
Available online at www.sciencedirect.com

a
U
r
s
p
t
©
(

P
R

K

o
O
a
e
c
i

o

ScienceDirect

Energy Reports 8 (2022) 848–856
www.elsevier.com/locate/egyr

2022 The 5th International Conference on Renewable Energy and Environment Engineering
(REEE 2022), 24–26 August 2022, Brest, France

Thermal management of refrigeration unit for electric refrigerated
vans: An experimental case study

Anita Aliua, Mohammad-Sofi Imrana, Truong Quang Dinha,∗, Jongil Yoonb

a WMG, University of Warwick, Coventry, United Kingdom
b KOCETI, Korea Construction Equipment Technology Institute, South Korea

Received 6 October 2022; accepted 10 October 2022
Available online xxxx

Abstract

In future, electric vehicles are expected to be adopted in the food transport to aid addressing limited access to fossil fuel
nd reduce greenhouse gas emission. However, their construction has to include consideration of a Temperature Refrigeration
nit (TRU) that is used to transport foods at low temperatures without significantly impacting the vehicle’s operation or driving

ange. In this paper, we investigate the benefit of implementing Model Predictive Control (MPC) in a thermal management
ystem (TMS) of a TRU for electric vans. A comparative study between the developed MPC-based TMS and the traditional
roportional–integral (PI) - based TMS has been carried out using a physical thermal rig. The experimental results show up
o 43% energy savings could be achieved by the MPC, compared to the case using the PI strategy.

2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eer-review under responsibility of the scientific committee of the 5th International Conference on Renewable Energy and Environment Engineering,
EEE, 2022.
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1. Introduction

The global lockdown that occurred in 2019 and the subsequent activities that came after economies started
pening up have resulted in significant increase in fossil fuel prices. This has also affected the cost of food transport.
ne solution is to adopt electric vehicles (EV)s in the commercial food transportation sector. Another reason for

dopting commercial EVs is highlighted by Tassou et al. [1], indicating that commercial ICE vehicles commonly
mployed in food transportation can account for 40% of the total greenhouse gas emissions. Consequently,
ommercial EVs can contribute to addressing concerns about the limited access to fossil fuels, decarbonization
n the transportation sector to maintain the global target, rise in temperature below 2 ◦C [2].

Overwhelming concerns when designing EVs are power–energy consumption and maintaining the optimal
perating temperature as EVs are used in different climate and environmental conditions [3]. These concerns are
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mainly due to interaction between the battery and the vehicle powertrain forming intricate feedback loops with
other components of the vehicle [4] which impacts the vehicle driving range. In commercial EVs used for food
transportation, additional components especially Temperature Refrigeration Units (TRUs) are integrated to maintain
the quality and integrity of goods, subsequently further impacting the driving range. Therefore, the TRU operation
has to be considered in designing vehicle control schemes to maintain an optimal vehicle operation.

Most of the studies focused on energy and/or thermal management systems in the literature are for passenger
se EVs [5]. A heuristic real-time control approach is adopted by Kim et al. [4] in designing a battery thermal
anagement system (BTMS) to improve the efficiency and reliability of EV batteries. However, such approach

ould not offer an optimal thermal management performance, in terms of efficiency and reliability. To address this
rawback more advanced techniques have been utilized by other researchers. For example, dynamic programming
DP) approach is applied to the BTMS of a Toyota RAV4 EV to trade-off between energy savings and battery usage
6]. Although DP could offer good controller performance as state constraints are easily incorporated in the design of
he BTMS, it is not a practical option for real-time implementation due to the computational complexity in solving
he optimization problem. In another study, Pontryagin’s maximum principle (PMP) is used to optimize BTMS
f an EV which is more convenient in terms of requiring differential equations to be solved to find the optimum
7]. Nevertheless, PMP-based approach requires efforts in tuning co-states in the Hamiltonian for different driving
onditions to obtain an optimal solution. Both the DP and PMP techniques therefore require a full knowledge
f driving cycles in solving optimization problems. One approach explored to address these issues is the use of
ontrollers based on model predictive control (MPC). Different to DP or PMP, MPC is an online optimization
trategy which is based on only the instantaneous system state measurements and a prediction horizon to derive
n optimal control decision. MPC therefore gains interest in engineering research communities, and the automotive
ndustry is one of the fields where MPC techniques are rapidly becoming exceedingly popular [8].

In recent years, MPC has been exploited in the design of energy and thermal management strategies for
ybrid/electric vehicles. This includes research on either cabin thermal management [8,9] or battery thermal
anagement [10,11] or integrated cabin-battery thermal management [12–14]. These aforementioned TMS works

re adequate for passenger EVs. To the best of the authors knowledge, no thermal management optimization strategy
s proposed for TRU operation on commercial EVs. In this paper we aim at formulating an MPC solution to TMS
or a TRU test rig for an electric van that minimizes energy consumption, taking into account the door operation and
mbient temperature. The performance of the MPC is compared to the classical proportional–integral (PI) control.
e use PI as a benchmark for comparison as it would typically represent a more traditional approach to evaluating

ontroller and for its proven applicability in industrial control systems. In both controllers, the only manipulated
nput is the compressor load factor which influences the speed of the compressor. However, due to the flexibility of
he MPC formulation, manipulation of factors such as compressor and TRU temperature rate of change, and target
emperature tracking are explicitly incorporated. The effect of such inputs and constraints in the thermal dynamics
re derived in the next section, which are used to formulate the MPC problem.

The rest of the paper is organized as follows. A simplified model of the TRU is presented in Section 2. Section 3
tates the optimal problem formulation together with set points and constraints, which are used in the formulation of
he MPC in Section 4. Section 5 presents the results from implementing the controller on the TRU test rig. Finally,
he concluding remarks are summarized in Section 6.

. Temperature refrigeration unit energy model

The overall schematic of a Temperature Refrigeration Unit illustrating the energy flow between a thermal
ompartment and a loop consisting of a compressor, condenser, and evaporator, is shown in Fig. 1.

To develop the TRU model for the targeted refrigeration unit on-board a commercial electric van, a representative
odel is developed within MATLAB/Simulink environment with the parameters of the TRU given in Table 1. The

ynamics of the TRU whose temperature is maintained by an evaporator and condenser fan, and a compressor are
escribed by the following equations based on energy balance principle. The cooling power delivered to the TRU
rom compressor is given by:

Pcool = −1000Lcomp Prated ηcool (1)

he speed of the compressor is determined by the compressor load factor denoted as Lcomp. The compressor rated

ower and cooling efficiency are denoted as P rated and ηcool respectively. The TRU temperature, denoted as TT RU ,
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Fig. 1. Schematic diagram of simple thermal refrigeration circuit.

Table 1. TRU model parameters.

Parameters Symbol Value Units

Compartment insulation

Insulator U-Value Uinsul 1.5 W
m2K

Cooling system

Cooling efficiency ηcool 85 %
Compressor rated power Prated 1.5 kW
Evaporator fans maximum current Imax 13 A
Number of evaporator fans Nevap_ f an 1 –
Condenser fans maximum current Imax 13 A
Number of condenser fans Ncond_ f an 1 –
Cooling system operation voltage Voper 12 V
Allowed heating hysteresis τ 2 ◦C

Compartment geometrical

Total surface area S Atotal 13.61928 m2

Total Volume Vcomp 3.301488 m3

Air parameters

Air density ρair 1.225 kg
m3

Air specific heat capacity Cair 1 kJ
kg K

Ambient temperature Tout 15 ◦C
Allowable temperature hysteresis τ 2 ◦C

Data based parametrization

Mass and specific heat capacity m.C p 32 kJ
K

Average service load coefficient SL 0.12 –

influences heat exchange between the TRU compartment walls due to the different temperature outside and inside
of the compartment. This is calculated using the outdoor convective heat load formula (2). Hence, the net cooling
power can be determined using (3).

.

Qcov = S AtotalUinsul (Tout − TT RU ) (2)

Pcool net =
.

Qcov + Pcool (3)

The opening and closing of the TRU door will also influence TT RU . This is because the air inside and outside
the TRU changes when the door is open which causes the air temperature inside the compartment to increase. This
air volume heat change is estimated by:

.

Qvol chg =
[
1000.SL .Vcomp.ρair .Cair (Tout − TT RU )

]
DOC (4)

where DOC denotes the TRU door opening and closing operation. DOC is assigned a value of 1 when the door is
opened and 0 when the door is closed. SL is the average service load coefficient, Vcomp is the volume of the TRU
compartment, ρ is the air density and C is the air specific heat capacity.
air air
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The compressor will be expected to turn on or off when TT RU is outside certain limits. The time during which
he compressor is on has to be calculated so that TT RU between sampling instances can be estimated. This cooling
ime, tcool , is estimated using the logic:

if Pcool net == 0 then

tcool = Ts

else if
(

Ts >
(
Tt arg − TT RU

)
∗

1000∗m.C p

Pcool net

)
&&

((
Tt arg − TT RU

)
∗

1000∗m.C p

Pcool net
> 0

)
then

tcool = Ts

else

tcool =
(
Tt arg − TT RU

)
∗

1000∗m.C p

Pcool net

end if

Sampling time is denoted as Ts and Tt arg denotes the target temperature of the TRU. The mass and specific
eat capacity of the goods and interior air of the TRU is denoted as m.C p. The change in TT RU between sampling

instances is calculated using (5). Hence, the TT RU at the next sampling instant is determined using (6).

∆T T RU =

[
Pcool net tcool

1000 +

.
Qvol chg

1000

]
m.C p

(5)

T T RU (t + 1) = T T RU (t) + ∆T T RU (6)

The energy consumed by the TRU (ET RU ) at each time instant can be calculated by adding up the fan energy
emand (E f an) with the compressor energy demand (Ecomp) (12). However, Ecomp depends on the power of the

evaporator fan (Pevap f an) and that of the condenser fan (Pcond f an), and the energy consumed by the fans (E f an)
and compressor (Ecomp) at each time instant. The equation for calculating Pevap f an and Pcond f an are respectively
shown in (7) and (8) with Nevap f an and Ncond f an been the respective number of fans installed. Imax is the maximum
rated current for the fan and Voper is the cooling system operating voltage. The total power consumed by the fan is
shown in (9). The equation for calculating E f an and Ecomp are shown in (10) and (11) respectively.

Pevap f an = Nevap f an Imax Voper (7)

Pcond f an = Ncond f an Imax Voper (8)

P f an = Pevap f an + Pcond f an (9)

E f an =
P f an(t) − P f an(t − 1)

2
∗

t − (t − 1)
3600

(10)

Ecomp =

[
−

Pcool tcool

3600

]
ηcool (11)

ET RU = E f an + Ecomp (12)

The total energy consumed by the TRU can be calculated by adding up the accumulated fan and compressor
nergy demands as shown in (13). The divisions by 1000 is to convert from Wh to kWh.∑

ET RU =

∑ E f an

1000
+

∑ Ecomp

1000
(13)

. Constrained optimal control problem formulation

.1. Set points and cost function

In this paper, we aim at formulating an optimal control problem to TMS for the TRU that minimizes its fuel
onsumption and ensure safe operation of the compressor, taking into account disturbances such as the TRU door

pen/close operation and ambient temperature. To this end, the manipulated input is Lcomp, which controls the speed
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of the compressor. The effect of the manipulated input in the overall TRU dynamics where derived in the previous
section, in which the TRU model was obtained based on information from the project partner and first principle.
Input signal Ttrag and disturbances DOC and Tout are artificial signals generated based on the required experimental
environment.

The overall stage cost J (t) to be minimized within the optimal control problem is defined as

J (t) = wπ Lcomp(t) + wβ

[
TT RU (t) − Ttrag(t)

]2
+ wγ [∆TT RU (t)]2 (14)

here wπ , wβ and wγ are weights which can be constant or time varying. ∆TT RU (t) = TT RU (t) − TT RU (t − 1)
denote the TRU temperature change between sampling instant and a weight on this change allows one to admit
larger variations of the TRU temperature over the period the EV is in operation.

3.2. Constraints

Input Lcomp(t) is generated under the constraint (15) while TT RU is constrained between the limits shown in (16)

0(0%) ≤ Lcomp(t) ≤ 1(100%) (15)

T min
T RU ≤ TT RU (t) ≤ T max

T RU (16)

The maximum allowed limit of Pcool is constrained by the compressor rated power i.e., Pcool ≤ Prated .

4. Model predictive control formulation

The control problem at time t can be stated as follows: Given the current fan power P f an , the accumulated
energy consumed by the TRU

∑
ET RU and its current temperature TT RU , maintain TT RU at or around Ttrag while

maintaining ∆TT RU at admissible levels and the compressor controlled at reasonable speed. This is achieved by
manipulation of Lcomp which influences Pcool , considering the disturbances DOC and Tout . The selection of Lcomp
is based on the compromised between the different weights in the cost function. To achieve the TRU objective, the
MPC problem is formulated over a finite-time horizon NH considering sampling time TS:

min
Lcomp

J (k) =

NH∑
i=0

[
wπ Lcomp(i |t) + wβ

[
TT RU (i |t) − Ttrag(i |t)

]2
+ wγ [∆TT RU (i |t)]2

]
(17)

subject to

(1)–(13), (15), (16)

Tt arg(i |k) − τ (i |k) ≤ TT RU (i |k) ≤ Ttrag(i |k) + τ (i |k)

Lcomp(0|k)wmin
comp ≤ wcomp ≤ Lcomp(0|k)wmax

comp

here the predicted value at a time instant k + i when a prediction is made at time instant k is denoted as
i |k). The quadratic term

[
TT RU (i |t) − Ttrag(i |t)

]2 is used to enforce the TRU temperature reference tracking,
hile [∆TT RU (i |t)]2 maintains the TRU temperature over time. The penalty weights on these terms are denoted
y wβ and wγ respectively, wπ is the weight imposed on the manipulated variable Lcomp(i |k). To eliminate the
ossibility of (17) being infeasible, the lower and upper TRU temperature limits are both set to Tt arg plus hysteresis
τ ). This ensures TT RU will never deviate far from Tt arg during the TRU operation. The MPC feedback law
s defined by the first element Lcomp(0|k) of the optimal solution sequence to (17) obtained from Lcomp =

Lcomp(0|k), Lcomp(1|k), . . . , Lcomp(NH |k)NH
i=0. In the experimental setup, the compressor speed is not allowed to run

t its maximum allowed limit or to completely turn off. Hence, limitations are placed on the compressor speed as
hown in (17). The MPC simulation is carried out on a desktop computer, with an Intel Core GHz processor, in

ATLAB/SIMULINK using fmincon for formulating the problem.

. Analysis

This section describes the experimental setup of the thermal test rig and software used. Also, the performance
f the designed controllers based on different prioritizes are investigated, specifically those with ensure the best
erformance of the TMS. The investigation considers three cases and compares their performance against each

ther.
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5.1. Experimental setup

A High Voltage Air Conditioning (HVAC) test rig is used to test both the PID and MPC controllers. The
xperimental setup showing the HVAC test rig and its connection to a PC is shown in Fig. 2. A section of the
VAC test rig is used to emulate the operation of a TRU. The HVAC rig is enclosed within a thermal chamber. The

hermal chamber helps to simulate the ambient environment surrounding an electric van in motion by maintaining
relatively constant airflow rate, humidity, and ambient temperature. To offer the similar operating range as in an
V,

The HVAC rig is powered by an 80 kW 440 V DC power supply. Connection to the thermal chamber and HVAC
ig is established using a VT system from Vector Informatik GmbH used as the system real-time (RT) simulator
nd CANoe a tool for the design and development of distributed systems. The HVAC rig has a butterfly valve used
o emulate the opening/closing operation of a door on a commercial TRU to access its enclosed compartment. The
utterfly valve is opened and closed using a 3-min interval. The butterfly valve is accessed through the thermal
hamber double door.

Fig. 2. Layout of the real-time control system setup.

The airflow rate, humidity and ambient temperature are set to 426 m3
/h, 80% and 12 ◦C respectively via a Human

Machine Interface (HMI) panel or through Simulink. The simulation setup window within the Vector CANoe
software is configured with 1 controller area network (CAN) and 4 local interconnect network (LIN) channel.
The CAN channel connects the thermocouples while the LIN channels connects the compressor, cabin, EDU, and
battery. These channels enable communication between the controller in Simulink and the HVAC rig through the
VT system. However, for this experiment only 2 LIN channels used, the compressor and cabin. The cabin is used
to emulate the refrigeration system and for safety, the compressor speed wcomp is limited between 800 and 2000
revolutions per minute.

5.2. Results

The target ambient temperature of the thermal chamber surrounding the test rig is set to 12 ◦C. However,
the thermal chamber temperature is allowed to deviate around this value as maintaining constant target ambient
temperature for the duration of the experiment is quite challenging. The resulting temperature profile of the thermal
chamber is shown in Fig. 3. The types and parameters of the controllers implemented within the TMS as shown in
Table 2. Case 1 shows the proportional and integral gains

(
K p and K I

)
of the PI controller implemented within the

TMS.
The gains are set to prioritize TT RU achieving the target temperature as soon as possible. Case 2 and 3 shows

two set of values for the weights of the MPC objective function within the TMS. Weights of Case 2 are set to
prioritize minimizing energy consumed via regulating the compressor speed as only the value wπ is set. In Case 3,
the weights set exploits the trade-off between energy consumed by the compressor, target temperature tracking and
temperature variation between sampling instances, with high priority given to temperature tracking. The resulting
operation of the compressor with the controller setting shown in Table 2 when implemented in the TMS are shown
853
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Table 2. Controller parameters.

Case Controller Parameter

Case 1 PI K p = 500; K I = 10

Case 2 MPC
[
wπwβωγ

]
= [2000]

Case 3 MPC
[
wπwβωγ

]
= [51005]

Fig. 3. Ambient temperature profile of the thermal chamber.

in Fig. 3. The resulting TT RU profile obtained after the implementation of each controller are shown in Fig. 5. The
3-min intervals when the butterfly valves are open to emulate the open/close operation of a TRU door to access
its compartment for loading and off-loading are marked as Load 1 and 2 in the plots in Figs. 4 and 5. It can be
observed in Fig. 3a that a significant change in the compressor operation is noticed in Case 1 when the butterfly
valve is open. In this case, the priority is to achieve the target temperature as soon as possible. This results in
significant overshoot when TT RU is between 0 ◦C and the upper limit of 2 ◦C. The overshoot continues except

uring the two 3-min interval when the butterfly valve is open. This is because the air within the thermal chamber
irectly affects the TT RU when the valve is open, and the compressor remains on, thereby work harder, to keep

TT RU close to the allowed upper limit of 2 ◦C and to compensate for temperature change between air inside and
utside the compartment. The resulting TT RU profile is shown in Fig. 5a.

Fig. 4. Compressor speed after implementing each controller in the TMS.

Fig. 4b, shows the compressor operation when the MPC of Case 2 was implemented in the TMS. It can be
observed that during the period when the butterfly valve is open the compressor does not work as much as in
Fig. 4a. This is because the only penalty imposed in the objective function is on Lcomp, prioritizing minimizing the
compressor operation so that it does not consume much energy. In general, as the compressor operation in Fig. 4b
854
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Fig. 5. TRU temperature after implementing each controller in the TMS.

does not stay on over long periods as in Fig. 4a, TT RU profile in Fig. 5b does not deviate and overshoot the upper
limit as observed in Fig. 5a.

In Case 3, penalties are imposed on all weights in the cost function however, the penalty is heavier on the
difference between TT RU and Ttrag . Compared to the compressor operation observed in Fig. 4a and b during the
periods when the butterfly valve is open, no noticeable change is observed in the compressor operation in Fig. 4c
and in the resulting TTRU profile in Fig. 5c. As the compressor operation reduces in each case, it is unsurprising
to see that the accumulated energy consumed by the compressor in Case 3 is less than in Case 2 and Case 1. The
accumulated energy consumed by the compressor in each case are shown in Table 3. It is worth highlighting that
the significant energy saving achieved in Case 3 can be attributed to the difficulty in completely maintaining the
ambient temperature in the thermal chamber. In Case 3, the ambient temperature settled between 9 ◦C and 11 ◦C.

owever, it is maintained that significant savings can still be achieved if the ambient temperature shown in Fig. 3
as achieved.

Table 3. Accumulated energy consumed by the compressor.

Case Controller Energy Savings compared

To Case 1 To Case 2

Case 1 PI 340 kJ – –
Case 2 MPC 305 kJ ∼10% –
Case 3 MPC 175 kJ ∼48% ∼43%

6. Conclusion and future work

This paper focused on the development of TMS for a TRU in an electric van. As the refrigeration unit is expected
o draw power from the onboard high voltage battery, a control scheme that ensures minimal energy is consumed by
he compressor will be beneficial. To this end, this paper investigates PI and MPC implementation in TMS for a TRU.
he MPC implementation results in both better energy savings and compressor operation, especially in the case
here the weights in the objective function are set to exploit trade-off between energy consumed by the compressor,

chieving target temperature tracking and minimizing temperature variation between sampling instances. Due to the
omplexity of the MPC scheme, future work needs to be considered on the development of an adaptive MPC
cheme but with less computational cost with possible inclusion of temperature hysteresis in the objective function.
n addition, future development of the TMS should consider online forecasting technique to better understand how
hange in ambient temperature affects the TRU operation
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