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REGULAR ORBITS OF FINITE PRIMITIVE SOLVABLE GROUPS, THE FINAL

CLASSIFICATION

DEREK HOLT AND YONG YANG

Abstract. Suppose that a finite solvable group G acts faithfully, irreducibly and quasi-primitively on a

finite vector space V , and G is not metacyclic. Then G always has a regular orbit on V except for a few

“small” cases. We completely classify these cases in this paper.

1. Introduction

Let G be a finite group and V a finite, faithful and completely reducible G-module. One
of the most important and natural questions about the orbit structure of G on V is to
establish the existence of an orbit of a certain size. For a long time, there has been a deep
interest in the size of the largest possible orbits in linear group actions. For v ∈ V , the orbit
vG := {vg : g ∈ G} is called regular if CG(v) = 1 holds or, equivalently, the size of vG is
|G|. The existence of regular orbits has been studied extensively in the literature with many
applications to some important questions of character theory and conjugacy classes of finite
groups.

Suppose that a finite solvable group G acts faithfully, irreducibly and quasi-primitively on
a finite vector space V of dimension d over a finite field of order q and characteristic p. (So
G ≤ GL(V ) = GL(d, q).) Then, as we shall see in Theorem 2.1 below, G has a uniquely
determined characteristic subgroup E which is a direct product of extraspecial pi-groups Ei
for various primes pi. Now each |Ei/Z(Ei)| is an even power of pi, so |E/Z(E)| is a perfect

square, and it is convenient to define e :=
√
|E/Z(E)|.

It is proved in [9, Theorem 3.1] and [10, Theorem 3.1] that, if e = 5, 6, 7 or e ≥ 10 and
e 6= 16, then G always has at least one regular orbit on V . The information on the existence
of a regular orbit has been used by several authors to study a variety of problems in the field
(for example [2, 3, 6, 8, 11, 12]).

If e = 1, then E is trivial and G is a subgroup of the group Γ(qd) of order d(qd− 1), which
will be defined below, but is equal to the normalizer in GL(d, q) of a Singer cycle of order
qd−1, which acts regularly on V \{0}. Note that since |Γ(qd)| > |V |−1 for d ≥ 2, it is clear
that it has no regular orbit. So for e = 1 one cannot expect that G necessarily possesses
a regular orbit. In this case, the group G is metacyclic and thus there are infinitely many
metacyclic primitive linear groups that do not have regular orbits.

There are also other examples for e > 1, when G does not possess a regular orbit. In [14],
some more detailed calculations are carried out in the outstanding cases e = 2, 3, 4, 8, 9, 16.
The main result of [14] implies that there are only finite number of examples in these cases.

Note that we know only a few examples of maximal irreducible primitive solvable sub-
groups of GL(V ) that are not metacyclic and do not possess a regular orbit. In [14], Yang
et al. provide a much smaller list of possible groups without regular orbit in [14, Table 3.4].
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In this paper, with the help of the computer algebra system Magma [1], we are able to
obtain a complete classification for these remaining cases. It appears that this classification
can not only simplify many proofs of the past results, but also have future applications.

By combining the results of our computer calculations with the existing results that we
have just summarized, we prove the following result.

Theorem 1.1. Let G be a solvable group, acting faithfully, irreducibly, and quasi-primitively
on a finite vector space V . Assume also that G is not metacyclic. Then either G has a regular
orbit on V , or (G, V ) is listed in Table 4.1.

2. Notation and Preliminary Results

If V is a finite vector space of dimension d over GF(q), where q is a prime power, we
denote by Γ(qd) = Γ(V ) the semilinear group of V , i.e.,

Γ(qd) = {x 7→ axσ | x ∈ GF(qd), a ∈ GF(qd)×, σ ∈ Gal(GF(qd)/GF(q))}.
As mentioned earlier, this group has a normal cyclic subgroup N of order qd− 1 (a so-called
Singer cycle) consisting of those elements with σ = 1, which acts regularly on V \ {0}, and
Γ(qd)/N is cyclic of order d.

We recall that G is said to act quasi-primitively on V , if all nontrivial normal subgroups of
G act homogeneously on V . In particular, if G acts primitively then it acts quasi-primitively.
We now describe the structure of a finite solvable group G that acts faithfully, irreducibly
and quasi-primitively on an d-dimensional finite vector space V over a finite field F of char-
acteristic p. The following result is from [14, Theorem 2.1].

Theorem 2.1. Suppose that a finite solvable group G acts faithfully, irreducibly and quasi-
primitively on a d-dimensional finite vector space V over a finite field F of characteristic p.
Then every normal abelian subgroup of G is cyclic and G has normal subgroups Z ≤ U ≤
F ≤ A ≤ G and a characteristic subgroup E ≤ F such that,

(1) F = EU is a central product where Z = E ∩ U = Z(E) and CG(F ) ≤ F ;
(2) F/U ∼= E/Z is a direct sum of completely reducible G/F -modules;
(3) There is decomposition E = E1×E2×· · ·×Ek, where Ei is an extraspecial ri-group for

i = 1, . . . , s for some distinct primes ri, and |Ei| = r2ni+1
i for some ni ≥ 1. Denoting

ei = rni
i , we have e = e1 · · · es divides d and gcd(p, e) = 1;

(4) A = CG(U) and G/A . Aut(U), A/F acts faithfully on E/Z;
(5) A/CA(Ei/Zi) . Sp(2ni, ri);
(6) U is cyclic and acts fixed point freely on W where W is an irreducible submodule of

VU ;
(7) |V | = |W |eb for some integer b;
(8) G/A is cyclic and |G : A| | dim(W ). We have G = A when e = d;
(9) Let g ∈ G\A, assume that o(g) = t where t is a prime and let |W | = pa. Then t | a

and we can view the action of g on U as follows: U ≤ F∗
pa and g ∈ Gal(Fpa : Fp).
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[14, Table 3.4] consists of a list of the parameters of all examples of non-metacyclic quasi-
primitive solvable linear groups with d = eab that might not have a regular orbit, and we
reproduce it here (as two tables) for convenience.

Table 2.2. Parameters of examples with d = ea that might not have a regular orbit.

No. e p d a
1 16 3 16 1
2 16 5 16 1
3 9 2 18 2
4 9 7 9 1
5 9 13 9 1
6 9 2 36 4
7 9 19 9 1
8 9 5 18 2
9 8 3 8 1
10 8 5 8 1
11 8 7 8 1
12 8 3 16 2
13 8 11 8 1
14 8 13 8 1
15 8 17 8 1
16 8 19 8 1
17 8 5 16 2
18 8 3 24 3
19 4 3 4 1
20 4 5 4 1
21 4 7 4 1
22 4 3 8 2
23 4 11 4 1
24 4 13 4 1
25 4 17 4 1
26 4 19 4 1

No. e p d a
27 4 23 4 1
28 4 5 8 2
29 4 3 12 3
30 4 29 4 1
31 4 31 4 1
32 4 37 4 1
33 4 41 4 1
34 4 43 4 1
35 4 47 4 1
36 4 7 8 2
37 4 53 4 1
38 4 59 4 1
39 4 61 4 1
40 4 67 4 1
41 4 71 4 1
42 4 73 4 1
43 4 3 16 4
44 4 11 8 2
45 4 5 12 3
46 4 13 8 2
47 4 3 20 5
48 3 2 6 2
49 3 7 3 1
50 3 13 3 1
51 3 2 12 4
52 3 19 3 1

No. e p d a
53 3 5 6 2
54 3 7 6 2
55 3 2 18 6
56 3 11 6 2
57 3 13 6 2
58 3 2 24 8
59 3 17 6 2
60 3 7 9 3
61 3 19 6 2
62 2 3 2 1
63 2 5 2 1
64 2 7 2 1
65 2 3 4 2
66 2 11 2 1
67 2 13 2 1
68 2 17 2 1
69 2 19 2 1
70 2 23 2 1
71 2 5 4 2
72 2 3 6 3
73 2 29 2 1
74 2 7 4 2
75 2 3 8 4
76 2 11 4 2
77 2 5 6 3
78 2 13 4 2

No. e p d a
79 2 3 10 5
80 2 17 4 2
81 2 7 6 3
82 2 19 4 2
83 2 23 4 2
84 2 5 8 4
85 2 3 12 6
86 2 29 4 2
87 2 31 4 2
88 2 11 6 3
89 2 37 4 2
90 2 41 4 2
91 2 43 4 2
92 2 3 14 7
93 2 13 6 3
94 2 47 4 2
95 2 7 8 4
96 2 53 4 2
97 2 5 10 5
98 2 59 4 2
99 2 61 4 2
100 2 67 4 2
101 2 17 6 3
102 2 71 4 2
103 2 73 4 2

Table 2.3. Parameters of examples with b = d
ea
> 1 that might not have a regular orbit

No. e p d a b
104 2 3 4 1 2
105 2 5 4 1 2
106 2 7 4 1 2
107 2 11 4 1 2
108 2 13 4 1 2
109 2 17 4 1 2
110 2 3 8 2 2
111 2 3 6 1 3
112 2 5 6 1 3
113 2 3 8 1 4

No. e p d a b
114 3 7 6 1 2
115 3 2 12 2 2
116 3 2 18 2 3
117 4 3 8 1 2
118 4 5 8 1 2
119 4 7 8 1 2
120 4 11 8 1 2
121 4 3 12 1 3
122 4 3 16 1 4
123 4 3 16 2 2

No. e p d a b
124 8 3 16 1 2
125 8 5 16 1 2
126 8 3 24 1 3
127 9 2 36 2 2
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Note that, although our vector space V was originally defined as being of dimension d over
the field Fq with q a power of p, it is convenient to regard V as being a space of dimension
da over Fp, where q = pa. This allows us to consider G as a subgroup of the larger group
ΓL(d, pa) rather than GL(d, q). Some of the examples listed in Table 4.1 with a > 1 are
not absolutely irreducible, which means that they could also be considered as subgroups of
GL(d/a, pa) (or GL(4, 9) in Line 75).

3. Computations

In this section, we describe how we constructed candidates for groups G with parameters
equal to one of the entries in Tables 2.2 and 2.3 on a computer, and checked in each case
whether there were any such examples without regular orbits. We carried out these compu-
tations in Magma. The results of these computations are tabulated in the next section.

We know from Theorem 2.1 that G has a normal subgroup F , which is a central product
of a subgroup U = Z(F ) and an extraspecial group E of order r2e+1, where |U | divides pa−1
and U acts irreducibly on a subspace W of V of dimension a. Since G is quasi-primitive, U
acts homogeneously on V , and by [7, Lemma 1.10] (applied with M , K and F equal to U ,
Fp and Fpa), we can regard V as a vector space over the field Fpa of order pa, and we have
A = CG(U) ≤ CGL(d,p)(U) ∼= GL(d/a, pa).

This last isomorphism follows from [4, Chapter 3, Theorem 5.4 (iii)] (although the state-
ment assumes that U acts absolutely irreducibly on U , the proof of this ismorphism does
not). Alternatively, note that the containment CGL(d,p)(U) ≤ GL(d/a, pa) is proved in [7,
Lemma 1.10], and GL(d/a, pa) ≤ CGL(d,p)(U) holds because U homogeneous and abelian
implies that the elements of U are scalar matrices as elements of GL(d/a, pa).

Furthermore, G is isomorphic to a subgroup of the normalizer of CGL(d,p)(U) in GL(d, p).
We claim that this normalizer is isomorphic to the group ΓL(d/a, pa) of semilinear maps

Fd/apa → Fd/apa , which has GL(d/a, pa) as a normal subgroup with

ΓL(d/a, pa)/GL(d/a, pa) ∼= Gal(Fpa ,Fp),

which is cyclic of order a. To see this, note first that the elements of ΓL(d/a, pa) induce
linear maps Fdp → Fdp, and the subgroup GL(d/a, pa) corresponds to CGL(d,p)(U), so the
normalizer of CGL(d,p)(U) contains (a group isomorphic to) ΓL(d/a, pa). To see that this
is the full normalizer, consider the conjugation action of an element of the normalizer on
Z ∪{0} ∼= Fpa , where Z := Z(CGL(d,p)(U)). Since this action preserves both the additive and
multiplicative structures of Z ∪ {0}, it induces a field automorphism of Fpa , and the claim
follows. Then, since A = CG(U), the quotient group G/A can be identified with a subgroup
of Gal(Fpa ,Fp).

We shall now summarize some properties of extraspecial and symplectic-type groups and
their representations. Convenient background references for much of this material are [5,
Section 4.6] or [4, Section 5.5].

For a prime r and integer e ≥ 1 there are two isomorphism types of extraspecial r-groups
E of order r2e+1, and they both arise as central products of e extraspecial groups of order r3

([4, Chapter 5, Theorem 5.2] or [5, Proposition 4.6.1]). There are r − 1 equivalence classes
of faithful absolutely irreducible representations in characteristics other than r, and they all
have dimension e and are distinguished by their actions on Z(E) ([4, Chapter 5, Theorem
5.4] or [5, Proposition 4.6.3]). Since Aut(E) acts transitively on the r−1 nontrivial elements
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of Z(E), these r − 1 representations are quasi-equivalent to each other; that is, they are
equivalent under the action of Aut(E).

Assume first that ea = d (or, equivalently, that b = 1). Then, since e is the dimension of
all non-linear absolutely irreducible representations of E in characteristic p 6= r, the group
E must be absolutely irreducible as a subgroup of GL(e, pa) and, for a given isomorphism
type of E, since its faithful absolutely irreducible representations are quasi-equivalent, there
is a unique conjugacy class of subgroups of GL(e, pa) isomorphic to E.

Our methods for the cases when r is odd and even are slightly different, so we consider
them separately. Suppose first that r is odd. We claim that E must have exponent r. The
other isomorphism type of extraspecial group has exponent r2, and its elements of order
r form a characteristic subgroup Er of index r in E with non-cyclic center of order r2 [4,
Chapter 5, Theorem 5.2 (ii)]. So Er has no faithful irreducible representations, but it acts
faithfully on V , so it cannot be acting homogeneously, contradicting the quasi-primitivity of
G.

There is existing functionality in Magma for constructing E as a subgroup of GL(e, pa)
and its normalizer NA in GL(e, pa) (which is not usually a solvable group). The group NA has
the structure Z0r

1+2e.Sp(2e, r) (with |E| = r1+2e), where Z0 := Z(GL(d/a, pa)) is the group
of scalar matrices. (This result is stated in various places, such as [5, Table 4.6.B], but it
seems hard to find a proof in the literature. To see why it is true, note that any automorphism
of E must preserve the associated bilinear form defined by commutators in E modulo scalars,
and an automorphism induced by an element of GL(e, pa) must centralize scalar matrices, so
it preserves the form absolutely, and corresponds to an element of Sp(2e, r). Conversely, any
element of Sp(2e, r) induces an automorphism of E that centralizes Z(E), so it preserves the
equivalence class of the representation defined by E, and is hence induced by an element of
GL(e, pa).) The group E consists of the elements of order dividing r in Or(NA), and so it is
characteristic in NA.

After constructing NA, we embed it in GL(d, p) using the natural embedding GL(e, pa)→
GL(d, p). Then, as a subgroup of GL(d, p), Z0E acts irreducibly with centralizing field Fpa ,
so CGL(d,p)(Z0E) = Z0. Note that the normal subgroup A of the group G that we are
attempting to construct is the intersection of G with NA. (This follows from the fact that A
is the intersection of G with GL(e, pa) under our identification of GL(e, pa) with CGL(d,p)(U).)
So G is a subgroup of N := NGL(d,p)(NA), and the method that we chose to find G involves
computing this group N . To do that, we compute Aut(NA), and then check which outer
automorphisms of NA can be induced by conjugation in GL(d, p). (This uses the fact that
CN(NA) ≤ NA, which follows from CGL(d,p)(Z0E) = Z0 ≤ NA.) This automorphism group
computation was one of the slowest parts of the complete process, and it is possible that
there are faster ways of computing N from NA, but it eventually completed successfully in
all of the examples.

After computing N , we compute its subgroups of increasingly large index, by repeated
application of the MaximalSubgroups command in Magma, using conjugacy testing to ensure
that we only consider one representative of each N -conjugacy class of subgroups. For each
such subgroup, we test whether it is solvable and quasi-primitive. If so, then we test whether
it has regular orbits. If so then we do not need to consider any of its proper subgroups,
because they would also have regular orbits. If not, then we have identified an example
without regular orbits.
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The situation is more complicated when r = 2. In that case, by ([4, Chapter 5, Theorem
5.2 (iii)] or [5, Proposition 4.6.1 (iii)]), the extraspecial groups of order 23 are Q8 and D8,
the dihedral and quaternion groups of order 8, and those of order 22e+1 are: E+, the central
product of e copies of D8; and E−, the central product of e− 1 copies of D8 and one of Q8.
(Note that D8 ∗D8

∼= Q8 ∗Q8.)
It is straightforward to check that the central products D8 ∗C4 and Q8 ∗C4 of D8 and Q8

with a cyclic group of order 4 are isomorphic groups of order 16, and so the central products
E+ ∗C4 and E− ∗C4 are isomorphic groups S of order 22e+2, which are known as 2-groups of
symplectic-type. By [5, Proposition 4.6.3], the faithful absolutely irreducible representations
of E+, E−, and S in characteristic p 6= 2 are quasi-equivalent and have dimension e. Those
of E+ and E− can be written over GF(pa) for any odd prime p and any a ≥ 1, whereas those
of S can be written over GF(pa) if and only if 4 | pa−1; i.e. if and only if either p ≡ 1 mod 4,
or p ≡ 3 mod 4 and a is even.

Suppose first that 4 | pa−1. Since the elements of the C4 central factor of S are represented
by scalar matrices, the normalizer N(S)A of S in GL(e, pa) contains the normalizers of E+

and of E−, and so we can deal with both of these cases together by computing it. The group
N(S)A has the structure Z021+2e.Sp(2e, 2), and S consists of the elements of O2(N(S)A) of
order dividing 4, so S is characteristic in N(S)A. We use the same process as for the case
with r odd but with S in place of E.

When 4 does not divide pa−1, we have E = O2(G)CG, where E can be isomorphic to either
E+ or E−, and we must carry out the computations for these two cases separately. By [5, Ta-
ble 4.6.B], we have NA = NGL(e,pa)(E) ∼= Z021+2e.GO+(2e, 2) and N0 = Z021+2e.GO−(2e, 2)
in the two cases, and we proceed as in the case r odd in both cases.

It remains to consider the case d/(ea) = b > 1. Then, by quasi-primitivity, the group E
acts homogeneously as a subgroup of GL(d, p) and, since it is centralized by U , which acts as
scalar multiplication as a subgroup of GL(d/a, pa), the group E also acts homogeneously as
a subgroup of GL(d/a, pa). So it has b isomorphic absolutely irreducible constituents, each of
dimension e over Fpa . Now, by [4, Theorem 3.5.4], we have CA := CGL(d/a,pa)(E) ∼= GL(b, pa),
and hence also CCA := CGL(d/a,pa)(CA) ∼= GL(e, pa). Now the normalizer in GL(d, p) of
E also normalizes NCCA

(E) ∼= NGL(e,pa)(E), and hence it also normalizes the subgroup
NA := 〈CA, NCCA

(E)〉 (or N(S)A := 〈CA, NCCA
(S)〉 when 4 | pa − 1).

We can computeNCCA
(E) (orNCCA

(S)) as in the case b = 1, and CA is also straightforward
to compute, so we can compute the group NA (or N(S)A), and we use this to construct the
normalizer in GL(d, p) of E and its subgroups in the same way as in the case b = 1.

4. Table of results

Here is a list of those entries in Table 2.2 for which there is at least one example of a
group with no regular orbit. The leftmost column lists the number of the corresponding
row in Table 2.2 or 2.3. In each case we give the number “num gps” of such examples (up
to conjugacy in GL(d, p)), and the order “max |G|” of the largest example. In cases where
r = 2 and 4 does not divide 2a − 1, we have handled the E+ and E− cases separately.

The whole data package about these groups’ structure is long and cannot be written
explicitly in a paper, so it is provided in separate files. All groups are constructed as matrix
groups in suitable fields, and each file corresponds to all the groups in a particular row in
Table 4.1.
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Table 4.1. Parameters of quasi-primitive solvable groups that do not have a regular orbit.

No. e p d a b num gps max |G| Note
1 16 3 16 1 1 12 15925248 E−

3 9 2 18 2 1 40 559872
9 8 3 8 1 1 27 18432 E+

9 8 3 8 1 1 71 165888 E−

10 8 5 8 1 1 22 331776
19 4 3 4 1 1 14 2304 E+

19 4 3 4 1 1 9 640 E−

20 4 5 4 1 1 24 4608
21 4 7 4 1 1 17 6912 E+

22 4 3 8 2 1 72 18432
23 4 11 4 1 1 4 11520 E+

24 4 13 4 1 1 5 13824
25 4 17 4 1 1 4 18432
28 4 5 8 2 1 3 55296
48 3 2 6 2 1 7 1296
49 3 7 3 1 1 4 1296
50 3 13 3 1 1 2 2592
51 3 2 12 4 1 8 12960
52 3 19 3 1 1 1 3888
53 3 5 6 2 1 10 10368
62 2 3 2 1 1 2 48
63 2 5 2 1 1 2 96
64 2 7 2 1 1 2 144
65 2 3 4 2 1 13 384
66 2 11 2 1 1 2 240
67 2 13 2 1 1 2 288
68 2 17 2 1 1 3 384
69 2 19 2 1 1 2 432
71 2 5 4 2 1 16 1152
72 2 3 6 3 1 2 1872
74 2 7 4 2 1 7 2304
75 2 3 8 4 1 10 7680
117 4 3 8 1 2 9 2304
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