
 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/170663                                                         
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/170663
mailto:wrap@warwick.ac.uk


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Multiuser Adversarial Attack on Deep Learning for
OFDM Detection

Youjie Ye, Yunfei Chen, Senior Member, IEEE, Mingqian Liu

Abstract—Adversarial attack has been widely used to degrade
the performance of deep learning (DL), especially in the field
of communications. In this letter, we evaluate different white-
box and black-box adversarial attack algorithms for a DL-based
multiuser orthogonal frequency division multiplexing (OFDM)
detector subject to multiuser adversarial attack. The bit error
rates under different adversarial attacks are compared. The
results show that, the perturbation efficiency of adversarial
attack is higher than conventional multiuser interference. Vir-
tual adversarial methods (VAM) and zeroth-order-optimization
(ZOO) attacks perform the best among white-box and black-box
methods, respectively. They are also effective when the attack
changes the starting time. Additionally, adding the number of
attackers is found useful to improve the VAM attack but not for
ZOO. This work shows that adversarial attack is powerful to
generate adversarial against multiuser OFDM communications.

Index Terms—Adversarial attack, deep learning, multiuser,
OFDM, signal detection.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) mod-
ulation has been widely used to combat multipath fading in
wireless channels [1]. In recent years, deep learning (DL)
methods are popular in channel estimation and signal detection
due to their high accuracy [2]. In [3], a convolutional neural
network-minimum mean squared error (CNN-MMSE) based
estimator was proposed to estimate the wireless channel. In
[4], wireless channel response was treated as 2D images
and restored by DL methods. Many such works consider
OFDM systems. For example, in [5], residual learning was
applied to OFDM channel estimation. In [6], a deep-neural-
network(DNN)-aided channel estimation scheme was pre-
sented for multiple-input multiple-output-OFDM system. In
[7], a channel estimation network and a channel-conditioned
recovery network were presented for signal processing.In
[8], fully connected DNN (FCDNN) was used to detect the
transmitted symbols.

However, as deep learning based communications systems
evolve, many researchers have found that it is not stable under
targeted perturbation. In some applications, the perturbed
model could have disastrous consequences for the safety
and human life [9]. In [10], perturbation imperceptible to
human was generated on images to fool DNN models, called
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adversarial attack. In [11], [12], and [13], adversarial attack
was added to voice controllable system, object recognition
system, and automatic speech recognition models, respectively.
In recent years, researchers have paid more attention on
adversarial attack of DL models in wireless systems [14].
In [15], adversarial samples were generated for learning
based modulation classifiers. In [16], a generative-adversarial-
network-based spoofing attack was proposed to fool DL-based
signal classifier. In [17], adversarial attack and jamming attack
were tested on DL-based autoencoder communication systems.
The result shows that adversarial attacks are more destructive
than jamming. In [18], white-box and black-box attacks were
designed for DL-based signal classification. The attack leads
to more misclassification than the conventional random noise.
In [19], a perturbation generator against DNN-based wireless
communication was tested. Thus, it is of great interest to
examine different attack methods in OFDM.

In this letter, different adversarial attack methods will be
evaluated against the DL based OFDM signal detector. Instead
of adding the perturbation to the transmitted signal directly as
in previous works [19], perturbation signal in this work will
be regarded as an interfering user in the multiuser OFDM
system, or as a multiuser adversarial attack. The DL model at
the receiver recovers the transmitted signal against the attack
disguised as a legitimate user. In this work, the adversarial
robustness toolbox (ART) [20] is used to apply adversarial
methods. For white-box methods, projected gradient descent
(PGD) [22], virtual adversarial methods (VAM) [21], and
elastic net attack (ENA) [23] are studied, while for black-box
methods, boundary attack (BoA) [24], HopSkipJump (HSJ)
attack [25], and zeroth-order-optimization (ZOO) attack [26]
are used. Their performance are tested in different signal-to-
interference ratios (SIRs) and channels. To the best of our
knowledge, this is the first time that different attack methods
are evaluated for multiuser OFDM communications systems.
The novelty of the work includes the following:

• Adversarial signals are added as multi-user interference
instead of transmitted samples.

• Three white-box methods and three black-box methods
are evaluated and compared for OFDM DL detection.

• Useful guidance on the choice of the most efficient
attacks in different conditions is given.

II. SYSTEM MODEL

A. System architecture

The architecture of the attacked multiuser OFDM com-
munication system is illustrated in Fig 1. For the desired
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Fig. 1. System structure.

user, the transmitted symbols Sm (t) with pilots are converted
to parallel streams from a serial one, and then from the
frequency domain to the time domain by inverse discrete
Fourier transform (IDFT). Then, cyclic prefix (CP) is added
and the signal is converted back to a serial stream and sent over
the wireless channel. In the simulation, the attack size is the
same as the number of transmitted symbols. The attacker may
not know whether the desired user uses OFDM or not. Thus,
two cases are considered. In the first case, the attack signal is
also OFDM modulated before being transmitted. In the second
case, the symbols are added directly to the channel without
OFDM modulation. Signal transmitted from the attacker will
interfere the desired signal as multiuser interference. In either
case, the interfered signal will be OFDM demodulated at
the receiver. The received signal r (t) at the receiver can be
represented as

r (t) = rD (t) + rA (t) + n (t)

= cD (t)⊗ sD (t) + cA (t)⊗ sA (t) + n (t) ,
(1)

where rD (t) and rA (t) are the signals received from the
desired user and the attacker, ⊗ represents the convolution
operator, cD (t) and cA (t) are channel gains as time-varying
complex Gaussian random processes, sD (t) and sA (t) are
transmitted signals, respectively, and n (t) is the additive white
Gaussian noise (AWGN) with mean zero and variance σ2.

At the receiver, the CP is removed, and the symbols are
converted back to the frequency domain by discrete Fourier
transform (DFT). Finally, Sm (k) is recovered as Ŝm (k) using
the pre-trained DL models. In this work, there are 128 symbols
in a frame, 64 of which are pilots. The CP length is 16. The
wireless channel is a multipath fading channel defined in [27]
using MATLAB [28].

In the physical layer of a wireless system, the transmitted
symbols are 0 or 1. Therefore, there is a binary classification
problem that the DL network try to solve at the detector. The
attacked DL model uses FCDNN, details of which can be
found in [8]. At the input layer, the 128 symbols in every
frame will be divided into real and imaginary parts, and used
as inputs separately to 8 parallel DL networks, which means
each network detects 16 of them. This is shown in Figure 2.
Compared to [8], the number of neurons in hidden layer has

Fig. 2. Architecture of FCDNN.

been increased to fit the multiuser condition. The results in
[0, 1] will be binarized and given as a size of 8×16 symbols at
the output layer. Bit error rate (BER) is used to measure the
detection error as Pe = P

[
b̂i ̸= bi

]
.

B. Adversarial attack methods

Adversarial attack methods can be divided into two types,
white-box attack and black-box attack. For white-box attack,
the attacker knows all the information and parameters of the
DL model and it generates adversarial samples based the
known model to attack the network. Black-box attack only
interacts with the DL model to generate attacking samples,
and then attacks the network without knowing the parameters
and structure of the model. As mentioned before, VAM, PGD,
ENA are white-box attacks, while BoA, HSJ, ZOO are black-
box attacks.

PGD is an iterative extension of the widely-used gradient-
based attack method fast gradient sign method (FGSM) [20].
The gradient-based attack intends to find the perturbation η
to maximize the loss function L (x+ η,y,θ)) based on the
constraint ∆ and the optimization as

max
η∈∆

L (x+ η,y,θ) , (2)

where x denotes the input of neural network, y denotes the
true label of x, and θ denotes the parameter of the DL model.
FGSM [29] generates attacks by using the sign of the gradient
function as

x′ = x+ ϵ · sign (∇xL (x,y,θ)) , (3)

where ϵ is the attack strength. Different from FGSM, PGD
projects the adversarial perturbations on the ϵ−L∞-norm ball
around x at each iteration as

x′
t+1 = Proj (xt + α · sign (∇xL (x,y,θ))) , (4)

where Proj is the constrained projection operation in a PGD
standard optimization, and α is the step size of the gradient
descent update.

Carlini and Wagner’s (C&W) attack [30] is a popular
gradient-based attack method. It can generate attack samples
of different norms, such as ℓ1, ℓ2, and ℓ∞. ENA is an advanced
version of C&W, which generates perturbation by using the
elastic-net regularization method and minimizing the ℓ1 norm
[23]. ZOO attack is a black-box version of C&W(ℓ2) attack.
It queries the gradient of the objective function to the input in
each iteration based on stochastic coordinate descent method
[26]. VAM maximizes the Kullback-Leibler (KL) divergence
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between output distributions to find the ℓ2 norm bounded
perturbation [21]. Different from the methods above, VAM
aims to generate the adversarial sample which can affect the
trained model local distributional smoothness instead of the
sample [20].

BoA and HSJ are decision based attacks. BoA is the earliest
successful decision based attack. It only needs to query output
classes, and perturbs an adversarial sample along the decision
boundary between the non-adversarial and the adversarial
region until the ℓ2 difference from the original input to the
perturbed input is minimized [24]. HSJ is an improved version
of BoA by optimizing ℓ2 or ℓ∞ distances for attacks [20]. In
each iteration, binary search is used to approach the decision
boundary iteratively. Then, the gradient direction is estimated.
Finally, the updating step size is initialized and is decreased
until the perturbation is successful [25].

III. NUMERICAL RESULTS AND DISCUSSION

In this section, the BERs of the DL model under different
attacks are compared to measure their attack efficiency. We use
4-ary quadrature amplitude modulation (4-QAM) signalling
for the desired user. For ZOO, BoA, and HSJ, we set the max-
imum number of iterations as 200, 200, and 50, respectively,
which have been tested to have the best attack. The norm
of HSJ is set as ℓ∞. Other methods use the default settings
of ART functions. The test is done when the multiuser SIR
changes from 0 dB to 50dB, where SIR represents the ratio
of the desired signal power to the attack or general multiuser
interference power. The SNR is set to 15dB in all the tests.
There are two baselines. The first one is the BER of 0.148
when there is no multiuser interference or attack at SNR =
15dB. This is called the no-attack error floor. The second is the
BER with a general multiuser interference, as a general QAM
signal being received at the receiver with or without OFDM
modulation. A QAM signal source similar to the desired user
is simulated as the general interference to the receiver so
that one can compare the performance degradation caused
by adversarial attack with that caused by general multiuser
interference.

A. Comparison of Attack Methods

Fig. 3 gives the BER comparison of the DL model under
different white-box and black-box attacks. All the methods
have been tested both with and without OFDM modulation.
However, for better readability of the figure, results for white-
box are only shown with OFDM modulation, while results for
black-box are only shown without OFDM modulation. As the
SIR increases, the BERs under different attacks decrease and
approach the no-attack error floor as a lower limit, because
when SIR is higher, the proportion of attack signal is lower,
which leads to less interference to the receiver. For white-box
methods, most are more efficient than the general interference.
When SIR ≥ 25dB, the BERs of DL model with general
interference (with or without OFDM modulation) reach the
no-attack error floor. Similarly, BERs under PGD attack also
reach the error floor when SIR > 25dB. The error floor under
PGD attack is about 0.0198. ENA and VAM attacks perform
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Fig. 3. BER comparison of different attack methods.

better than PGD, especially in the high SIR region. When
SIR = 50dB, their BERs are still 0.045 and 0.06, respectively,
which are 200% and 300% higher than the no-attack error
floor. It shows that these two attack methods are still efficient
even when the attack signal is weak at the receiver. VAM is
the most powerful white-box attack method, which leads to
the largest degradation of BERs when SIR>5dB.

Since the parameter and gradient inside the DL model is
not available to black-box attacks, the performances of black-
box attacks are not as good as white-box ones. However,
most of them can still cause more misclassification than the
general interference without any intentional attack designs.
BoA is the least powerful method among black-box attacks.
The BERs under BoA are near that of general interference. The
performance of HSJ attack is slightly better than BoA. The
BERs under HSJ are about 0.05 higher than BoA on average.
ZOO attack is the most efficient, especially at high SIR. BERs
under ZOO are at a stable level of 0.042 to 0.05, which are
much higher than the BERs with other methods. But when
SIR ≤0 dB, ZOO is not powerful. When SIR = -5dB, BER
under ZOO attack is 0.273, which is 0.07 lower than that of
HSJ.

In summary, the order of the performances of white-box
attacks from high to low within the SIR range considered is:
VAM, ENA, and PGD, and that of black-box attacks is: ZOO,
HSJ, and BoA.White-box attacks are more efficient than black-
box ones.

B. Random starting time

In practice, due to asynchronous operations, frames from
the desired user and the attacker usually cannot achieve
synchronization. To investigate its potential effect on attack
efficiency, the BERs with asynchronous users are studied. Each
user has its own random starting time, following a uniform
distribution between 1 and the frame size 128. As the VAM
and ZOO attacks give the best performances among white-
box and black-box methods, respectively, they are used in
following study.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

0 5 10 15 20 25 30 35 40 45 50
SIR

10
-2

10
-1

10
0

B
E

R

Random Starting Time (Whitebox)

VAM without OFDM

VAM with OFDM

Random Starting VAM without OFDM

Random Starting VAM with OFDM

No Attack when SNR=15dB

0 5 10 15 20 25 30 35 40 45 50
SIR

10
-2

10
-1

10
0

B
E

R

Random Starting Time (Blackbox)

ZOO without OFDM

ZOO with OFDM

Random Starting ZOO without OFDM

Random Starting ZOO with OFDM

No Attack when SNR=15dB

Fig. 4. BER comparison with uniformly distributed starting time for the
frame.
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Fig. 4 shows the BER comparison. Both non-OFDM-
modulated VAM and ZOO outperforms OFDM-modulated
ones at high SIR region. For VAM attacks, no matter whether
the perturbation is OFDM modulated or not, the same level of
BER is achieved. It can be seen that, even in a high SIR region,
the attack still has a stable efficiency. Similarly, although the
parameters of the DL model are not known, the ZOO attack
is not affected by asynchronous users. The results show that,
the random starting time has almost no impact on the attack
efficiency of VAM and ZOO methods.

C. Multi-attacker experiment

In order to further improve the attack efficiency of adver-
sarial methods, several attackers are used to generate multiple
attacks. Fig. 5 shows the BER comparison between one and
four attackers for VAM and ZOO. In this case, the SIR is
still the receiving SIR, which is the same for one attacker and
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Fig. 6. Comparison with BERs under WINNER II channel.

four attackers. From Fig. 5, for the VAM attack, the BERs
under quadruple attack are higher than that with one attacker,
which means multiple VAM attacks can increase the attack
performance in perturbation capability. When the VAM attack
is OFDM-modulated, quadruple attack increases the BER by
2.85% to 33.74% over the single attack. For non-OFDM-
modulated VAM attack, the gap between quadruple attack and
single attack is even larger. The BER increases by 7.49% to
47.74% over the single attack. However, adding the number
of attackers has no impact for ZOO. There is no significant
increase of BER when using multi-ZOO-attack. Therefore,
multi-attack is effective to enhance the performance of VAM
attack, but not ZOO.

D. Realistic channel experiment

To evaluation the attack methods under realistic channel
conditions, they are studied in the WINNER II channel model
[31]. As [8], we used the typical urban channels with a
maximum delay of 16 sampling period. The frequency of
the carrier is 2.6 GHz, and the number of paths is 24. The
DL model is re-trained for this channel. Fig. 6 compares
the MATLAB simulated frequency-selective fading (MSFF)
channel in [28] with the WINNER II channel. BERs under
VAM and ZOO attacks in WINNER II channel are both lower
than those in MSFF. In low SIR region, VAM has the same
level of attack efficiency. Although ZOO still outperforms the
general interference case, its BER in WINNER II is much
lower than in MSFF. It is because the DL model trained
in WINNER II channel has stronger anti-interference ability
and better protection from the black-box method. Thus, VAM
attack is more effective.

IV. CONCLUSION

In this letter, the performances of adversarial attack algo-
rithms have been compared.VAM and ZOO are the most ef-
fective in white-box and black-box methods, respectively.The
experiments have also shown that, when there is random
starting time, attack efficiencies of these two methods will not
be affected. In addition, VAM’s performance can be improved
by adding attackers to perform multi-attack and VAM is
proved efficient in WINNER II channel.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

REFERENCES

[1] J.G.Proakis, Digital Communications, 4th ed. New York: McGraw-Hill,
2001.

[2] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Netw., vol. 61, pp. 85–117, Jan. 2015.

[3] D. Neumann, T. Wiese and W. Utschick, ”Learning the MMSE Channel
Estimator,” in IEEE Transactions on Signal Processing, vol. 66, no. 11,
pp. 2905-2917, 1 June1, 2018.

[4] M. Soltani, V. Pourahmadi, A. Mirzaei and H. Sheikhzadeh, ”Deep
Learning-Based Channel Estimation,” in IEEE Communications Letters,
vol. 23, no. 4, pp. 652-655, April 2019.

[5] L. Li, H. Chen, H. Chang and L. Liu, ”Deep Residual Learning Meets
OFDM Channel Estimation,” in IEEE Wireless Communications Letters,
vol. 9, no. 5, pp. 615-618, May 2020.

[6] A. L. Ha, T. Van Chien, T. H. Nguyen, W. Choi and V. D. Nguyen,
”Deep Learning-Aided 5G Channel Estimation,” 2021 15th International
Conference on Ubiquitous Information Management and Communication
(IMCOM), 2021, pp. 1-7.

[7] X. Yi and C. Zhong, ”Deep Learning for Joint Channel Estimation and
Signal Detection in OFDM Systems,” in IEEE Communications Letters,
vol. 24, no. 12, pp. 2780-2784, Dec. 2020.

[8] H. Ye, G. Y. Li and B. Juang, ”Power of Deep Learning for Channel
Estimation and Signal Detection in OFDM Systems,” in IEEE Wireless
Communications Letters, vol. 7, no. 1, pp. 114-117, Feb. 2018.

[9] X. Yuan, P. He, Q. Zhu and X. Li, ”Adversarial Examples: Attacks and
Defenses for Deep Learning,” in IEEE Transactions on Neural Networks
and Learning Systems, vol. 30, no. 9, pp. 2805-2824, Sept. 2019.

[10] C. Szegedy et al. (2013). “Intriguing properties of neural networks.”
[Online]. Available: https://arxiv.org/abs/1312.6199

[11] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu, “DolphinAt-
tack: Inaudible voice commands,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., New York, NY, USA, Oct. 2017, pp. 103–117.

[12] C. Xie, J. Wang, Z. Zhang, Y . Zhou, L. Xie, and A. Y uille, “Adversarial
examples for semantic segmentation and object detection,” in Proc. Int.
Conf. Comput. Vis., Oct. 2017, pp. 1378–1387.

[13] N. Carlini et al., “Hidden voice commands,” in Proc. USENIX Security
Symp., 2016, pp. 513–530.

[14] J. Liu, M. Nogueira, J. Fernandes and B. Kantarci, ”Adversarial Machine
Learning: A Multilayer Review of the State-of-the-Art and Challenges
for Wireless and Mobile Systems,” in IEEE Communications Surveys &
Tutorials, vol. 24, no. 1, pp. 123-159, Firstquarter 2022.

[15] M. Usama, M. Asim, J. Qadir, A. Al-Fuqaha and M. A. Imran,
”Adversarial Machine Learning Attack on Modulation Classification,”
2019 UK/ China Emerging Technologies (UCET), 2019, pp. 1-4.

[16] Y. Shi, K. Davaslioglu and Y. E. Sagduyu, ”Generative Adversarial
Network in the Air: Deep Adversarial Learning for Wireless Signal
Spoofing,” in IEEE Transactions on Cognitive Communications and
Networking, vol. 7, no. 1, pp. 294-303, March 2021.

[17] M. Sadeghi and E. G. Larsson, ”Physical Adversarial Attacks Against
End-to-End Autoencoder Communication Systems,” in IEEE Communi-
cations Letters, vol. 23, no. 5, pp. 847-850, May 2019.

[18] M. Sadeghi and E. G. Larsson, ”Adversarial Attacks on Deep-Learning
Based Radio Signal Classification,” in IEEE Wireless Communications
Letters, vol. 8, no. 1, pp. 213-216, Feb. 2019.

[19] Alireza Bahramali, Milad Nasr, Amir Houmansadr, Dennis Goeckel,
and Don Towsley, ”Robust Adversarial Attacks Against DNN-Based
Wireless Communication Systems,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security (CCS
’21), Association for Computing Machinery, New York, NY, USA,
126–140, 2021.

[20] Nicolae, M.-I., M. Sinn, M. N. Tran, et al. Adversarial robustness
toolbox v1.2.0. CoRR, 1807.01069, 2018.

[21] T. Miyato, S. Maeda, M. Koyama and S. Ishii, ”Virtual Adversarial
Training: A Regularization Method for Supervised and Semi-Supervised
Learning,” in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 41, no. 8, pp. 1979-1993, 1 Aug. 2019.

[22] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
Deep Learning Models Resistant to Adversarial Attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[23] P. Y. Chen, Y. Sharma, H. Zhang, J. F. Yi, and C. Hsieh, “EAD: Elastic-
net attacks to deep neural networks via adversarial examples,” in Proc.
AAAI Conf. Artif. Intell., New Orleans, Louisiana, USA, 2018, pp.
10–17.

[24] W. Brendel, J. Rauber, and M. Bethge “Decision-Based Adversarial At-
tacks: Reliable Attacks Against Black-Box Machine Learning Models,”
arXiv preprint arXiv:1712.04248v2, 2018.

[25] W. Brendel, J. Chen, M. I. Jordan and M. J. Wainwright, ”Hop-
SkipJumpAttack: A Query-Efficient Decision-Based Attack,” 2020
IEEE Symposium on Security and Privacy (SP), 2020, pp. 1277-1294.

[26] P. Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C. J. Hsieh, “ZOO: Zeroth
Order Optimization based Black-box Attacks to Deep Neural Networks
without Training Substitute Models,” arXiv preprint arXiv:1708.03999,
2017.

[27] O. Edfors, M. Sandell, J. . -J. van de Beek, S. K. Wilson and P. O. Bor-
jesson, ”OFDM channel estimation by singular value decomposition,”
in IEEE Transactions on Communications, vol. 46, no. 7, pp. 931-939,
July 1998.

[28] V. K. Veludandi, “LMMSE based channel estimation for OFDM sys-
tems,” https://github.com/vineel49/lmmse,

[29] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, Y . Bengio and Y . LeCun, Eds., 2015.

[30] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” in 2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society,
2017, pp. 39–57.

[31] P. Kyosti et al., “WINNER II channel models,” Eur. Commission,
Brussels, Belgium, Tech. Rep. D1.1.2 IST-4-027756-WINNER, Sep.
2007.


