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Resource Allocation in UAV-Enabled Wireless
Powered MEC Networks with Hybrid Passive and

Active Communications
Qian Li, Liqin Shi, Zhongjun Zhang, and Gan Zheng, Fellow, IEEE

Abstract—This paper proposes a novel unmanned aerial ve-
hicle (UAV) enabled wireless powered mobile edge computing
(WP-MEC) network, where several Internet of Things (IoT)
nodes use the energy harvested from the UAV’s radio frequency
signals to support the local computation and the hybrid active-
passive communications based task offloading. Two weighted
sum computation bits maximization problems are formulated
under the partial and binary offloading, respectively, by jointly
optimizing the local computing frequencies and time, the IoT
nodes’ reflection coefficients, the IoT nodes’ transmit powers,
the UAV’s trajectory, etc., subject to the quality-of-service and
energy-causality constraints per IoT node, the speed constraint
of the UAV, etc. Since the formulated problems are highly non-
convex, two iterative algorithms are proposed to solve the formu-
lated problems under two modes. Simulation results demonstrate
that the proposed iterative algorithms have a fast convergence
rate, and the proposed schemes achieve higher weighted sum
computation bits than several baseline schemes.

Index Terms—UAV-enabled WP-MEC, hybrid active-passive
communications, computation bits.

I. INTRODUCTION

IT has been witnessed that the Internet of Things (IoT) plays
a significant role in future applications by deploying mas-

sive IoT nodes to provide intelligent services. However, owing
to the production cost limitation, IoT nodes are usually energy-
and computation-constrained, bringing many challenges in
realizing IoT nodes based intelligent services. One of major
challenges is how to timely process the computation-intensive
tasks at IoT nodes while reducing or even avoiding energy con-
sumption of their batteries [1]. Wireless powered mobile edge
computing (WP-MEC), which seamlessly integrates wireless
power transfer (WPT) [2] and mobile edge computing (MEC)
[3], [4] as a whole, has been proposed as an efficient solution
to address this challenge. The key idea of WP-MEC is to let
IoT nodes harvest energy from radio frequency (RF) signals
of a dedicated energy source, and use their harvested energy
to support the data offloading and task computation under the
binary or partial computation offloading [1], [5]. Accordingly,
the energy harvesting (EH), data computation and offloading
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are coupled with each other, which calls for new optimization
frameworks.

In [5], the authors proposed a WP-MEC network with a
single IoT node, and focused on maximizing the success-
ful computation probability under a binary offloading mode,
subject to the energy-causality and delay constraints. Con-
sidering a WP-MEC network with multiple IoT nodes, the
authors of [6] maximized the weighted sum-computation rate
maximization by optimizing the binary computation offloading
decision, the EH time and the offloading time per IoT node.
In [7], the total energy consumption at all IoT nodes and the
power beacon (PB) was minimized under a partial offloading
mode, while satisfying the minimal required computation bits,
delay and energy-causality constraints per IoT node. In [8]–
[11], the authors introduced the computation energy efficiency
(CEE) that is calculated as the ratio of the computed task bits
to the corresponding consumed energy, and designed various
optimization frameworks for WP-MEC networks.

In the above works [5]–[11], the task data are offloaded
to the MEC server via active communications (AC) that re-
quire power-consuming components, e.g., oscillators, analog-
to-digital/digital-to-analog converters. Owing to the use of
high power-consuming components and the low efficiency
of EH, more time will be allocated to the EH at each IoT
node, leaving less time for data offloading and limiting the
performance of data offloading in WP-MEC. Different from
AC, the backscatter communication (BackCom), one of low
power-consuming passive communications, enjoys a lower
power consumption and a lower offloading rate than AC by
allowing an IoT node to modulate and reflect the incident
signals for task offloading [12]. In order to achieve efficient
task offloading, BackCom has been integrated into WP-MEC
to form WP-MEC with hybrid active-passive communications
[13], where the advantages of hybrid active-passive commu-
nications can be fully exploited. Recent works [14]–[19] have
validated the advantages of WP-MEC via hybrid active-passive
communications over the WP-MEC via AC in terms of the
computation bits, CEE, and computation delay. However, it
was assumed in the existing works [14]–[19] that the location
of the dedicated energy source is fixed. In such a case, the
harvested energy of each IoT node is constrained by the
distance from the dedicated energy source to the IoT node, and
this calls for a mobile energy source to replace the fixed one,
in order to make full use of the mobility of the energy source
for increasing the harvested energy per IoT node. Recently,
the unmanned aerial vehicle (UAV) has been considered as
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a mobile energy/signal source in multiple wireless communi-
cation networks, i.e., relaying communication systems [20],
intelligent reflecting surface (IRS) assisted wireless networks
[21], WP-MEC networks [22]–[26], etc. For example, in [20],
the UAV was adopted as a relay to help transmit information
and the minimum average secrecy rate among all users was
maximized for UAV-relaying systems with local caching. In
IRS-assisted UAV networks, the UAV was served as a mobile
signal source and the secure communication between the
UAV and the legitimate user was guaranteed [21]. In UAV-
enabled WP-MEC, the UAV is deployed as a mobile energy
source for charging IoT nodes via line-of-sight (LoS) links
and various resource allocation schemes have been proposed
to achieve different optimization goals [22]–[26]. We note
that the previous works [22]–[26] on UAV-enabled WP-MEC
only considered the AC for data offloading, while the data
offloading via hybrid active-passive communications has not
been exploited. This motivates us to configure a new UAV-
enabled WP-MEC network to make full use of the advantages
of hybrid active-passive communication based offloading.

In this work, we employ the hybrid active-passive commu-
nication in UAV-enabled WP-MEC for realizing more efficient
data offloading, and propose to maximize the weighted sum
computation bits (WSCB) of all IoT nodes. To the authors’
best knowledge, this is the first work that studies the resource
allocation problems for the UAV-enabled WP-MEC network
with hybrid active-passive communications. Our main contri-
butions are listed below.

• We propose a novel UAV-enabled WP-MEC network, in
which a UAV is dispatched as a mobile energy source that
provides energy to all IoT nodes and all IoT nodes take
turns to perform hybrid active-passive communications
based data offloading by fully exploiting the incident
signals transmitted by the UAV.

• Considering the partial and binary offloading modes,
we formulate two WSCB maximization problems, by
optimizing multiple optimization variables, i.e., the IoT
nodes’ local computation frequencies and time, reflection
coefficients and the transmit power of the IoT nodes,
the UAV’s trajectory, etc. In order to solve them, we
first obtain the closed-form expression of the optimal
computing time for the IoT node who performs local
computation under two modes based on the proof by
contradiction. Then for the partial offloading, we propose
a two-stage alternating iterative algorithm to solve the for-
mulated optimization problem and derive the closed-form
expressions for the optimal local computing frequencies
and time, the optimal power reflection coefficients and
the optimal transmit powers at IoT nodes under any given
trajectories. For the binary offloading, in order to solve
the formulated mixed integer optimization problem, we
propose a three-stage alternating iterative algorithm to
obtain the IoT nodes’ local computation frequencies and
time, the reflection coefficients, the UAV’s trajectory, the
mode selection per IoT node for choosing either task
offloading or local computation, etc.

• Simulation results validate the fast convergence of the
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Fig. 1. The UAV-enabled WP-MEC network with hybrid passive and active
communications and its frame structure.

proposed iterative algorithms and demonstrate that the
superiorities of the proposed schemes in terms of WSCB.

II. SYSTEM MODEL

A UAV-enabled WP-MEC network with hybrid passive and
active communications is considered, as shown in Fig. 1,
where a UAV provides energy signals to K single-antenna IoT
nodes and a MEC server is deployed to provide MEC services
for these IoT nodes. Specifically, the IoT nodes should harvest
energy from the RF signals of the UAV and then offload their
task bits to the MEC server for computation by means of
the combination of BackCom and AC, namely hybrid passive
and active communications, and/or perform local computing
by using its harvested energy. Suppose that each IoT node is
energy-constrained and each IoT node only uses its harvested
energy to perform task offloading and/or local computation. In
order to realize tasks offloading and computing, all IoT nodes
should be equipped with four separate circuits which are the
energy harvester, the computing circuit, the backscatter circuit
and the AC circuit, respectively. Accordingly, each IoT node
can offload tasks when performing local computation.

Assume that the location of the k-th (k ∈ K =
{1, 2, . . . ,K}) IoT node is fixed on the ground, denoted by
qk = [xk, yk], where xk and yk are the k-th IoT node’s hori-
zontal plane coordinates. Denote the MEC server’s location as
qm = [xm, ym] with the horizontal plane coordinates xm and
ym. Following [22]–[26], the UAV is assumed to fly at a given
altitude level, denoted by H (H > 0), and its location in the
2D horizontal plane is given by qu(t) = [xu(t), yu(t)] with
the horizontal plane coordinates xu(t) and yu(t) at the time
instance t. Assume that both K IoT nodes’ locations and the
MEC server’s location can be obtained at the UAV in order to
design the UAV’s trajectory [22]–[26].

Let T express the duration of the transmission block, which
consists of the BackCom phase and the active transmission
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(AT) phase, respectively. Note that the computing and down-
loading time at the MEC server can be ignored here due to the
fact that the MEC server’s computation capacity is sufficiently
large, leading to negligible computing and downloading time.
Denote β (0 ≤ β ≤ 1) as the time allocation factor. In the
BackCom phase with the duration of βT , the UAV keeps flying
and broadcasting energy signals while multiple IoT nodes take
turns to perform BackCom. For ease of exposition, the whole
BackCom phase is discretized into N equal time slots, and
then the duration of the n-th (n ∈ N = {1, 2, . . . , N}) time
slot is given by βT

N . Following [22]–[26], we assume that the
UAV is static in each time slot. Let qu[n] = [xu[n], yu[n]]
and gn,k denote the location of the UAV and the channel gain
from the UAV to the k-th IoT node in the n-th time slot,
respectively. Then gn,k is given by

gn,k = β0d
−2
k,n =

β0

H2 + ‖qu[n]− qk‖2
, (1)

where β0 is the channel gain at a reference distance with
d0 = 1 m, dk,n denotes the distance from the k-th IoT node
to the UAV in the n-th time slot, and ‖ · ‖ expresses the
Euclidean norm of a vector. In the AT phase with the duration
of (1 − β)T , we consider that multiple IoT nodes take turns
to transmit their task bits to avoid the co-channel interference
among IoT nodes. Considering that each task can and cannot
be partitioned into two parts, two offloading modes, namely
the partial and binary offloading modes, are considered to
conduct the task offloading at IoT nodes. The details for the
considered network under partial and binary offloading modes
are presented below.

A. Partial Offloading Mode

For the partial offloading, each task is partitioned into two
parts, where one part will be computed locally and the other
will be offloaded to the MEC server for computation. In the
following, we will present how the considered network works.
Under this mode, the n-th time slot in the BackCom phase can
be further divided into K sub-slots, denoted by tbn,k. In the k-
th sub-slot of the n-th time slot, the k-th IoT node modulates
its part of computation tasks on a part of its received signals
and backscatters the modulated signals for task offloading. The
rest part of its received signals is used for EH. Note that the
IoT nodes who do not perform BackCom will harvest energy
during this period. Let αn,k with 0 ≤ αn,k ≤ 1 denote the
power reflection coefficient at the k-th IoT node in the n-th
time slot [27]. Then the computation bits of the k-th IoT node
in this time slot are computed by

Rb
n,k = tbn,kBlog2

(
1 +

ξαn,kPugn,khk
Bσ2

)
, (2)

where B represents the bandwidth of the system, ξ denotes
the performance gap1 reflecting the real modulation, Pu is the
UAV’s transmit power during the whole transmission block, hk

1Since the backscatter circuit is composed of passive components and is
better suited to a simple modulation scheme instead of high-order modulation
schemes in practice, there will be a performance gap between the channel
capacity of BackCom and the Shannon capacity [18], [28].

is the channel power of the k-th IoT node-to-the MEC server
link and σ2 denotes the noise power spectral density. Note that
the co-channel interference from the UAV-MEC server link can
be cancelled by using the successive interference cancellation
(SIC). This is because both the energy signals of the UAV and
the corresponding channel information are known by the MEC
server [28]. Then, at the end of the BackCom phase, the total
computation bits of the k-th IoT node are given by

Rb
k =

N∑
n=1

Rb
n,k =

N∑
n=1

tbn,kBlog2

(
1 +

ξαn,kPugn,khk
Bσ2

)
. (3)

Correspondingly, the k-th IoT node’s total harvested energy is
given by

Ektot =

N∑
n=1

[(
βT

N
− tbn,k

)
Pugn,kη + tbn,kPugn,kη (1− αn,k)

]

=

N∑
n=1

(
βT

N
Pugn,kη − tbn,kαn,kPugn,kη

)
, (4)

where η with 0 ≤ η ≤ 1 is the energy conversion efficiency.
For analytical tractability, we consider a linear EH model,
where η is fixed as a constant. Note that this work can be
extended to the scenarios with a non-linear EH model by
means of the approach used in [29] or [30].

Likewise, the AT phase is divided into K sub-slots for K
IoT nodes’ task offloading. Let pk and tak express the k-th
IoT node’s transmit power and time, respectively. Then the
computation bits offloaded by the k-th IoT node in this phase
are given by

Ra
k = takBlog2

(
1 +

pkhk
Bσ2

)
. (5)

Based on (3) and (5), we can compute the total achievable
computation bits at the k-th IoT node as Roff

k = Rb
k +Ra

k.
For local computing, let fk and τk (0 ≤ τk ≤ T ) denote

local computation frequency and time at the k-th IoT node.
Then the k-th IoT node’s local computation bits are given by

RLoc
k =

fkτk
Ccpu,k

, (6)

where Ccpu,k reflects the k-th IoT node’s required number of
CPU cycles for computing one bit. Let εk be the effective
capacitance coefficient of the processor’s chip at the k-th IoT
node. Then the consumed energy for the k-th IoT node’s local
computation is calculated by

ELoc
k = εk(fk)

3
τk. (7)

B. Binary Offloading Mode

Under this mode, each IoT node either performs complete
task offloading or performs fully local computing. Specifically,
K IoT nodes can be divided into two sets, which are the set of
IoT nodes who perform fully local computing and the set of
IoT nodes who perform complete task offloading, respectively.
Let KL and KO denote the above two sets, where K = KL ∪
KO and KL ∩ KO = ∅, where ∅ is the empty set. For the
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IoT node belonging to KL, namely i ∈ KL, its total harvested
energy is given by

EL,B
i =

N∑
n=1

Pugn,iη
βT

N
, i ∈ KL. (8)

Accordingly, its computed bits are given by

RL,B
i =

fiτi
Ccpu,i

, i ∈ KL. (9)

For the IoT node belonging to KO, namely l ∈ KO, its total
harvested energy can be expressed as

EO,B
l =

N∑
n=1

(
βT

N
Pugn,lη − tbn,lαn,lPugn,lη

)
, l ∈ KO. (10)

Then its corresponding computed bits are given by

RO,B
l =

N∑
n=1

tbn,lBlog2

(
1 +

ξαn,lPugn,lhl
Bσ2

)
+ talBlog2

(
1 +

plhl
Bσ2

)
, l ∈ KO. (11)

In the following two sections, we will study the WSCB
maximization under the partial and binary offloading modes,
respectively.

III. PARTIAL OFFLOADING BASED WSCB MAXIMIZATION

Considering the partial offloading mode at each IoT node,
we first formulate a WSCB maximization problem by opti-
mizing the BackCom time, the AT time allocation, the local
computing frequencies and time, the reflection coefficients,
and the transmit powers of the IoT nodes, as well as the
UAV’s trajectory, subject to the constraints of the quality-of-
service (QoS), energy causality, time, speed, the initial and
final horizontal location, etc. The formulated problem is highly
non-convex. To solve it, we propose a two-stage alternating
algorithm to determine its solution.

A. Problem Formulation

The goal is to maximize the WSCB achieved by all IoT
nodes for the considered network. Denote wk > 0 as the
weight of the k-th IoT node. Then wk indicates the priority
of the k-th IoT node in the WSCB maximization problem and

can be used to customize the service provisioning for different
IoT nodes. Accordingly, the optimization problem is given by

P1 : max
V

K∑
k=1

wk
(
Roff
k +RLoc

k

)
s.t. C1 : Roff

k +RLoc
k ≥ Lmin,k,∀k,

C2 : ELoc
k + Pc,k

(
N∑
n=1

tbn,k

)
+ pkt

a
k + pc,kt

a
k

≤ Ektot,∀k,
C3 : 0 ≤ fk ≤ fmax

k ,∀k,

C4 : 0 < β < 1,
K∑
k=1

tbn,k≤
βT
N ,∀n,

K∑
k=1

tak≤ (1− β)T,

C5 : 0 ≤ τk ≤ T, ∀k,
C6 : 0 ≤ αn,k ≤ 1,∀k, ∀n,
C7 : tbn,k ≥ 0,∀n, ∀k, tak ≥ 0, pk ≥ 0,∀k,
C8 : ‖qu [n+ 1]− qu [n]‖ ≤ Vmax

βT
N ,∀n,

C9 : qu [1] = qI,qu [N + 1] = qF,

where V = {β,
{
tbn,k

}
, {tak} , {pk} , {fk}, {τk}, {αn,k}, {qu}}

is the set of the optimization variables, Lmin,k denotes the
minimum required computation bits for the k-th IoT node,
Pc,k and pc,k are the fixed power consumption at the k-th IoT
node when performing BackCom and AT, respectively, fmax

k

expresses the k-th IoT node’s maximum allowed computation
frequency, Vmax is the UAV’s maximum speed, qI and qF

denote the initial and final horizontal locations of the UAV.
Note that a constant circuit power consumption rate for
BackCom is assumed by following [31]–[33] and then the
consumed energy for BackCom at the k-th IoT node in the
n-th time slot is computed as Pc,kt

b
n,k.

In the above optimization problem, C1 is the QoS constraint
per IoT node. C2 denotes the energy-causality constraint for
each IoT node, where each IoT node’s total energy con-
sumption for task offloading and execution can not be larger
than its harvested energy. C3 limits the maximum computing
frequency at each IoT node during the whole transmission
block. C4 is the time allocation constraint for BackCom and
AT phases while C5 guarantees the local computing time
at each IoT node. C6 constrains the value of the power
reflection coefficient at each IoT node. C8 represents the speed
constraint while C9 is the constraint of the UAV’s initial and
final horizontal location.

By observing P1, we find that P1 is non-convex due to
the existence of several coupled relationships among different
variables, i.e., tbn,k and αn,k, etc, leading to non-convex
objective function and constraints. Besides, the optimization
of the trajectory of the UAV greatly improves the complexity
of P1, bringing a great challenge to solve it.

B. Solution

As for P1, there is no standard methods to jointly opti-
mize the UAV’s trajectory and communication/computation
resources. In order to solve P1, the block coordinate decent
(BCD) technique is used to decouple P1 into two sub-
problems first, and then a two-stage alternating iterative al-
gorithm is proposed to obtain the solution to P1. Note that
the BCD technique can be used to obtain a locally optimal
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solution to a non-convex problem that cannot be optimally
solved by using the existing methods.

Specifically, with a fixed trajectory, the following sub-
problem can be obtained,

P1a : max
V1

K∑
k=1

wk
(
Roff
k +RLoc

k

)
s.t. C1− C7,

where V1 = {β,
{
tbn,k

}
, {tak} , {pk} , {fk}, {τk}, {αn,k}}.

In order to simplify P1a, Proposition 1 is presented to
decide the k-th IoT node’s optimal computation time, denoted
by τ∗k .

Proposition 1: For achieving the maximum WSCB of all
the IoT nodes in the considered network under the partial
offloading mode, each IoT node should perform local com-
putation throughout the transmission block, i.e., τ∗k = T .

Proof. Please see Appendix A. �
According to Proposition 1, P1a can be reformulated as

P2a : max
V2

K∑
k=1

wk

(
Roff
k + fkT

Ccpu,k

)
s.t. C1− 1 : Roff

k + fkT
Ccpu,k

≥ Lmin,k,∀k,

C2− 1 : εk(fk)
3
T + Pc,k

(
N∑
n=1

tbn,k

)
+ pkt

a
k + pc,kt

a
k

≤ Ektot,∀k,
C3,C4,C6,C7,

where V2 = {β,
{
tbn,k

}
, {tak} , {pk} , {fk}, {αn,k}}.

It can be seen that P2a is still a non-convex problem
and challenge to solve. This is because the coupled rela-
tionship between pk and tak or between αn,k and tbn,k leads
to the non-convexities of the objective function, C1− 1 and
C2− 1. To address this problem, several auxiliary variables
are introduced into P2a. Specifically, let Pk = pkt

a
k and

xn,k = αn,kt
b
n,k,∀n,∀k replace pk and αn,k, respectively.

Then P2a can be transformed into

P3a : max
V3

K∑
k=1

wk

(
N∑
n=1

tbn,kBlog2

(
1 +

ξxn,kPugn,khk
tbn,kBσ

2

)
+takBlog2

(
1 + Pkhk

takBσ
2

)
+ fkT

Ccpu,k

)
s.t. C1− 2 :

N∑
n=1

tbn,kBlog2

(
1 +

ξxn,kPugn,khk
tbn,kBσ

2

)
+takBlog2

(
1 + Pkhk

takBσ
2

)
+ fkT

Ccpu,k
≥ Lmin,k,∀k,

C2− 2 : εk(fk)
3
T + Pc,k

(
N∑
n=1

tbn,k

)
+ Pk + pc,kt

a
k

≤
N∑
n=1

(
βT
N Pugn,kη − xn,kPugn,kη

)
,∀k,

C3,C4,C6− 1 :0 ≤ xn,k ≤ tbn,k,∀k, ∀n,
C7− 1 :tbn,k ≥ 0,∀n, ∀k, tak ≥ 0, Pk ≥ 0,∀k,

where V3 = {β,
{
tbn,k

}
, {tak} , {Pk} , {fk}, {xn,k}}.

Proposition 2: P3a is convex and can be solved by means
of several convex tools, i.e., the Lagrange duality method.

Proof. Please see Appendix B. �
In Theorem 1, the Lagrange duality method is employed to

achieve the optimal solutions to several optimization variables
under a given trajectory, as an effort to gain more insights.

Theorem 1: Under a given trajectory qu, the optimal power
reflection coefficient in the n-th time slot α∗n,k, transmit power
p∗k and local computing frequency f∗k of the k-th IoT node are
determined by

α∗n,k =

[
(wk + θk)B

($kPugn,kη + ϕn,k) ln 2
− Bσ2

ξPugn,khk

]+

,∀n, ∀k,

(12)

p∗k =

[
(wk + θk)B

$k ln 2
− Bσ2

hk

]+

,∀k, (13)

f∗k =

√
(wk + θk)

3$kεkCcpu,k
− φk

3$kεkT
,∀k, (14)

where θ=(θ1, θ2, . . . , θK),$=($0, $1, $2, . . . , $K), φ =
(φ1, φ2, . . . , φK) ,µ = (µ0, µ1, . . . , µN ), and ϕ = ϕ1,1 . . . ϕ1,K

...
. . .

...
ϕN,1 · · · ϕN,K

 are the non-negative Lagrange

multipliers with respect to all the constraints for P3a, namely
C1− 2, C2− 2, C3, C4 and C6− 1.

Proof. Please see Appendix C. �

Based on Theorem 1, we have the following findings.
Firstly, the maximum WSCB of all IoT nodes are achieved
when each IoT node uses up all its harvested energy.
Secondly, the task offloading is chosen by the k-th IoT
node only when the channel gain from the k-th IoT node
to the MEC server is strong enough, i.e., hk > σ2$k ln 2

wk+θk
.

Moreover, as for the k-th IoT node, when its weight is
large, it prefers to perform task offloading. Thirdly, the
k-th IoT node performs local computation only when
(wk+θk)
Ccpu,k

> φk
T holds and a larger weight of the k-th IoT

node brings a larger computation frequency at the k-th
IoT node. The reasons are as follows. From (12), (13)
and (14), it can be observed that $k > 0 must hold for
achieving the maximum WSCB of all IoT nodes. Then using
the Karush-Kuhn-Tucker (KKT) conditions, the equation

$k

(∑N
n=1

(
βT
N Pugn,kη − xn,kPugn,kη

)
−εk(fk)3T − Pk−

Pc,k

(∑N
n=1 t

b
n,k

)
− pc,kt

a
k

)
= 0 should always

hold. Combining with $k > 0, we can obtain∑N
n=1

(
βT
N Pugn,kη−xn,kPugn,kη

)
−Pc,k

(∑N
n=1 t

b
n,k

)
−

εk(fk)
3
T − Pk − pc,kt

a
k = 0, which indicates that the

harvested energy per IoT node will be used up. Thus, the
first finding is obtained. Based on (13), we can see that
hk >

σ2$k ln 2
wk+θk

should be satisfied to guarantee a nonzero p∗k
and the larger the k-th IoT node’s weight is, the higher the
probability with hk > σ2$k ln 2

wk+θk
holds, resulting in the fact

that the k-th IoT node prefers to perform task offloading.
Then the second finding is achieved. Based on (14), in order
to obtain a nonzero f∗k , (wk+θk)

Ccpu,k
> φk

T must be satisfied and
f∗k will increase with the increasing of wk. Therefore, the
third finding is obtained.

When the communication resource allocation scheme is
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given, the trajectory optimization problem is given by

P1b : max
qu[n]

K∑
k=1

wk

(
N∑
n=1

tbn,kBlog2

(
1+

ξαn,kPuhkβ0

Bσ2(H2+‖qu[n]−qk‖2)

)
+Ra

k +RLoc
k

)
s.t. C1 :

N∑
n=1

tbn,kBlog2

(
1 +

ξαn,kPuhkβ0

Bσ2(H2+‖qu[n]−qk‖2)

)
+Ra

k +RLoc
k ≥ Lmin,k,∀k,

C2 : ELoc
k + Pc,k

(
N∑
n=1

tbn,k

)
+ pkt

a
k + pc,kt

a
k

≤
N∑
n=1

β0( βTN Puη−tbn,kαn,kPuη)
H2+‖qu[n]−qk‖2

,∀k,

C8,C9.

Clearly, the objective function, C1 and C2 are non-convex
with respect to qu[n], leading to the non-convex problem P1b.
To address it, the successive convex approximation (SCA)
method is applied, where its main idea is to successively
maximize a lower bound of P1b via optimizing the incre-
mental of the UAV’s trajectory at each iteration. Specifically,
let qu,j [n],∀n, denote the local trajectory of the UAV at the
j-th iteration. Then at the (j + 1)-th iteration, we have the
following inequalities, given by,

Rb
k,j+1

=

N∑
n=1

tbn,kBlog2

1 + ξαn,kPuhkβ0

Bσ2
(
H2+‖qu,j+1[n]−qk‖2

)


≥ Rb,low
k,j+1=

N∑
n=1

tbn,kBlog2

(
1 +

An,k

H2+‖qu,j [n]−qk‖2

)

−
N∑
n=1

tbn,kBAn,k(
H2+‖qu,j [n]−qk‖2

)(
H2 +‖qu,j [n]−qk‖2+An,k

)
×

(
‖qu,j+1[n]− qk‖2 − ‖qu,j [n]− qk‖2

)
ln 2

,∀k, (15)

Ek,j+1
tot =

N∑
n=1

β0

(
βT
N Puη − tbn,kαn,kPuη

)
H2 + ‖qu,j+1[n]− qk‖2

≥ Ek,j+1
tot,low

=

N∑
n=1

Bn,k

H2+‖qu,j [n]− qk‖2
−

N∑
n=1

Bn,k(
H2+‖qu,j [n]−qk‖2

)2

×
(
‖qu,j+1[n]− qk‖2 − ‖qu,j [n]− qk‖2

)
,∀k, (16)

where Rb
k,j+1 and Ek,j+1

tot denote the total computation bits
and harvested energy at the k-th IoT node during the BackCom
phase in the (j + 1)-th iteration, qu,j+1[n],∀n, is the UAV’s
trajectory in the (j + 1)-th iteration, Rb,low

k,j+1 and Ek,j+1
tot,low are

the low bounds of Rb
k,j+1 and Ek,j+1

tot , respectively, An,k =
ξαn,kPuhkβ0

Bσ2 , and Bn,k = β0

(
βT
N Puη − tbn,kαn,kPuη

)
.

Based on (15) and (16), we optimize the trajectory of the
UAV in the (j + 1)-th iteration by replacing Rb

k,j+1 and
Ek,j+1

tot with their low bounds, namely Rb,low
k,j+1 and Ek,j+1

tot,low.

Accordingly, P1b of the (j + 1)-th iteration is transformed
into

P2b : max
qu,j+1[n]

K∑
k=1

wk(R
b,low
k,j+1 +Ra

k +RLoc
k )

s.t. C1− 3 : Rb,low
k,j+1 +Ra

k +RLoc
k ≥ Lmin,k,∀k,

C2− 3 : ELoc
k + Pc,k

(
N∑
n=1

tbn,k

)
+ pkt

a
k + pc,kt

a
k

≤ Ek,j+1
tot,low,∀k,

C8− 1 : ‖qu,j+1 [n+ 1]−qu,j+1 [n]‖ ≤ Vmax
βT
N ,∀n,

C9− 1 : qu,j+1 [1] = qI,qu,j+1 [N + 1] = qF.

Since both Rb,low
k,j+1 and Ek,j+1

tot,low are concave functions
regarding to qu,j+1[n], P2b is convex and can be solved
by means of several convex tools, i.e., the interior point
method. On this basis, we propose a successive trajectory
optimization algorithm, as shown in Algorithm 1, to achieve
the UAV’s trajectory with fixed communication resource allo-
cation. Specifically, P2b should be optimally solved by means
of the convex tools, i.e., CVX [34], in each iteration and the
above step continues until the stopping condition is satisfied.

Algorithm 1 Successive Trajectory Optimization with Fixed
Communication Resource Allocation

1: Initialize the UAV’s trajectory as qu,0[n],∀n, and set j =
0;

2: Set the maximum allowed number of iterations as Imax

and Flag = 0;
3: repeat
4: Solve P2b and obtain the optimal trajectory as

qu,j+1[n],∀n;
5: if qu,j+1[n] is converge to qu,j [n],∀n then
6: Set q∗u[n] = qu,j+1[n],∀n and set Flag = 1;
7: else
8: Set j = j + 1 and Flag = 0;
9: end if

10: until j = Imax or Flag = 1.

C. Design of Two-stage Alternating Iterative Algorithm
Here we propose a two-stage alternating iterative algorithm

to solve P1 and the detailed process is shown in Algorithm 2.
Specifically, we take turns to solve P3a and P1b and obtain
their optimal solutions in each iteration. Note that P3a is
optimally solved by means of CVX, while P1b is solved by
using Algorithm 1. The above steps will continue until the
stopping condition is satisfied.

The complexity of the proposed two-stage alternating it-
erative algorithm in Algorithm 2 is provided as follows.
Assume that the interior point method is applied to ob-
tain the optimal solutions to P3a and P2b. According to
[34], the complexities for solving P3a and P2b are com-
puted as O(

√
5K + 2KN + 3 log(5K + 2KN + 3)) and

O(
√
2K +N log(2K + N)), where O(·) is the big-O no-

tation. Let N1 and N2 denote the number of iterations
of Algorithm 1 and Algorithm 2, then The complexity
of the proposed two-stage alternating iterative algorithm is
given by N2(O(

√
5K + 2KN + 3 log(5K + 2KN + 3)) +

N1O(
√
2K +N log(2K +N))).
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Algorithm 2 Two-stage Alternating Iterative Algorithm
1: Initialize the trajectory of the UAV and the maximum

tolerance error δt;
2: repeat
3: Solve P3a with the fixed UAV’s trajectory via CVX and

obtain the optimal communication resource allocation;
4: Compute the WSCB of all IoT nodes as R1

sum;
5: Solve P1b with the fixed communication resource allo-

cation obtained in the above step by using Algorithm 1
and obtain the UAV’s trajectory;

6: Compute the WSCB of all IoT nodes as R2
sum;

7: until |R2
sum −R1

sum| ≤ δt;
8: Output the obtained communication resource allocation

and trajectory.

IV. BINARY OFFLOADING BASED WSCB MAXIMIZATION

In this section, considering the binary offloading mode at
each IoT node, the WSCB maximization is studied for the
UAV-enabled WP-MEC network with hybrid passive and ac-
tive communications. Specifically, by formulating the WSCB
maximization problem for the considered network, the local
computation frequencies and time, the reflection coefficients,
the transmit powers, the BackCom time and the AT time of IoT
nodes, the trajectory of the UAV, as well as the mode selection
of each IoT node for choosing either task offloading or local
computation are jointly optimized. The formulated problem
not only involves the optimization of the UAV’s trajectory, but
also includes the optimization of the mode selection, leading to
a mixed integer non-convex optimization problem. To address
this problem, a three-stage alternating iterative algorithm is
devised.

A. Problem Formulation

Based on (9) and (11), the WSCB maximization problem
under the binary offloading mode is formulated as

P4 : max
V4

∑
i∈KL

wiR
L,B
i +

∑
l∈KO

wlR
O,B
l

s.t. F1 : RL,B
i ≥ Lmin,i, i ∈ KL, R

O,B
l ≥ Lmin,l, l ∈ KO,

F2 : ELoc
i ≤ EL,B

i , i ∈KL,Pc,l

(
N∑
n=1

tbn,l

)
+ plt

a
l +pc,lt

a
l

≤ EO,B
l , l ∈ KO,

F3 : 0 ≤ fi ≤ fmax
i , i ∈ KL,

F4 : 0 < β < 1,
∑
l∈KO

tbn,l ≤
βT
N ,∀n,

∑
l∈KO

tal ≤ (1− β)T,

F5 : 0 ≤ τi ≤ T, i ∈ KL,

F6 : 0 ≤ αn,l ≤ 1, l ∈ KO,∀n,
F7 : tbn,l ≥ 0,∀n, tal ≥ 0, pl ≥ 0, l ∈ KO,

F8 : KL ∪ KO = K,KL ∩ KO = ∅,
F9 : ‖qu [n+ 1]− qu [n]‖ ≤ Vmax

βT
N ,∀n,

F10 : qu [1] = qI,qu [N + 1] = qF,

where V4 =
{
β,
{
tbn,l

}
, {tal } , {pl} , {fi}, {τi}, {αn,l},KL,KO,

{qu}
}

.
In P4, F1 and F2 are the minimum tasks requirement and

the energy causal constraints per IoT node, respectively. F3

constrains the maximum allowed computation frequency at
the IoT node who performs fully local computation. Both F4
and F5 are time allocation constrains which ensure that the
total consumed time for task execution is not larger than T .
F6 indicates the range of the power reflection coefficient of
the IoT node who chooses to offload tasks. F8 is the user
operation selection constraint, where each IoT node either
computes its tasks locally or performs task offloading. F9 is
the speed constraint and F10 constrains the UAV’s initial and
final horizontal location.
P4 is a mixed integer non-convex problem due to the

following reasons. Firstly, P4 involves the optimization of the
user mode selection. Secondly, the optimization of the trajec-
tory of the UAV exists in P4, bringing coupled relationships
between the trajectory and communication/computation re-
sources. Thirdly, the coupled relationships among different op-
timization variables of communication/computation resources
further increase the difficulty of solving P4.

B. Solution

Similar to P1, here P4 is decoupled into two sub-problems,
where one sub-problem is P4 with a fixed trajectory, denoted
by P4a, and the other is P4 with fixed communication
resources, namely P4b, respectively. Accordingly, P4a can be
formulated as

P4a : max
V5

∑
i∈KL

wiR
L,B
i +

∑
l∈KO

wlR
O,B
l

s.t. F1− F8,

where V5=
{
β,
{
tbn,l

}
,{tal } ,{pl} ,{fi},{τi}, {αn,l},KL,KO

}
.

It is obvious that P4a is still a non-convex problem. To
address this problem, we first introduce the following propo-
sition to clarify the optimal computing time of the IoT node
that performs local computation and decouples the coupled
relationship between the computing frequency and time of the
IoT node.

Proposition 3: The WSCB of all the IoT nodes for the
considered network under the binary offloading mode are
maximized when the IoT node that performs local computation
executes its tasks during the whole transmission block, i.e.,
τi = T, i ∈ KL.

Proof. This proposition can be proved by means of contra-
dictions and the process of the proof is similar to Appendix
A. Therefore, the detailed process is omitted. �

According to Proposition 3, P4a can be transformed as
P5a : max

V6

∑
i∈KL

wifiT
Ccpu,i

+
∑
l∈KO

wlR
O,B
l

s.t. F1− 1 : fiT
Ccpu,i

≥ Lmin,i, i ∈KL, R
O,B
l ≥Lmin,l, l ∈KO,

F2− 1 : εi(fi)
3
T ≤ EL,B

i , i ∈ KL,

Pc,l

(
N∑
n=1

tbn,l

)
+ plt

a
l + pc,lt

a
l ≤ E

O,B
l , l ∈ KO,

F3,F4,F6− F8,

where V6 =
{
β,
{
tbn,l

}
, {tal } , {pl} , {fi}, {αn,l},KL,KO

}
.

In order to efficiently deal with the optimization of the user
mode selection, we introduce a binary variable, denoted by
λk (λk ∈ {0, 1},∀k), into P5a, where λk = 1 indicates that
the k-th IoT node performs task offloading and λk = 0 means
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that the k-th IoT node chooses to compute its tasks locally.
Substituting λk into P5a, we have

P6a : max
V7

K∑
k=1

wk

(
λk

(
N∑
n=1

tbn,kBlog2

(
1 +

ξαn,kPugn,khk
Bσ2

)
+takBlog2

(
1 + pkhk

Bσ2

))
+ (1− λk) fkT

Ccpu,k

)
s.t. F1− 2 :λk

(
N∑
n=1

tbn,kBlog2

(
1 +

ξαn,kPugn,khk
Bσ2

)
+takBlog2

(
1+pkhk

Bσ2

))
+ (1−λk)fkT

Ccpu,k
≥ Lmin,k,∀k,

F2− 2 : (1− λk) εk(fk)3T

+λk

(
Pc,k

(
N∑
n=1

tbn,k

)
+ pkt

a
k + pc,kt

a
k

)
≤

N∑
n=1

(
βT
N Pugn,kη−λktbn,kαn,kPugn,kη

)
,∀k,

F3− 1 :0 ≤ (1− λk) fk ≤ fmax
k ,∀k,

F4− 1 :0 < β < 1,
K∑
k=1

λkt
b
n,k ≤

βT
N ,∀n,

K∑
k=1

λkt
a
k ≤ (1− β)T ,

F6− 1 :0 ≤ λkαn,k ≤ 1,∀k,∀n
F7− 1 :tbn,k ≥ 0,∀n, tak ≥ 0, pk ≥ 0,∀k,
F8− 1 :λk ∈ {0, 1} ,∀k,

where V7 =
{
β,
{
tbn,k

}
, {tak} , {pk} , {fk}, {αn,k}, λk

}
.

P6a is a mixed integer non-convex problem. To address the
issue arisen from the integer optimization, we relax the integer
variable λk as a continuous real variable that varies from 0 to
1 by following [35]. Note that such a relaxation removes the
integer optimization, bringing a more tractable problem. Thus,
P6a can be relaxed as

P7a : max
V7

K∑
k=1

wk

(
λk

(
N∑
n=1

tbn,kBlog2

(
1 +

ξαn,kPugn,khk
Bσ2

)
+ takBlog2

(
1 + pkhk

Bσ2

))
+ (1− λk) fkT

Ccpu,k

)
s.t. F1− 2,F2− 2,F3− 1,F4− 1,F6− 1,F7− 1,

F8− 2 : λk ∈ [0, 1] ,∀k.

However, P7a is still non-convex since the optimization of
λk is highly coupled with the optimization of other communi-
cation resources. To tackle this issue, we also apply the BCD
technique to handle P7a. Specifically, P7a can be decoupled
into two sub-problems: P7a with fixed λk and P7a with other
communication resources fixed. When λk is fixed, P7a is
reduced to

P8a : max
V8

K∑
k=1

wk

(
λk

(
N∑
n=1

tbn,kBlog2

(
1 +

ξαn,kPugn,khk
Bσ2

)
+ takBlog2

(
1 + pkhk

Bσ2

))
+ (1− λk) fkT

Ccpu,k

)
s.t. F1− 2,F2− 2,F3− 1,F4− 1,F6− 1,F7− 1,

where V8 =
{
β,
{
tbn,k

}
, {tak} , {pk} , {fk}, {αn,k}

}
. To deal

with the coupled relationships among different optimization
variables in P8a, the following variables are introduced:

xn,k = tbn,kαn,k,∀n,∀k, and Pk = pkt
a
k,∀k, and then P8a

can be rewritten as

P9a : max
V9

K∑
k=1

wk

(
λk

(
N∑
n=1

tbn,kBlog2

(
1 +

ξxn,kPugn,khk
tbn,kBσ

2

)
+takBlog2

(
1 + Pkhk

takBσ
2

))
+ (1− λk) fkT

Ccpu,k

)
s.t. F1− 3 : λk

(
N∑
n=1

tbn,kBlog2

(
1 +

ξxn,kPugn,khk
tbn,kBσ

2

)
+takBlog2

(
1 + Pkhk

takBσ
2

))
+ (1−λk)fkT

Ccpu,k

≥ Lmin,k,∀k,

F2− 3 : λk

(
Pc,k

(
N∑
n=1

tbn,k

)
+ Pk + pc,kt

a
k

)
+(1− λk) εk(fk)3T

≤
N∑
n=1

(
βT
N Pugn,kη − λkxn,kPugn,kη

)
,∀k,

F3− 1,F4− 1,F6− 2 : 0 ≤ λkxn,k ≤ tbn,k,∀k,∀n,
F7− 2 : tbn,k ≥ 0,∀n, tak ≥ 0, Pk ≥ 0,∀k,

where V9 =
{
β,
{
tbn,k

}
, {tak} , {Pk} , {fk}, {xn,k}

}
. It is

easy to prove that P9a is convex and the detailed process
of the proof is similar to Appendix B and is omitted here for
brevity.

When other communication resources are fixed, P7a can be
transformed as

P10a : max
{λk}

K∑
k=1

wk

(
λk

(
N∑
n=1

tbn,kBlog2

(
1+

ξαn,kPugn,khk
Bσ2

)
+takBlog2

(
1 + pkhk

Bσ2

))
+ (1− λk) fkT

Ccpu,k

)
s.t. F1− 2,F2− 2,F3− 1,F4− 1,F6− 1,F8− 2.

Obviously, P10a is a linear optimization problem regarding to
λk, which can be solved by means of several convex tools.

Likewise, P4b is reformulated as

P4b : max
qu[n]

K∑
k=1

wk

(
λk

(
N∑
n=1

tbn,kBlog2

(
1+

ξαn,kPuhkβ0

Bσ2(H2+‖qu[n]−qk‖2)

)
+takBlog2

(
1 + pkhk

Bσ2

))
+ (1− λk) fkT

Ccpu,k

)
s.t. F1− 2 :λk

(
N∑
n=1

tbn,kBlog2

(
1 +

ξαn,kPuhkβ0

Bσ2(H2+‖qu[n]−qk‖2)

)
+takBlog2

(
1 + pkhk

Bσ2

))
+ (1−λk)fkT

Ccpu,k

≥ Lmin,k,∀k,

F2− 2 :λk

(
Pc,k

(
N∑
n=1

tbn,k

)
+ pkt

a
k + pc,kt

a
k

)
+(1− λk) εk(fk)3T

≤
N∑
n=1

( βTN Pu−λktbn,kαn,kPu)β0η

(H2+‖qu[n]−qk‖2)
,∀k,

F9,F10.

In order to solve P4b, the SCA technique is applied by
following P1b. Accordingly, P4b in the (j+1)-th iteration is
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Tabel 1: Key Simulation Settings
Parameters Notation Value
Number of IoT nodes K 4
Number of time slots N 50
Altitude of the UAV H 10 m
The maximum speed of the UAV Vmax 20 m/s
The entire transmission block T 2 seconds
The system bandwidth B 100 kHz
The number of CPU cycles for computing 1 bit at the k-th IoT node Ccpu,k 1000 cycles/bit
The BackCom’s fixed circuit power consumption at the k-th IoT node Pc,k 100 µW
The AT’s fixed circuit power consumption at the k-th IoT node pc,k 1 mW
The UAV’s transmit power Pu 1 W
The fixed energy conversion efficiency per IoT node η 0.7
The performance gap reflecting the real modulation for BackCom ξ -15 dB
The noise power spectral density σ2 -120 dBm/Hz
Channel gain at reference distance β0 -30 dB
The effective capacitance coefficient at the k-th IoT node εk 10−26

The maximum CPU frequency of the k-th IoT node fmax
k 500 MHz

The minimum required bits computed by the k-th IoT node Lmin,k 10 kbits

Algorithm 3 Three-stage Alternating Iterative Algorithm
1: Initialize the iterative number J = 1;
2: Initialize the trajectory of the UAV qJu [n],∀n, and the

maximum tolerance errors δ1 and δ2;
3: repeat
4: Initialize the iterative number jj = 1 and λjjk ,∀k;
5: repeat
6: Solve P9a with given qJu [n],∀n, and

λjjk ,∀k via CVX and obtain the optimal
communication resource allocation, denoted by{
βjj ,

{
tb,jjn,k

}
,
{
ta,jjk

}
,
{
P jjk

}
, {f jjk }, {x

jj
n,k}

}
;

7: Compute the WSCB of all IoT nodes as Rjjsum;
8: Solve P10a with given{

βjj ,
{
tb,jjn,k

}
,
{
ta,jjk

}
,
{
P jjk

}
, {f jjk }, {x

jj
n,k}

}
and qJu [n],∀n, and obtain λjj+1

k ,∀k;
9: Compute the WSCB of all IoT nodes as Rjj+1

sum ;
10: until |Rjj+1

sum −Rjjsum| ≤ δ1;
11: Output the obtained communication resource allocation

under qJu [n],∀n, and the WSCB of all IoT nodes RsJ ;
12: Initialize the iterative number j = 1 and the maximum

allowed number of iterations Imax;
13: Set qu,j [n] = qJu [n],∀n;
14: repeat
15: Solve P5b with given{

βjj ,
{
tb,jjn,k

}
,
{
ta,jjk

}
,
{
P jjk

}
, {f jjk }, {x

jj
n,k}, {λ

jj+1
k }

}
and obtain the optimal trajectory as qu,j+1[n],∀n;

16: if qu,j+1[n] is converge to qu,j [n],∀n then
17: Set J = J + 1, qJu [n] = qu,j+1[n],∀n and break;
18: else
19: Set j = j + 1;
20: end if
21: until j = Imax;
22: Output the obtained trajectory and the WSCB achieved

by all IoT nodes RsJ ;
23: until |RsJ −RsJ−1| ≤ δ2;
24: Output the obtained resource allocation and trajectory.

transformed into

P5b : max
qu[n]

K∑
k=1

wk

(
λk

(
Rb
k,j+1 + takBlog2

(
1 + pkhk

Bσ2

))
+(1− λk) fkT

Ccpu,k

)
s.t. F1− 4 :λk

(
Rb
k,j+1 + takBlog2

(
1 + pkhk

Bσ2

))
+ (1−λk)fkT

Ccpu,k
≥ Lmin,k,∀k,

F2− 4 : (1− λk) εk(fk)3T

+λk

(
Pc,k

(
N∑
n=1

tbn,k

)
+ pkt

a
k + pc,kt

a
k

)
≤ Ek,j+1

tot ,∀k,
F9− 1 : ‖qu,j+1 [n+ 1]− qu,j+1 [n]‖ ≤ Vmax

βT
N ,∀n,

F10− 1 :qu,j+1 [1] = qI,qu,j+1 [N + 1] = qF,

where Bn,k = β0

(
βT
N Puη − λktbn,kαn,kPuη

)
in Ek,j+1

tot .
Similar to P2b, P5b is also convex, which can be solved by
applying convex tools, e.g., CVX.

C. Design of Three-stage Alternating Iterative Algorithm

Here a three-stage alternating iterative algorithm is proposed
to solve P4 and obtain the corresponding resource allocation
and trajectory. The steps of this algorithm can be found in
Algorithm 3. Specifically, in the outer loop, P7a and P4b

should be solved in each iteration, where P7a is solved with
fixed trajectory of the UAV and P4b is solved under given
communication resource allocation. The first inner loop is to
solve P7a, where in each iteration, we take turns to optimally
solve P9a and P10a. The second inner loop is to solve P4b,
where P5b is optimally solved in each iteration.

As for the proposed three-stage alternating iterative
algorithm in Algorithm 3, its complexity is computed
as follows. With the interior point method adopted,
the complexities for solving P9a, P10a and P5b are
given by O(

√
5K + 2KN + 3 log(5K + 2KN + 3)),

O(
√
4K +KN + 3 log(4K + KN + 3)) and

O(
√
2K +N log(2K+N)), respectively [34]. Denote L1, L2

and L3 as the number of iterations required for the outer loop,
the first inner loop and the second loop. Then the computation
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complexity of the three-stage alternating iterative algorithm
can be calculated as L1(L2(O(

√
5K + 2KN + 3 log(5K +

2KN + 3)) + O(
√
4K +KN + 3 log(4K + KN + 3))) +

L3O(
√
2K +N log(2K +N))).

V. SIMULATIONS

This section validates the superiority of the proposed
schemes by conducting computer simulations. The basic set-
tings of the parameters, unless otherwise specified, are shown
in Table I according to [4], [10], [15], [28]. Here the channel
gain of the k-th IoT node-the MEC server link is considered as
hk = h′kd

−α
k with the small-scale fading h′k, distance dk and

path loss exponent α. We set α = 3, d1 = 12 m, d2 = 10 m,
d3 = 15 m and d4 = 13 m. The locations of IoT nodes are set
as q1 = [0, 0], q2 = [0, 10], q3 = [10, 10] and q4 = [10, 0],
respectively. The UAV’s initial and final positions are given
by qI = [0, 0] and qF = [10, 0]. The weight vector of all IoT
nodes, [w1, w2, w3, w4], is set as [0.1, 0.4, 0.3, 0.2].

In order to show the advantages of the proposed schemes in
terms of the WSCB of all IoT nodes, the performance under
the proposed schemes is compared with that under the four
baseline schemes, which are called backscatter-assisted UAV-
MEC, wireless powered UAV-MEC, the complete offloading
scheme and the fully local computing scheme, respective-
ly. For backscatter-assisted UAV-MEC or wireless powered
UAV-MEC, each IoT node only chooses BackCom or AT
to offload tasks when it performs task offloading. In the
complete offloading scheme, all IoT nodes’ tasks are offloaded
to the MEC server via BackCom, AT or hybrid passive and
active communications, while in the fully local computing
scheme, all IoT nodes’ tasks are executed locally. Note that
the above four schemes can also be obtained by using the
proposed algorithms after making a few changes. Specifically,
the backscatter-assisted UAV-MEC or the wireless powered
UAV-MEC is achieved by using the proposed algorithms with
pk = 0 and tak = 0,∀k or tbn,k = 0 and αn,k = 0,∀n, ∀k,
respectively. The complete offloading scheme is obtained by
the proposed algorithms with fk = 0,∀k, while the fully local
computing scheme is obtained via the proposed algorithms
with pk = 0, tak = 0, tbn,k = 0, and αn,k = 0,∀n, ∀k.

Fig. 2 illustrates the convergence analysis of the proposed
Algorithm 1, Algorithm 2, and Algorithm 3 under different
settings of the UAV’s transmit power Pu and initial trajectory.
Here Pu is set as 0.5 W and 1 W, respectively, and two
initial trajectories are considered. For the first initial trajectory
(denoted as “Initial trajectory 1”), the UAV flies straight with
a constant speed from the initial position to the final position.
For the second initial trajectory (denoted as “Initial trajectory
2”), the UAV is dispatched from its initial horizontal position
[0,0], flies straight to the position [5,10] and then flies to
its final horizontal position [10,0] with a constant speed.
Specifically, Fig. 2(a) is given to verify the convergence of
Algorithm 1, where the communication resource allocation is
determined by solving P3a with the given initial trajectory via
CVX. Fig. 2(b) shows the convergence of Algorithm 2. In Fig.
2(c), the convergence of Algorithm 3 is demonstrated.

From Fig. 2(a), it can be seen that the proposed succes-
sive trajectory optimization algorithm in Algorithm 1 always
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Fig. 3. The WSCB of all IoT nodes under the partial offloading mode versus
the UAV’s transmit power.
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Fig. 4. The WSCB of all IoT nodes under the partial offloading mode versus
the minimum required bits computed by each IoT node.

converges to the optimal trajectory within 3 iterations, which
verifies the effectiveness of Algorithm 1 and illustrates that
Algorithm 1 has a fast convergence rate. The proposed two-
stage alternating iterative algorithm in Algorithm 2 is provided
to obtain the proposed scheme under the partial offloading
mode. It can be observed from Fig. 2(b) that less than 5
iterations are required for Algorithm 2 to achieve a convergent
state. This also indicates the effectiveness and fast convergence
of Algorithm 2. Algorithm 3 provides the three-stage alternat-
ing iterative algorithm to achieve the proposed scheme under
the binary offloading mode. From Fig. 2(c), we can see that
the proposed three-stage alternating iterative algorithm only
needs several iterations (e.g., 4 iterations) to converge, which
illustrates that Algorithm 3 is computationally effective with
a fast convergence rate.

Fig. 3 plots the WSCB achieved by all IoT nodes versus
Pu, where Pu ranges from 1 W to 3 W and the partial
offloading mode is considered for the investigated network.
In order to show the advantage of the proposed scheme, the
WSCB under the proposed scheme are compared with those
obtained by the backscatter-assisted UAV-MEC, the wireless
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Fig. 2. The convergence analysis of the proposed iterative algorithms under different settings of the UAV’s transmit power and initial trajectory: (a) the
convergence analysis of Algorithm 1; (b) the convergence analysis of Algorithm 2; (c) the convergence analysis for Algorithm 3.

powered UAV-MEC, the complete offloading scheme and the
fully local computing scheme. It can be observed from this
figure that the WSCB achieved by all IoT nodes under all the
schemes will increase when Pu increases. The reasons are as
follows. When Pu is larger, the IoT nodes will offload more
tasks to the MEC server via BackCom since the received RF
signals are strong, and the total harvested energy per IoT node
also increases, resulting in more tasks that can be offloaded
by AT or executed locally. Thus, a larger Pu brings higher
WSCB of all IoT nodes. By comparison, we can also find
that the proposed scheme can achieve the best performance in
terms of the WSCB of all IoT nodes among the above five
schemes since the proposed scheme includes the superiorities
of BackCom and AT, and can choose to offload how many
task bits more flexibly compared with the complete offloading
scheme and the fully local computing scheme. Besides, we
can also see that the WSCB in the backscatter-assisted UAV-
MEC are higher than those under the wireless powered UAV-
MEC since BackCom has a lower energy consumption for
offloading task bits. Moreover, when Pu is large enough, the
WSCB under the complete offloading scheme are higher than
those under the fully local computing scheme, even higher
than those obtained by the wireless powered UAV-MEC. This
is because a larger Pu brings a higher harvested energy per IoT
node and then each IoT node has enough energy to support
task offloading.

Fig. 4 plots the WSCB achieved by all IoT nodes versus the
minimum required computation bits per IoT node, where the
partial offloading mode is considered. Let Lmin,1 = Lmin,2 =
Lmin,3 = Lmin,4 = Lmin and then Lmin ranges from 11 kbits
to 15 kbits. From this figure, we can see that with the increase
of Lmin, the WSCB achieved by the proposed scheme, the
backscatter-assisted UAV-MEC, the wireless powered UAV-
MEC and the fully local computing scheme will decrease,
while the WSCB obtained by the complete offloading scheme
are always 0. The reasons are listed below. A higher Lmin

indicates a more strict computation bits requirement for each
IoT node. This will lead to a reduction to WSCB since in some
cases, the IoT node may not satisfy this requirement. For the
complete offloading scheme, Pu is not large enough to support
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Fig. 5. The WSCB of all IoT nodes under the binary offloading mode versus
the UAV’s transmit power.

all IoT nodes’ task offloading while satisfying the minimum
required computation bits. By comparison, it can also be seen
that the proposed scheme outperforms the other schemes in
terms of the WSCB of all IoT nodes, which also verifies the
superiority of combining BackCom and AT.

Fig. 5 plots the WSCB achieved by all IoT nodes under the
binary offloading mode versus Pu under different schemes,
where Lmin = 5 kbits. We can observe that the WSCB of all
IoT nodes under all the schemes increase with the increasing
Pu and the proposed scheme is superior to the other schemes
in terms of the WSCB of all IoT nodes since each IoT node
can choose to perform either complete task offloading via
BackCom, AT or hybrid passive and active communications, or
fully local computing flexibly according to its channel gains,
bringing an improvement to the computation performance.

Fig. 6 shows the UAV’s trajectory under the partial and
binary offloading modes. The black line denotes the given
initial UAV’s trajectory, the blue line with the mark of the blue
cross represents the optimized trajectory of the UAV under
the partial offloading mode achieved by applying Algorithm
2 while the pink dotted line with the mark of the pink dot
expresses the optimized trajectory of the UAV under the binary
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Fig. 7. The WSCB of all IoT nodes under the partial and binary offloading
modes versus the number of IoT nodes.

offloading mode achieved by using Algorithm 3. The red
circles denotes the locations of all IoT nodes. As shown in
this figure, the UAV is dispatched from its initial horizontal
position [0, 0] and then flies to its final horizontal position
[10, 0] at the end of the BackCom phase. It can be observed
that the trajectory under the partial offloading mode is always
close to IoT node 2 and IoT node 3 due to the fact that the
weights of the two nodes are higher and the UAV needs to
fly close to them to provide stronger RF signals for BackCom
and more energy so that the WSCB of all IoT nodes can be
improved. The trajectory under the binary offloading mode is
close to IoT node 2 since its weight is highest. Different from
the partial offloading mode, the trajectory under the binary
offloading mode is not close to IoT 3 since in this case, only
IoT 1 and IoT 2 choose to perform task offloading while the
others compute their tasks locally. Therefore, there is no need
for the UAV to fly close to IoT 3 to provide stronger RF signals
for BackCom. By observations, we also find that the values of
the weights can influence the UAV’s trajectory and a proper
weight can balance the performance of all IoT nodes.

Fig. 7 shows the WSCB of all IoT nodes under the partial
and binary offloading modes versus the number of IoT nodes
K, where Lmin = 10 kbits, K ranges from 4 to 8 and the

weight of each IoT node is set as 1. It can be observed that the
WSCB of all IoT nodes increase with K since with a larger
K, more IoT nodes can compute and/or offload their tasks
by using their received signals or harvested energy, bringing a
higher WSCB. Besides, we also observe that the WSCB under
the partial offloading mode is higher than that under the binary
offloading mode. This is because the partial offloading mode is
more flexible than the binary offloading mode, i.e., IoT nodes
under the partial offloading mode can dynamically select the
operation mode for achieving a higher WSCB according to
the quality of the CSI.

VI. CONCLUSIONS

In this work, the resource allocation schemes for the partial
and binary offloading modes were studied in a UAV-enabled
WP-MEC network with hybrid passive and active communi-
cations. Specifically, two WSCB maximization problems were
formulated by optimizing the local computation frequencies
and time, the reflection coefficients, and the transmit powers
of the IoT nodes, the UAV’s trajectory, etc, subject to the QoS,
energy causality, speed constraints, etc. Then the optimization
problem under the partial offloading mode was solved by
the proposed two-stage alternating iterative algorithm, while
a three-stage alternating iterative algorithm was proposed to
solve the problem under the binary offloading mode. Computer
results verified the effectiveness of the proposed algorithms
and demonstrated the superiority of the proposed schemes
under the partial and binary offloading modes over several
baseline schemes in terms of WSCB.

APPENDIX A

In this section, Proposition 1 is proved by means of
contradiction. Specifically, when other optimization vari-
ables, such as β, {tbn,k}Kk=1, {tak}Kk=1, {pk}Kk=1, αn,k and
{fi, τi}i={1,2,...,K}\k, are given, fk and τk should be joint-
ly optimized to maximize the WSCB of all IoT nodes
for the considered network. Let f∗k and τ∗k be the op-
timal computation frequency and time of the k-th IoT
node. Suppose that τ∗k < T holds and both f∗k and
τ∗k satisfy all the constraints of P1a. In this case, the
maximum WSCB of all IoT nodes are computed as

R∗total =
∑K
k=1 wk

(∑N
n=1 t

b
n,kBlog2

(
1 +

ξαn,kPugn,khk
Bσ2

)
+

takBlog2

(
1 + pkhk

Bσ2

))
+
∑K
i=1,i6=k

wifiτi
Ccpu,i

+
wkf

∗
k τ

∗
k

Ccpu,k
.

Then we construct another feasible solution, denoted by
{f+
k , τ

+
k }, where τ+

k = T and τ+
k f

+
k (f+

k )2 = τ∗k f
∗
k (f
∗
k )

2.
It can be observed that the constructed solution also satisfies
all the constraints of P1a. Accordingly, the WSCB of all
IoT nodes under the constructed solution can be computed as

R+
total =

∑K
k=1 wk

(∑N
n=1 t

b
n,kBlog2

(
1 +

ξαn,kPugn,khk
Bσ2

)
+

takBlog2

(
1 + pkhk

Bσ2

))
+
∑K
i=1,i6=k

wifiτi
Ccpu,i

+
wkf

+
k τ

+
k

Ccpu,k
. Since

τ+
k = T > τ∗ and τ+

k f
+
k (f+

k )2 = τ∗k f
∗
k (f
∗
k )

2, we can
obtain f+

k < f∗k , leading to τ+
k f

+
k > τ∗k f

∗
k . Then we have

R+
total > R∗total, which contradicts the above assumption.
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L =
∑K

k=1
wk

(∑N

n=1
tbn,kBlog2

(
1 +

ξxn,kPugn,khk
tbn,kBσ

2

)
+ takBlog2

(
1 +

Pkhk
takBσ

2

)
+

fkT

Ccpu,k

)

+
∑K

k=1
θk

(∑N

n=1
tbn,kBlog2

(
1 +

ξxn,kPugn,khk
tbn,kBσ

2

)
+ takBlog2

(
1 +

Pkhk
takBσ

2

)
+

fkT

Ccpu,k
− Lmin,k

)

+
∑K

k=1
$k

(∑N

n=1

(
βT

N
Pugn,kη − xn,kPugn,kη

)
−εk(fk)3T − Pc,k

(∑N

n=1
tbn,k

)
− Pk − pc,kt

a
k

)
+
∑K

k=1
φk (f

max
k − fk) + µ0 (1− β) +

∑N

n=1
µn

(
βT

N
−
∑K

k=1
tbn,k

)
+$0

(
(1− β)T −

∑K

k=1
tak

)
+
∑K

k=1

∑N

n=1
ϕn,k

(
tbn,k − xn,k

)
. (C.1)

Therefore, the optimal computation time at the k-th IoT node
should be τ∗k = T .

APPENDIX B

As for P3a, C3, C4, C6− 1 and C7− 1 are linear con-
straints and whether P3a is convex or not depends on the
convexity-concavity of the objective function and constraints
C1− 2 and C2− 2. That is, when the objective function is
concave and both C1− 2 and C2− 2 are convex, P3a is
proved to be convex.

1) The concavity of the objective function: It can be ob-
served that the objective function is concave if and only if
function f(x, y) = x log2

(
1 + y

x

)
is concave jointly regarding

to x and y. Based on the fact that the perspective function
can preserve convexity, it can be found that the convexity of
f(x, y) is the same as that of function log2 (1 + y) which
is easily proved to be concave. Therefore, f(x, y) is also a
concave function, resulting in a concave objective function.

2) The convexities of constraints C1− 2 and C2− 2: As
for C1− 2, its left side is a concave function and its right side
is a constant. Thus, C1− 2 is a convex constraint.

As for C2− 2, its right side is a linear function while the
convexity-concavity of its left side depends on that of function
f1(x) = x3 with x ≥ 0. Since f1(x) = x3 with x ≥ 0 can be
easily proved to be convex, C2− 2 is also a convex constraint.

Based on the above analyses, P3a can be proved to be
convex.

APPENDIX C

Let θ =(θ1, θ2, . . . , θK) ,$ =($0, $1, $2, . . . , $K) ,φ =
(φ1, φ2, . . . , φK) ,µ = (µ0, µ1, . . . , µN ), and ϕ = ϕ1,1 . . . ϕ1,K

...
. . .

...
ϕN,1 · · · ϕN,K

 express the non-negative Lagrange

multipliers regarding to all the constraints for P3a. Then the
Lagrangian function of P3a can be written as (C.1), as shown
at the top of this page.

On this basis, we can take the partial derivatives of L with
respect to xn,k and Pk, as an effort to achieve the expressions
for the optimal power reflection coefficient in the n-th time

slot and the optimal transmit power of the k-th IoT node in
closed forms, given by,

∂L
∂xn,k

=
(wk + θk) ξPugn,khkB

(Bσ2 + αn,kξPugn,khk) ln 2
−$kPugn,kη −ϕn,k,

(C.2)
∂L
∂Pk

=
(wk + θk)hkB

(Bσ2 + pkhk) ln 2
−$k. (C.3)

By letting ∂L
∂xn,k

= 0, the optimal power reflection coefficient
at the k-th IoT node in the n-th time slot α∗n,k can be computed
as

α∗n,k =

[
(wk + θk)B

($kPugn,kη + ϕn,k) ln 2
− Bσ2

ξPugn,khk

]+

,∀n,∀k,

(C.4)

where [x]
+
= max {x, 0}. Similarly, by letting ∂L

∂Pk
= 0, we

can obtain the optimal transmit power at the k-th IoT node p∗k
as

p∗k =

[
(wk + θk)B

$k ln 2
− Bσ2

hk

]+

,∀k. (C.5)

In order to achieve the closed-form expression of the
optimal local computation frequency at the k-th IoT node, we
take the partial derivative of L regarding to fk and obtain

∂L
∂fk

=
(wk + θk)T

Ccpu,k
− 3$kεkTf

2
k − φk. (C.6)

Letting ∂L
∂fk

= 0, we can calculate the optimal local computing
frequency at the k-th IoT node f∗k as

f∗k =

√
(wk + θk)

3$kεkCcpu,k
− φk

3$kεkT
,∀k. (C.7)

Based on (C.4), (C.5) and (C.7), Theorem 1 can be obtained.
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