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Canonical Correlation Analysis (CCA) has been widely applied to study correlations

between neuroimaging data and behavioral data. Practical use of CCA typically requires

dimensionality reduction with, for example, Principal Components Analysis (PCA),

however, this can result in CCA components that are difficult to interpret. In this

paper, we introduce a Domain-driven Dimension Reduction (DDR) method, reducing the

dimensionality of the original datasets and combining human knowledge of the structure

of the variables studied. We apply the method to the Human Connectome Project S1200

release and compare standard PCA across all variables with DDR applied to individual

classes of variables, finding that DDR-CCA results are more stable and interpretable,

allowing the contribution of each class of variable to be better understood. By carefully

designing the analysis pipeline and cross-validating the results, we offer more insights

into the interpretation of CCA applied to brain-behavior data.

Keywords: resting-state functional connectivity, dimension reduction, Canonical Correlation Analysis (CCA),

Principal Component Analysis (PCA), interpretability analysis

1. INTRODUCTION

Complex, large-scale health projects, such as the Human Connectome Project (HCP) (Van Essen
et al., 2013) and UK Biobank (Sudlow et al., 2015), collect health-related data from cohorts
representative of a broad population that makes the neuroimaging data even more valuable.

With such data, a central goal is to understand the interplay between the brain imaging and
non-brain imaging variables. Canonical Correlation Analysis (CCA) (Hotelling, 1936; Thompson,
2005) is a widely used tool to study such relationships. CCA and closely related technique Partial
Least Squares (PLS), have been applied to many other studies to investigate the links between
neuroimaging data and other modalities (Friman et al., 2001; Sui et al., 2010; Krishnan et al., 2011;
Grellmann et al., 2015; Smith et al., 2015; Whitaker et al., 2016; Vidaurre et al., 2017; Kumar et al.,
2018).

Canonical Correlation Analysis takes in two sets of data and discovers the optimal combination
of each set of variables to maximize correlation. To reduce the impact of noise and to avoid
a degenerate solution when the number of subjects is less than the number of variables, a
dimension reduction is often applied to each dataset and the reduced data are fed into CCA.
Smith et al. (2015) and Kumar et al. (2018) applied Principal Component Analysis (PCA) to both
behavioral/demographic measures, also known as Subject Measures (SM) and resting-state fMRI
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(rfMRI) (Brain Measures; BM) to reduce the dimensionality
of both to 100. However, those works provided no objective
standard on the selection of the dimension to reduce to, and
dimension reduction introduces further interpretability issues
with the CCA results.

In this paper, we propose an alternative method of dimension
reduction: Domain-driven Dimension Reduction (DDR). The
main idea is to divide the data into sub-domains by function,
then reduce the dimension to each of the sub-domains of SM
and BM. Each sub-domain may contain a different number of
variables and require different levels of dimension reduction. To
this end, we apply a two-way Cross-Validation (CV) method,
which estimates the dimensionality automatically by minimizing
Predicted Residual Error Sum of Squares (PRESS). We then
apply CCA to the DDR-reduced SM and BM to study the
correlations between brain and behavior. To further improve
the interpretability, orthogonal factor rotation is applied during
dimension reduction.

We apply this analysis pipeline to the HCP S1200 release
with 1,003 subjects. The performance is assessed by examining
canonical correlations, significant canonical variables, and
canonical loadings (also known as the structural coefficients).
DDR offers us insights into the structure of sub-domains,
especially for SM, and more interpretable CCA results. We
carefully describe and apply a CV framework to assess the
stability of DDR and CCA, by applying a five-fold CV.

For comparison, and to test the stability of the results, we
replicated the analysis pipeline used by Smith et al. (2015) (PCA
followed by CCA) on the larger S1200 data and then compared
its results with DDR CCA.

2. METHODS

2.1. Data
We used N = 1,003 subjects from the HCP S1200
release. For BM, we used the connectivity matrix (partial
correlation) generated from resting-state fMRI data. Details of
data acquisition can be found in the HCP ReferenceManual1 and
in Smith et al. (2013). For non-imaging data, we considered 234
behavioral and demographic measures and referred them as SM.

2.1.1. BM Pre-Processing
To generate BM, we used the pre-processing on rfMRI as
described in Smith et al. (2015), and the pre-processed BM
is available for download. We used the same pre-processing
pipeline to better compare with their results. In brief, Group-
Independent Component Analysis (ICA) was performed to
parcellate the brain using a 200-dimensional ICA parcellation.
Each subject’s rfMRI data was then regressed against this to
obtain one time series per ICA region. A functional connectivity
matrix for each subject was generated by calculating the
Tikhonov-regularized (Tikhonov, 1963) partial correlation for
every pair of the time series. This resulted in a 200 × 200

1https://www.humanconnectome.org/storage/app/media/documentation/s1200/

HCP_S1200_Release_Reference_Manual.pdf

connectivity matrix for every subject, and each of the entries
represents a connectivity edge between two ICA regions.

2.1.2. Sign-Flipping to Maximize SM Alignment
To facilitate interpretation of the variable loadings produced
by CCA, we flipped the signs of some SM variables to provide
a consistent meaning, specifically so that more positive values
corresponded to “better” life measures/outcomes. We first
selected a benchmark variable “income” and flipped variables
that have negative correlations with it; we then examined the
definition of each variable, flipping variables that did not already
correspond to positive life outcomes. Note that flipping the
signs of variables neither change the magnitude of covariance
nor the eigenvalues, therefore does not affect the dimension
reduction and CCA (proofs are shown in Theorem 2 and 3 in
Supplementary Material 2.1). Refer to Supplementary Figure 1
for correlation matrices before and after sign-flipping.

2.1.3. Quality Control and De-Confounding
We removed ill-conditioned SM variables according to three
criteria: if they had more than 50%missing values; if the standard
deviation was 0; if more than 95% of the total entries were
identical values. This left us with 234 SM variables (refer to
Supplementary Material 1 for a full list of SM variables after
quality control).

Both datasets were normalized by rank-based inverse normal
(Blom, 1958) transformation (Beasley et al., 2009) and then
de-confounded. Fifteen confounding variables were carefully
chosen as those that could potentially affect the relationship
between brain and behavior, including age, gender, height,
weight, and rfMRI head movement; and squared values for
some of these variables such as age and BMI (refer to
Supplementary Material 3 for the full list of confounders). De-
confounding was applied identically to each set of imaging and
non-imaging variables, obtained by the residuals from a linear
regression on the confound variables.

2.1.4. Grouping of SM and BM Into Sub-Domains
All 234 SM variables were grouped into 14 sub-domains:
alcohol use, alertness, psychiatric history, tobacco use, drug
use, emotion, cognition, family history, physical health, motor,
personality, sensory, female health and demographics (including
SES); this grouping followed the official HCP variable dictionary
(https://wiki.humanconnectome.org/display/PublicData/HCP+
Data+Dictionary+Public-+Updated+for+the+1200+Subject+
Release). BMwas grouped based on the 200 different ICA regions
mentioned above. Thus, there are 200 BM sub-domains and each
contains 200 brain edges. Each brain edge appears twice, one per
(two) linked ICA regions, but this redundancy is accounted for
in the dimension reduction.

2.2. Domain-Driven Dimension Reduction
Domain-driven Dimension Reduction is a refined application of
Principal Component Analysis (PCA). Instead of reducing the
dimension on the whole data space, SM and BM were grouped
as above. PCA was then applied to each sub-domain in turn. The
Principal Components (PCs) from the sub-domain analysis were
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concatenated to form the dimension-reduced data space. The
dimensionality of the sub-domains are automatically estimated
by minimizing the PRESS using a two-way Cross-Validation
(CV) method (Bro et al., 2008). An overview of the method is
shown in Figure 1, and the illustration of the two-way CV is
shown in Figure 2.

2.2.1. Two-Way CV
The cross-validation for dimension reduction is conducted
variable-wise and subject-wise: a five-fold subject-wise CV is
performed, and within each of the five-folds, a leave-one-
out variable-wise CV is implemented. Dimension estimation
is achieved by calculating PRESS for each of the held-out
predictions [predicting with different dimensionalities, i.e., 1, 2,
3... PC(s)], selecting the dimension with the lowest PRESS as
optimal.

In more detail, for the subject-wise five-fold CV, we split
the data into the held-in set (4/5 of the cohort), Xin and the
held-out set (1/5 of the cohort), Xout . Let P be the number of
total variables in the sub-domain. Then, we apply Singular Value
Decomposition (SVD) to Xin,

Xin = U in6in(V in)T , (1)

whereU in is the left-eigenvectormatrix ofXin, the eigenvectors of
the subject covariance ( 1PX

in(Xin)T); V in is the right-eigenvector

matrix, the eigenvectors of the variable covariance ( 1N (X
in)TXin);

and 6in is the singular value matrix. The PCs of Xin are the
singular-value-scaled left-eigenvectors, which we denote U in

PC =

U in6in, so that Equation (1) becomes

Xin = U in
PC(V

in)T . (2)

Noting that U in
PC = XinV in are the observations in the PC space.

In order to reduce the dimensionality in the PC space to k (k <

P), we can apply the following transformation

U in
k,PC = XinV in

k , (3)

where U in
k,PC

and V in
k

are the first k columns in U in
PC and V in,

respectively.
Then, we can likewise transform the held-out data to

reconstruct the first k held-out PCs with the k-dimensional
held-in principal loadings:

Ũout
k,PC = XoutV in

k . (4)

The lower dimensional reconstruction of the held-out data is thus

X̃out = Ũout
k,PC(V

in
k )T = XoutV in

k (V in
k )T . (5)

We can now calculate the prediction error as the difference
between Xout and X̃out . Iterating this algorithm over all five-folds
gives the subject-wise action of our two-way CV method, and we
get a PRESS of

N∑

i=1

||xouti − x̃outi ||2 =

N∑

i=1

||xouti − xouti V in
k (V in

k )T ||2, (6)

where xi is a row vector and represents the ith subject in the
held-out set.

However, the PRESS in Equation (6) monotonically decreases
as k (the number of PC) increases and so is not suitable for
dimensionality estimation. This is because the reconstruction
of Xout in Equation (6) uses Xout itself. To address this,
we modify the reconstruction of X̃out in Equation (5),
predicting the jth column of Xout using the rest columns
in Xout :

X̃out = Xout
−j [V

in,T
−j,k

]+(V in
k )T , (7)

where Xout
−j is Xout with the jth column removed; [V in,T

−j,k
]+

is the pseudo-inverse of the transpose of V in
−j,k

, where V in
−j,k

takes the first k columns of V in and then removes the jth
row. The pseudo-inverse is required since removing a row
of V in breaks its orthogonality. The jth column in X̃out is
now reconstructed without using the jth column in Xout , and
we denote this column as x̃outj . If we iterate j from 1 to P,

we reconstruct the whole held-out set in turn. This is the
variable-wise action in the two-way CV method. For each of
the held-out in a CV fold, the corresponding PRESS can be
calculated as

P∑

j=1

||xoutj − x̃outj ||, (8)

where xoutj is the jth column in Xout , and x̃outj is as

described above. Finally, the total PRESS for all subjects
is calculated by summing PRESS in Equation (8) over
all CV folds, completing the subject-wise action of
the method.

Finding the dimensionality k with the minimum PRESS over
dimensions completes the method for a given sub-domain.
The reduced datasets for SM and BM are then obtained
by the concatenation of the selected PCs from each of the
sub-domains.

2.3. Evaluating the Stability of DDR
Since DDR is based on CV, different random folds will give
different PRESS values. Therefore, we repeated the two-way CV
for DDR 50 times and took the mode of the estimated dimension
for each sub-domain.

To further test the accuracy/rationality of the dimension
DDR estimates, we compared the results from DDR with
eigen-spectrum and null eigen-spectrum on each of the sub-
domains. The eigen-spectrum provides information on the
variance explained (VE) by each of the eigenvectors. The
null eigen-spectrum is obtained by shuffling the row values
for each column independently in the original matrix, and
calculating the eigen-spectrum of the shuffled matrix. It
shows the amount of “background noise” that exists in the
dataset. When the null eigen-spectrum exceeds the eigen-
spectrum, we can interpret this as the background noise
taking over the information. If the estimated dimension
from DDR falls near where the null eigen-spectrum crosses
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FIGURE 1 | Method overview of DDR. SM and BM are first grouped into sub-domains. PCA is applied to each sub-domain while a two-way CV method (∗ refer to

Figure 2) is used to estimate the dimension. The rotated principal components from all sub-domains are concatenated to form the reduced SM and BM.

the eigen-spectrum, we have convergent evidence for the
dimensionality estimation.

2.4. CCA on Brain Imaging and Behavioral
Data
Canonical Correlation Analysis is a multivariate statistical
approach to infer the relationship between two sets of variables.
It aims to construct latent factors that maximize the correlation
between two sets of data, X and Y , with a common number of
rows and possibly different numbers of columns. For column
vectors A and B, CCA finds two sets of linear combinations
P = XA and Q = YB that are maximally correlated with each
other. P and Q are known as the canonical variables; A and
B are the canonical weights for X and Y , respectively (Borga,
2001). The correlation between P and Q is called the canonical
correlation, R.

To evaluate the importance of variables, we use canonical
loadings, also known as structural coefficients (Borga, 2001;
Egloff et al., 2010), defined by correlating canonical variables with

the observed datasets, in this case, SM (denoted as X) and BM
(denoted as Y):

CLSM = corr(P,X),

CLBM = corr(Q,Y). (9)

Permutation testing is used to test the significance of the
canonical variables.

2.4.1. DDR CCA Pipeline
Since we found that the DDR dimension for BM is still larger than
the number of subjects andmuch larger than the DDR estimation
for SM, we applied PCA to DDR-reduced BM to further reduce
its dimensionality. We reduced the dimension of BM to 100 to
match the method in Smith et al. (2015) and also considered the
same dimension as the DDR-reduced SM.

To further improve the interpretation of these PCs, we applied
Varimax factor rotation (Kaiser, 1958) to the principal loadings
in the sub-domains. The rotated PCs, RCX and RCY , are then
fed into CCA. Notably, orthogonal rotation is an invariant

Frontiers in Neuroscience | www.frontiersin.org 4 June 2022 | Volume 16 | Article 851827

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Liu et al. Brain-Behavior CCA With DDR

FIGURE 2 | Illustration of the five-fold two-way cross-validation (CV). It minimizes PRESS and estimates the dimensionality in an automated fashion. Yellow blocks

represent the training data and light blue blocks represent the test data. A two-way CV includes a subject-way (CV over subject direction) and a variable-way (CV over

variable direction). The prediction error is calculated by the reconstruction error using different numbers of principal components.

transformation on CCA inputs. Therefore, it does not affect CCA
outputs, only improve the interpretation and robustness of the
DDR factors by simplifying the loading structure (Abdi, 2003).

We examined the number of significant pairs of canonical
variables using permutation testing and evaluated the variable
importance by two different measures: canonical loadings for
observed variables, and canonical loadings for DDR factors (CCA
inputs). For the first measure, we calculated the same loadings as
in Equation (9). The second set of loadings offers insights into the
importance of each sub-domain, and are calculated as

CLSM = corr(P,RCX),

CLBM = corr(Q,RCY ). (10)

We have also calculated VE by each of the significant canonical
variables in the original datasets of SM and BM. The R-squared
value was computed for each variable and then averaged.

2.5. Stability Study of CCA
In order to test the stability of the CCA results, we applied a five-
fold CV (Figure 3). For each fold, we tested our model on the
training set, four-fifths of the data (∼800 subjects), and validated
it on the test set, one-fifth of the data (∼200 subjects). The splits
do not break the families, i.e., subjects from the same family will
go into the same group. The detailed procedure of CV is shown
in Algorithm 1.

2.6. Comparison Between PCA and DDR
To assess the performance of DDR in comparison with PCA, we
applied the same analysis pipeline using PCA instead of DDR
on the same datasets. Smith et al. (2015) applied PCA to reduce
the dimensions of SM and BM to both 100. However, our DDR
method automatically reduces the dimension of SM to under
100, and of BM to over 100. In order to make the dimensions
consistent, we apply PCA to match the dimension of the DDR-
reduced SM dataset. For BM, we chose to apply PCA after DDR
to reduce the BM dataset to 100.
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FIGURE 3 | Illustration of five-fold CV in the DDR CCA analysis. We apply DDR (dotted box on the top) to the training set after the split of the data. Within DDR, the

principal loadings are rotated to construct the rotated components (RCs), and the RCs from the training set are fed into CCA. Cross-validated canonical variables and

correlations are obtained by multiplying the training canonical weights with the RCs from the test set.

We compared the VE by the PCs obtained by PCA and DDR,
respectively, in the original SM and BM spaces. Feeding PCA-
reduced datasets and DDR-reduced datasets into CCA separately
to compare their canonical variables, canonical correlations, and
canonical loadings, and the VE by canonical variables in the
original SM and BM spaces. We also applied the same CV
procedure (as shown in Algorithm 1 with the replacement of
PCA with DDR) to compare the stability of PCA CCA with
DDR CCA.

3. RESULTS

3.1. PCA-Based CCA
Table 1 shows VE by the significant canonical variables of
SM and BM and their canonical correlations at 5 sets of
different input dimensions. We notice that the first canonical
variable does not necessarily explain the most variance in
the observed datasets. Interestingly, Table 1 also shows that
if we decrease the dimension(s) of SM and/or BM, the
canonical variables would explain more variance in the observed
dataset(s). For example, by observing the last three rows in
Table 1, the input dimension of BM decreases from 100 to
30. The “VE (%) by BM Canonical Variable” increases for

all significant canonical variables. However, the strength of
canonical correlation decreases as the dimension decreases.

For the rest of the paper, we focus on the 62 dimensional
SM and 100 dimensional BM since 62 is the DDR estimated
dimension for SM and 100 was selected in previous studies
(Smith et al., 2015). There are 4 significant canonical pairs
identified by permutation testing in this setting. The canonical
loadings of SM (Supplementary Figure 2) for these 4 canonical
variables display 4 behavioral/demographic modes. The first set is
mainly loaded on cognition variables; the second set is dominated
by tobacco variables; most of the top loadings in the third set
are alcohol variables; the fourth set is more of mixture with
cognition, emotion, and motor variables.

Note that most of the SM variable loadings have the same sign
(Supplementary Figure 2), and this is in contrast to previous
CCA results with the HCP data. For example, Smith et al. (2015)
found a mode with tobacco use and education measures having
opposing signs, while here, after flipping the signs of the observed
variables, they are now on the same side of the axis (CCAmode 2
in Supplementary Figure 2). While the canonical variable found
by CCA is invariant to sign flips of the variables, the canonical
loadings of course reflect any sign flips (refer to Theorem 3 in
Supplementary Material 2.1).
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Algorithm 1 | Cross-validation procedure for the DDR
CCA analysis

1 Step 1: Split the original SM and BM into five roughly
equal-sized groups without breaking the families, using
four as the training set (Xin, Y in) and the other as the test
set (Xout and Yout).

2 Step 2: Apply DDR to the training set and use the rotated
principal loadings from the training set to construct the

rotated principal components for the test set (R̃C
out
X and

R̃C
out
Y in Figure 3).

3 Step 3: Feed both DDR-reduced training set from SM and

BM (RCin
X and RCin

Y in Figure 3) to CCA to obtain
canonical variables Pin and Qin, canonical weights Ain

and Bin and canonical correlations Rin.
4 Step 4: Construct canonical variables for the test set using

canonical weights from the training set using
Equation (11)

P̃out = XoutAin,

Q̃out = YoutBin. (11)

Step 5: Calculate correlations between P̃in and Q̃in as the
cross-validated canonical correlations R̃in.

5 Step 6: Apply permutation testing to test the number of

significant canonical variables for Pin and Qin, and P̃in

and Q̃in with 10,000 permutations.
6 Step 7: Compute the assessment measurements such as

VE and canonical loadings.
7 Step 8: Go to Step 1 to start the next fold.

3.2. DDR Results
We generated a summary report for each of the 14 sub-domains
to help us understand the structure of each sub-domain (a full list
of reports is attached in Supplementary Material 5).

Two of the panels in the Family History report are shown in
Figure 4 to show as an example. The left panel in Figure 4 shows
the rotated principal loadings, i.e., the variable importance in
generating the latent factors for the sub-domain. We observed
higher interpretability on the rotated loadings: before rotation,

the loadings weremore evenly distributed across the five variables
(Supplementary Figure 3D); after rotation, we can see that
“RC1” (blue) is mainly loaded on the father’s side of the history

and “RC2” (orange) represents the mother’s side (left panel in
Figure 4). Therefore, we used the rotated loadings to summarize
the meaning of the latent factors in the sub-domain, as shown

in Table 2. The dimension of the sub-domains is decided by the
minima of the red line in the right panel in Figure 4, which is
calculated by Equation (8). These DDR estimations also generally
corresponded to where the actual and null eigenspectrum cross
(Supplementary Figures 3A–16).

By investigating the sub-domain structures, we observed
strong stability of the DDR factors, the amount of VE by the
factors in the test set having matched level with the training

set (Supplementary Figures 3B–16). Moreover, we understood
better the composition of the latent factors in each sub-domain.

In total, DDR selected 62 SM factors from the 14 sub-domains.

Different from choosing PCs by a simple cut-off point from
the VE point of view, we can see factors in different domains

TABLE 1 | Summary table for Principal Component Analysis (PCA) Canonical Correlation Analysis (CCA) with 5 different input dimensions of CCA (first column).

CCA input dimensions VE (%) by SM canonical variable VE (%) by BM canonical variable Canonical correlation

SM BM CCA1 CCA2 CCA3 CCA4 CCA1 CCA2 CCA3 CCA4 CCA1 CCA2 CCA3 CCA4

62 100 3.586 3.817 1.622 0.920 0.205 0.203 0.229 0.199 0.674 0.637 0.604 0.588

62 62 3.296 2.333 1.501 1.207 0.233 0.208 0.266 0.298 0.625 0.543 0.531 0.511

30 100 3.943 4.358 2.216 1.482 0.207 0.191 0.221 0.214 0.649 0.603 0.548 0.514

30 62 3.663 3.534 1.840 1.754 0.234 0.231 0.280 0.278 0.596 0.505 0.458 0.446

30 30 2.869 2.384 0.308 0.370 0.466 0.387

The second and third columns show the Variance Explained (VE) by the SM and BM canonical variables in the observed SM and BM datasets for significant canonical pairs, respectively;

the fourth column shows the canonical correlation for the canonical pairs; the last column shows the number of significant canonical pairs obtained by permutation testing.

FIGURE 4 | The left panel shows the rotated principal loadings. Variable name with “(-)” indicates it was sign-flipped; the right panel shows the error curves calculated

by Equation (6) (dotted line) and Equation (8) (red line), with the minimal error circled at the second component. The naive way of calculating PRESS (dotted line) is

monotonically decreasing, while the two-way CV method (red line) offers a minimum point.

Frontiers in Neuroscience | www.frontiersin.org 7 June 2022 | Volume 16 | Article 851827

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Liu et al. Brain-Behavior CCA With DDR

explain the different amount of variances (third column,Table 2).
For example, the first PC (out of 10) in Tobacco Use explains
80.54% variance in the whole sub-domain, and the first PC
(out of 11) in Drug Use explains less than 50%. However,
with only 1 PC in these two sub-domains, they achieved the
lowest prediction errors in the test set. For BM, DDR reduced
the 200 ICA regions/sub-domains from a total dimension of
40,000 to 1,587.

3.3. DDR-Based CCA
Similar to the PCA-based CCA analysis, we applied DDR-
based CCA analysis to different input dimensions of CCA
(Table 3). The same rule in PCA-based CCA was found
here: lower CCA input dimension leads to canonical variables
explaining more variance, whereas the canonical correlations get
weaker. Comparing each setting with results in PCA-based CCA
(Table 1), we found that the number of significant canonical
variables are always one lower than the PCA case.

3.3.1. Canonical Loadings for SM
For 62-dimensional DDR SM and 100-dimensional DDR+PCA
BM, permutation testing identified three significant canonical
pairs. The top 20 canonical loadings (in absolute value) for each
of them are shown in Figure 5. Noticeably, all top 20 loadings for
these three canonical variables are positive after sign-flipping of
the observed variables.

With the help of DDR, we are able to explore the contributions
of CCA inputs directly, by calculating the canonical loadings of
them using Equation (10). The canonical loadings of the inputs
cannot be directly interpreted in PCA-based CCA. However, with
DDR, we are able to interpret not only the latent factors but
also the canonical loadings on those factors (Figure 6). Using the
summarized latent factors in Table 2, we are able to conclude, for
example, in the first set of canonical loadings (the first subplot
in Figure 6), the Language factor (Cognition 4) has the largest
loading. The second and third largest loadings are Cognition 3
and 1, and they are delay discounting factors.

The right set of figures in Figure 6 offers us insight into
the overall contribution of each sub-domain, by the sign of
their contribution: the total length of each blue-red bar pair
is the average R-squared values, with the contribution from
positively-weighted variables plotted above the x-axis, negatively-
weighted plotted below. We notice here the top loadings and
overall loadings are not mono-signed anymore even with the
sign-flipping in effect. Interestingly, the pattern presented in the
first overall canonical loadings (top right, Figure 6) is driven by
people with good cognition andmotor ability, who do not smoke,
but take drugs, have some kind of mental disorder and drink.
The second and third sets are displaying good wellbeing patterns.
In particular, the second set of loadings is dominated by high
SES and no drug use; the third set shows the alignment between
no tobacco use and high SES. All of these patterns cannot be
observed by using PCA after sign-flipping.

3.3.2. Canonical Loadings for BM
Each set of canonical loadings for BM is a 200×200 symmetric
matrix. Each entry represents a CCA connection (edge) between

TABLE 2 | Summary of Subject Measure (SM) sub-domain factors.

Sub-domain factors Factor summary VE % & DDR

estimation

Demographics SES 23.85% (1/7)

Physical health 1 Hematocrit 62.53% (3/8)

Physical health 2 Blood pressure

Physical health 3 BMI (-)

Female health 1 Regular cycle 100% (5/5)

Female health 2 Days since last cycle

Female health 3 Cycle length

Female health 4 Age began menstruation

Female health 5 Using birth control

Family history 1 History of mental health disorder -

Father (-)

77.05%

Family history 2 History of mental health disorder -

Mother (-)

(2/5)

Psychiatry 1 Anxiety (-)

Psychiatry 2 Attention deficit (-)

Psychiatry 3 Thought problems (-)

Psychiatry 4 Aggressive behavior (-)

Psychiatry 5 Anti-social behavior (-) 86.88%

Psychiatry 6 Withdrawn/avoidant behavior (-) (10/44)

Psychiatry 7 Somatic (-)

Psychiatry 8 Intrusive behavior (-)

Psychiatry 9 Depression (-)

Psychiatry 10 Panic/phobia (-)

Sensory 1 Visual acuity (number of errors)

Sensory 2 Visual and auditory acuity (-)

Sensory 3 Taste intensity (-)

Sensory 4 Olfactory ability 90.56%

Sensory 5 Subjective pain experience (-) (7/12)

Sensory 6 Eyesight

Sensory 7 Visual acuity and audition

Drug use All drug use (-) 46.14%

(1/11)

Alcohol use 1 Alcohol abuse and dependence 68.36%

(5/28)

Alcohol use 2 Heavy alcohol consumption

Alcohol use 3 Alcohol consumption (-)

Alcohol use 4 Hard liquor consumption (-)

Alcohol use 5 Wine consumption (-)

Tobacco use Smokes tobacco (-) 80.54%

(1/10)

Alertness Sleep quality 35.28% (1/9)

Cognition 1 Delay discounting (small amount)

Cognition 2 Delay discounting (large amount)

Cognition 3 Delay discounting (short term)

Cognition 4 Language

Cognition 5 Fluid intelligence

Cognition 6 Sustained attention (specificity)

Cognition 7 Sustained attention (sensitivity) 85.01%

Cognition 8 Executive function - set shifting (14/44)

Cognition 9 Visuospatial processing

Cognition 10 Executive function - inhibition (Flanker)

(Continued)
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TABLE 2 | Continued

Sub-domain factors Factor summary VE % & DDR

estimation

Cognition 11 Working memory

Cognition 12 Processing speed

Cognition 13 Visual episodic memory

Cognition 14 Verbal episodic memory

Emotion 1 Social support

Emotion 2 Negative affect (angry, fearful, sad)

Emotion 3 Positive affect

Emotion 4 Aggressive behavior 69.96%

Emotion 5 Emotion recognition (fear and sad) (8/23)

Emotion 6 Emotion recognition (anger against

fear)

Emotion 7 Emotion recognition (neutral against

sad)

Emotion 8 Emotion recognition (fast response

time)

Motor 1 Endurance 86.84%

Motor 2 Strength (3/7)

Motor 3 Dexterity

Personality N against ACE 39.70% (1/5)

The factors are orthogonally rotated principal components and ordered by R-squared

values in the original sub-domain. The second column shows the factor names

summarized from sub-domain reports Supplementary Figures 3E–16E. The third

column shows the VE by the dimension reduced sub-domain in the original sub-domain.

The numbers in brackets are the two-way CV estimated dimension vs. the total number

of variables in the sub-domain. Personality contains the Big Five personality traits:

neuroticism (N), agreeableness (A), extraversion (E), conscientiousness (C), openness to

experience (O).

two ICA regions. We first map this loading matrix with the
signs of the group mean correlations between the ICA regions,
i.e., if two ICA regions were negatively correlated at the
resting-state, it would decrease the positive CCA strength but
enhance the negative CCA strength. Due to the difficulty of
interpreting each of these 19,900 (200 ∗ 199/2) edges, we came
up with the following summary statistics. Averaging the top
20 (10%) positive and negative modulated canonical loadings
for each ICA region (in each column/row) as the positive
and negative CCA strength, respectively. They are shown in
Figure 7.

The CCA strengths for CCA 12 illustrate a weak contrast
between language, sentences, semantic areas (positive strength)
against premotor, motor, and primary areas (negative strength);
positive and negative strengths for CCA 23 are much less
distinguishable, both overlapping with parietal and intraparietal
which are arguably linked to working memory and default
mode network. The positive CCA strength maps for CCA 34

overlaps considerably with CCA 2. The positive map shops weak

2Positive map: http://neurosynth.org/decode/?neurovault=108956; negative map:

http://neurosynth.org/decode/?neurovault=108957.
3Positive map: http://neurosynth.org/decode/?neurovault=108976; negative map:

http://neurosynth.org/decode/?neurovault=108977.
4Positive map: http://neurosynth.org/decode/?neurovault=108978; negative map:

http://neurosynth.org/decode/?neurovault=108979.

connection with the default mode network whereas the negative
map activates in occipital and pre-motor areas.

Combining results from both SM and BM sides, CCA mode
1 reveals an interesting pattern: language and comprehension-
related brain areas associate positively with no tobacco use,
no psychiatric illnesses, better alertness and cognitive ability,
and negatively with drug use. Whereas drug use is positively
correlated with the motor areas in the brain.

3.4. Stability of DDR-Based CCA
We applied five-fold CV to DDR CCA with 62-dimensional
DDR SM and 100-dimensional DDR+PCA BM. We also ran
permutation testing on the training and cross-validated sets for
10,000 simulations to get significant canonical pairs. Permutation
testing resulted in mostly 2 significant canonical pairs on the
training sets, and ranged from 0 to 4 on the CV sets, with 0 or
1 being the common numbers.

In general, for canonical correlation, as the sample size gets
larger, the correlation gets weaker. The first canonical correlation
is 0.632 for 1,003 subjects, and 0.662 on average for four-fifths
of those subjects (Table 4). This also applies to the number of
significant CCA pairs permutation test detects. With the HCP
500 release, only 1 significant pair was detected (Smith et al.,
2015); we replicated the study with the HCP 900 release and
found 2 pairs; In this study, 3 pairs were discovered using the
whole cohort. However in CV, the training set consists four-fifth
of the subjects (the same amount as in the 900 release), and
2 is the most common significant number [with the permuted
mean canonical correlation being around 0.6, and standard
deviation being around 0.01 (Table 4)], which is consistent with
the previous finding. Hence, we are going to examine further the
results on the 2 significant pairs of training sets in CV.

We have selected the top 20 SM canonical loadings in every
fold and took the ones that occurred at least two times out
of the five-folds CV for the 2 significant canonical variables.
Stability of the first and second sets of SM canonical loadings on
the observed SM data are shown in Supplementary Figure 17.
Language variables turn out to be the most stable and heavily
weighted in the first set, appearing on the top in every fold,
and most of the variables in the first set in CV appeared in
the first canonical loadings for the whole cohort. The second
set of canonical loadings turns out to be less stable than the
first one with the most occurrence being 3 out of 5. The
second set of canonical loadings in Supplementary Figure 17
looks like a combination of the second and third sets in the
whole-cohort analysis.

We focus on the stability of SM canonical loadings on
the CCA input (Figure 8). The top two most stable latent
factors are the Language factor (Cognition 4) and Delay
Discounting (Cognition 3), and they are the top two in the
one-off analysis (Figure 6). Similar to the canonical loadings
on the observed data, the second loadings here are combined
from the second and third loadings in the whole-cohort
analysis. Comparing the stability of the canonical loadings
on CCA input (Figure 6) with the canonical loadings on
observed variables (Supplementary Figure 17), there is an
improvement from the occurrence frequency point of view
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TABLE 3 | Summary table for DDR CCA.

CCA input dimensions VE % by SM canonical variable VE % by BM canonical variable Canonical correlation

SM BM CCA1 CCA2 CCA3 CCA1 CCA2 CCA3 CCA1 CCA2 CCA3

62 100 2.629 1.727 1.698 0.202 0.183 0.211 0.632 0.582 0.574

62 62 2.318 1.386 2.361 0.203 0.302 0.271 0.555 0.519 0.495

30 100 3.323 3.928 1.737 0.194 0.181 0.267 0.586 0.541 0.503

30 62 2.776 2.867 1.290 0.306 0.260 0.244 0.475 0.445 0.440

30 30 2.716 0.376 0.419

The first column shows the dimensions of SM and BM as CCA inputs; the second and third columns represent the VE by the SM and BM canonical variables in the observed SM and

BM set for significant canonical pairs, respectively; the last column shows the canonical correlation for the canonical pairs.

and in the variance of the canonical loadings across different
folds. Particularly for the second set of canonical loadings,
loadings on the observed variables have the highest occurrence
of 3, whereas 5 on the CCA input. The only factor DDR
chose in Demographics and Drug Use appeared in every
single fold with high and stable canonical loadings, which we
cannot observe from the loadings on the observed variables.
Moreover, similar to the one-off analysis on the whole
cohort, the stability of canonical loadings on the CCA input
presents the contrast of the relationship again. Psychiatry,
Drug, and Alcohol factors have opposite contributions to
Cognition and Motor ones in the first set of canonical loadings
(refer to Supplementary Figure 18 for the stability on BM
canonical loadings).

4. DISCUSSION

In this paper, we carefully replicated the study by Smith
et al. (2015) with a modified analysis pipeline for the HCP
S1200 release. Comparing with the arbitrary choice of 100-
dimension PCA in that work, we proposed a more automated
way of estimating the dimensionality of the data, particularly for
the function-specific sub-domains of the SM and independent
regions of BM. It is often quite challenging to interpret the results
of Canonical Correlation Analysis (CCA) applied to behavioral
and brain imaging data, e.g., the canonical variables, canonical
loadings, canonical correlations, etc. The biggest motivation
for proposing DDR is to improve the interpretability of these
results.

4.1. Sign-Flipping and De-Confounding
Sign-flipping all variables to align with positive life outcomes
produced modes that were consistent with Smith et al. (2015),
however, when plotted, the results appear different due to sign-
flipping. In particular, the canonical loading of variables, like
the Picture Vocabulary Test, Oral Reading Recognition Test,
Fluid Intelligence (correct response), now shares the same sign
as tobacco and alcohol measures (Supplementary Figure 2 and
Figure 5).

Aside from sign-flipping, differences from previous HCP
results may arise, in part, from the different variable sets used, as
this work considered a wider range of variables. Other differences

included a slightly different set of confounders, with this analysis
using racial factors, release versions, age, and gender as additional
confounders.

4.2. Comparing DDR With PCA
By grouping the variables of SM into sub-domains based on
their functions, we are able to interpret the canonical loadings
of the inputs of CCA as shown in Figure 6. This would not
be straightforward when using principal components of the
whole data space as inputs. By doing so, we have also saved
the effort of manually selecting relevant variables that feed
into the analysis. We believe that the dimension estimating
algorithm we applied minimizes the noise in each of the sub-
domains, therefore, achieves the same goal of picking important
information manually from each functional domain. Although,
the DDR-reduced space would explain less variance than the
same dimensional PCA-reduced space as PCA is designed to
maximize variances; DDR focuses more on the structure within
variables that share the same functionality, making sure each
functional domain has a representative number of components
feeding into CCA.

Both PCA and DDR have their own advantages and
disadvantages. Using data that is reduced by PCA as inputs, the
canonical correlations are higher than using DDR (Tables 1, 3).
Permutation testing gives more significant canonical variables
for PCA and those explain slightly higher variance in the
original datasets. This is due to the fact that PCA-reduced
sub-space is still orthogonal, whereas DDR-reduced sub-space
is not. This allows PCA to capture more variance in the
observed dataset than DDR (with the same dimensionality).
However, DDR saves the effort of selecting relevant variables
manually and it automatically estimates the dimensionality.
One of the largest drawbacks of PCA is that the results are
not as interpretable as DDR. With DDR, we could track the
contribution of each sub-domain and directly interpret the
canonical loadings of CCA inputs which cannot be easily
interpreted in the PCA case. Moreover, these loadings are not
subject to the signs of the observed variables. We applied
the same stability analysis to canonical loadings on the DDR
factors (CCA inputs) and found higher stability than the
loadings on the observed variables (Supplementary Figure 17
and Figure 8).

Frontiers in Neuroscience | www.frontiersin.org 10 June 2022 | Volume 16 | Article 851827

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Liu et al. Brain-Behavior CCA With DDR

FIGURE 5 | Top 20 SM canonical loadings for 3 significant canonical variables. Variable name with “-” sign shows that it was flipped in the original dataset. Canonical

loadings of CCA 1 are very similar to the first set of PCA CCA, heavily cognition dominated; the second set is mixed with cognition, drug use, etc.; The third set is

combination of tobacco use and cognition variables.
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FIGURE 6 | SM canonical loadings on the CCA input for 3 significant canonical variables. The left set of figures shows top 20 loadings for 3 significant canonical

variables, respectively. One can combine with Table 2 to better understand the factors on the x-axis. The right set of figures show the mean of all positive loadings

(red bars) and the mean of all negative loadings (blue bars) within each sub-domain for the 3 significant canonical variables.

4.3. What We Learn From CCA
In general, we have found that with a larger sample size, CCA
tends to find weaker canonical correlations (Tables 1, 3). This is
consistent with previous work that showed canonical correlation
tends to have a higher bias with a smaller sample size (Lee,
2007). When we try to interpret canonical correlation using
small samples, we should be extremely cautious and depend
on out of sample validation to obtain unbiased estimates of
canonical correlation.

Additionally, canonical correlations get weaker if we use
lower dimensional data as inputs. This is explained by higher
dimensional data having greater flexibility to maximize the
correlation. We observe that canonical variables constructed
by lower dimensional data actually have increased average VE
in the observed datasets (Tables 1, 3). Further analysis shows
that the amount of VE in the original dataset has a non-linear
behavior against the CCA input dimension, and it peaks at
around dimension 30 in this study.

Further, we found that the mean, median, and 90th
percentile of the distribution of canonical loadings also
reduced with increased CCA input dimension. Hence, we
postulate that higher dimensional inputs may overfit and

produce canonical variables that are less related to the
original variables.

Since CCA maximizes the correlation between two sets
of data rather than the variance canonical variables explain
in their original datasets, it is important to be aware that
VE can be an informative measure, however, cannot become
the sole measure used to assess CCA performance. Other
measures should be considered such as canonical loadings and
canonical correlations.

4.4. Interpretation of CCA Loadings
Variable importance is always a major challenge in interpreting
CCA results. The canonical weights are the most direct
measures of the importance of CCA inputs. However, they
are sensitive to the inputs: small perturbation in inputs can
lead to significant change in canonical weights, thus not ideal
for variable importance evaluation (Bro et al., 2008; Gittins,
2012). Different studies (Thorndike and Weiss, 1973; Bro et al.,
2008) have suggested using structural coefficients which are
also known as canonical loadings to measure the variable
importance. In this study, we have shown that it is a stable
measurement with the canonical loadings on DDR factors
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FIGURE 7 | Positive and negative CCA strengths on the brain surface (left) and volume (right) for the 3 significant canonical variables. The visualization is cut by

80%. Positive (red maps) and negative (blue maps) CCA strengths are generated by mapping the canonical loading with the sign of population mean correlation

between each pair of ICA regions, then averaging the top 20 positive and negative modulated loadings, respectively.

being more stable than on observed variables (Figure 8 and
Supplementary Figure 17).

Notably, principal components and canonical variables
are sign-invariant (proofs shown in Theorems 2 and 3 in
Supplementary Material 2.1. Simply flipping the column sign
of the inputs of PCA/CCA should not change the principal
components/canonical variables. However, this would change
the sign of the corresponding canonical loadings since they
are just correlations between canonical variables and the
CCA inputs. One good example is that after we flipped the
signs of the observed variables, the top canonical loadings
all have the same signs in Figure 5. The sign contrast,
for example, between Life satisfaction and Positive test for
THC (cannabis) that was exhibited in Smith et al. (2015)
disappeared (These two variables are “LifeSatisf_Unadj” and

TABLE 4 | Five-fold CV on 62 dimensional SM and 100 dimensional BM in DDR

CCA analysis.

CCA 1 CCA 2 CCA 3

Mean VE (%) in held-in SM set

(std)

2.34 (0.50) 2.13 (0.85) 1.95 (0.84)

Mean VE (%) in held-in BM set

(std)

0.23 (0.03) 0.22 (0.03) 0.22 (0.02)

Mean VE (%) in CV SM set (std) 2.80 (0.73) 2.60 (0.85) 2.37 (0.57)

Mean VE (%) in CV BM set (std) 0.63 (0.05) 0.65 (0.09) 0.65 (0.06)

Mean canonical correlation for

held-in set (std)

0.662 (0.011) 0.639 (0.016) 0.611 (0.008)

Mean canonical correlation for

CV set (std)

0.228 (0.037) 0.108 (0.057) 0.174 (0.039)

Mean VE and canonical correlations are shown for the first 3 pairs of canonical variables

with standard deviation (std) in brackets.
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FIGURE 8 | Stability of SM canonical loadings on CCA input. The bar plot shows the occurrence frequency in CV out of the five-folds. Variables are chosen by

selecting the top 20 mostly weighted ones in each fold. The ones that appeared at least two times are shown above. The right axis shows the mean and the SD over

all occurred loadings. Left and right plots are the canonical loadings for the first and second canonical variables, respectively.

“THC”, respectively, in Figure 5 and variable “THC” was
sign-flipped). Therefore, one should not interpret the absolute
sign of canonical loadings as the positive/negative contribution
of the variable. We should interpret the loadings from the
variable importance point of view, and take into account the
picture on the other side, in our case, linking SM and BM
canonical loadings.

Whereas DDR has shown superior ability in improving the
understating of SM in brain-behavior CCA, due to the limit of the
sample size, we had to accommodate the BM interpretation using
an extra PCA step. This is the main limitation to this analysis. In
future work, this extra PCA step can be saved by using a larger
dataset such as the UK Biobank.

Interpretation of latent factor models like CCA still remains
challenging. Researchers often need to trade between model
performance and interpretability. However, in the areas of
medical/public health research, being able to interpret the
results of any statistical/machine learning model is of vital
importance. The DDR method proposed here tries to combine
prior knowledge on the data collected with mathematical models,
to improve the understanding of the intermediate and final
results of a CCA pipeline, at the same time, reducing the arbitrary
choices researchers have to make and increasing analysis
automation. In order to understand totally the mechanism
between brain and behavior, and fully interpret the results of all
different kinds of latent factor models, much additional research
across disciplines is still required.
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