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Abstract— Electricity load forecasting provides the critical 
information required for power institutions and authorities to 
develop rational, effective, and economic dispatch plans. The load 
forecasting at the regional power system is important for optimal 
management and accommodating local renewable energy sources, 
which is a challenging task as the demand variations are more 
sensitive to local weather changes (such as temperature, humidity, 
precipitation, and wind speed) and consumers’ activities and 
behaviours. The paper aims to develop a new prediction method 
using intelligent computational algorithms. Long Short-Term 
Memory (LSTM), a deep recurrent neural network, explores the 
long-term dependency of network memory sequence data to identify 
intrinsic variations in both horizontals (time series) and vertical 
(network depth) dimensions over a longer historical period. Support 
Vector Machine (SVM) is a typical learning method that has been 
successfully implemented to solve nonlinear regression and time 
series problems. This paper studies the two methods and adapts the 
two methods to become suitable algorithms for load prediction. The 
paper presents the algorithms, their applications and prediction 
results.   The prediction performance is compared for using LSTM 
and SVM at ultra-short, short-term, medium-term, and long-term 
forecasting. The results show that LSTM has higher prediction 
accuracy than SVM in both ultra-short and short-term forecasts, but 
SVM is more capable of medium-term and long-term forecasting. 
Finally, the epoch time for LSTM and SVM is also calculated and 
compared. 

Keywords—Load prediction; LSTM; SVM 

I. INTRODUCTION  

Population increase, technology development, lifestyle 
changes and demand for various resources have imposed a 
significant impact on the environment, the most notable of 
which is Global Warming. Electricity generation has been 
considered as one of the primary causes of carbon emissions [1]. 
In May 2019, the UK Committee on Climate Change (CCC) 
amended the 2008 Climate Change Act and revealed the more 
ambitious goal of achieving net-zero carbon emissions by 2050 
[2]. Power generation from Renewable Energy Sources (RESs) 
rapidly increases and imposes significant pressure on 
maintaining the grid stability as it is a great challenge of 

maintaining the balance between the load and generation due to 
the intermittent nature of RESs and the reduction of grid system 
inertia or spin reserve from the rotating machines [3]. Therefore, 
the cost of grid balance has continuously increased in recent 
years, which cost UK National Grid £1.789 billion in 2020 
(49.3% year-on-year increase) [4]. The balance cost increased 
the electricity price and deprived the potential economic benefit 
of renewable energy.  

A new operating model for modern grids or local power 
systems is needed. The prediction of load demand, electricity 
generation, and even market prices is essential for the 
management and operation of the future grid, determining the 
dispatch of the consumption and generation of electricity. The 
load demand prediction can be considered as forecasting using 
time series data. A time series is a series of discrete data with a 
continuous-time index at the same time intervals [5]. The data 
varies over time and there is some correlation between the data 
before and after the time scale. The analysis of time series has 
been widely used in areas such as signal processing, earthquake 
prediction, financial mathematics, weather forecasting and 
power system management [6]. The methodology for the 
prediction time series is shown in Fig. 1, which presents the most 
popular methods over the last two decades [7]. Artificial neural 
networks (ANN) ANN is a machine learning-based modelling 
approach that mimics the information is transmitted between 
neurons in the human brain. The neurons (also called activation 
function) at each layer are connected and have different 
connection weights (called synaptic weights). ANN is 
constantly updated to keep the network moving in the right 
direction by updating the connection weights through 
backpropagation [8]. Younes adopted generalised regression 
neural network (GRNN) to forecast plant disease by monitoring 
leaf wetness in 1999 [9]. Over the last two decades, deep 
learning has developed different layers and function blocks, 
which has led to its wide use in time series prediction [10]. For 
instance, Takashi used a Deep Trust Network (DBN) consisting 
of a stack of Restricted Boltzmann Machines (RBMs) to make 
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predictions on time series [11]. Long Short-term Memory 
(LSTM) is designed to address the need for the model to actively 
select helpful information from historical data by using different 
gates [12]. 

 

Fig. 1. The methodology for prediction time series. 

The Support Vector Machine (SVM) was developed based 
on the concept of a decision hyperplane that divides the data into 
different groups by Vapnik and Alexey in 1963 [13]. The 
hyperplane is defined by finding the maximum margin 
(distance) between the different groups. SVMs can also fit the 
parameters of linear and nonlinear regression models by 
mapping the inputs to a high-dimensional feature space. 
Kyoung-jae uses SVM to predict the stock price index and finds 
the performance of SVM is better than three-layer 
backpropagation networks at 5% statistical significance level 
[14]. Hong developed an SVM regression model that uses an 
immune algorithm (IA) to determine model parameters to 
predict the annual electricity load in Taiwan [15]. Deng 
combined particle swarm optimisation (PSO) and square 
support vector machine (LS-SVM) to estimate the fault of 
rotating machinery with the highest 89.5% of accuracy rate 
among 11 compared algorisms [16]. 

In this paper, the development of load prediction algorithms 
uses the University of Warwick campus energy data as a 
representative case in algorithms refinement and verification. 

 

II. DEVELOPMENT OF COMPUTATIONAL INTELLIGENCE 

ALGORITHMS FOR LOAD FORECASTING 

A. The principle of LSTM 

Recurrent Neural Network (RNN) structure mimics the 
thought pattern that human cognition is based on experience 
and memory, and is mainly used to process contextually 
relevant sequential data [17]. In an RNN, it is not only the input 
information at this time that is considered but also the previous 
input information that is retained through the function of 
“memory”. The outputs corresponding to the network’s 
historical input data are weighted and fed back into the training 
network at this moment. The series-connected network 
structure is suitable for processing data with contextual 
information. The number of training parameters and training 
time can be reduced as the parameters of RNN can be shared 
between the same layers. The RNN has been widely used in 
fields such as natural language processing and speech 
recognition due to these advantages in recent years [18]. A 
basic RNN network structure mainly composed of an input 
layer, hidden layer, and output layer. 

The RNN can be expressed as: 
𝑦𝑡 = 𝑓𝑦(𝑎𝑘 ∗ 𝑆𝑡) (1) 

𝑆𝑡 = ∑ 𝑓𝑘(𝑎𝑘(𝑖 ∗ 𝑥𝑡 + 𝑤𝑘 ∗ 𝑠𝑘) + 𝑏𝑘)
𝑛

𝑘=1
(2) 

where the 𝑖, 𝑎𝑘, and 𝑏𝑘 are the weight and bias between each 
layer, while 𝑤𝑘 is the weigh within each layer. 𝑥𝑡 and 𝑦𝑡  are the 
input and output of the network, respectively. 𝑛 represents the 
layer number of hidden layers, and 𝑓𝑧(𝑧=𝑥,𝑦,𝑠𝑘) indicates the 

activation function at each layer. Though the intra-layer 
weights 𝑤𝑘, the function of “remembering” the previous input 
is achieved. The difference between RNN and FNN it can be 
observed: RNN adds additional inter-layer weights and returns 
the historical results at the hidden layer to the current hidden 
layer to “remember” the historical data. Substituting (2) into 
(1): 

𝑦𝑡 = 𝑓𝑦 (𝑎𝑘 ∗ ∑ 𝑓𝑘(𝑎𝑘(𝑖 ∗ 𝑥𝑡 + 𝑤𝑘 ∗ 𝑠𝑘) + 𝑏𝑘)
𝑛

𝑘=1
) (3) 

As seen from (3), the output of RNN at the time 𝑡  is 
determined by both the previous input (𝑥𝑡−1, 𝑥𝑡−2, …) and the 
current input 𝑥𝑡 . This is the reason why RNN is able to 
remember previous input and learn the correlation between the 
data time series.  

RNNs can theoretically solve long-term dependency 
problems: the gap between the relevant information and the 
point where it is needed is very large/far. However, in practice, 
it is worth noting that the original RNN model suffers from the 
pain of gradient vanishing or gradient exploding [19]. To solve 
the long-term memory problem, Hochreiter and Schmidhuber 
proposed the LSTM network [20]. LSTM network, as an 
improved RNN network, introduces the idea of self-looping, 
which generates paths that allow gradients to flow over long-
time scales. The weights used to control the state of this loop 
and the duration of memory accumulation can change 
dynamically in the model, and the change depends on the 
contextual information of the data sequence. In terms of 
computation, the LSTM does not do multiplication to generate 
memory. Instead, the current input is superimposed with the 
results of past operations. This manner avoids the gradient 
vanishing or exploding. LSTM has achieved excellent 
performance in several fields at present, such as speech 
recognition, machine translation, and handwriting recognition. 
The structure of LSTM network is shown in Fig. 2. As can be 

seen from Fig. 2, the LSTM network contains forget gate 𝐺𝑡
𝑓
, 

input gate 𝐺𝑡
𝑖, output gate 𝐺𝑡

𝑜, and candidate states 𝑐�̃�. The input 
of the network contains the external input of the current 
moment and the output and cell state of the previous moment. 

 

Fig. 2. LSTM network structure. 



The equation of each gate is: 

𝐺𝑡
𝑓

= 𝜎(𝑎𝑓 • [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (4) 

𝐺𝑡
𝑖 = 𝜎(𝑎𝑖 • [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (5) 

𝐺𝑡
𝑜 = 𝜎(𝑎𝑜 • [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6) 

where ℎ𝑡−1 and 𝑥𝑡 are the output of last state and present input, 
respectively. The 𝑎𝑘(𝑘=𝑓,𝑖,𝑜) and 𝑏𝑘(𝑘=𝑓,𝑖,𝑜) are the weight and 

bias for each gate. The candidate states 𝑐�̃�, cell states 𝑐𝑡, and 
output ℎ𝑡 can be written as: 

𝑐�̃� = 𝑡𝑎𝑛ℎ(𝑎𝑐 • [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (7) 

𝑐𝑡 = 𝐺𝑡
𝑓

∗ 𝑐𝑡−1 + 𝐺𝑡
𝑖 ∗ 𝑐�̃� (8) 

ℎ𝑡 = 𝐺𝑡
𝑜 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (9) 

With the weight 𝑎 and bias 𝑏, and activation functions 𝜎 for 
each gate, the optimisation of LSTM models can be conducted 
by minimising the cost function (CF). The output of ANN can 
be expressed as: 

�̃� = 𝑓(𝑎𝑘(𝑘=𝑓,𝑖 𝑜), 𝑏𝑘(𝑘=𝑓,𝑖 𝑜), 𝜎𝑘(𝑘=𝑓,𝑖 𝑜)) (10) 

 

B. The principle of SVM 

SVM methods can be divided into two main types, Support 
Vector Classification (SVC) and Support Vector Regression 
(SVR). SVR is used to perform the load prediction on multiple 
time scales in this paper.  

Suppose that the training sample at moment n is: 
 𝑧𝑛 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2) ⋯ (𝑥𝑛 , 𝑦𝑛)}  (11) 

where 𝑥𝑛 , 𝑖 = 1, … … 𝑛 are input samples and 𝑦𝑛 , 𝑖 = 1, … … 𝑛 
are output samples. The core principle of both linear support 
vector regression and nonlinear regression is to obtain a 
smoothed regression function 𝑓(𝑥)  by training the input 
samples so that the regression function given by 𝑓(𝑥)  can 
minimise the error between the actual output samples and the 
predicted output samples.  

Assume that the expression of the regression function for 
the nonlinear load prediction model is: 

 𝑓(𝑥) = 〈𝑤 ∙ 𝜑(𝑥𝑖)〉 + 𝑏  (12) 
where 𝑤 is the weighting vector, b is the bias parameter, the 〈∙〉 
denotes the inner product in feature space and the 𝜑(𝑥𝑖) is the 
mapping from 𝑥𝑖  to a high-dimensional linear Hilbert space 
[21]. To smooth the function 𝑓(𝑥), a minimum 𝑤 needs to be 
found. One way to achieve this is to minimise the norm. 
Therefore, the optimisation problem of (12) can be transformed 
into the following form: 

 min
1

2
‖𝑤‖2  (13) 

Subject to:   

 {
𝑦𝑖 − 〈𝑤 ∙ 𝜑(𝑥𝑖)〉 − 𝑏 ≤ 𝜀
〈𝑤 ∙ 𝜑(𝑥𝑖)〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀

 (14) 

In which 𝜀 is the insensitive loss function. The 𝜀-region is 
enclosed by two parallel lines, the error of sample points 
located in the 𝜀-region will be ignored. In other words, 𝜀-region 
is a region that will not contribute any loss to the loss function. 
This concept is the insensitivity theory introduced by Vapnik 
[22]. 

Two slack variables 𝜉 and 𝜉∗ are introduced in (13) and (14) 
to ensure that the above optimisation problem has a solution:  

 min[
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)]𝑛
𝑖=1  (15) 

Subject to:  

 {

𝑦𝑖 − 〈𝑤 ∙ 𝜑(𝑥𝑖)〉 − 𝑏 ≤ 𝜀+𝜉𝑖

〈𝑤 ∙ 𝜑(𝑥𝑖)〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

  (16) 

where 𝐶 is regularisation parameter, representing the degree of 
punishment for misclassified sample points [21]. Lagrange 
function can be taken to solve above problem: 

𝐿 =
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1 − ∑ 𝛼𝑖(𝜀 + 𝜉𝑖 −𝑛

𝑖=1

𝑦𝑖 + 〈𝑤 ∙ 𝜑(𝑥𝑖)〉 + 𝑏) − ∑ 𝛼𝑖
∗(𝜀 + 𝜉𝑖 − 𝑦𝑖 −𝑛

𝑖=1
〈𝑤 ∙ 𝜑(𝑥𝑖)〉 − 𝑏) − ∑ (𝜂𝑖𝜉𝑖 + 𝜂𝑖

∗𝜉𝑖
∗)𝑛

𝑖=1   
  
  (17) 

where 𝛼𝑖 , 𝛼𝑖
∗ and 𝜂𝑖 , 𝜂𝑖

∗ are Lagrange multipliers. According to 
KKT condition, the following equations can be achieved [23]: 

 
𝜕𝐿

𝜕𝑤
= 𝑤 − ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝜑(𝑥𝑖)
𝑛
𝑖=1 = 0  (18) 

 
𝜕𝐿

𝜕𝑏
= ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑛
𝑖=1 = 0  (19) 

 
𝜕𝐿

𝜕𝜉(∗) = 𝐶 − 𝛼𝑖
(∗) − 𝜂𝑖

(∗) = 0  (20) 

Substituting (18), (19) and (20) into (17) can transform it 
into a dual optimisation problem: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐿 = −
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑛
𝑖,𝑗=1 (𝛼𝑗 − 𝛼𝑗

∗)𝐾(𝑥𝑖 , 𝑥𝑗) −

𝜀 ∑ (𝛼𝑖 + 𝛼𝑖
∗)𝑛

𝑖=1 + ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1   
   

  (21) 
Subject to:  

 {
∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑛
𝑖=1 = 0

𝛼𝑖 − 𝛼𝑖
∗ ∈ [0, 𝐶]

 (22) 

where the 𝐾(𝑥𝑖 , 𝑥𝑗) = 〈𝜑(𝑥𝑖) ∙ 𝜑(𝑥𝑗)〉  is introduced in the 

nonlinear regression case to replace the complex inner product 
operation between the input samples in the original nonlinear 
space. The equation of 𝑤 and the nonlinear load forecasting 
model can be expressed [21]: 

 {
𝑤 = ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑛
𝑖=1 𝜑(𝑥𝑖)

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖 ∙ 𝑥𝑗) + 𝑏𝑛

𝑖,𝑗=1
 (23) 

Bias parameter b can be calculated: 

𝑏 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒|𝜀𝑠𝑔𝑛(𝛼𝑖 − 𝛼𝑖
∗) + 𝑦𝑖 − ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝐾(𝑥𝑖 ∙𝑛
𝑖,𝑗=1

𝑥𝑗)|  (24) 

In the calculation of 𝑓(𝑥), there is no need to explicitly get 
the mapping function 𝜑(𝑥) . Only kernel function 𝐾(𝑥𝑖 ∙ 𝑥𝑗) 

needs to be used, which simplifies the process.  
The selection of kernel functions is crucial, there are many 

kernel functions that can be applied in different scenarios. The 
Gaussian Radial Basis Function (RBF) kernel is used in this 
paper: 

 𝐾(𝑥𝑖 ∙ 𝑥𝑗) = exp (−‖𝑥𝑖 − 𝑥𝑗‖
2

/2𝜎2)  (25) 
In the load forecasting model of SVM, the regularisation 

parameter 𝐶 and the width coefficient of RBF 𝜎 play essential 
roles in model’s prediction performance. Therefore, to get to 
the optimal prediction accuracy, selecting optimal parameters 
𝐶 and 𝜎 is vital. The cross-validation method is addressed to 
determine  𝐶 and 𝜎.  

III. THE PROCESS OF APPLYING TWO ALGORITHMS FOR 

LOAD FORECASTING 

A. Data acquisition and feature extraction 

The half-hourly recorded load data for 2020 and the first nine 
months of 2021 are used, which are collected from the 



University of Warwick (UoW) campus energy consumption 
database. The data of 2020 performs as the training dataset and 
the data of 2021 as the test dataset. 

The previous studies indicate that three sets of information 
are required to achieve more reliable prediction results: 
Historical load demands, Calendar information and Weather 
data [24]. Regarding the calendar information, four features are 
considered: the day label using an integer from 1 to 365 to mean 
365 days through a year, week label with an integer from 0 to 6 
to represent Sunday to Sunday, timeslot label in a day using 
integer 0 – 47 to denote 24 hours with 30 minutes time intervals, 
and three binary digits are taken to distinguish various types of 
days, such as the weekdays, weekends, term time and public 
holidays. In addition, temperature, humidity, and wind speed 
data are chosen as the representation of weather information. 

B. Data processing 

Data normalisation is to improve the learning model's 
numerical stability and speed up the training process. In this 
study, the sampled data are mapped to the [0,1] interval after the 
normalisation with the following equation: 

 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
   (26) 

where 𝑥𝑚𝑎𝑥  represents the maximum value in the sample 
data and 𝑥𝑚𝑖𝑛 denotes the minimum value in the sample data. 𝑥 
and 𝑥𝑠𝑐𝑎𝑙𝑒𝑑  are values before and after the normalisation. 
Moreover, the data requires to be inversely normalised after the 
prediction according to the following equation: 

 𝑥 = 𝑥𝑚𝑖𝑛 +  𝑥𝑠𝑐𝑎𝑙𝑒𝑑(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)  (27) 

Furthermore, a few outliers exist in the data obtained due to 
the mismeasurement of utilities on the campus. The outliers 
require to be removed since their interference with the training 
process and prediction accuracy. The removal of outliers is 
performed through the linear fitting of one load value before and 
after the outliers. 

C. Error evaluation index 

To evaluate the prediction accuracy of models, the error 
indexes Mean Absolute Error (MAE) and Mean Absolute 
Percentage Error (MAPE) are used, the formula of them are 
shown below: 

 MAE =
1

𝑛
∑ |𝐴𝑖 − 𝑃𝑖|

𝑛
𝑖=1   (28) 

 MAPE =
1

𝑛
∑

|𝐴𝑖−𝑃𝑖|

𝐴𝑖

𝑛
𝑖=1 × 100  (29) 

where n is the number of data, 𝐴𝑖  means actual load values 
for 𝑖 times, and 𝑃𝑖  represents predicted load values for 𝑖 times. 

D. Prediction steps of two algorisms 

The flow chart for LSTM and SVM prediction is shown in 
Fig. 3 and Fig. 4. According to the steps of SVM load prediction, 
after data collection and processing, training sample arrays can 
be achieved based on the actual load data and selected features. 
Then, after the determination of initial parameters and 
coefficients, an initial model for load prediction can be obtained. 
The optimisation is carried out based on overall prediction 
performance at last. As for the LSTM, hyperparameter has been 
set at first. The bias and weight are then randomly generated. 

The gradient descent is used to minimise the error between the 
actual value and prediction value. Error is a function of the 
weight and bias. In the proposed LSTM method, the Mini-batch 
gradient descent (MBGD) is adopted [25].  

 

Fig. 3. SVM prediction flow chart. 

 

Fig. 4. LSTM prediction flow chart. 

IV. PRESENTATION AND COMPARISON OF PREDICTION 

RESULTS 

Four different prediction time horizon scenarios are selected 
based on various prediction applications: 
⚫ Ultra-short-term load forecasting (USTLF): Predict load 

value after half an hour 

⚫ Short-term load forecasting (STLF): Predict load values in 
the next day 

⚫ Medium-term load forecasting (MTLF): Predict load values 
in the next week 



⚫ Long-term load forecasting (LTLF): Predict load values in 
the next month 

Four prediction modes can be applied to different scenarios. For 
instance, USTLF and STLF can help energy management 
manage electricity consumption and distribution in real-time. 
MTLF and LTLF can help control the planning of electricity 
consumption and generation for the energy system. Note that all 
prediction is conducted based on half-hour resolution, and the 
simulation in this paper is implemented in Python software. 

One typical day is chosen for USTLF and STLF results, and 
a typical week and month are selected for the MTLF and LTLF. 
Four subplots in Fig. 5 and Fig. 6 from top to bottom correspond 
to USTLF, STLF, MTLF, and LTLF. The simulation in this 
paper is implemented in Python software. For the LSTM model 
in USTLF, data from the last 24 hours will be considered to 
forecast electricity demand for the next half hour, while for the 
SVM model, data from the past 48 hours are used. For both 
prediction methods, the STLF uses data from the past week to 
forecast, while the MTLF and LTLF use the past week and 
month data to predict. It can be found from two figures that the 
discrepancy between two curves turns greater with the increase 
of the prediction time scale, meaning a worse prediction 
accuracy in a longer prediction time horizon. It can be 
concluded that these two methods, LSTM and SVM, perform 
better for shorter time horizon load prediction. To compare the 
prediction performance of two methods, the training/epoch 
time and the model structure or hyper-parameters are shown in 
TABLE I. 

 

Fig. 5. Prediction results for four scenarios of LSTM. 

 

Fig. 6. Prediction results for four scenarios of SVM. 

TABLE I. MODEL PARAMETERS AND TRAINING/EPOCH TIME FOR 
LSTM AND SVM. 

LSTM 

 Layer number Nodes number Batch size Epoch time (s) 

USTLF 10 10 39 132 

STLF 10 40 13 403 

MTLF 10 50 6 494 

LTLF 10 100 4 2085 

SVM 

 𝐶 𝜎 Epoch time (s) 

USTLF 1 0.03 43 

STLF 1 0.01 499 

MTLF 0.2 0.01 631 

LTLF 0.1 0.005 426 

In addition, typical days, weeks, and months in four seasons 
are selected to verify the effectiveness of load prediction under 
various cases. The model metric (MAE and MAPE (%)) in four 
scenarios and the total test dataset are presented in TABLE II 
and Fig. 7. The epoch time is calculated on Intel® Xeon Silver 
4114 CPU 2.20GHz and 64GB RAM with Windows Server 
2019 system. 

TABLE II. MODEL METRIC FOR LSTM AND SVM IN VARIOUS 
SCENARIOS 

LSTM 

  Spring Summer Autumn Winter 
Test 

dataset 

USTLF  
MAE 0.014 0.012 0.08 0.011 0.010 

MAPE  3.507 2.997 2.001 2.752 2.501 

STLF 
MAE 0.011 0.015 0.012 0.019 0.014 

MAPE  2.761 3.751 3.002 4.752 3.477 

MTLF 
MAE 0.074 0.122 0.142 0.135 0.110 

MAPE  18.507 30.512 35.512 33.763 27.595 

LTLF 
MAE 0.279 0.342 0.266 0.321 0.307 

MAPE  69.778 85.537 66.526 80.28 73.722 

SVM 

  Spring Summer Autumn Winter 
Test 

dataset 



USTLF  
MAE 0.011 0.016 0.010 0.017 0.012 

MAPE  2.605 3.048 2.465 3.165 3.014 

STLF 
MAE 0.028 0.053 0.017 0.053 0.024 

MAPE  5.817 8.547 3.932 8.551 6.023 

MTLF 
MAE 0.023 0.043 0.044 0.044 0.037 

MAPE  6.079 8.985 11.877 10.766 9.308 

LTLF 
MAE 0.032 0.047 0.063 0.057 0.048 

MAPE  9.073 9.141 15.757 14.968 12.684 

 

Fig. 7. MAE and MAPE value of prediction results and error range for four 
scenarios of LSTM and SVM. 

As shown in TABLE II and Fig. 8, the predicted accuracy 
for LSTM for USTLF and STLF is lower than SVM, but in 
terms of the MTLF and LTLF, the SVM achieves a better result. 
The high accuracy of LSTM can be attributed to LSTM 
investigating the hidden information in the time series, and the 
deeper network levels can fit more complex nonlinear 
relationships. The lower accuracy for LSTM in MTLF and 
LTLF is due to the length of input data. Using a week or a 
month of data to predict may not be capable of capturing the 
features of the data. However, due to the better generalisation 
capability and the use of kernel function, the SVM method can 
jump out the local minimal and achieve the global optimal 
solution, making the SVM algorism more suitable for dealing 
with the data with the larger size, which may be the reason 
accounting for the better prediction performance for SVM in 
MTLF and LTLF. A more acceptable way for LSTM is to 
enlarge the length of input data. In accordance with the input 
data size, a more complex (more layers and node numbers) 
network should be established to understand the data. To train 
a more complex network, more computing power may be 
required. As shown in TABLE I, the training time for each 
epoch needs 2085 seconds with an input data length of one 
month. Complex models may require more computing power, 
and existing platforms’ performance limits the exploration of 
more complex LSTM models. This also reveals the dependence 
of deep learning networks on computer computing power. 
LSTM models with more complex models and longer time 
scale inputs may be able to improve accuracy significantly. 
However, SVM does have a higher performance than LSTM in 
MTLF and LTLF for the exact implementation platform. 

 

Fig. 8. Comparison of prediction results between LSTM and SVM for ultra-
short-term and long-term load prediction. 

V. CONCLUSION 

In this paper, the principle of two prediction methods, 
LSTM and SVM, are selected and introduced. They are then 
formulated and modified for the applications of electrical load 
prediction in four different time scales with selected features 
extracted from the actual data. The studies found that both 
methods are suitable for shorter time horizon prediction. Their 
prediction performance, including the prediction accuracy and 
training/epoch time, indicates that the LSTM has a higher 
accuracy for ultra-short- and short-term load prediction, while 
the SVM method performs better for medium- and long-term 
prediction. Meanwhile, the epoch time for the SVM method is 
shorter than LSTM in most cases, which is particularly evident 
in the case of medium and long-term prediction. The study has 
also showed that the prediction accuracy of LSTM is highly 
relevant to the computing power of the computer.  

REFERENCES 

[1] R. Carmichael, "Behaviour change, public engagement and Net 

Zero, a report for the Committee on Climate Change," 2019. 

[2] F. Tanneberger et al., "Towards net zero CO2 in 2050: An emission 
reduction pathway for organic soils in germany," Mires and Peat, 

vol. 27, 2021. 

[3]  X. Qin et al., "Study on inertia support capability and its impact in 
large scale power grid with increasing penetration of renewable 

energy sources," in 2018 International Conference on Power System 

Technology (POWERCON), 2018: IEEE, pp. 1018-1024.  
[4] M. Nedd et al., "Operating a zero-carbon GB power system: 

implications for Scotland," University of Strathclyde, 2020.  

[5] C. Chatfield, Time-series forecasting. CRC press, 2000. 



[6] Z. Hajirahimi and M. Khashei, "Hybrid structures in time series 
modeling and forecasting: A review," Engineering Applications of 

Artificial Intelligence, vol. 86, pp. 83-106, 2019. 

[7] H. Liu, G. Yan, Z. Duan, and C. Chen, "Intelligent modeling 
strategies for forecasting air quality time series: A review," Applied 

Soft Computing, p. 106957, 2021. 

[8]  N. Hecht, "Theory of the backpropagation neural network," in 
International 1989 Joint Conference on Neural Networks, 1989 

1989, pp. 593-605 vol.1, doi: 10.1109/IJCNN.1989.118638.  

[9] Y. Chtioui, S. Panigrahi, and L. Francl, "A generalized regression 
neural network and its application for leaf wetness prediction to 

forecast plant disease," Chemometrics and Intelligent Laboratory 

Systems, vol. 48, no. 1, pp. 47-58, 1999. 
[10] Z. Han, J. Zhao, H. Leung, K. F. Ma, and W. Wang, "A review of 

deep learning models for time series prediction," IEEE Sensors 

Journal, 2019. 
[11] T. Kuremoto, S. Kimura, K. Kobayashi, and M. Obayashi, "Time 

series forecasting using a deep belief network with restricted 

Boltzmann machines," Neurocomputing, vol. 137, pp. 47-56, 2014. 
[12] N. Somu, G. R. MR, and K. Ramamritham, "A hybrid model for 

building energy consumption forecasting using long short term 

memory networks," Applied Energy, vol. 261, p. 114131, 2020. 
[13] B. Schölkopf, Z. Luo, and V. Vovk, Empirical inference: Festschrift 

in honor of Vladimir N. Vapnik. Springer Science & Business 

Media, 2013. 
[14] K.-j. Kim, "Financial time series forecasting using support vector 

machines," Neurocomputing, vol. 55, no. 1-2, pp. 307-319, 2003. 
[15] W.-C. Hong, "Electric load forecasting by support vector model," 

Applied Mathematical Modelling, vol. 33, no. 5, pp. 2444-2454, 

2009. 
[16]  W. Deng, R. Yao, H. Zhao, X. Yang, and G. Li, "A novel intelligent 

diagnosis method using optimal LS-SVM with improved PSO 

algorithm," Soft Computing, vol. 23, no. 7, pp. 2445-2462, 2019. 

[17] Y. Yu, X. Si, C. Hu, and J. Zhang, "A review of recurrent neural 
networks: LSTM cells and network architectures," Neural 

computation, vol. 31, no. 7, pp. 1235-1270, 2019. 

[18]  S. Karita et al., "A comparative study on transformer vs rnn in 
speech applications," in 2019 IEEE Automatic Speech Recognition 

and Understanding Workshop (ASRU), 2019: IEEE, pp. 449-456.  

[19]  A. Kag, Z. Zhang, and V. Saligrama, "Rnns incrementally evolving 
on an equilibrium manifold: A panacea for vanishing and exploding 

gradients?," in International Conference on Learning 

Representations, 2019.  
[20] S. Hochreiter and J. Schmidhuber, "Long short-term memory," 

Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997. 

[21]  X. Liao, X. Kang, M. Li, and N. Cao, "Short term load forecasting 
and early warning of charging station based on pso-svm," in 2019 

International Conference on Intelligent Transportation, Big Data & 

Smart City (ICITBS), 2019: IEEE, pp. 305-308.  
[22] V. Vapnik, The nature of statistical learning theory. Springer 

science & business media, 1999. 

[23] S. Qiang and Y. Pu, "Short-term power load forecasting based on 
support vector machine and particle swarm optimization," Journal 

of Algorithms & Computational Technology, vol. 13, p. 

1748301818797061, 2018. 
[24] Y. Chen and D. Zhang, "Theory-guided deep-learning for electrical 

load forecasting (TgDLF) via ensemble long short-term memory," 

Advances in Applied Energy, vol. 1, p. 100004, 2021. 
[25] D. Peng, T. Gu, X. Hu, and C. Liu, "Addressing the multi-label 

imbalance for neural networks: An approach based on stratified 
mini-batches," Neurocomputing, vol. 435, pp. 91-102, 2021. 

 
 
 

   

 
 

 

  


