
warwick.ac.uk/lib-publications 

Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 

Persistent WRAP URL: 
http://wrap.warwick.ac.uk/170614 

How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 

Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  

Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 

Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 

Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/159742
mailto:wrap@warwick.ac.uk


Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)
16-18 November 2022, Maldives

Testing ground-truth errors in an automotive dataset
for a DNN-based object detector

Boda Li§
WMG

University of Warwick
Coventry, United Kingdom

boda.li.1@warwick.ac.uk

Gabriele Baris§

Institute of Mechanical Intelligence
Sant’Anna School of Advanced Studies

Pisa, Italy
gabriele.baris@santannapisa.it

Pak Hung Chan
WMG

University of Warwick
Coventry, United Kingdom

pak.chan.1@warwick.ac.uk

Anima Rahman
WMG

University of Warwick
Coventry, United Kingdom

anima.rahman@warwick.ac.uk

Valentina Donzella
WMG

University of Warwick
Coventry, United Kingdom

v.donzella@warwick.ac.uk

Abstract—Given the promising advances in the field of Assisted
and Automated Driving, it is expected that the roads of the future
will be populated by vehicles driven by computers, partially or
fully replacing human drivers. In this scenario, the first stage of
the perception-decision-actuation pipeline will likely rely on Deep
Neural Networks for understanding the scene around the vehicle.
Typical tasks for Deep Neural Networks are object detection and
instance segmentation, tasks relying on supervised learning and
annotated datasets. As one can imagine, the quality of the labelled
dataset strongly affects the performance of the network, and this
aspect is investigated in this paper. Annotation quality should
be a primary concern in safety-critical tasks, such as Assisted
and Automated Driving. This work addresses and classifies
some of the mistakes found in a popular automotive dataset.
Moreover, some experiments with a Deep Neural Network model
were performed to test the effect of these mistakes on network
predictions. A set of criteria was established to support the
relabelling of the testing dataset which was compared to the
original dataset.

Index Terms—automated driving, Deep Neural Network,
dataset, environment perception, ground truth

I. INTRODUCTION

In recent years, an increasing number of vehicles has
been equipped with Advanced Driving Assistance Systems
(ADASs) such as adaptive cruise control, lane keeping assist,
parking assist, etc. The Society of Automotive Engineers
(SAE) has defined six levels of driving automation to classify
the autonomy a vehicle is capable of [1]. In the lower three
levels (L0 to L2), the driver is in charge of most of the dynamic
driving tasks, with an increasing number of tasks that can
be delegated to the ADAS functionalities. In the higher three
levels (L3 to L5), related to Automated Vehicles (AVs), the
human driver is relieved by most of the driving tasks, including

§Authors contributed equally.

monitoring the environment, and L5 is full automation with
unlimited Operational Design Domain (ODD).

Many ADAS and AV functionalities (i.e., lane center-
ing, traffic sign recognition, etc.) strongly rely on cameras,
and Deep Neural Networks (DNNs) using camera data are
a promising solution (in terms of performance, flexibility,
robustness, etc.) to implement these functionalities. DNNs
are becoming more popular and pervasive every year, with
current applications in numerous fields, from biology and
medicine, to manufacturing, from automation to robotics and
intelligent vehicles and drones, from structural monitoring to
surveillance.

The basic idea behind neural networks is that they learn
how to solve a problem using some training inputs, being
then able to generalise on unseen data. A first categorisation
of DNNs can be carried out in terms of how they learn,
leading to supervised vs. unsupervised learning. In both cases,
once the DNN has completed its learning, the weights of
the neurons in the layers are frozen and the network can be
deployed to evaluate unseen data. In unsupervised learning, the
neural network is typically provided with a certain amount of
unlabelled input data and it finds particular relationships and
patterns in the data. Tasks such as clustering and dimensional-
ity reduction (compression) belong to this category [4], [5]. On
the other hand, in supervised learning, the network is provided
with both input data and target values (i.e. expected outputs
of the network). Tasks that fall into this category are, for
example, image classification and segmentation [6], [7]. Thus,
the main difference between supervised and unsupervised
learning basically resides in the way in which the training
data, namely the dataset, are prepared. While for unsupervised
learning the collected data might need only some preliminary
cleaning, sizing and pre-processing, in the case of supervised
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Fig. 1. Image from the KITTI dataset [2] with the ground truth bounding boxes, that can be used for DNN supervised learning; the object label is above the
bounding box, the box colour indicates the the amount of occlusion.

Fig. 2. Example of frames from a sequence in the KITTI MoSeg dataset [3]: the vehicle highlighted by the cyan bounding box has a box even when
completely covered by the car moving on the road. Ground truth bounding boxes are in magenta.

learning, the dataset needs to undergo through a labelling (or
annotation) step in which objects or areas of interest in the
input data are recognised and associated with a class or a
specific output, as shown in Fig. 1.

The annotation process is a vital part in the preparation
of any dataset for supervised learning. The quality of the
annotations strongly affects the performance of the network.
This paper focuses on the quality of the bounding boxes in
annotated dataset for 2D object detection using camera data.
Moreover the considerations and conclusions drawn in this
paper can be easily expanded to 2D and 3D object detection
based on different sensors, such as LiDAR [8] and RADAR
[9]. To understand the importance of labels, one can imagine to
work on a image classification task with vehicles. The dataset
contains the images of several types of vehicles (e.g. cars,
vans, lorries, etc.). Let’s assume that for the car class, the
labels are not correct half of the times, namely half of the
cars in the dataset has the label car and the other half has
the van one. During training, the network would hardly learn
the correct mapping between inputs and targets, since similar
input features would be associated to two different classes.
Errors in the labels may be of different types, and they will
be described in this paper.

Depending on the use case, the criteria for annotating the
dataset need to be properly defined. This paper is focused on
the task of real-time 2D object detection for Automated Driv-

ing based on camera data. In this field, safety and reliability
are a primary concern, thus an accurately annotated dataset
is a crucial aspect to guarantee DNN best performance. The
presented work shows the relationship between ground truth
quality and DNN performance. A novel set of relabelling
criteria is proposed, to reproducibly and consistently label
automotive datasets.

This paper is structured as follows: Sec. II provides some
background about dataset labelling in general and the dataset
we analysed in this paper; Sec. III provides the details about
the design methodology for the experiments; finally, Sec. IV
provides an analysis of the experimental results.

II. BACKGROUND

As mentioned in the previous section, supervised learning is
based on the exploitation of big curated and labelled datasets.
The quality of datasets (in terms of variability in the dataset,
quantity of data, coverage of unexpected cases, etc.) and of
bounding boxes and labels (in terms of correct labelling of
objects, sizes of bounding boxes, correct classes, etc.) is key
for the process of hyperparameter tuning (e.g. learning rate,
batch size, solver, etc.). This tuning enables the creation of
a trained DNN version with optimised performance for the
specific dataset. This version will be then deployed in the
specific system to be used to infer on new, unseen data, e.g. in
our case we assume that a trained and optimised DNN version



(a) (b) (c) (d) (e)

Fig. 3. Examples of the errors in the analysed dataset: (a) false detection; (b) fully occluded vehicle behind the white lorry; (c) missing vehicle’s bounding
box; (d) partially occluded vehicle; (e) wrong sized bounding box.

TABLE I
ERRORS IDENTIFIED FROM A PRELIMINARY VISUAL INSPECTION OF BOUNDING BOXES IN KITTI MOSEG TESTING DATASET

Error Type Count Description
Missing 87 An object is present in the image but is not labelled
Incorrect 100 The ground truth bounding box does not highlight a object
Bad Fit 14 The bounding box fit is not appropriate for the identified object
Occlusion 550 The bounding box shows the bounds for the predicted object size, even if the object is occluded

will be deployed in automated vehicles to infer in real-time
based on the video data stream produced by the cameras.

A. Errors and Bias in DNN models

The importance of understanding and diagnosing errors in
computer vision and object detectors has been well known, and
it has been early discussed in works such as the one presented
by Hoiem et al. in 2012 [10]. This early work divided the
false positives and false negatives identified by different object
detectors and clearly identified that a component in the overall
number of errors is due to confusion with background or
unlabeled objects. The authors also investigated aspects of
truncation, occlusion, deformation and object size. However,
the considered models are outdated, and also the study is more
focused on understanding the errors due to the model than how
they are related not only to the model structure, but also to
the quality of bounding boxes and labeled ground truth in the
datasets.

Recent studies have analysed in more details how DNNs
are learning, generalising, and how the extraction of different
types of features has an impact on performance [11]. Some
common techniques to enhance the out-of-distribution perfor-
mance of DNNs (i.e. the DNN ability to generalise even when
inferring on data with distribution differing from the original
distribution of the training set) are based on forcing the model
to learn from higher-level features, however these networks
might be prone to annotation artifacts. In fact, a recent work
on natural language inference has studied the relationship
between annotation artefacts and natural language prediction
[12]. This work highlights that there are several datasets used
for Natural Language Inference containing annotation artifacts,
and these artifacts are unavoidably related to biases in the
models. However, the field of annotation artefacts needs to be

explored in depth in the case of image recognition tasks, such
as 2D object detection. There have been some works focusing
on the bias introduced by incomplete and not sufficient data,
raising concerns on the ethical implications of using biased
networks and more importantly on their safety (e.g. a network
trained to neglect truncated cars can mis-detect an immediate
danger) [13].

B. Challenges related to datasets used for Assisted and Auto-
mated Driving

A study has focused in understating the relationship between
dataset bias in combination with neutral or biased learning
styles. It presents some very interesting results related to
automated vehicles, considering, for example, the importance
of learning using data from different cities, countries, etc. [14].
Building on these previous works, a very recent project has
analysed the bias introduced by not considering environmental
variability in the training dataset, comparing some tradi-
tional bench-marking datasets, i.e. the Microsoft COCO and
PASCAL VOC datasets [15], [16], with the DAWN dataset,
which is an automotive labelled dataset covering the main
road stakeholders (i.e. car, motorbikes, vans, etc.) in adverse
weather conditions (snow, fog, rain and sandstorm) [17], [18].
Interestingly, the paper demonstrates that several DNN based
detectors are affected by a ‘good weather bias’ and perform
poorly on data with variable adverse weather; moreover the
paper proposed a new training technique to reduce this bias.
Despite this interest in DNN bias due to data and models, to
the best of our knowledge there are no papers exploring errors
in the labels of the most widely used datasets, not even of
bench-marking automotive datasets (e.g. KITTI, A2D2, panda,
etc. [2], [3], [19], [20]), where errors in labels can affect the
safety of the driving functions.



In particular, as a part of this work we have investigated
a subpart of the KITTI dataset, which is widely used for
bench-marking machine learning and DNNs for assisted and
automated driving tasks. We have selected the KITTI MoSeg
part of the full dataset, since it has temporally correlated
frames and can be useful when investigating video data
compression [21], [22]. The labels of the MoSeg dataset have
been generated automatically using a simultaneous motion
and vehicle detection DNN architecture. If, from one side,
this automation means that a DNN can reduce the man-
hours to carry out the labelling task, on the other side, as
demonstrated in this work, there are several errors, of at
least 4 different types (as described in the following section).
One clear example of errors related to the labelling network
architecture is legacy labels related to motion estimation, e.g. a
detected vehicle in sequential frames is still detected (i.e. it has
a ground truth bounding box) even if another object/vehicle
appears in the frames obstructing the initially detected vehicle,
as shown in Fig. 2.

III. METHODOLOGY

The ground truth bounding boxes from the KITTI MoSeg
dataset were investigated to understand how incorrectly la-
belled data could affect the performance of neural networks.
The KITTI MoSeg dataset contains about 1300 training images
and 349 testing images [2], [3]. Compared to the original
KITTI dataset, the images have been further processed to
provide information such as optical flow. This dataset provides
bounding box labels for car and van across sequential
images from 6 videos in the training set and 2 videos in the
testing set from the original KITTI dataset.

TABLE II
NUMBER OF ORIGINAL BOUNDING BOXES VS. ADDED, REMOVED, OR

RESIZED ONES WHEN USING THE PROPOSED CRITERIA, SEC. III.A.

Car Van Total
Original Number of Bounding Boxes 2337 311 2648
Added Bounding Boxes 292 75 367
Removed Bounding Boxes 515 14 529
Resized Bounding Boxes 1974 491 2465
Final Total of Bounding Boxes 1987 499 2486

A. Testing set inspection

After some preliminary activities based on DNNs and the
KITTI MoSeg dataset [21], [22], a thorough inspection of the
349 frames in the test dataset was carried out. The test dataset
was visualised by overlaying the ground truth bounding boxes
onto their respective images. Each overlaid image was then
visually inspected to roughly count and categorise any evident
errors in the bounding boxes (BBs). Based on the identified
mistakes in the dataset BBs, the errors were attributed to four
different classes, as described in Table. I: (i) missing; (ii)
incorrect; (iii) bad fit; (iv) occlusion. Some of the identified
errors are shown in Fig. 3.

B. Initial criteria for labelling

A set of criteria, derived from the initial inspection, was
agreed upon to re-label the MoSeg testing dataset and to
reduce the number of incorrect ground truth BBs. The aim
was to decrease the impact of incorrect ground truth BBs on
the performance of a neural network. These criteria were also
chosen based on the specific DNN task that we considered
in this work, i.e. detection of vehicles from an assisted
and automated driving perspective. Namely, our relabelling
criteria were:

1) the bounding box shall be no less than 20 pixels in either
the width or the height;

2) the bounding box shall contain all visible parts of the
target object, with an error lower than 3 pixels;

3) the size of the bounding box shall not include any
estimated or occluded parts of the target object unless
criteria 2 is applicable;

4) at least more than half of one face of the target object
(i.e. front, rear, left, right) must be visible to be eligible
to be labelled.

C. Perception task

As previously mentioned, the bounding box annotation
criteria should be designed to be specific for the use case.
The KITTI dataset is widely used to support the development
and testing of assisted and automated driving functions. These
functions are implemented via the pipeline of sensing, perceiv-
ing, planning and control. The selected dataset can replace
the data produced by the sensing step and processed by the
perception step. In this work, a deep neural network based
object detector, Faster R-CNN [23] with ResNet50 [24] as the
backbone, was chosen to perform the perception step. The
selected Faster R-CNN was already pre-trained on COCO
train2017 [25] and it was fine-tuned for this study with the
training set of the KITTI MoSeg dataset. It is worth noting
that an error analysis on the MoSeg training set has not been
carried out, but randomly sampling this part of MoSeg, errors
similar to the ones identified in the testing set were observed.
As a part of this study, the fine tuned DNN, thereafter named
the selected Faster R-CNN, has been used to generate the
prediction for the original dataset and the re-labeled one. The
traditional performance metrics (mean Average Precision and
Recall, mAP50 and mAR10 respectively [26]) have been used
to evaluate the quality of the detections.

TABLE III
MOSEG AND BOSEG TESTING SETS EVALUATED USING THE SELECTED
FASTER R-CNN; LAST 2 ROWS ARE THE RESULTS WHEN INCLUDING

ONLY BOUNDING BOXES BIGGER THAN 50 PIXELS

Training dataset Testing dataset mAP50 mAR10

MoSeg train MoSeg test 78.7% 53.0%
MoSeg train BoSeg test 75.3% 50.0%
MoSeg train MoSeg test>50px 71.8% 56.4%
MoSeg train BoSeg test>50px 79.7% 63.1%



Fig. 4. Screenshot of the annotation app created for this work. It can be used to draw bounding boxes and to compare original and amended ground truth.
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Fig. 5. Width and height distribution of bounding boxes in (a) the original MoSeg dataset; (b) BoSeg dataset; (c) as detected by the selected Faster R-CNN.

IV. RESULTS AND DISCUSSION

A bounding box annotation app was newly developed in
Matlab. The app allows for pixel wise editing of the bounding
boxes, see Fig. 4. This app enables the user to add, remove
and resize BBs and to compare the original and amended BBs.

A. The re-labelled BoSeg dataset

Based on the four criteria set out in Sec. III, the majority
of the bounding boxes were adapted in the MoSeg testing
dataset, Tab. II; from now on the re-labelled dataset will be
called BoSeg. Based on the criteria, 367 new bounding boxes
were added (they where missing in the original dataset). Some
of these added BBs are related to small vehicles not labelled
in MoSeg (see Fig. 3c) and they will be further discussed
in combination with detection performance. Moreover, 529
bounding boxes were removed; these removed bounding boxes
would be related to vehicles that do not meet the established
criteria, or to completely occluded vehicles (see Fig. 3b).
In this image, it can be seen that there are several vehicles
fully occluded behind the white van on the left. There are

also legacy bounding boxes from vehicles that pass by the
edge of the frame as seen in the right of Fig. 3a. Finally,
most of the bounding boxes were resized by at least the
width or the height. The majority of these resize steps were
minor changes to fit the vehicle better as per the proposed
3 pixel error in criterion 2. However, there are also many
bounding boxes which were resized due to occlusion covering
a significant amount of the vehicle (see Fig. 3d) or unnaturally
large bounding boxes (see Fig. 3e). In addition, 28 vehicles
labelled as van were re-labelled into car; on the other hand,
155 vehicles originally labelled as car were re-labelled as
van.

A further analysis of the BB size distributions has been
carried out in Fig. 5, to compare MoSeg with the proposed
BoSeg and the detections by the selected DNN. The interesting
aspect is that BoSeg has an higher concentration of small BBs,
and also BB with one dimension way bigger than the other are
reduced with respect to MoSeg. These aspects have an effect
on DNN detection, as discussed in the following section.



B. Faster R-CNN performance

Evaluating the detection using MoSeg and BoSeg ground
truth, MoSeg performs slightly better in terms of the selected
metrics. Moreover, due to class unbalance, the van and car
were combined into a single vehicle class. However, as
mentioned, the selected network has been trained on MoSeg.
Moreover, BoSeg has an higher distribution of small BB and it
was observed that the DNN is not always able to detect them.
For this reason, the performance metrics was recalculated
filtering out BB with a side smaller than 50 pixels, and in
this case BoSeg performs better than MoSeg. This results can
be attributed to the improved quality of the BBs in BoSeg. It is
worth noting that we expect that the effect of re-labelling the
training dataset will have a even higher impact on the selected
Faster R-CNN performance; this work is currently ongoing.

V. CONCLUSION

In conclusion, this paper has presented a preliminary anal-
ysis of the effect of ground truth bounding box errors on
deep neural network based detectors, in the specific context of
perception for assisted and automated driving functions (even
though the results can be easily extended to other applications).
In particular, this work proposes a re-labelling of the testing
set of the KITTI MoSeg dataset, a commonly used automotive
dataset for benchmarking machine learning and computer
vision algorithms. The ground truth errors have been classified
and estimated, and this classification can be applied to different
datasets. Moreover, some criteria for the annotation of the
dataset have been proposed; to the best of our knowledge there
are no established criteria for this process. The preliminary
results show that the re-labeled BoSeg performs better than
the original MoSeg when we neglect small BBs, however
we expect even better results when the full MoSeg training
set will be annotated according to the proposed criteria and
used for fine tuning of the DNN. This work provides a
framework to evaluate the impact of ground truth quality on
DNN performance, future work will analyse different datasets,
perception tasks, and network architectures.
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