state 13C and 71Ga NMR spectroscopy

reveal a highly ordered structure consistent with a single

repeating octahedral [GaO4(OH)2] environment (see

Supporting Information Figure S5).26 The high-field
71Ga{1H} 2D through-space (dipolar) heteronuclear

correlation NMR spectrum of MFM-300(Ga) demon-

strates this more extensively with strong correlations

between the Ga environment and the hydroxyls (at

δ{1H} = 2.8 ppm) and a weaker interaction with the more

distant aromatic proton between the carboxylates (at

δ{1H} = 9.0 ppm), with no other correlations observed

(Figure 1d). Moreover, the ratio of the 1H NMR signal

intensities of the aromatic protons to the hydroxy pro-

tons is ∼3:1 (see Supporting Information Figure S5c),

entirely consistent with the structural model shown in

Figures 1e–1h. Solid-state UV–vis diffuse reflectance

spectroscopy (UV-DRS) of MFM-300(Ga) shows an in-

tensive and broad absorption band in the ultraviolet

region, which is assigned to the π→π* transition of the

biphenyl ligand (Figure 1a).27 The Tauc plot yields an

optical bandgap of 3.30 eV, lower than that of commer-

cial Ga2O3 (Eg = 4.56, 4.70, and 4.67 eV for α-, β-, and
γ-Ga2O3, respectively)

28 and ZnGa2O4 (Eg = 4.18 eV).9

The photocurrent response of MFM-300(Ga) confirms

that the current density increases upon irradiation and

decreases upon turning off the light (see Supporting

Information Figure S6).
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Figure 2 | Photocatalytic CO2 reduction over MFM-300(Ga). (a) Different reaction time; (b) recycling tests. Reaction

conditions: MFM-300(Ga) (10 mg), TEOA/CH3CN (3 mL/15 mL, saturated with CO2), 25 °C, 350–780 nm, light

irradiation for 4 h.
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The photocatalytic activity of MFM-300(Ga) toward

the reduction of CO2 has been studied in CO2-saturated

CH3CN-containing triethanolamine (TEOA) as the sac-

rificial agent under irradiation at 350–780 nm for 1–12 h.

The gaseous products were analysed by gas chroma-

tography and the liquid product by 1H NMR spectrosco-

py. The photocatalytic efficiency was measured as

the moles of product obtained per gram of catalyst per

hour (mol·gcat
−1·h−1) to afford a direct comparison with

reported catalysts. Formic acid was the only product

detected in the liquid phase, and no carbon-containing

gaseous products were detected. The photocatalytic

performance as a function of reaction time over MFM-

300(Ga) indicates that a high productivity of 502 ±
18 μmol·gcat

−1·h−1 for formic acid was achieved at 4 h

(Figures 2a, see Supporting Information Figure S7).

More importantly, the photocatalytic activity and the

crystallinity of MFM-300(Ga) were retained over three

cycles of reaction (Figure 2b). The photocatalytic effi-

ciency of MFM-300(Ga) is higher than the majority of

reported MOFs (Table 1) for converting CO2 into formic

acid, such as amino-functionalised MIL-125(Ti), UiO-

66(Zr), and MIL-101(Fe),23,31,44 and is only lower than two

cases. One is the mixed metal and mixed ligand systems

of NH2-UiO-66(Zr/Ti) and (NH2)2-UiO-66(Zr/Ti),24

which are prepared via post-synthetic modifications

to introduce Ti(IV) sites into the framework. The

other is a recent report describing a π-conjugated
naphthoporphyrin system constructed with Zr metal

clusters, which demonstrates the highest value

(6630 μmol·gcat
−1·h−1) reported in the literature.29 A com-

parison of state-of-the-art studies of thermal hydro-

genation of CO2 into formic acid over MOF-based

catalysts is given in Supporting Information Table S1.

To gain further insights into this reaction, a series of

control experiments were conducted (Table 2). No

carbon-containing product was detected from reac-

tions in the absence of (1) MFM-300(Ga), (2) CO2 (where

N2 is used instead), or (3) light. These results confirm

that the carbon source of formic acid is CO2 and that the

reaction proceeds via photocatalytic routes driven

by the MOF catalyst. Replacement of TEOA with

triethylamine (TEA)45 gives a low productivity of

64 μmol·gcat
−1·h−1 for formic acid, which is consistent

with recent reports on the important role of TEOA in

binding and assisting the transport of CO2 in CH3CN.46,47

A range of different organic solvents have been tested,

and CH3CN demonstrates the highest activity due to the

optimal efficiency of mass transfer and the enhanced

binding of CO2 by TEOA in CH3CN
47 (see Supporting

Information Figure S8). Interestingly, no product was

observed when using Ga2O3 (∼50 mesh, Eg = 4.57), GaN

(Eg = 3.04), GaP (Eg = 1.92), or a powdered mixture of

Ga(NO3)3 and H4L as the photocatalyst (see Supporting

Information Figure S9). This indicates that the T
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framework structure of MFM-300(Ga) is crucial for ad-

sorption of CO2 and the separation and transfer of

photoinduced electrons.

To investigate the effects of ligands and framework

structures of Ga-MOFs on the photocatalytic property,

MIL-53(Ga) and MIL-68(Ga), both constructed from ter-

ephthalic acid, were studied for this reaction.48–50 The

phase purity of these MOFs has been confirmed by

PXRD (see Supporting Information Figure S10). The

bandgaps for MIL-53(Ga) and MIL-68(Ga) are deter-

mined to be 3.21 and 3.93 eV, respectively, by UV-DRS

analysis (see Supporting Information Figure S11). Under

the same reaction conditions as above, neither MOF

shows photocatalytic activity toward the reduction of

CO2. Although showing similar BET surface areas (1117–

1140 m2·g−1) and a structure comprising [GaO4(OH)2]

moieties, the CO2 adsorption capacity of MIL-53(Ga)

and MIL-68(Ga) (1.46–1.65 mmol·g−1) is much lower than

that (5.00 mmol·g−1) of MFM-300(Ga) (see Supporting

Information Table S2). This is likely due to the rigid

framework and presence of active μ2-OH sites in

MFM-300(Ga) that promote the transport and binding

of CO2 as confirmed by in situ crystallographic and

spectroscopic analyses.25 Furthermore, the biphenyl

ligand of MFM-300(Ga) demonstrates increased π-
electron delocalisation in the framework backbone and

hence enhanced LMCT compared with terephthalate in

MIL-53(Ga) and MIL-68(Ga). These collectively result in

the drastic difference in their photocatalytic activity.

Photophysical and electrochemical experiments were

conducted to understand the redox properties of

MFM-300(Ga). Mott-Schottky (MS) analysis and

valence-band XPS studies were conducted to determine

the positions of the conduction band (ECB) and the

valence band (EVB) of MFM-300(Ga), respectively.32,51

The EVB is determined to be 2.2 V versus normalised

hydrogen electrode (NHE) from the VB-XPS result (see

Supporting Information Figure S12a). The positive slope

of all MS plots recorded at different frequencies indicates

that MFM-300(Ga) is a typical n-type semiconductor, and

the intercept is independent of the frequency. The flat

band potential (EFB) is determined as −0.99 V versus

NHE (see Supporting Information Figure S12b), which is

usually ∼0.1 V more positive than the ECB for n-type

materials.52 Thus, the ECB is estimated to be −1.09 V

versus NHE. The gap between VB and CB is thus 3.29 eV,

which is in excellent agreement with the bandgap of

3.30 eV obtained from UV-DRS analysis.

To identify the radical species involved in the catalytic

process, in situ spin-trapping EPR experiments under

photocatalytic conditions were conducted. Since the

lifetime of free radicals is several orders of magnitude

shorter than the acquisition time of EPR spectra,

5,5-dimethyl-1-pyrroline-n-oxide (DMPO) was used as

a spin trap to enable the identification of radicals as

long-lived DMPO-radical adducts.53 An intense six-line

signal with g = 2.005 and hyperfine coupling constants

AN = 15.2 G and AH = 18.9 G was detected and unambigu-

ously assigned to DMPO-CO2
•−54,55 (see Figure 3a and

Supporting Information Table S3). This indicates that

the CO2 radical anion (CO2
•−) is the direct intermediate

to form formic acid. No radical was captured for the

reaction conducted under dark conditions. Significantly,

to the best of our knowledge, this is the first time that a

direct intermediate radical has been detected in the

photoreduction of CO2 over a MOF-based catalyst.

The catalytic cycle for this reaction is proposed

(Figure 3b). Upon light irradiation, MFM-300(Ga) is acti-

vated, and the electrons in the VB (2.2 V) are promoted

to the CB (−1.09 V), and the photoinduced holes at the

VB are readily filled up by the electron sacrificial agent

TEOA. Surprisingly, the photoinduced electrons with a

reductive potential of −1.09 V versus NHE can reduce

CO2 to CO2
•− radical anions, given the strongly negative

redox potential of −1.90 V versus NHE [Eq. (1)] for this

process.56 This indicates that the strong binding of CO2

molecules to the bridging μ2-OH sites of MFM-300(Ga)

through the formation of hydrogen bonds as determined

by in situ synchrotron X-ray diffraction25 not only pro-

motes the transfer of photoinduced electrons fromMFM-

300(Ga) to the bound CO2 molecules but also activates

the adsorbed CO2 molecules. This shifts the reduction

to a more anodic potential. Interestingly, the path of

photocatalytic reduction of CO2 into formic acid is widely

regarded as accepting electrons and protons

Table 2 | Summary of Reaction Conditions of Compari-

son Experiments

Entry Catalyst

Light

(nm) Gas HCOOH

1 MFM-300(Ga) 350–780 TEOA CO2 502

2 n.a. 350–780 TEOA CO2 n.a.

3 MFM-300(Ga) 350–780 TEOA N2 n.a.

4 MFM-300(Ga) 350–780 n.a. CO2 n.a.

5 MFM-300(Ga) n.a. TEOA CO2 n.a.

6 MFM-300(Ga) 350–780 TEA CO2 64

7 Ga(NO3)3·9H2O

and H4L

350–780 TEOA CO2 n.a.

8 Ga2O3 350–780 TEOA CO2 n.a.

9 GaN 350–780 TEOA CO2 n.a.

10 GaP 350–780 TEOA CO2 n.a.

11 MIL-53(Ga) 350–780 TEOA CO2 n.a.

12 MIL-68(Ga) 350–780 TEOA CO2 n.a.

Reaction conditions: MFM-300(Ga) (10 mg), TEOA/CH3CN
(3 mL/15 mL, saturated with CO2), 25 °C, 350–780 nm, light
irradiation for 4 h. For entry 6, 3 mL TEA was added to replace
TEOA; For entry 7, a powdered mixture of Ga(NO3)3·9H2O
(0.04 mmol, 16.7 mg) and H4L (0.02 mmol, 6.6 mg) were used
(H4L, biphenyl-3,3,5ʹ,5ʹ-tetracarboxylic acid); For entry 8–12, the
catalysts used were 10 mg in each reaction.
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simultaneously at a redox potential of −0.61 V versus NHE

[Eq. (2)].56 By contrast, the adsorbed CO2 molecule in

MFM-300(Ga) is able to accept a single electron via host–

guest hydrogen bonding to generate a CO2
•− radical

anion, which is unprecedented in the MOF-driven photo-

reduction of CO2 and affords new insights into the mech-

anism of photocatalytic reduction of CO2. Recently, the

positive impact of strong host-guest interactions on the

activation of the adsorbed substrate has also been dem-

onstrated by the conversion of small molecules over

porous catalysts.57,58 Thus, the photocatalytic activity of

MOFs is determined by the synergistic effect of bandgap,

rate of charge transfer, uptake of CO2, and most impor-

tantly, the interaction between the catalyst scaffold and

adsorbed CO2 molecules, which will inform the design of

new photocatalysts.

CO2þe−→CO2
•− E0

redox =−1.90 Vvs:NHE ð1Þ

CO2þ2Hþþ2e−þHCOOH E0
redox =−0.61 Vvs:NHE

ð2Þ

Conclusion
The porosity and design flexibility of MOFs, coupled with

their intrinsic semiconductor and photoelectrical prop-

erties, make them promising candidates as efficient

photocatalysts. We report the first example of a Ga-

MOF-based semiconductor that can promote the photo-

reduction of CO2 to formic acid with a selectivity of 100%

and a high productivity of 502 ± 18 μmol·gcat
−1·h−1 under

light irradiation and at room temperature using TEOA as

an electron sacrificial agent. MFM-300(Ga) shows excel-

lent catalytic stability over three cycles of reactions with

full retention of the productivity of formic acid. In situ

EPR spectroscopic analysis confirms the generation of

the CO2
•− radical anion as the reaction intermediate

promoted by the strong host–guest interactions between

the bridging μ2-OH groups of MFM-300(Ga) and the

adsorbed CO2 molecules. Compared with other reported

Ga-MOFs in literature, the presence of strong binding

sites and efficient LMCT plays an important role in boost-

ing the photocatalytic activity toward CO2 reduction,

which sheds light on the design of future MOF-based

photocatalysts with improved activity.
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Supporting Information is available and includes detailed

experimental procedures and characterization data.
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Figure 3 | (a) In situ X-band EPR spectra of photocata-

lytic reactions over MFM-300(Ga) using DMPO as spin

trap, (black) before and (red) after light irradiation, with

simulated (blue) spectrum showing a major component,

DMPO-CO2
•− (green, simulation), and a minor compo-

nent, DMPO-Ox (cyan, simulation) under photocatalytic

conditions over MFM-300(Ga). (b) The proposed

mechanism of the photocatalytic reduction of CO2 over

MFM-300(Ga).
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