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Abstract

To alleviate range anxiety among electric vehicle (EV) owners, the accu-
racy of lithium-ion battery (LIB) mathematical models in the low state of charge
(SOC) range must be enhanced. A battery model that is easy to parameterise while
maintaining accuracy over the entire SOC range is required in sophisticated bat-
tery management algorithms. This thesis addresses this knowledge gap via system
identification methods of characterisation, identification, and application.

The level of non-linearity over di↵erent SOCs is first studied by using ran-
dom phase odd-multisine signals, and applied on the Doyle-Fuller-Newman (DFN)
model and a three-electrode experimental set-up of a commercial 5Ah cylindrical
21700 LIB cell. The charge transfer coe�cient is determined as the most sensitive
parameter towards battery nonlinearity and with an asymmetrical Butler-Volmer
kinetic the model nonlinear response provided good agreement against experimen-
tal data. The cathode even order nonlinearity is the main contributor towards the
battery voltage nonlinearity while the anode starts to dominate at very low SOC.

Utilising the newly proposed characterisation method, a non-linear equiv-
alent circuit model with di↵usion dynamics (NLECM-di↵), which phenomenologi-
cally describes the main electrochemical behaviours, such as ohmic, charge-transfer
kinetics, and di↵usion processes, is identified. Compared to the parameterisation
challenge of electrochemical models, the NLECM-di↵ does not rely on geometri-
cal parameter and all parameters are determined from the measured current and
voltage signals. The NLECM-di↵ is around 50% more accurate than a conventional
ECM and is comparable to the single particle model with electrolyte model (SPMe).
When simulating driving cycles and long duration discharges, the dominant voltage
loss changes from ohmic to the di↵usion losses, and the characteristic of the negative
electrode is determined as the primary reason for the low-SOC-error.

The last part of this thesis presents three case studies of model application
as part of the project ‘Virtually Connected Hybrid Vehicle (VCHV)’. The SPMe
and the NLECM-di↵ models were demonstrated in Hardware-in-the-Loop (HIL)
and therefore merit consideration for EV applications.
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Chapter 1

Introduction

1.1 Context

Transition from fossil fuel-based mobility to electrified is one of the greatest global

challenges of the twenty-first century for society, business, and politics. Recently, the

United Kingdom announced its grand challenge mission, named ‘Future of mobility’,

with the goal of establishing the UK as a leader in the design and manufacture of

zero emission vehicles and setting an ambitious target for all new cars and vans

to be e↵ectively zero emission by 2040. Additionally, as part of its enormous set

of new climate and energy rules, the so-called “Fit-for-55” package, the European

Commission published a proposal that would e↵ectively outlaw the sale of petrol

and diesel automobiles in the EU from 2035. Similarly, New Zealand joined the

Electric Vehicles (EVs) Initiative in 2019, aiming to become a carbon-free economy

by 2050 and China announces to reach peak emissions by 2030 and to achieve carbon

neutrality by 2060 as a significant step in the fight against climate change.

The implementation of Electric Vehicles has been regarded as the foremost

choice to replace the conventional internal combustion (IC) engine-based vehicles

for eliminating all mobile emissions [5]. Currently, Lithium-ion Batteries (LIBs)

are the most promising energy storage technology in electric vehicles to fulfil this

goal, as its advantages such as high specific energy density (up to 250 Wh/kg),

high power density (ranging from 0.5 kW/kg to 2 kW/kg), high energy e�ciency

(90-100%), and superior cycle performance [6, 7, 8]. However, the high demands

on the LIB technology by a rapidly growing market, requires higher energy density

for a longer driving range and improved battery performance for a lower electric

vehicle manufacturing cost. Strategies to accomplish this goal can be the evolution

of superior “next-generation” battery materials and the development of the battery
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management technology. In Figure 1.1, the electrode stack level energy content of

various cell chemistries, including state-of-the-art chemistries and future LIB and Li-

metal technologies, is shown [9]. The roadmap of next-generation battery materials

with high energy densities has been proposed conceptually. However, developing

new battery materials is not an easy task and is unlikely to be accomplished in the

near future. Also, transforming the novel battery material research outcomes into

commercial products is also an extremely time-consuming process.

Figure 1.1: Energy density vs specific energy at electrode stack level for state-of-the-art
and future battery chemistries in automotive applications. The state-of-the-art Lithium-
ion battery chemistry is represented by NMC-622/graphite and NCA (lithium nickel cobalt
aluminium oxide)/graphite [9].

On the other side, the development of the battery management technology

has attracted considerable attention from automotive original equipment manufac-

turers (OEMs) in recent years. Driven by the high demands from renewable energy

storage system applications, the battery management system (BMS) market is grow-

ing. The report from Market Research Future (MRFR) expects the global battery

management system market to reach USD 14042.04 million at a compound annual

growth rate (CAGR) of 18.59% from 2020 to 2027 (forecast period) [10]. Inde-

pendent of the battery chemistry used, an e↵ective battery management system is

compulsory for electric vehicle applications to ensure that the batteries can operate

safely and reliably, avoid physical damage, and handle temperature variations, min-

imal capacity loss, and cell unbalancing [11]. Not only does the BMS regulate the

operating conditions of the battery to ensure its safety, but it also provides accu-

rate estimation of the state of charge (SOC) and state of health (SOH) for energy

management modules in electric vehicles [12]. Additionally, the BMS is critical for

controlling and updating data, detecting faults, all of which are critical for achiev-

2



ing optimal battery utilisation [13]. By applying the advanced battery management

technology, the energy can be su�ciently and smartly extracted from the batteries

for a longer driving range, and the battery service life can be significantly prolonged

for reducing the maintenance expenses. Thereby the battery performance can be

substantially enhanced, and create a favourable environment for OEMs to deliver

viable energy storage solutions at a reasonable price.

Typically, establishing a robust battery mathematical model serves as the

starting point for developing advanced battery management technologies [5]. Based

on the model accuracy, model-based functional applications and algorithms, such as

SOC and SOH estimations, can be applied to ensure the safe and optimal battery

operation in real-time [14]. In addition, a comprehensive battery model can also be

utilised in predicting new battery material performance in terms of current-voltage

characteristics and ageing degradation, which benefits the evolution of the next

generation battery technology. Thus, a battery model that accurately represents the

battery characteristics is fundamental and crucial for the development of advanced

electric vehicle applications and new battery technologies.

1.2 Motivation for the Direction of Research

The research presented in this thesis is aligned with the externally funded engineer-

ing project ‘Virtually Connected Hybrid Vehicle (VCHV)’. The aim of the VCHV

project is to reduce time-consuming physical testing of hybrid vehicle prototype

components, the development of a test rig and the physical testing of the complete

system. A hybrid/electric vehicle prototype incorporates numerous subsystems,

each of which must complement the others in order to function properly as a single

unit. For instance, the battery configuration should be perfectly matched to the

converter unit, and the motor output should be mechanically linked to the engine,

in order for the entire system to perform reliably over its lifetime. In an ideal world,

all subsystems would be co-located for prototype testing throughout the system’s

development, but this is prohibitively expensive and time-consuming, especially in

the automotive industry, where they are typically developed under separate roofs

and frequently by di↵erent companies/suppliers bound by confidentiality clauses.

To demonstrate the feasibility of a real-time virtual powertrain testing for auto-

motive OEMs, the VCHV project was proposed to establish a real-time internet

distributed Hardware-In-the-Loop (HIL) simulation platform spread across di↵er-

ent geographical locations. As shown in Figure 1.2, there were six UK universities

working collaboratively with the common objective to develop di↵erent hybrid pow-
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ertrain sub-systems distributed throughout the United Kingdom and virtually tested

together in the HIL simulation, with the possibility of replacing the subsystems with

virtual mathematical models.

Figure 1.2: Proposal of the VCHV project.

HIL simulation is a real-time technique for developing and testing embedded

control systems that are used to operate complex equipment and systems [15]. In

1936, the first attempt of HIL application is reported for (real-time) flight simula-

tion, where the early goals were to simulate the instruments with a fixed-cockpit

“linktrainer” [16]. Furthermore, HIL motion simulators were built for the dynamic

testing of vehicle components since 1985 [17]. In recent years, HIL simulations for

real-time onboard battery-related testing have begun to be conducted in order to

develop sophisticated battery technology [18, 19, 20, 21]. In contrast to simulation

software such as Simulink, the HIL simulation can execute representations (math-

ematical models) of the Unit-Under-Test (UUT) and process data signals in exact

real time, making it perfect for integrating with actual devices or systems. Design

and testing without the need to operate a real process is the key advantage of the

HIL simulation, which results in a significant reduction of the cost and development

time [22]. To replace the physical component of a machine or system, however, an

accurate mathematical representation (model) is compulsory in the real-time HIL

simulations.

As stated in the VCHV proposal, the responsibility of the author, on behalf

of WMG, University of Warwick, was to develop a battery model that serves as a

power supply for the virtual powertrain in the internet distributed HIL simulation

platform. As illustrated in Figure 1.2, the HIL rigs from dSPACE company were

employed to implement the models of a lithium-ion battery and a BMS for HIL

simulations and transit the obtained data signals with VCHV partners. Because

the complexity of a battery model can impact computation time, particularly for

4



electrical real-time HIL systems, the model fidelity has to be taken into account

during the modelling process in order to decrease the computational cost [23]. Ad-

ditionally, a compromise between the number parameters to identify and the model

accuracy required for a specific application is not trivial [21]. In relation to model

parameter estimation the infrastructure facilities of small- and medium-sized auto-

motive OEMs may be unable to conduct sophisticated characterisation tests and

physical-chemical experimental tests to extract parameters of complex lithium-ion

battery models [24]. Therefore the characterisation methods supporting parameter-

isation of the desired battery model has to be easy-to-implement, which is also a

critical objective and point of examination throughout this thesis. As mentioned

above, the direction of research is determined to develop an application-oriented,

easily identifiable, low computational cost lithium-ion battery mathematical model

with the accomplishment of high accuracy in the real-time Hardware-in-the-Loop

simulation platform.

1.3 Research Objectives

In practical electric vehicle (EV) applications, the lithium-ion battery operation is

optionally restricted within a safety state-of-charge (SOC)∗ window by the automo-

tive OEMs rather than taking advantage of the full range between 0% and 100%

[26, 27]. From the point of view of the usage of a single lithium-ion cell, there are

two main compelling reasons, in the literature, for this setup; on the one hand, some

studies state that lithium-ion batteries that operate within a partial range of SOC,

present excellent cycling performance with essentially reduced battery degradation.

Jiang et al. investigated the e↵ect of SOC operation ranges on LIB capacity degra-

dation, and concluded that, when the battery is cycled in a SOC range below 25%

and above 75%, the fastest capacity fade occurs [28]. Compared with full range

cycles, batteries degrade slower when the SOC is limited to 30%–90% [29]. Simi-

larly, Kostopoulos et al. suggested that EV manufacturers should limit the battery

discharging-charging procedure between 20% and 80% for battery health reasons

[30]. Regarding the limitations caused from the perspective of LIB ageing degrada-

tion, it can be expected to be improved by developing new battery materials and

advanced optimal charging strategies in the future. On the other hand, the restricted

∗
From electrochemical perspective, the SOC of a battery is related to the Li+ concentration

amount in the particle throughout the positive electrode and negative electrode, and it is a relative

quantity that describes the ratio of the remaining Li+ concentration amount to the present maxi-

mum available Li+ concentration amount of a battery [25]. The value of the SOC varies between

0% and 100%. If the SOC is 100%, then the cell is said to be fully charged, whereas a SOC of 0%

indicates that the cell is completely discharged.

5



operation range is a consequence of the unreliability of the battery model voltage

prediction in battery management systems within the specific SOC range, which

could lead to unexpected energy exhaustion and bring considerable range anxiety

to the passengers [31]. Zheng et al. state that LiBs in the low SOC range show very

strong nonlinear performance that cannot be well simulated by widely used equiva-

lent circuit battery models (ECMs), which leads significant SOC estimation error in

the low SOC range [32]. Also, refer to [33, 34], the authors propose that the widely

used ECMs are generally inadequate at predicting battery terminal voltage at low

SOC, which considerably increases the risk associated with the urgent usage of a

battery at low voltage. If an advanced battery model can provide excellent accuracy

across the entire SOC range of 0 to 100%, the restriction on SOC operation range

can be removed, allowing for more battery energy to be extracted for achieving a

longer driving range without increasing the cost of the battery, which benefits the

high demands of the growing EV market.

For fulfilling the requirements of BMS applications, two classes of existing

lithium-ion battery mathematical models reviewed in Chapter 2 are developed from

two distinct modelling perspectives, respectively. Note that only single battery cell

models are taken into consideration in this thesis, thus the e↵ects of cell-cell variation

and temperature inhomogeneity, which is generally investigated by a module-level

or pack-level model [35], cannot be represented. The class of physical model† has

attracted the attention of the scientific community in recent years, including Doyle-

Fuller-Newman (DFN) model [36] and the family of Single Particle Model (SPM)

[37, 38]. This model class is renowned for its high accuracy across the entire SOC

window and for its inherent physical relevance. However, the limitations, such as

considerable identification and parameterisation costs and low calculation e�ciency,

make it unsuitable for the thesis requirements as well as HIL applications for small-

and medium-sized automotive OEMs. More details will be introduced in Chapter

2. Alternatively, the class of equivalent circuit model (ECM) is commonly applied

in the real-time onboard BMS applications due to the advantages of e�cient com-

putational cost [5]. However, a major issue contributing to error of SOC estimation

in a BMS is reported that the poor accuracy of the conventional ECM‡ voltage

estimation in the low SOC range (e.g. at SOC less than 20%) [32]. According

to the literature, it’s commonly reported that a conventional ECM is able to pro-

†
A physical model, also known as electrochemical model, is one that is based on principle of

physics and requires a domain to be defines where the dynamics occur together with the associated

material and physical properties of that domain.
‡
A conventional ECM refers to a linear ECM that makes use of electrical components (resistors,

capacitors, and DC voltage supply) to equivalently emulate the current-voltage relationship of a

lithium-ion battery.
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vide su�ciently accurate voltage prediction and SOC estimation in high and middle

SOC ranges during discharging, but the model accuracy in the low SOC range is

rarely mentioned [39]. The available SOC range was commonly determined higher

than 10% in the validation experiments, e.g. 40%⇠70% in [40], 25%⇠100% in [41],

20%⇠100% in [42], and 10%⇠100% in [34]. Furthermore, some researches indicate

that the fidelity of conventional ECMs typically declines at SOC lower than 20%

and decreases significantly under 10% SOC during discharging [43, 44]. Refer to

[39], under a set of constant-current discharge pause profiles, minor voltage error of

conventional linear ECM is observed at SOC larger than 20% and no error summa-

tion is noticed. However, the lower-than-20% SOC leads to a considerable voltage

error increase, which indicates that the model inaccuracy e↵ect at low SOC is purely

a SOC issue. Xiong et al. argued that the ECM inaccuracy is caused by the non-

linearity of the OCV curve, and as the OCV curve has strong nonlinearity at low

SOC below 10%, the accuracy of the ECM substantially declines at low SOC during

discharging but barely reduces at high SOC during charging [33]. To clarify the low-

SOC-error issue, Figure 1.3 presents the voltage predictions of the 2nd order linear

ECM [45] and the physical model Single Particle Model with Electrolyte Dynamics

(SPMe) [38, 46] for a LG M50 21700 NMC battery cell. Additionally, accuracy

and computational time comparison of two models are listed in Table 1.1. When

compared to experimental data, the linear ECM shows a relatively poor accuracy

with 0.172V RMSE across the entire SOC range and specifically 0.493V RMSE in

the low SOC range (from 20% to 0% SOC) which indicates the significant low-SOC-

error of the linear ECM. In contrast, SPMe achieves a high degree of accuracy with

0.048V RMSE across the entire SOC range, and the RMSE from 20% to 0% SOC

for the SPMe is 0.036V. However, given that the massive parametersation tests

and long computational time§ of the SPMe shown in Table 1.1, this is not a suitable

candidate for practical EV applications [39] and the ECM is chosen as the basis of

model modification to improve the low-SOC-area performance. Thus, the accuracy

of the ECM class is required to be improved to that of the physical class model,

where the objective accuracy requirements are defined as 0.050V 100%-0% RMSE

and 0.060V 20%-0% RMSE under 0.5C CC discharge profile.

The accuracy of battery models is directly related to the reliability of practi-

cal BMS applications including real-time HIL simulation mentioned in Section 1.2.

However, the main reason, the existing conventional linear ECMs do not provide

comparable accuracy to physical models during discharging, particularly in the low

§
Note that the computational time of two models using the same PC hardware with the CPU

of Intel Core i7 and 16.0GB RAM for simulation.
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Figure 1.3: Voltage predictions of conventional linear 2nd order ECM and physical model
discharged from 100% SOC to 0% SOC at 0.5C constant current load.

Table 1.1
Features of two class battery models at 0.5C constant current load.

Model 100%-0% RMSE [V] 20%-0% RMSE [V] Parameterisation tests Computational Time [s]

Linear ECM 0.172 0.493 2 2.30

SPMe 0.048 0.036 7 301.33

SOC range, is still an open question. On the one hand, Firouz et al. conducted

experiments and analysed the input and output of the battery system from the per-

spective of control theory, and they stated that the ECM, as a linear approximate

model, ignores the nonlinear characteristics of the battery system, which is a main

reason to cause model error, especially in the low SOC range [47]. On the other

hand, as reviewed in Chapter 2, some researchers developed complex physical-based

electrochemical models and fractional-order models with electrochemical processes

to achieve high model accuracy [48, 49]. Thus, the author asserts that the absence

of interpretations of battery nonlinearity and battery dynamics are origins of the

inaccuracy of linear ECMs. To improve the ECM accuracy across the entire SOC

range, a unique battery mathematical model that takes these two features into con-

sideration while also meeting the motivations outlined in Section 1.2 is necessary to

be developed for academic and industrial applications. Nonlinearity of lithium-ion

batteries, as a critical component of the battery model, must be captured by apply-

ing specific nonlinear characterisation methods and the results further understood.

Consequently, four research objectives are defined, which determine the research

work undertaken within this thesis;

(1) Design a characterisation method capable of capturing battery non-

linearity.
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(2) Understand the electrochemical processes contributing to nonlin-

earity.

(3) Develop a battery mathematical model which requires minimal iden-

tification cost while achieving a high level of accuracy over the entire

SOC range.

(4) Evaluate the applicability of the proposed battery model to Hardware-

in-the-Loop simulations.

1.4 Scope of the Thesis

The goal of this thesis is to develop an application-oriented, easily identifiable, low

computational cost battery model capable of achieving high accuracy over the entire

state-of-charge range for internet distributed Hardware-in-the-Loop applications.

For this purpose, this thesis reviews existing widely-employed battery models in-

cluding the class of physical models and the class of equivalent circuit models to

understand the context within which such models are developed and their intended

applications, as well as the nature of experiments required to characterise and pa-

rameterise models from either class. The benefits and shortcomings of both model

classes are identified, and the improvements from the standpoint of system iden-

tification are proposed to address the shortcomings in terms of the di�culty in

parameter determination of the physical model class and the low-SOC-error of the

ECM model class.

Signal 
Design

Data 
Collection

Model 
Identification

Model 
Validation

Model 
Application

Characterisation Identification Application

Figure 1.4: The typical system identification procedure.

This thesis is founded on the system identification approach, which is de-

scribed as three battery-related features, namely characterisation, identification,

and application, as depicted in Figure 1.4. To begin, dedicated excitation signals

and experiments that actively excite battery cells are designed to collect essential

information for building a model, which is proposed as a battery characterisation
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method. In the identification part, a model structure is required to be determined

to represent the system, and it should be matched with the characterised data

about the system by mostly minimising a cost function that measures a goodness

of the fit. The developed battery model is validated by simulations to test whether

it accurately describes the available data. Last but not least, the finished model is

implemented in practice to determine its suitability to the intended HIL application.

In this thesis, the research is dedicated to the discharge phase of the battery

cell level at a room temperature (25�C); the charge phase as well as the module and

pack levels are not considered. Given that lithium-ion batteries work at typical tem-

peratures ranging from 10�C to 40�C and an e�cient battery thermal management

system can maintain the proper temperature range, temperature dependency is not

taken into account. Furthermore, temperature dependency, control algorithms that

operate on the HIL platform, state estimation algorithms, inclusion of battery age-

ing are beyond the scope of this thesis, however, such topics may benefit from the

proposed characterisation method and battery model. The results of this thesis may

be of high interest for the improvement of current LIB technology and battery man-

agement system design with the goal of supplying automotive original equipment

manufacturers.

1.5 Thesis Structure

This thesis is structured as follows. Chapter 2 presents a critical review of exist-

ing battery mathematical models, including lithium-ion battery fundamentals and

dynamic processes, applied in academia and industry. The applicability of these

models for the HIL application case described in Section 1.2 is examined, thus the

development of a precise equivalent circuit battery model accounting for battery

nonlinearity and a large time constant dynamic is noted as a knowledge gap in the

existing literature.

To identify the desired battery model, relevant characterisation tests neces-

sary to obtain the characteristics of the battery voltage dynamic response are re-

viewed. Especially, to fulfil Research Objective (1), an overview of research fields in

which nonlinear characterisation tests is presented in Chapter 3. Chapter 4 presents

a model-based study to understand why and how electrochemical processes excite

and a↵ect battery nonlinearity by applying a frequency domain multisine character-

isation technique on the pseudo-two-dimensional (P2D) model. Chapter 5 describes

an experimental investigation into the nonlinear frequency responses of a full bat-

tery cell as well as individual electrodes using a three-electrode experimental set-up
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of a commercial 5Ah cylindrical 21700 cell.

Chapter 6 proposes a semi-physical nonlinear equivalent circuit model taking

battery nonlinearity and di↵usion dynamics into consideration on the basis of the

nonlinearity characterised in Chapter 5, which is validated under various EV load

current profiles and compared with an electrochemical model the Single Particle

Model with electrolyte dynamics (SPMe). Chapter 7 examines the applicability

of the SPMe model and the NLECM-di↵ proposed in Chapter 6 for the internet

distributed Hardware-In-the-Loop applications. Chapter 8 provides discussions and

conclusions of this thesis and suggestions for future work.
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Chapter 2

A Review of Lithium-ion

Battery Mathematical Models

2.1 Introduction

Mathematical models of lithium-ion batteries are employed to emulate LIB voltage

response for fulfilling various management demands. An accurate battery model is

essential for an on-board battery management system (BMS) for assessing various

battery state variables, such as state-of-charge (SOC), state-of-power (SOP), and

state-of-health (SOH), which indicates the energy content, power delivery capability,

and batteries ’health’ condition, respectively [50, 51, 52]. Numerous e�cient opti-

misation and control strategies to prolong battery service life are developed on the

basis of comprehensive battery models [53, 54, 55, 56]. To meet these expectations

for a variety of applications, researchers have developed extensive battery mathe-

matical models to accurately predict the macroscopic physical quantities (such as

voltage, temperature and current) of lithium-ion batteries.

As such, Section 2.2 introduces the fundamental knowledge of LIBs, includ-

ing their basic components and operational principles, together with the commonly

used commercial LIB chemistry. Section 2.3 describes the typical electrochemical

processes that occur inside a LIB which are related to specific voltage losses con-

tributing to the measured battery terminal voltage, and from the modelling point of

view, the dynamic response of the electrochemical processes are classified as linear

or nonlinear with regard to their mathematical representations. Section 2.4 reviews

the mainstream of existing battery mathematical models employed for the practical

applications, which are developed on the basis of either the mathematical representa-

tions of fundamental electrochemical processes or the phenomenological description
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of the dynamic behaviour of a lithium-ion battery. Meanwhile, the advantages and

limitations of these battery models are summarised in terms of model identification

and computational cost, which determines the applicability of the specific battery

model in the case of HIL applications. Following this review, the knowledge gap is

identified for the research question in Section 2.5.

2.2 Fundamentals of Lithium-Ion Batteries

A LIB consists of a cathode (positive electrode) and an anode (negative electrode),

separator, electrolyte and current collectors. Two spatially separated electrodes

comprise of the electrochemically active material and inactive components such

as conducting additives and binder, and are isolated by a separator, typically a

micro-porous polymer membrane, that allows the transport of lithium ions but

not electrons. The electrolyte of LIBs is commonly a liquid solvent mixture, e.g.,

carbonate-based solvents [57]. In addition to liquid electrolyte, polymer, gel, and

ceramic electrolyte have also been explored for LIB applications [58]. The metal

current collectors are attached to electrodes and serve as the external terminals of

a LIB. Generally, copper is utilised as the material of anode current collector, and

for cathodes the collector is usually an aluminium alloy. Figure 2.1 illustrates the

basic working principle of the discharge and charge processes of a typical lithium-ion

battery.

The basic principle of LIBs is an oxidation-reduction (Redox) reaction. The

chemical equations of the charging and discharging processes are shown in the fol-

lowing equations for the anode and the cathode, respectively.

LixC6 xLi+ + xe– + C6 (2.1)

Li1–xMO2 + xLi+ + xe– LiMO2 (2.2)

where M represents a transition metal (e.g., Co, Ni, Mn) [59]. During the charging

process, the oxidation occurs at the cathode, thus the electrons are released and

the lithium ions deintercalate from the cathode. The electrons pass through the

external circuit, resulting in the generation of an electrical current in the opposite

direction of the electron flow, as well as the lithium ions are transported to the

anode by di↵usion and migration through the electrolyte inside of the LIB. At the

anode the lithium is reduced, in which lithium ions accept electrons and intercalate

in the host structure of the anode. For the discharge process these processes occur
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Figure 2.1: Working principle of the discharge and charge process of LIBs [59]

in the other direction.

LIB capacity is dependent on the cathode. After years of continuous devel-

opment, numerous cathode electrode materials have been investigated and commer-

cialised. Lithium Cobalt Oxide (LCO) and Lithium Manganese Oxide (LMO) were

the first commercially available cathode materials in LIBs [60]. The LCO mate-

rial has a layered structure that allows lithium ions to intercalate between planes.

In commercial cells, this material has a voltage of 4.2V relative to lithium metal,

which corresponds to the cycling of 0.5 Li+ per LiCoO2 and a capacity of 140-150

Ah/kg. Modern commercial batteries still use cobalt, but the material has signif-

icant disadvantages compared to newer alternative electrode materials, including

being environmentally hazardous and highly expensive. In addition, its instability

at high temperatures and susceptibility to thermal runaway during overcharging [61]

make LCO less desirable for automotive applications. The LMO is di↵erent from the

LCO, which has a spinel atomic structure. The material is relatively inexpensive

compared to LCO, and its thermal safety characteristics are superior to those of

LCO, with a greater thermal runaway temperature [62]. However, the material has

a lower charge capacity, which makes it less desirable for some automotive appli-

cations. Recently, cathodes composed of a transition metal oxide mix, specifically

lithium Nickel Manganese Cobalt oxide (NMC) in various ratios (1:1:1, 6:2:2, 8:1:1),

have acquired popularity due to their increased cycle life and high energy density.
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Literature indicates that the possible specific charge capacity of NMC ranges from

140 to 230 Ah/kg, providing it a significant energy capacity advantage over LCO.

Due to its reduced cobalt content, it is significantly cheaper, less hazardous, and

safer to operate and store than LCO [63]. In addition, since the practical energy den-

sity is enhanced by increasing the nickel proportion, the development of high nickel

NMC cathode batteries is becoming mainstream [64]. In addition, the lithium Nickel

Cobalt Aluminium oxide (NCA) is also a state-of-the-art cathode material for some

applications, as NCA has a comparably high practical specific capacity. However,

compared with the other cathode materials, the drawback of NCA is the severe

capacity fade at elevated temperature (40-70°C) due to solid electrolyte interface

(SEI) growth on the cathode and micro-crack growth at grain boundaries [65]. A

detailed overview of cathode material properties is given in [60].

On the other side, the state-of-the-art anode material in LIBs are carbon-

based. Graphite was commercialised as an anode material twenty years ago and

is now the most widely used material due to its significant advantages, including

low cost, high electrochemical and mechanical stability, and availability [66]. The

lithium titanium oxide (LTO) is the other commercial anode material for high power

applications and usually in combination with lithium iron phosphate (LFP) as high

power cathode material. Additionally, silicon (Si) active material with impressively

high theoretical capacity is used for next-generation anodes in lithium ion batteries

(LIBs). However, due to the inevitable volume expansion and unstable SEI coating,

pure Si is still confronted with challenges in commercialisation. To address these

challenges, silicon-alloys and silicon oxide have been explored and suggested to be

the future direction [67].

2.3 Dynamic processes of Lithium-Ion Batteries

Independent of the electrode materials used, each electrochemical and physical pro-

cess in lithium-ion batteries leads to a specific voltage loss depending on the ex-

citation current [48]. From the perspective of modelling, the related response can

be classified as nonlinear and linear dynamics, respectively. Typical electrochem-

ical and physical processes in LIBs consist of charge transfer reactions, di↵usion

processes, thermodynamics, and electrical potential, which are discussed below.

2.3.1 Charge transfer reactions

Charge transfer reactions at the electrodes, notably oxidation and reduction, are

nonlinear Faradaic processes characterised by a nonlinear relationship between cur-
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rent density and over-potential, which is described using the Butler-Volmer kinetics,

as shown in Equation (2.3).

j =
i0,k
F

✓
exp(

↵aF

RT
⌘)� exp(�

↵cF

RT
⌘)

◆
, k 2 {n, p} (2.3)

where j is the volume rate of lithium-ion generation, i0,k is the exchange current

density, k denotes the electrodes (n for anode and p for cathode), ⌘ is the over-

potential, ↵a and ↵c are the anodic and cathodic transfer coe�cients, and F , R,

and T are Faraday’s constant, the gas constant, and the temperature, respectively.

Equation (2.3) illustrates how the electrical current through an electrode is

dependent on the voltage di↵erence between the electrode and the bulk electrolyte

for a simple, unimolecular redox reaction when both a cathodic and anodic reaction

occur on the same electrode. It assumes that the concentrations at the electrode are

practically equal to the concentrations in the bulk electrolyte, allowing the current

to be expressed as a function of potential only. The exponential relation between

j and ⌘ in Equation (2.3) is expected to result in nonlinearity contributing to the

battery terminal voltage.

2.3.2 Di↵usion processes

Di↵usion processes occur in the solid phase and electrolyte phase of a LIB, which are

caused by the di↵erence of lithium ion concentration. In the electrode particles, solid

phase di↵usion process is represented by Fick’s second law in spherical coordinates:

@cs,k
@t

=
Ds,k

r2
@

@r

✓
r2

@cs,k
@r

◆
, k 2 {n, p} (2.4)

here cs,k is the lithium ion concentration in particles, the di↵usion coe�cient of

lithium is Ds,k, time t and the spatial coordinate r. The distribution of lithium ion

concentration in spherical particles is nonlinear due to the relation to current-voltage

nonlinearity via Butler-Volmer kinetic in the boundary conditions:

@cs,k
@r

���
r=0

= 0, �Ds,k
@cs,k
@r

���
r=Rs

= jk (2.5)

where jk is the flux of lithium ions away from the surface of the spherical particles.

At the centre of the particle (r = 0), there is no flux, and on the surface of the

particle (r = Rs), the flux is equal to the consuming/producing rate of Lithium ions

due to the electrochemical reaction occurring at the solid/liquid interface.

Equation (2.4) assumes that the porous electrode is made of equally sized,

isotropic, homogeneous spherical particles [68]. This homogeneous description of
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electrode microstructure results in smooth, uniform intercalation/de-intercalation

of lithium inside the electrode and has proven to be successful in characterising

discharge/charge behaviours particularly at low to moderate rates [69]. In reality,

however, Li-ion electrodes are very heterogeneous structures [70]. In addition, the

spherical assumption leads to the microstructure of electrode posed posed in a one-

dimensional domain with spherical symmetry. This renders the model simple enough

to be computationally a↵ordable, while retaining enough of the physics to be able

to accurately predict the batteries’ behaviour and capture its internal states [71].

In the electrolyte, ionic transport is a result of a combination of two physical

processes. The first occurs as a consequence of migration produced by a local electric

field, while the second occurs as a result of ion di↵usion caused by concentration

gradients [72]. The species conservation in electrolyte phase can be expressed given

in Equation (2.6), which assumes the electrolyte consist of a binary salt in a single

solvent; however, mixtures of several non-aqueous liquids or high and low molecular

weight polymers can be treated as a single solvent without significant loss of rigour

[68].
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@

@x
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De"

b
e,k

@ce,k
@x

◆
+

3"s,k (1� t+)

Rk

jk (2.6)

where involving the lithium ion concentration ce,k, the time t, the electrolyte volume

fraction "e,k, the active particles volume fraction "s,k, the Li+ transference number

t+, the Bruggeman porosity exponent b, the lithium ion di↵usion coe�cient in elec-

trolyte De, the radius of active material particles Rk and the net molar flux of

lithium ions exiting the particle kinetic jk.

As the simulation results demonstrated in [73], the impact of the ionic trans-

port process in the electrolyte towards LIB nonlinearity is expected to be only minor.

Thus, when considering the contribution of di↵usion processes to LIB nonlinearity,

solid di↵usion processes in spherical particles can be regarded as the primary process

[74].

2.3.3 Thermodynamic

Thermodynamics is the branch of physics that addresses the fundamentals of the

physical and chemical behaviour of equilibrium matter [75]. In lithium-ion battery

study, thermodynamics are generally illustrated using open circuit voltages (OCV)

of the electrodes as a function of their stoichiometry. When it comes to battery

modelling, a frequently utilised alternative is to employ a measured OCV vs. SOC

curves. The OCV UOCV is defined as the di↵erence between cathode potential

Up and anode potential Un when the two electrodes are at equilibrium, e.g., in
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the absence of a current. The diagram of three potential is shown as Figure 2.2.

Note that “RE” denotes a reference electrode which is embedded inside the battery

to directly measure the negative and positive electrode potentials and enables a

quantitative evaluation of various electrochemical aspects of the battery’s internal

electrochemical reactions [76]. The relationship among cathode potential, anode

potential, and full cell OCV is described in Equation (2.7).

UOCV = Up � Un (2.7)

RE

Figure 2.2: The diagram of battery three potentials.

The equilibrium electrode potential Uk can be measured using a reference

electrode or half cell configuration in a potentiostat [24]. As such, the electrode

potential incorporates thermodynamic information about the electrode, such as the

number and type of phase transitions that the electrode materials undergo during

charge and discharge (the majority of battery electrodes undergo multiple phase

transformations), as well as the amount of lithium intercalated in each phase [77].

Mathematically, the potential of an electrode material during a phase transformation

can be described using the chemical potential, which quantifies the change in internal

energy caused by the variation in the concentration of ionic species. Nernst equation,

as described in Equation (2.8), is commonly used to provide a linkage between

equilibrium electrode potential Uk, and the concentration of participants in the

electrode process shown in Equation (2.9):

Uk = U0

k +
RT

nF
ln

CO

CR

, k 2 {n, p} (2.8)
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O+ ne R (2.9)

with the standard equilibrium potential U0

k
, the number of electrons exchanged in

the redox reaction n (n=1 for lithium-ion systems), the oxidant concentration CO,

and reductant concentration CR [78]. In intercalation reactions, U0

k
reflects the

energy of intercalated ions in specific sites within the lattice of the host material

[79].

2.3.4 Potentials

The potentials of LIBs refer to the voltage drop which are caused by the resistance

to the flow of electrons in the electrodes and the movement of ions through the

electrolyte and membrane. These phenomena are determined by the electronic con-

ductivity of the electrodes and current collectors (often copper and aluminium) and

the ionic conductivity of the electrolyte and membrane [80]. The relationship is

summarised by Ohm’s Law for electromagnetics:

J = �E (2.10)

where E is electric field intensity (V/m), J is the volume current density, a vector

describing the current flow, having units of A/m2; and � is conductivity ��1m�1.

In the physical model class, the potentials is described by the boundary

conditions of solid phase charge conservation, as following
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(2.11)

where @�
@x is electric field intensity and

iapp
Asurf

is current density. Thus, when the

parameters are considered to be fixed, the potential relationship is a linear dynamic.

2.3.5 Summary

By far, main nonlinear and linear dynamic processes of lithium-ion batteries have

been briefly described. From a modelling perspective, battery mathematical models

are developed to simulate the current-voltage relationship of the lithium-ion battery

based on either the aforementioned fundamental physical principles or empirical
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dynamic responses. In what follows, existing battery models widely utilised in the

BMS applications will be reviewed comprehensively.

2.4 Mathematical models of Lithium-Ion Batteries

Existing battery mathematical models can be classified into two categories in terms

of modelling approaches: electrochemical or physical models that are based on fun-

damental electrochemical theory as well as equivalent circuit models which exploit

a combination of data and analogies with other physical systems. Note that, due to

the amount of data required for modelling, Machine Learning (ML) models, which

apply statistical algorithms to learn from data directly, are out of scope in this

thesis.

2.4.1 Electrochemical models

Electrochemical models, starting from the physical geometries and electrochemical

mechanisms in the electrodes and electrolyte, have been proposed to describe the

lithium-ion battery behaviours over the past few years.

Figure 2.3: The schematic diagram of the pseudo-two-dimensional (P2D) model

Doyle et al. proposed the porous electrode theory in 1993 to describe lithium-

ion cells and described the widely used physics-based electrochemical model, named

as pseudo-two-dimensional (P2D) model [36, 68, 81]. The schematic diagram of the

pseudo-two-dimensional model is shown in Figure 2.3. In the x dimension, the cell

is divided into three regions to respectively represent the negative electrode, the

separator, and the positive electrode. Lithium ions (Li-ions) exist in both solid and

liquid phases in the electrodes, but only in the liquid phase within the separator.
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Table 2.1
Governing equations of the P2D model.

Description Equation Boundary conditions
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In the solid phase, Li-ions intercalate into / deintercalate from the solid-phase ma-

terial, which is represented by spheres with radius Rs. In the liquid phase, Li-ions

exist in a dissolved state in the electrolyte. The intercalation and deintercalation

of Li-ions between the solid particles in the cathode and anode define the charging

and discharging processes of a lithium-ion battery. The governing equations and

boundary conditions of the P2D model are listed in Table 2.1. The readers can refer

to [36] for more details of the P2D model. It is worthy to note that the nonlinear

dynamic processes mentioned in Section 2.3 are taken into account in this electro-

chemical model, which enables the P2D model to give accurate voltage predictions.

The model is able to not only predict the macroscopic current-voltage relationship of

the battery but also directly simulate the battery internal microscopic information

such as particle concentration distribution. Furthermore, taking advantage of emu-

lating microscopic dynamic processes in electrodes, the P2D model o↵ers the ability
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to couple with parasitic reactions for modelling ageing mechanisms such as SEI for-

mation and lithium plating [82, 83]. However, due to its algebraic constraints and

coupled interactions, the P2D model takes a significant amount of computational

cost and time to solve, which is deemed prohibitive for on-board BMS applications

[84, 85].

To reduce the complexity of the electrochemical model for real-time and

control-oriented applications, simplifications of the P2D model have been proposed

in recent years. The approach for simulating the motion of ions in and out of the

electrodes using a number of spherical particles is proposed [86], and later it has

been extended to lithium-ion batteries. The single particle model (SPM) is one of

the most commonly used simplified electrochemical battery model [37, 82, 87, 88].

The SPM describes the LIB thermodynamics, the di↵usion of lithium in the active

material of individual electrodes, and the charge-transfer kinetics of the Li-ions in-

tercalation/deintercalation reaction at the solid/liquid interface. In contrast with

the P2D model [36], it assumes the molar flux (from the solid active material to the

electrolyte) is uniform along each electrode and idealises each electrode as a single

spherical particle, as well as electrolyte dynamics are ignored all together. The re-

sults show that the computational time and cost of SPMs are significantly less than

those of the rigorous P2D model. However, due to the lack of Li+ concentration dis-

tribution and the potential distribution in the electrolyte phase, the model accuracy

can hardly be maintained when the electric current is larger than 1C∗ [88]. Thus, an

extended type of SPM, which comprises of the solid phase and the electrolyte phase

dynamics, termed as single particle model with electrolyte dynamics (SPMe), was

derived in [38]. The assumption of the SPMe model leads to a linear relationship

between molar ion flux j and the input current I as follows Equation (2.12),

j�n (t) =
I(t)

Fa�L� , j+n (t) =
I(t)

Fa+L+
(2.12)

Note that here positive current stands for discharging, and negative current

for charging in [38].

Then the PDEs in the P2D model become decoupled, as shown in Figure

2.4. The dynamics of lithium concentration in the solid and electrolyte phases are

given below. Note that {+, sep.�} stand for the positive electrode (PE), separator,

and negative electrode (NE) domain, respectively [38].

The evolution of lithium concentration in the solid phase follows Equation

∗
In the battery literature, the electrical current input is commonly denoted as a C-rate, which

is a value of current normalised by the rate capacity of a battery cell. Such that the discharging

duration is 1 h when a cell is discharged by 1C current from 100% to 0% SOC.
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Figure 2.4: The block diagram of the SPMe [38].
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with boundary conditions in Equation (2.14),
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The evolution of lithium concentration in the electrolyte phase follows Equa-

tion (2.14), (2.15), and (2.16),
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with boundary conditions in Equation (2.18),
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@c�e
@x

(L�, t) = Dsep,e↵

e (ce(0
sep))

@csepe

@x
(0sep, t) (2.18b)

Dsep,e↵

e (ce(L
sep))

@csepe

@x
(Lsep, t) = D+,e↵
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+))

@c+e
@x

(L+, t) (2.18c)
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ce(L
�, t) = ce(0

sep, t) (2.18d)

ce(L
sep, t) = ce(L

+, t) (2.18e)

Finally, the terminal voltage output is a nonlinear function of the PE and

NE surface lithium concentrations (c+ss(t) and c�ss(t)), the electrolyte lithium con-

centrations at the positive and negative current collectors (ce(0+, t) and ce(0�, t),

respectively), and the input current I(t), as in Equation (2.19):

V (t) = U+(c+ss(t)/c
+
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�
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⇥
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(2.19)

where i±
0
represents the exchange current density, and

i±
0
(t) = k±

⇥
c±ss(t)

⇤↵c
⇥
⇥
ce(0

±, t)(c±s,max � c±ss(t))
⇤↵a (2.20)

The readers can refer to [38] for more details of the derivation of the SPMe

equations.

To solve the SPMe equations, the same procedure in [38] is followed here.

The evolution of lithium concentration in the electrode and electrolyte domains were

solved separately.

For the electrode concentration dynamics, the average lithium concentration

in the electrode, or bulk concentration, is an integration of the current [89],

C±
s (s)

I(s)
= ±

3

R±
s a±FL±

1

s
(2.21)

where C±
s (s) is the Laplace transformation of c±s (t), and I(s) is the Laplace

transformation of the current I(t). Similar notations will apply hereinafter.

Define the di↵erence between the electrode surface concentration and bulk

concentration as �c±s (t) = c±ss(t) � c±s (t). Then according to the transcendental

transfer function proposed in [89] as following,

�C±
s (s)

I(s)
=

R±
s

D±
s

⇥
(�±)2 + 3

⇤
tanh(�±)� 3�±

(�±)2 [tanh(�±)� �±]
(2.22)
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where �± = R±
s

q
s/D±

s . Equation (2.22) can be reformulated into the partial

fraction expansion, neglecting the high frequency dynamics above a cut-o↵ frequency

(here 10Hz),

�C±
s (s)

I(s)
⇡ Z±

s +
n±
sX

k=1

r±k s

s� p±k
(2.23)

The readers can refer to [89] for more details. Next, Equation (2.23) can be

readily put into state-space form as

ẋ±s (t) = A±
s x

±
s (t) +B±

s I(t)

�c±s (t) = C±
s x±s (t) +D±

s I(t)
(2.24)

where x±s (t) is a vector representing the concentration c±s (x, t) at the discrete nodes.

In addition, the electrolyte concentration dynamics in Equation (2.14), (2.15),

and (2.16) is discretised by finite element method, yielding

ẋ±e (t) = Aexe(t) +BeI(t)

ce(0
+, t) = C+

e xe(t), ce(0
�, t) = C�

e xe(t),
(2.25)

where xe(t) is a vector representing the concentration ce(x, t) at the discrete nodes.

Equation (2.25) can be further simplified by removing the pole/zero cancellation at

the origin, as shown in [89].

In the SPMe model, the solid-phase Li concentration in each electrode is

assumed to be constant in spatial coordinate x, uniformly in time; the exchange

current density is approximated by its averaged value, which is independent of x;

and the total moles of lithium in the electrolyte and in the solid phase are assumed

to be conserved, allowing the fluxes to be written as proportional to input cur-

rent. The terms of the ohmic potential drop due electrolyte conductivity and the

electrolyte concentration overpotential are added in the SPMe voltage expression

to improve the voltage accuracy for larger currents than the SPM. Similarly, the

models in [90, 91, 25] also take the dynamics of electrolyte into account. Notably,

although electrochemical models can achieve relatively high accuracy and are widely

used in scientific community, there are still limitations in the physics described and

simplifications made as ideal mathematical representations, such as the assumption

of uniform current density and the idealisation of the battery active material into

uniform spherical particles in Fick’s law of di↵usion [92].
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The primary advantage of SPMs is that the uniform molar flux assump-

tion allows the concatenation dynamics and potentials to be decoupled and solved

in isolation and therefore requires minimum computational e↵ort compared to the

P2D model (which is a fully coupled system of nonlinear PDE equations). SPMs

have therefore been widely used for many purposes such as online estimation and

life modelling of lithium-ion batteries. For example, Han et al. developed a sim-

plified physics-based electrochemical model to estimate lithium-ion battery SOC

[93]. Li et al. proposed a SPM coupled with chemical/mechanical degradation

physics model to estimate lithium-ion battery SOH [94]. Reniers et al. reviewed

and compared various degradation models implemented within a SPM framework

and their behaviour [95]. In recent years, to support on-broad applications, model

order reduction algorithms, such as residue grouping [89, 96], balanced truncation

[97], Padé approximation [98], have been used to reduce the complexity of electro-

chemical models while retaining the appropriate level of accuracy. Although these

methods result in some information loss in the simplified reduced-order models, it

is more desirable for real-time battery applications.

However, a challenge with aforementioned physics-based electrochemical mod-

els is the model parameterisation of the various dynamics in each electrode and

electrolyte. A total of 35 parameters are required to in the P2D model which in-

creases the di�culty of parameterisation procedure [24]. Characterisation tests in

Chapter 3 are used to elucidate the thermodynamic and kinetic properties of the

materials and electrodes and provide essential information for electrochemical mod-

els. For example, Galvanostatic intermittent titration technique (GITT) was used

to ascertain the open circuit voltage (OCV) of the LIB, and the di↵usion coe�cient

at di↵erent states of charge (SOC) [99]. Electrochemical impedance spectroscopy

(EIS) is applied to calculate the exchange current density for each electrode and

their activation energy from the Arrhenius equation, and subsequently the reaction

rate was determined [100]. Apart from the necessary characterisation methods, to

obtain a comprehensive parameter set for electrochemical models, a few advanced

experimental tests have to be applied to collect essential physical property infor-

mation, such as SEM for electrodes morphology, inductively coupled plasma optical

emission spectroscopy (ICP-OES) and energy-dispersive X-ray spectroscopy (EDS)

for elemental composition, X-ray di↵raction for the material crystal structure and

theoretical density [24]. Such tests and analysis introduce obstacles into electric

vehicle applications and cannot be easily achieved within an engineering framework

outlined in Chapter 1. Thus, to achieve the objectives of the VCHV project, a di↵er-

ent category of battery models, which is more suitable for real-time applications due
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to its simple structure and easy identification, will be reviewed in the next section.

2.4.2 Equivalent circuit models

Taking advantage of the lower computational load and fewer parameters than elec-

trochemical models, the equivalent circuit models (ECMs) have gained wide atten-

tion and practical applications. The ECMs utilise a number of simple electrical

circuit components, such as a voltage source (indicating open circuit voltage), resis-

tors (indicating the di�culty of electron and ion movement), and resistor-capacitor

(RC) in parallel branches (indicating the polarisation inside the battery) to im-

itate the current-voltage characteristics and transient behaviour of a lithium-ion

battery [92]. In the literature, existing ECMs are commonly classified into two

types: the time-domain ECMs∗, known as the conventional integer-order models,

and the frequency-domain ECMs†, including fractional order models and nonlinear

equivalent circuit models.

Time-domain ECM

The time-domain ECM comprises of voltage source, resistor, capacitor, inductance,

and other circuit components to emulate the battery terminal voltage and current

characteristics. The basic time-domain equivalent circuit models are shown in Table

2.2. The simplest time-domain ECM only has a resistor which is connected in

series with a voltage source. It is designed to describe the open circuit voltage

of batteries, also known as the Rint model [101]. This model is easily identified

and implemented into battery simulation, however, it does not account for any

electrochemical process dynamics of a battery which results in a poor accuracy

under slow dynamic profiles [102]. To improve the model accuracy and involve

battery dynamics, a parallel RC branch is added in the circuit of the Rint model,

named the Thevenin ECM [103]. The polarisation between electrode and electrolyte

can be reflected in this model, and the battery dynamic behaviour is described more

accurately. In order to separately take into account the electrochemical polarisation

and concentration polarisation, He et al. added an extra RC branch to the Thevenin

model, also called the DP model [104]. Multiple RC branches can be added in

ECMs for a superior accuracy, however, as the number of RC branches increases,

the mathematical representation of the model become more complex, which makes

∗
A time-domain ECM is a model that is based on time-domain current and voltage measure-

ments.
†
A frequency-domain ECM refers to a model that is identified through related data captured

by frequency-domain characterisation methods.
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the model parameter identification more di�cult and not applicable for practical

applications. Thus the number of RC branches in the ECM is recommended to be

limited and is less than four in the literature [105].

Table 2.2
Schematic diagram of various time-domain equivalent circuit models

Models Model Structure Model equations and Features

Rint model

Ubatt = UOCV � I ·R0

where Ubatt is the terminal voltage,

UOCV represents the open circuit voltage,

I is the input current,

and R0 is the battery Ohmic resistance.

Thevenin model

Ubatt = UOCV � Up � I ·R0

where Rp is the polarisation resistance,

Cp is the polarisation capacitance,

and Up is the voltage of RC branch.

DP model

Ubatt = UOCV � Up1 � Up2 � I ·R0

where Rp1, Rp2 are the polarisation resistance,

Cp1, Cp2 are the polarisation capacitance,

and Up1, Up2 are the voltage of RC branches.

RCH model

Ubatt = UOCV � Up1 � · · ·� Upn � I ·R0 + hk

where Rp1, Rpn are the polarisation resistance,

Cp1, Cpn are the polarisation capacitance,

Up1, Upn are the voltage of RC branches, and

hk is the hysteresis voltage

In addition, the RC ECMs are sometimes integrated with dedicated elements

depicting the battery hysteresis behaviour, which is named as the RCH model and

shown in Table 2.2, e.g., the first-order RC model with hysteresis [106, 107, 108]

and third-order RC model with hysteresis [109]. Hysteresis, the phenomenon by

which the OCV of the battery is inconsistent between charging and discharging

processes, is a basic thermodynamic characteristic of a LIB [110]. Depending on cell

chemistries, the level of hysteresis varies. Nejad et al. compared the hysteresis levels

obtained after a one-hour rest period for the LiPO4 and NMC cell chemistries, and

the results present that the hysteresis levels for the LiPO4 chemistry is considerably

higher than that for the NMC chemistry. Moreover, in the medium SOC range

(around 20%-80%), the OCV curve for the LiPO4 chemistry is fairly flat, which
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indicates that, in the SOC estimation applications, even a small error in the voltage

measurement within this range can result in a large deviation from the actual SOC

value [111]. Thus, a model structure with the cell’s hysteresis behaviour for the

LiPO4 chemistry is more necessary than that for the NMC chemistry. Hu et al.

systematically compared the practicality of twelve commonly used ECMs in terms

of model complexity and accuracy, and concluded that the first-order RC branch

ECM is preferred for NMC cells, while the first-order RC ECM with one-state

hysteresis is the best choice for LiPO4 chemistry cells [40].

The advantage of the ECMs is the simple model structure and easy identifi-

cation as such these models are widely applied in BMS applications, such as various

states estimation [112, 113]. For state of charge (SOC) estimation, the ECMs are

integrated with a algorithm like an Extend Kalman Filter (EKF) [114, 115, 14], a

fuzzy-logic system [116], a least squares technique [117], a luenberger observer [118],

and a sliding mode observer [119]. State of health (SOH) estimation is also inves-

tigated using the ECMs in battery management systems. Since the SOH cannot

be directly measured in practice, the advanced algorithms are utilised to estimate

the variation of degradation indicators, such as battery capacity and internal resis-

tance, for determining ageing states. For example, Tong et al. improved the SOH

and SOC estimation by using the EKF and recursive least squares to optimise the

battery capacity [120]. In addition, Kim et al. designed an EKF to identify the in-

ternal resistance for SOH estimation [121]. Similarly, the genetic resampling particle

filter is applied to identify the battery pack internal resistance for SOH estimation

[122]. Pei et al. employed the double EKF to simultaneously identify SOP and the

Thevenin model parameters in real time [123]. In the literature, the ECMs and the

Kalman filter family tests have been widely used for battery states estimation in

EV applications [50].

However, a general disadvantage is that a time-domain ECM cannot directly

associate an electrical circuit component to a certain battery physical phenomena,

which limits the detailed insight of lithium-ion battery behaviours and the employ-

ment for interpreting physical processes such as battery ageing [124]. Additionally,

due to the limitation of electrical circuit components which hardly exhibits nonlin-

ear characteristics of a lithium-ion battery, most conventional ECMs with constant

parameters are linear models and can only remain relatively higher fidelity at middle-

to-high (larger than 20%) SOC regions and at low current load. For instance, refer to

[39], the DP model provides accurate results between 20% and 100% SOC with the

error within ±10mV under a 0.5C constant-current discharge pause profiles (DPP)‡

‡
The DPP is determined as a two-period cycle in which the battery undergoes constant-current
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test. Starting from the test with SOC lower than 19.5%, the estimated voltage show

larger deviation from the real value with maximum 60mV underestimation, which

indicates that model fidelity declines in the low SOC range. Additionally, when the

current load increases, the ECM RMSE§ results 3mV at 75.9% SOC and 25mV at

11.5% SOC in 0.5C DPP case increase to 24mV at 75.9% SOC and 42mV at 11.5%

SOC in 2C DPP case, which indicate that the model fidelity decreases rapidly when

the current load increases. Similarly, Xiong et al. demonstrated that RMSE of the

Thevenin model under DST¶ working condition rapidly grows from 5mV at 80%

SOC to 17mV at 10% SOC [33]. Therefore, linear ECM models are inadequate for

the objective of this thesis, which is to improve model accuracy at low SOC range.

Frequency-domain ECM

On contrary to the aforementioned time-domain ECMs, the frequency-domain ECMs,

which are analysed and designed with data obtained by frequency domain character-

isation tests, have attracted growing attention for modelling electrochemical power

sources in the last few years. The frequency response of lithium-ion batteries have

distinct characteristics, such as the impedance response captured by electrochem-

ical impedance spectroscopy (EIS) which will be discussed in Section 3.3, and the

frequency-domain ECMs o↵er a significant advantage to model the non-local and

heterogeneous phenomena prevalent in electrochemical systems, such as nonuniform

potential distribution [126]. This type of model is therefore considered an e↵ective

candidate in many fields of battery management, including frequency domain mod-

elling for health diagnosis and battery heating, as well as time domain modelling

for BMS applications including SOC and SOH estimations and fault diagnosis [124].

According to the identification approaches utilised, the frequency-domain ECMs can

be further classified into two categories: the fractional order model (FOM) and the

nonlinear equivalent circuit model (NLECM).

The fractional-order model (FOM) was first proposed for NiMH batteries in

[127], in which the parameters were identified based on impedance data in the fre-

quency domain [128]. However, due to the lack of appropriate numerical approaches

discharge in the first period and rests in the second period, cycling from a fully charged condition

to the discharge voltage limit. The purpose of the extended constant-current discharge period is to

imitate stable driving conditions with generally constant speed and power consumption, whereas

the purpose of the rest period is to test the accuracy of voltage estimate during the depolarisation

process.
§
The voltage RMSE is computed using the mean voltage error during the discharge period of

each DPP cycle, and the SOC value is regarded as the mean SOC during each entire discharge

period.
¶
The DST test is a widely used dynamic driving profile to evaluate the performance of the

vehicle, and is also used to validate model accuracy or algorithm e�ciency [125].
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for implementing the frequency-domain model back into the time domain at that

time, the model was rarely implemented. Recently, the development of the FOM

is prompted by the application of fractional-order calculus as well as new elements,

which exhibit memory e↵ects, by the circuit analysis theory [129, 130, 131]. A

common feature of electrochemical battery system is that multiple dynamic pro-

cesses mentioned in Section 2.3 occur simultaneously during operation and inher-

ently exhibit di↵erent time scales [124]. Faster physical processes show smaller time

constants than slower processes, which can be distinguished by characterising the

impedance over wide frequency ranges in electrochemical impedance spectroscopy

(EIS) [132]. Note that the EIS will be introduced as one of the conventional charac-

terisation tests in Chapter 3. The fractional-order behaviour of battery impedance

spectra has been widely reported in the literature, leading to the design of constant

phase element (CPE).

The modelling principles of the FOMs is to design an equivalent circuit with

the goal to fit the experimentally measured impedance data obtained from EIS using

circuit elements, as demonstrated in Figure 2.5. Apart from the circuit elements in

the conventional ECMs mentioned in Section 2.4.2, a CPE initially proposed in [133]

is utilised into the circuit to describe the phenomenon of capacitance dispersion in

LIBs, and its frequency domain electric impedance ZCPE is expressed as

ZCPE(!) =
1

CCPE(j!)↵
=

1

CCPE(!)↵

⇣
cos

↵⇡

2
� j sin

↵⇡

2

⌘
, for ↵ 2 (�1, 1),

(2.26)

where the exponent ↵ is a fractional-order related to capacitance dispersion,

CCPE is the capacity coe�cient, j is the imaginary unit, and ! is the angular

frequency. The CPE element can be considered as a generalised electrical element

with constant-phase angle of ↵⇡/2. Similarly, various conventional elements can

be represented by setting corresponding phase shifts, such as resistance (↵ = 0),

capacitance (↵ = 1), and inductance (↵ = �1). In the Nyquist plot, a CPE is

a straight line with a slope of � tan(↵⇡/2), and thus the straight line in the low

frequency range can be emulated, which cannot be achieved with an ideal resistance

or capacitance. In this case, the CPE is commonly named as the Warburg element,

which is expressed as following [126]:

ZW(!) = ZD

tanh
p
j!/!Dp

j!/!D

, (2.27)

where !D and ZD represent characteristic frequency and di↵usion resistance, respec-
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tively.

To model the semi-circle in the mid-frequency range, the Zarc element, i.e.,

a parallel connection of a CPE and an ideal resistance, denoted by R//CPE, is

commonly utilised and expressed as

Zarc(!) =
R

1 +RCCPE(j!)↵
. (2.28)

By eliminating !, one obtains

✓
Z

0
arc(!)�

R

2

◆2

+

✓
Z

00
arc(!)�

R

2
cot

↵⇡

2

◆2

=

✓
R

2
csc

↵⇡

2

◆2

, (2.29)

which represents a circle whose centre is (R/2, R cot (↵⇡/2)/2), and the radius is

R csc(↵⇡/2)/2, as shown in Figure 2.5. With the presence of the CPE, the de-

pressed semi-circle in the middle frequency range can be modelled [124]. Thus,

taking advantage of fractional-order calculus, the CPEs can significantly improve

the feasibility of FOMs for EIS fitting that can be used to link impedance variation

and battery status for frequency domain applications, such as health diagnosis [134]

and alternating current (AC) heating [135].

Figure 2.5: Example of fractional order based EIS fitting [124].

To apply FOMs in the time-domain BMS applications, the CPE element

has to be implemented in the time domain. The fractional-order operator for a
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CPE in Equation 2.26 is mathematically defined by D
↵
t (·) = d

↵
(·)

dt↵ . An equation

with D
↵
t describes dynamic processes with infinite dimension. To facilitate anal-

ysis and numerical implementation, three di↵erent definitions have been proposed

for the description of the fractional order derivatives, namely, Grunwald-Letnikov

(GL), Riemann-Liouville (RL), and Caputo [136]. The definition of GL provides an

intuitive discretisation form, and its expression can be directly used in numerical

calculation [137]. The GL fractional derivative is defined as

D
↵
t f(t) = lim

T!0

1

T↵

t/TX

k=0

(�1)k
✓
↵

k

◆
f(t� kT ), (2.30)

where T is the sampling time interval, t/T is the maximum integer lower

than or equal to t/T , and
�↵
k

�
represents the Newton binomial term defined as

✓
↵

k

◆
=

�(↵+ 1)

�(k + 1) · �(↵� k + 1)
, (2.31)

where �(·) is the gamma function, also known as Euler second integral, which

is a generalisation of factorial functions in real and complex fields, defined as

�(↵) =

Z 1

0

⇠↵�1e�⇠d⇠. (2.32)

A comprehensive description of these definitions as well as their peculiarities

has been presented in [136, 138]. For battery modelling, ↵ is commonly in the range

of [0,1], and a fractional ↵ can depict a memory e↵ect in terms of f(t). In lithium-

ion batteries, such memory e↵ects is attributed to electrochemical processes, such as

charge transfer reactions and di↵usion. These processes entail time-domain voltage

memory and can be modelled using fractional derivatives. Technically, with CPEs,

the plate hypothesis underlying the real electrodes can be relaxed, and non-uniform

boundary and distributed intercalation/deintercalation processes within porous elec-

trodes can be described [139].

Taking advantage of the fractional calculus, numerous FOMs have recently

been explored for LIB modelling. Typical FOMs for a lithium-ion battery cell is

shown in Figure 2.6. Zou et al. proposed an infinite-dimensional model for LIB by

simply replacing the ideal capacitance in the RC branch of the Thevenin model to

a CPE, as presented in Figure 2.6a. However, a complex approximation algorithm,

named Oustaloup recursive approximation [140], has to be applied to transfer the

fractional equations to ordinary di↵erence equations for handling numerical calcula-

tion, which may a↵ect the model’s accuracy due to the determination of frequency
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bounds. To achieve higher accuracy, by taking into account the di↵usion process, a

Warburg element (W ) is added in series with the charge-transfer resistor (R1) of an

FOM, as shown in Figure 2.6b [128]. This FOM shows a high accuracy in voltage

prediction to experiment results in the time domain by applying the GL fractional

derivative, as well as this model is utilised to study the experimental impedance

spectra of a LFP cell [141]. In Figure 2.6c, a Warburg element is set in series with

the R//CPE branch to describe LIB dynamics [142]. The FOM with two R//CPE

branches in series in Figure 2.6d has also been employed and is expected to be more

robust to uncertainties [143].

(a) (b)

(c) (d)

Figure 2.6: Typical fractional-order circuit models for a Li-ion cell.

The FOM has demonstrated its advantages in terms of high accuracy and

physical phenomena depiction, however, as a relatively new model, the model identi-

fication limits the practical applications of the FOMs and is likely to be investigated

further. The approaches for the FOMs reported in the literature can be categorised

into two main groups, namely o✏ine identification and online identification. In the

frequency-domain o✏ine identification, according to the FOM modelling principle,

researchers extract the FOMs parameters directly by fitting EIS test results, which

avoids the complex time-domain calculation caused by CPE elements [124]. Andre

et al. parameterised a FOM to investigate the impedance spectra of NMC batteries

obtained from EIS tests as well as to simulate the battery voltage [43]. The results
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shows that the FOM has a better estimation fidelity than a third order conventional

ECM. However, for parameterising the FOMs in the frequency domain, the time-

consuming EIS tests have to be conducted, which hinders the FOMs from being

employed in the time domain [144]. Moreover, the requisites of a valid EIS test

restrict the amplitude of excitation current signal to a relatively small value [132],

which results that this o✏ine identification method can only model the impedance

of the battery cell at pesudo-linear status, such that the nonlinearity of lithium-

ion batteries excited by large loads is unfortunately neglected. Additionally, in

the time domain, the widely used evolutionary algorithms, e.g., genetic algorithm

(GA) [145] and particle swarm optimisation (PSO) [146], are applied for identifying

FOM parameters based on the current and voltage response. However, the deter-

mination of the model order is the main di�culty of the parameter identification.

The di↵erential orders of CPEs can be determined by fitting the EIS impedance

curve in the frequency domain, unfortunately, in the pure time-domain algorithm,

no information can be used for the order determination before the parameterisation

procedure, thus the identification is a nonlinear optimisation problem and hardly

solved by simply gradient-based evolutionary algorithms. For instance, a Warburg-

like element, which is used to characterise the di↵usion impedance, has no fixed

di↵erentiation order in the FOMs [147]. Furthermore, the high computational cost

of these evolutionary algorithms for CPEs is not trivial.

Compared with o✏ine identification, online identification is desirable for ex-

isting BMSs to maintain model fidelity with the fast-changing battery states, but the

limited computational resources have to be taken into consideration. Most online

identification methods, especially the evolutionary algorithms, cannot be integrated

into existing BMSs, as considerable computational e↵orts are required for online

identification to adapt to dynamic profiles. Instead, recursive least squares and vari-

ants of the Kalman filters are reported as the e�cient online identification methods

and expected for further investigations and applications in the future work [124].

Concerning the research objectives in Chapter 1, the fractional-order models are

not suitable for this work until the identification methods with low computational

cost are further addressed. Additionally, the absence of an explicit interpretation

of the battery nonlinearity may render the FOMs ine↵ective for investigating the

low-SOC-area error problem [43].

Contrary to the fractional-order models, the non-linear equivalent circuit

model (NLECM), which is a subcategory of nonlinear models identified using a fre-

quency domain approach, takes into account the above limitations. The approach

follows system identification methodologies, which have a rich foundation in experi-
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mental design and identifying non-linear dynamics. Nonlinear system identification

has attracted the attention of scientists and engineers due to its flexibility and

the fact that the majority of practical systems are intrinsically nonlinear. In the

past, nonlinear models were commonly developed for modelling complex mechani-

cal systems with hysteresis distortions, such as the wet-clutch [148], the switched

reluctance motor [149], and the hysteresis system [150]. In the recent few years,

nonlinear models have been introduced in the field of electrochemical battery sys-

tems in several publications [151, 152, 153]. It is worth to note that, the nonlinear

models in this thesis interpret the battery nonlinearity with explicit mathematical

functions, rather than the linear parameter varying (LPV) type nonlinear models

for the batteries in Ref. [154, 155, 156].

To establish a nonlinear model, the magnitude of nonlinearity is necessary

to be characterised by specific nonlinear characterisation tests. Note that the non-

linear characterisation tests will be reviewed in Chapter 3. In system identification

the notion of a “best linear approximation” (BLA) is proposed by Schoukens et al.

to detect, qualify, and quantify nonlinearities (of a nonlinear dynamical system) in

the frequency domain using periodic multisine perturbation signals [157, 158, 159].

In the case of lithium-ion batteries, the BLA analysis on NMC pouch cells were

performed such that the linear impedance as well as nonlinearities can be captured

[47]. However, only nonparameteric models in the frequency domain were developed

in these work, which are not employed in the BMS applications. For model parame-

terisation, several popular nonlinear model structures can be found in the literature,

such as nonlinear state space models [160], block-oriented nonlinear models [161],

and nonlinear autoregressive exogenous models (NARX) [162]. Among those sys-

tems, the block-oriented nonlinear model are used for its simplicity as the nonlinear

dynamic behaviour is separated into a linear time invariant (LTI) dynamical block

and a static nonlinearity block (SNL) [163]. Furthermore, a significant advantage

of this structure is the ability to link to the physical phenomena of the system,

which is especially important for modelling electrochemical systems [152, 151]. The

typical series block-oriented structures in the literature is presented in Figure 2.7.

In this type of model, the whole system is distributed in linear blocks (shown in red

colour with capital letter) and nonlinear blocks (shown in blue colour with lower-case

letter) with configurations such as parallel, series, feedback, or feed-forward. Con-

sidering the model simplicity and e�ciency for practical applications, Hammerstein

and Wiener configuration systems are widely used in nonlinear system identification

[151, 164, 165, 152].

In the case of battery system modelling, the block-oriented NLECMs have
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(a)

(b)

(c)

(d)

Figure 2.7: Series block-oriented nonlinear models in form of (a) Hammerstein, (b) Wiener,
(c) Hammerstein-Wiener and (d) Wiener-Hammerstein systems [163].

been investigated in only few papers. Widanage et al. proposed a Wiener configu-

ration NLECM, as shown in Figure 2.8, for a lithium-ion NCA battery on the basis

of the experimental results obtained using a pulse-multisine identification excitation

[152]. In this NLECM, the linear ECM block represents the electrical behaviour on

the internal ohmic resistance and short time constant polarisations, and the non-

linear over-voltage block describes the non-linear dependence of the voltage on the

current due to transport limitations, as well as the OCV and hysteresis model block

depicts the battery open circuit voltage including thermodynamic information. As

such the physics phenomena of batteries can be related to its linear and non-linear

parts, which provides valuable information that a conventional linear ECM cannot

contain. The validation results show that the NLECM exhibits lower root mean

square error (RMSE) and peak error than a conventional linear ECM [152]. How-

ever, the validation of the NLECM under an entire SOC range load profile is not

involved and the energy type battery used in this study only exhibits weak non-

linearity. Allafi et al. implemented an online parameter estimation algorithm for

the NLECM and reported that, as the NLECM can also keep minimum calculation

load and low parameter identification cost, it is qualified as a suitable candidate

for practical BMS applications [153]. For the stronger nonlinearity cases, Firouz et

al. developed a Hammerstein-Wiener structure non-linear model for all-solid-state

batteries. However, the multiple nonlinear blocks increase the computational cost

and the di�culty of identification [151].
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Figure 2.8: Structure of Li-ion battery NLECM. The overall model consists of a linear
ECM followed by a non-linear over-voltage function and a parallel OCV and hysteresis model
block [152].

Given that the NLECM was introduced into the battery field very recently,

the relevant research is in its infancy. Existing literature reports on the performance

of NLECMs exclusively in the context of short-term dynamic tests with minor SOC

variations. However, as the NLECM’s performance is not examined across the entire

SOC range, the model’s accuracy in the low SOC region, as well as the impact of

battery nonlinearity to model performance, is still unknown. Additionally, only

the limited frequency range (e.g., 0.01Hz < f < 1Hz) was examined in these

studies for capturing electrochemical dynamics. Unfortunately, dynamic processes

corresponding to larger or smaller time constant dynamics, such as di↵usion and

charge-transfer processes, are neglected during modelling, resulting in an incomplete

phenomenological description of battery dynamics in the NLECMs.

2.5 Summary

This chapter has critically reviewed the fundamentals of LIB operation, the typical

dynamic processes, as well as the existing body of literature regarding mathematical

models of lithium-ion batteries. To summarise, the key features of the battery mod-

els employed in the existing literature, such as the number of parameters and equa-

tions, the relevant characterisation tests, as well as nonlinearity interpretation are

listed in Table 2.3. It is emphasised that electrochemical models are computation-

ally expensive due to the large number of equations when the governing equations

are discretised for solving. In addition, the characterisation experiments (around

7) leads to the di�culty of extracting 35 parameters. On the contrary, equivalent

circuit models have the advantages of having a low computational cost and requir-

ing minimal characterisation tests for parameterisation, which makes them more
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preferable for practical EV applications.

Table 2.3
Overview of battery models in literature

Model Number of Parameters Number of Equations Characterisation
Tests

Nonlinearity Interpretation Ref.

DFN 35 (including electrode OCVs) 8⇤ FIB-SEM, GITT, EIS,
ICP-OES, EDS, OCV,

Capacity test

Yes [24]

SPM 24 4⇤ Same as DFN⇤⇤ Yes [37]

SPMe 30 6⇤ Same as DFN⇤⇤ Yes [38]

ECM 4 (assuming 1st order) 7 (including interpolation functions) HPPC, OCV No [40]

FOM 5 (assuming 1st order) 7 (increases once implemented) EIS, OCV No [139]

NLECM 8 (assuming 2nd order) 9 Multisine test, OCV Yes [152]

⇤Note that the number of equations increases up to hundreds when the governing equations are discretised for solving.
⇤⇤Note that physical parameters of electrochemical models can be shared.

Regarding the low-SOC-error issue raised in Chapter 1, the electrochemical

models commonly show superior accuracy than the equivalent circuit models. Be-

cause of the mathematical representations of physical laws implemented in the elec-

trochemical models, both nonlinearity and typical di↵usion dynamics of a lithium-

ion battery are inherently interpreted, which leads to the high accuracy achieved

by electrochemical models through the entire SOC range. However, nonlinearity

is rarely taken into account in the ECMs. Ouyang et al. stated that the reason

for battery model low-SOC-area inaccuracy is due to the strong nonlinearity of a

lithium-ion battery at low state of charge range [39]. Currently, the understanding of

the battery nonlinearity is limited to its theoretical definition that is used to describe

the intensity of the non-proportional variation relationship between battery terminal

voltage and current excitation. As the nonlinearity is di�cult to be characterised

by traditional battery characterisation tests, the source of battery nonlinearity is

seldom investigated in existing publications. Additionally, the absence of a specific

dynamic may also result in the error of model voltage prediction. As a phenomeno-

logical model, the ECM is developed to describe the voltage dynamic response of a

LIB. However, the description cannot directly associate an electrical circuit compo-

nent to a certain battery physical phenomena, which limits the detailed insight of

lithium-ion battery behaviours. Due to the limitations of traditional model param-

eterisation approaches, the voltage losses that the ECMs can only account for are

those with limited time constant (tens of seconds), such as the ohmic loss and small

time constant polarisation loss [45, 166]. In comparison to the linear ECM, the

NLECM can not only account for ohmic loss and small time constant polarisation

loss by RC branches, but it can also interpret charge-transfer kinetics by a non-

linear function, which provides the opportunity to associate particular components

to battery physical dynamics [45]. Recent research suggests that the ECM model
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accuracy is rather low due to the limitation of linear circuit elements in ECMs. By

taking nonlinearity into account, the NLECM model of the 18650 Li-ion NCA bat-

tery results in lower RMSE and lower max voltage error (13%-25% and 52%-62%

respectively) in comparison to the first-order linear ECM. In addition, the results in-

dicate that including the non-linear over-voltage function improves both the RMSE

and peak error when operating below room temperature [45]. Although the NLECM

is developed with nonlinearity in mind, the model’s performance across the entire

SOC range is overlooked in the existing literature. However, the large time constant

(thousands of seconds) loss caused by di↵usion dynamics is absent from both the

ECM and NLECM models, which requires further investigation. Thus, due to its

superior accuracy and capability of physical dynamics interpretation, the NLECM,

as the state-of-the-art battery model, serves as the starting point for this thesis.

Figure 2.9 provides a summary of the literature review in Chapter 2 (blue

rectangles) and Chapter 3 (orange rectangles), highlighting both advantages and

downsides of corresponding techniques. In this thesis, a non-linear equivalent cir-

cuit model with di↵usion dynamics (NLECM-di↵), which consists of the OCV curve,

impedance linear block, nonlinearity block, and di↵usion dynamic block, is devel-

oped to improve the model accuracy at low SOC range. Thus, the nonlinearity

of battery systems and large time constant dynamics are required to be captured

for modelling by applying specific characterisation techniques. In the next chap-

ter, the characterisation tests, which are employed to provide necessary information

of battery dynamic behaviour for establishing NLECM-di↵ model, are introduced.

Furthermore, an overview of nonlinear characterisation methods is presented as one

of the research objectives of this thesis.
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Chapter 3

A Review of Lithium-ion

Battery Characterisation Tests

3.1 Introduction

Characterisation tests of lithium-ion batteries refer to the broad and general pro-

cedures by which the characteristics and properties of a LIB are probed and mea-

sured. In the field of battery technology, characterisation tests are employed to

analysis the LIB performance as well as to identify and quantify battery degrada-

tion, such that novel electrode material, electrolyte and cell design can be benefited

and further developed. In addition to the LIB properties and dynamic responses

obtained by specific characterisation tests, researchers and engineers are able to de-

sign mathematical models and extract relevant parameters to accurately emulate

the relationship of current and voltage [24]. Therefore, it is of great significance

to develop e�cient characterisation tests when developing battery models for BMS

applications.

Current battery characterisation tests can be classified to invasive [167] and

non-invasive [166] tests. Invasive tests are commonly performed on the torn-down

battery cells for the analysis of material physical and chemical properties. For in-

stance, scanning electron microscopy (SEM) is employed to monitor the morphology

and uniformity of electrode micro-structures, which can be used to measure physi-

cal characteristics such as the particle size of the active materials, particle surface

film formation, and mechanical changes within the electrode materials [167]. In

terms of the chemical and material properties, X-ray di↵raction (XRD) can be used

to determine the elemental composition of active materials, as well as the crystal

structure and theoretical density of the materials. As such, invasive tests enable
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the investigation of LIBs and the parameterisation of electrochemical models, as

detailed in Ref.[24]. However, these are destructive tests which result that the char-

acterised tests cannot be repeatable on the same LIB for tracking the evolution of

LIB characteristics. Additionally, the sophisticated preparation required, such as

cell deconstruction, is challenging for battery engineers without the relevant train-

ing on handling hazardous materials. Thus, the use of invasive tests is out of the

scope of this thesis.

In contrast to the invasive tests, non-invasive tests are devised based on

the battery electrical input-output relationship, and non-destructively measuring of

lithium-ion cell characteristics is accessible for both industrial engineers and aca-

demic researchers [166]. With these tests, comparing the LIB performance and

tracking the evolution of performance over a LIB life are achievable, such that

the degradation of LIBs can be quantified in terms of energy capacity fade and

impedance rise [168]. Furthermore, concerning battery modelling, a range of tests

can be employed to elucidate the linear and nonlinear dynamic processes of LIBs

mentioned in Section 2.3. According to the specific analysis approach, the common

characterisation tests related with battery modelling are classified into time domain

and frequency domain tests, which will be explained in the following.

3.2 Time Domain Characterisation tests

By employing specialised experimental rigs, the designed current/voltage demand

signals and battery voltage/current response are captured as digital data points

with regard to time, which can be directly analysed in the time domain. Because no

additional procedures, such as Fourier transforms, are required, this type of test is

easy to perform and incorporate into real applications. From the viewpoint of bat-

tery models in the BMS, capacity is related to SOC that directly determines values

of parameters in battery models, and OCV curve is the backbone of battery models,

determining approximately 90% of the voltage profile. In this section, typical time

domain characterisation tests for battery modelling are reviewed, such as constant

current tests for obtaining cell capacity information and open circuit voltage (OCV)

tests for OCV vs. SOC curves.

3.2.1 Constant current capacity tests

The definition of capacity is a measure of the total electric charge stored in a bat-

tery, which is determined by the amount of active material available in electrodes

for intercalation [169]. As the capacity of the cell is directly related to the lithium
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inventory and/or active material, the cell capacity is a convenient indicator for defin-

ing the state of health (SOH) of a lithium-ion battery and a fundamental parameter

for battery modelling.

The common characterisation method to measure a LIB’s capacity is to first

charge the cell until fully charged state and then discharge the cell until the lower

voltage limit, as shown in Figure 3.1. During charging the battery cell, the constant-

current constant-voltage (CC-CV) method is commonly employed in practical tests.

The method consists of a constant current charge until the cell voltage reaches

a threshold value (typically the maximum specified voltage of 4.2V), followed by a

constant voltage charge until a low current approaches the cut-o↵ (typically less than

20% of the constant-current value) [170]. In the discharge step, the constant current

(CC) profile is utilised to get the discharge curves, and by Coulomb counting, which

integrate the current in Ah with regard to time, is applied to obtain the capacity

value of the battery cell. This measurement method is used for several advantages,

such as the simplicity of interpreting the results, repeatability, and high accuracy of

current measurement (over constant power profiles) [166].
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Figure 3.1: An example of CC-CV charge and CC discharge profile with 0.3C charge and
1C discharge rate. Note that 1 C-rate is 11.5mA for the battery cell utilized in this test.

The measured capacity of a battery is dependent on the operational con-

ditions in terms of the charge-discharge current rates and temperature. As men-

tioned in Section 2.3, the reaction in the electrodes is governed by the Butler-Volmer

framework, the overpotential increases when a higher rate current is applied on a

cell. Since the equilibrium potential decreases and the internal resistance of the
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cell increases as SOC reduces, the overpotential at a low SOC gradually increases,

resulting in a cell’s voltage to reach the lower limit before all the stored charge is

extracted. Thus, the accessible capacity of a cell reduces when a higher current

rates is applied [171]. This phenomenon is frequently observed when a variety of

constant current loads are used for discharging, which will be shown in Chapter 6.

In addition, the reaction rate of lithium ion intercalation depends on temperature.

As higher temperatures result in faster ion movement and an improvement of solid

phase di↵usion, the internal resistance and overpotential of a battery cell decrease.

As such, more capacity can be extracted from a cell before the lower voltage limit

is reached, and the opposite is true for lower temperatures. Since cell capacity

is dependent on testing conditions, the test parameters must be kept consistent

throughout the testing period.

Concerning battery modelling, the constant current load tests are commonly

used to extract parameters by fitting discharge curve data for the electrochemical

models [172]. While the large number of unknown parameters in electrochemical

models may raise issues about the unique identifiability of model parameters, CC

tests can e�ciently achieve less than 2% relative error when validating the param-

eterised model under driving cycle loads [173]. In contrary, this method is seldom

applied for parameterisation of equivalent circuit models which use the electrical ele-

ments, such as resistor, capacitors, and a voltage source, to form a circuit network to

analogously describe a battery behaviour. As described in Chapter 2, these elements

are influenced by the measurement timescale and is only suitable for emulating small

time constant dynamics. However, the typical timescale of constant-current capacity

tests is around 3600 s (for a 1C load case), which is too large for the combinations

of resistors and capacitors within ECMs. The author believes that, the CC tests

can be employed to parameterise ECMs which are coupled with proper large time

constant dynamic representations, such that the scope of ECM type models can be

extended for the applications with similar load profiles.

3.2.2 Open circuit voltage tests

Open circuit voltage (OCV) plays a crucial role in battery models, it is the battery

thermodynamic equilibrium potential when not under a current load and is com-

monly in the form as a function of the SOC. It functions as an ideal yet changeable

(e.g. with SOC) voltage source in the model to which over-potential is added. As

mentioned in Section 2.3, the OCV vs. SOC curve of the full-cell is defined by the

open circuit voltage of the positive electrode and the negative electrode. In the case

of battery modelling the electrode OCV curves are integrated in both electrodes of
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electrochemical models and the full-cell OCV curve is added in equivalent circuit

models for full-cell level dynamics. Additionally, the path dependence of OCV is a

distinctive characteristic of lithium-ion batteries which is termed as OCV hysteresis.

From a thermodynamics perspective, the origins of OCV hysteresis can be clarified:

first, hysteresis is primarily induced by the multi-particle e↵ect [174], which con-

sists of the non-monotonic potential of many single particles [175]. Second, during

the process of lithium insertion/extraction, mechanical stress and microscopic de-

formation will cause the active electrode material to undergo a two-phase change.

Lastly, the Shrink-core model [176] illustrates that phase juxtaposition at any SOC

depends on the charging and discharging history of the battery material [177]. Due

to the OCV hysteresis, the cell OCV during charge is di↵erent from discharge at

the same SOC. The importance of hysteresis in model accuracy and SOC estima-

tion has been shown in Ref. [178]. In the literature, the maximum hysteresis was

found in a LFP cell (38mV) and lowest in the LTO cell (16mV) [179]. As a result,

the hysteresis may be used in battery models. The level of OCV hysteresis, which

presents along with OCV curves, can also be characterised by OCV tests. To mea-

sure OCV vs. SOC curves, the most common method is based on the galvanostatic

intermittent titration technique (GITT) or pseudo-OCV test (pOCV) in the time

domain. In what follows, the tests for measuring OCV and the associated hysteresis

are discussed.

Galvanostatic intermittent titration technique (GITT)

Galvanostatic intermittent titration technique (GITT), popularised in the late 1970s,

is a method that provides both kinetic and thermodynamics information of an elec-

trochemical system under investigation [180, 181, 99]. GITT entails the application

of a current transient to adjust the cell’s SOC, followed by prolonged relaxation

period during which no current flows through the cell. The relaxation period is de-

fined as a specified duration or until an equilibrium condition is satisfied (i.e., when

dE/dt ⇠ 0) [24]. This procedure is repeated until the desired threshold voltage has

been reached. The voltages at the end of the relaxation periods are extracted and

plotted to obtain the cell’s OCV, denoted here as the GITT-OCV. The time and

current of the discharge/charge step and the relaxation period are determined by the

cell temperature and the desired accuracy [166]. Barai et al. proposed the optimal

trade-o↵ between accuracy and test duration is to measure OCV for every 1% SOC

increment with a relaxation period of 4 h [179]. In this work, the 4 h is suggested as

a su�cient period for LIBs to reach a pseudo-equilibrium state, at which point any

further variations in voltage typically less than 1mV cannot be successfully recorded
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using standard cell characterisation equipment [179].

GITT has been widely applied in modelling, from extracting model parame-

ters for electrochemical models to directly using the OCV data in equivalent circuit

models. Birkl et al. developed an OCV estimation model, which can account for

temperature dependence and voltage hysteresis, to be integrated in to a full cell

model in a BMS [79]. The model is fitted to OCV data recorded from a NMC

LIB at various temperature conditions and yields the accuracy of better than 5mV

[79]. However, the short relaxation periods (around 1 h) in this work are relatively

short and may result in a larger error of the model, as literature reported that a

relaxation period of 1 h is acceptable for LFP batteries [182], but this is unlikely

to be long enough for other LIB chemistries to reach electrochemical equilibrium

[183, 179, 184]. Mao et al. performed an improved GITT test with varying pulse

currents and relaxation periods to measure the OCV curve for developing a multi-

particle electrochemical model. The simulation results demonstrate that the model

is applicable in all scenarios and more precise for the case of smaller current pulse dis-

charge rate with a longer relaxation period [185]. Delacourt et al. applied GITT to

validate the single-particle model and study the di↵usion coe�cient of a LiyFeSO4F

electrode [186]. Furthermore, GITT is employed to estimate Li+ transport and dif-

fusion parameters to support the modelling of a layer transition metal-oxide positive

electrode in Ref. [187]. Chen et al. employed GITT to obtain the thermodynamic

OCV curves for parameterisation of multi-scale lithium-ion battery models [24]. In

Ref. [188], GITT is also applied to build models for the electrochemical kinetics of

lithium ions.

GITT has been recognised as a powerful technique in the scientific community

that can provide valuable information to significantly improve model performance.

A drawback of this method is perhaps the lengthy testing duration which could be

up to two weeks (i.e., 17 days for a GITT test in Ref. [179]). Thus further research

is likely required to reduce the GITT test duration.

Pseudo-OCV test (pOCV)

Due to the lengthy duration (several weeks) of a GITT experiment, a pseudo-OCV

(pOCV) is frequently obtained through low rate galvanostatic cycling, which lasts

over a comparatively short period of testing time. Typically a C/25 or lower con-

stant charge/discharge rate is applied in low-rate cycling tests, which is employed to

minimise kinetic contributions, lower the electrode polarisation and reduce ohmic

heat generation [166]. In the case of low-rate cycling tests, the ohmic loss con-

tributing to cell voltage is very low [189], as well as no ohmic heat is assumed to
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be generated. Furthermore, a single voltage profile can be generated by averaging

the low rate charge and discharge voltage curves [190]. As the definition of an open

circuit voltage is the voltage which is measured when there is no current, the av-

eraged voltage profile obtained from low-rate cycling is more correctly named as

pseudo-OCV. Figure 3.2 presents an example of the pOCV (red curve) of a LFP cell

at 20�C.

Figure 3.2: An example of the pOCV (the average OCV) of a LFP cell at 20�C [191] and
a flat pOCV slope between 25% and 80% SOC is emphasised in the small plot.

Due to the simplicity and ease of implementation of low-rate cycling tests,

the pOCV has been widely employed for battery modelling [190, 192]. Xing et al.

generated pOCV profiles by averaging the C/20 charge and discharge voltage curves

at di↵erent temperatures, and developed a temperature-related SOC estimation al-

gorithm with this pOCV which yields high accuracy [191]. Less et al. experimentally

determined the pOCV by charging and discharging the cell with a current rate of

C/50 for the parameterisation of a micro-scale model [193]. Barai et al. suggested

that the pOCV seems to be the best compromise between time and accuracy [166].

So far time domain characterisation tests for measuring OCV curves have

been reviewed. According to the aforementioned literature, both GITT and pOCV

tests are widely employed in the battery modelling studies. However, Chen et al.

argued that the OCV obtained from GITT and pOCV are distinct [24]. With a slow

galvanostatic cycle for recording pOCV, polarisation caused by the cell resistance

will be observed, even at low C-rates. In addition, the phase transition voltage

will be observed in the pOCV tests rather than the pure thermodynamic, such that
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the cell hysteresis is convoluted with the cell overpotential and a larger hysteresis

voltage is observed than in GITT tests [194]. Furthermore, in a recent research,

the authors observed that the relaxation to OCV of a NMC811/graphite-SiOx cell

at low SOC is not accurately described in the case of the pOCV profile, which is

another drawback of the OCV from the pOCV tests [24]. Taking everything into

account, the OCV curve from the GITT experiments is chosen for use in this thesis

to improve model performance, despite that the barrier of the long test duration

still exists.

3.3 Frequency Domain Characterisation tests

In recent years, frequency domain characterisation tests have also been developed

with the increased LIB applicability. Contrary to the tests in the time domain, the

measured LIB voltage data and designed excitation current data are transformed

into the frequency domain for further analysis. As the characteristic frequency range

of each electrochemical dynamic is inherently distinct, more insight about LIB dy-

namics, which are inaccessible in the time domain, can be analysed. In addition,

from Electrochemical Impedance Spectroscopy (EIS) to Nonlinear Frequency Re-

sponse Analysis (NFRA), researchers’ attention are extended from linear dynamics

to non-linear dynamics for comprehensive understanding and analysis of lithium ion

batteries.

3.3.1 Internal impedance tests

Electrochemical impedance spectroscopy (EIS)

The Electrochemical Impedance Spectroscopy (EIS) is a widely applied frequency

domain characterisation technique employed to investigate the fundamental electro-

chemical dynamics within a LIB. The working principle of EIS is show in Figure 3.3.

The detailed guide and theory of this tests can be referred to [132]. With EIS, the

linear response of a battery over a wide frequency range from mHz to MHz is inves-

tigated and analysed. A sinusoidal excitation current, that is, alternating current

(AC), is excited by galvanostatic equipment and applied on the system and the al-

ternating voltage response of the system is measured (galvanostatic measurement).

Alternatively, the system can be excited with a sinusoidal voltage and the sinu-

soidal current response measured (potentiostatic measurement). In an ideal case,

both scenarios would provide identical results. Using a Fast Fourier Transformation

(FFT), the excitation and response signal are transformed to the frequency domain
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Figure 3.3: Working principle of Electrochemical Impedance Spectroscopy (EIS) [74].

from the time domain. Prior to further analysis, the quality of EIS results has to

be examined. Referring to [195], if the prerequisites a) causality, b) time-invariance,

c) stability and d) linearity, are fulfilled, then the results of EIS is considered valid.

Also the Kramers-Kronig relation can be applied to examine the validity of EIS

[196]. However, as shown in Figure 3.4, a lithium-ion battery, as an electrochemical

system, shows a pseudo-linear current-voltage relationship only at specific situa-

tions, e.g. at a steady-state operation point using an input current with a small

amplitude. Thus, in the case of galvanostatic measurements, an excitation current

IAC with a small amplitude of approximately C/20 is applied for valid EIS tests

[197].

In a linear or pseudo-linear system, the voltage response to a sinusoidal

current is sinusoidal at the same frequency (!) with a scaled amplitude but the phase

(') is shifted, as shown in Figure 3.3. The small amplitude sinusoidal excitation

current can written in the frequency domain as following:

IAC(!) = I0(!) exp(j'1(!)) (3.1)

where I0 is the amplitude of the current. The angular frequency ! is defined as:

! = 2⇡f (3.2)

The sinusoidal voltage response V (!) of the system with a phase shift of �

when the angular frequency is ! is given as:
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Figure 3.4: Example of a current-voltage relation for a pseudo-linear LIB [198].

V (!) = V0(!) · exp(j · '2(!)) (3.3)

'2 = '1 + � (3.4)

According to the definition of impedance, the complex impedance Z(!) of a

LIB is calculated in analogy to Ohm’s law as:

Z(!) =
V (!)

IAC(!)
=

V0(!) · exp(j · '2(!))

I0(!) · exp(j · '1(!))
= |Z0|·exp(j · �(!)) = |Z0|(cos�+j ·sin�)

(3.5)

Thus, the impedance of a LIB can be plotted as a Nyquist-Plot with the

real Re(Z(!)) part and the imaginary Im(Z(!)) part, as shown in the following

equations:

Re{Z(!)} = |Z0| · cos� (3.6)

Im{Z(!)} = |Z0| · sin� (3.7)
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Figure 3.5: A typical Nyquist plot representing the impedance spectrum of a LIB. In-
dicated are a number of characteristic points that define the dynamic behaviour of a LIB
[166].

A typical impedance Nyquist plot of a LIB is shown in Figure 3.5 which

plots the real part on the x-axis against and the negative imaginary part on the

y-axis of the Nyquist presentation. LIB dynamic processes can be separated and

attributed to particular characteristic frequency ranges [199]. In Figure 3.5, some

widely used mark points are plotted in the impedance spectrum to characterise a

LIB. The point Im(Z(!)) = 0 is the junction between a capacitive behaviour and an

inductive behaviour and only an almost pure ohmic resistance (R0) is observed at

this point. In the frequency range higher than this point, termed as high frequency

range, the inductive reactance of the battery caused by the cable connections and

the current collector can be observed [200]. The semi-circle between Im(Z(!)) = 0

and local min �Im(Z(!)) corresponds to the charge-transfer process at the solid

electrolyte interfaces which typically shows capacitive and resistive behaviour, and

this frequency range is termed as the medium characteristic frequency range. The

frequency at local maximum �Im(Z(!)) is defined as the 1/RC time constant,

which indicates the voltage response speed rate of the LIB corresponding to current

changes [200]. The characteristic frequency range lower than the frequency at local

min �Im(Z(!)) corresponds to di↵usion processes in the active material of the

electrodes. In the literature, dynamic characterisation with EIS is widely applied for

several critical topics of LIBs, such as state-of-charge (SOC) estimation, temperature

estimation, ageing determination, and battery modelling [166]. [201] reported that

the low frequency data from an EIS test is able to be used to predict the SOC

of a LIB. Similarly, the EIS is employed as a diagnostic tool to estimate the LIB
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SOC [202]. Furthermore, the temperature of a LIB can be associated with the

frequency of the point which is the intersection of the Nyquist plot with the real axis

[203]. The results show that the frequency changes corresponding to the temperature

variation. A more recent study of EIS has been extended to internal temperature

on-line estimation [204]. In addition, as impedance of a LIB changes with ageing

degradation, researchers apply EIS to quantify LIBs ageing. For example, Waag et

al. reported that the SEI growth is one of the ageing mechanisms from EIS results

[200]. Pastor et al. employed EIS along with other characterisation tests to quantify

the degradation modes (DMs) in LIBs, such as conductivity loss (CL), loss of active

material (LAM) and loss of lithium inventory (LLI) [197]. From a perspective of

battery modelling, the general modelling methodology with EIS is to fit a fractional-

order model (FOM) to EIS Nyquist results to extract the ECM parameters of a LIB

[139, 43]. More details about FOMs have been introduced in Chapter 2.

Although EIS has been widely employed in the battery field, the precon-

ditions of valid EIS, such as linearity of the system, limits analysis to the linear

frequency response and therefore a LIB has to be analysed under the assumption of

linearisation. Such that nonlinear LIB dynamics introduced in Section 2.3, such as

the charge-transfer reactions at the electrodes representing by Butler-Volmer kinet-

ics, cannot be su�ciently excited and captured under a small amplitude sinusoidal

excitation current. As a result, the valuable information about battery nonlinearity

is unavailable and generally neglected in regard to characterisation and modelling.

To fulfil this gap, in recent years, nonlinear characterisation tests have been de-

veloped and applied on lithium-ion batteries, which will be explained in the next

section.

3.3.2 Non-linear characterisation tests

To gain nonlinear insight into lithium-ion battery dynamics, an extension to EIS is

to apply moderate or high amplitude excitation to drive the battery into a weakly

or strong nonlinear currant-voltage relation that can be mathematically considered

as a nonlinear transfer function. Figure 3.6 illustrates how a general nonlinear

transfer function responds when excited by a sinusoidal excitation signal. Due to

the nonlinear transfer function, when an excitation signal of symmetrical amplitude

to each side is applied, the output response in the time domain exhibits di↵erent

positive and negative amplitudes, but retains the same fundamental frequency as the

excitation signal. The output response to a single-frequency sinusoidal excitation
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current generates higher harmonics∗ of the fundamental frequency in the output

Fourier spectrum.

Figure 3.6: The origin of harmonic oscillations for a nonlinear transfer function with a
sinusoidal excitation signal [206].

Before the nonlinear analysis idea developed in the battery field, harmonics in

the voltage response were treated as by-products which lead to errors in impedance

measurement and even to invalid EIS results [207, 206]. However, in recent year,

researchers have noticed that, with the right framework for interpretation, harmonics

can provide insight about the system’s internal state [208].

Total harmonic distortion (THD) analysis

Early study on characterising the nonlinearity of electrochemical systems utilising

alternating current concentrated on detecting variations in the impedance response

as the amplitude of the perturbation increases [207, 209, 210, 211, 212, 213, 214, 215].

Particular topics are to determine corrosion current and charge-transfer coe�cients

by quantifying the distortion of the fundamental frequency impedance spectrum

[211, 212]. More recently, Total Harmonic Distortion (THD) analysis, which is

commonly used in acoustics research for noise detection [216], has been utilised for

characterising electrochemical systems such as fuel cells [217, 218, 219]. Figure 3.7

shows an example of the voltage response of a direct methanol fuel cell to an input

current of sinusoidal excitation of large amplitudes. The THD of fuel cell systems

∗
In general, any periodic signal can be represented by a superposition of several sinusoidal oscil-

lations with multiples of the excitation frequency, and these so-called ‘harmonics’ can be determined

using Fourier transformation [205]
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can be defined as the ratio of the sum of the amplitude of the voltage response of all

higher harmonic frequencies (k � 2) to that of the fundamental frequency (k=1):

THD =

pP1
k=2

|Yk|
2

Y1

(3.8)

According to variation of THD value through the frequency range, the specific

electrochemical processes can be identified. Mao et al. reported that the THD

has better performance than EIS in identification of methanol oxidation kinetics

and methanol concentration monitoring for direct methanol fuel cells [217, 218].

The THD was applied on proton exchange membrane fuel cells to demonstrate the

di↵erence between oxygen reduction reaction mechanisms and to identify the closer

one to the reality [219]. However, at that time, the analysis of nonlinear frequency

response behaviour by THD spectroscopy was limited in the fuel cell area.

Figure 3.7: Schematic diagram for the voltage response of a direct methanol fuel cell to a
sinusoidal input of current in both time domain and frequency domain [218].

At the present time, two state-of-the-art nonlinear characterisation tests for

lithium-ion batteries are proposed according to the amplitude selection of the pertur-

bation current, such as Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

with a moderate-amplitude sinusoidal current and Nonlinear Frequency Response

Analysis (NFRA) with a large-amplitude sinusoidal current.

Nonlinear electrochemical impedance spectroscopy (NLEIS)

Murbach et al. proposed an analytic-numerical approach with the pseudo-two-

dimensional model to evaluate EIS and NLEIS impedance spectra [220]. Murbach

et al. performs a full-frequency NLEIS test for LIBs using commercially available

cells, and the results show that the second harmonics NLEIS spectra is sensitive

to degradation in charge transfer symmetry whereas linear EIS is mainly sensitive
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to changes in charge transfer rates [221]. To integrate physics-based analysis into

NLEIS analysis, an open-software platform, named Impedance Analyzer, is devel-

oped in [222].

Nonlinear frequency response analysis (NFRA)

Almost at the same time, nonlinear frequency response analysis (NFRA), a large-

amplitude perturbation method, has been employed on lithium-ion batteries for

higher harmonics characterisation. Figure 3.8 illustrates the working principle of

NFRA. Similar to NLEIS, NFRA investigates higher harmonics, such as Y2, Y3, ...,

Yn, to characterise a battery and analyse nonlinear processes. Harting et al. applied

NFRA on lithium-ion batteries and correlated NFR spectra with EIS impedance

spectra to investigate contributions of nonlinear processes [223]. Then NFRA is ap-

plied on both fresh and aged cells to analyse the harmonic spectra for lithium plating

identification and state-of-health (SOH) estimation [224, 225, 226]. To verify the

experimental results obtained, NFRA was applied with the pseudo-two-dimensional

model and single particle model for frequency response analysis [73, 227]. Wol↵

et al. presented a model-based analysis of the NFRA technique to understand the

source of higher harmonics and the impact of parameter variations on battery non-

linearities. The simulation results demonstrate that, in a whole battery model, the

nonlinearities generated by charge transfer reactions and solid di↵usion processes

are superimposed in corresponding characteristic frequency ranges [228].

Figure 3.8: Working principle of Nonlinear Frequency Response Analysis (NFRA) [227].

Taken together, both NLEIS and NFRA show promising performance in
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providing comprehensive analysis of battery nonlinear processes and can be consid-

ered as important additional dynamic analysis methods for lithium-ion batteries in

terms of state estimation and ageing determination. However, the measurement

of the nonlinear response over the full frequency spectrum results in extremely

lengthy experiment durations, up to a few hours, which limits these methods to

the laboratory environment. Furthermore, while these nonlinear characterisation

tests have demonstrated their capacity to physical parameter estimation and ageing

mechanism identification, however, there is no evidence from the existing literature

that the methods can be used for battery system identification. Given that the

required battery model for this thesis necessitates the identification of both a dom-

inant linear response and battery nonlinearity, but the NLEIS and NFRA methods

are nonlinearity-restricted, these methods are not utilised in this thesis.

Multisine-based nonlinear characterisation tests

From the perspective of signal design, a successive single sweep sinusoidal signal

over a broad frequency range is applied in the aforementioned nonlinear character-

isation tests, which leads to extremely time-consuming testing for low frequency

experiments. Recently, inspired by frequency domain system identification theory,

several preliminary studies have been proposed to capture battery linear and non-

linear dynamics with various multisine excitation signals, which can significantly

shorten testing duration and provide the potential for on-board applications. The

fundamentals of the multisine-based nonlinear characterisation technique are briefly

explained below.

To undertake the multisine-based nonlinear characterisation technique, the

multisine excitation signal is required to be designed as the first step. As a periodic

broadband signal (a signal that repeats), the multisine signal is designed by summing

sinusoids, which provides flexibility in the design of its amplitude spectrum and

harmonic content [229]. A general multisine excitation signal can be expressed as

Equation (3.9)

u(n) =
KX

k=1

Ak sin (2⇡nkfs/N + 'k) n = 0, ..., N � 1, (3.9)

where N is the number of samples per period, K denotes the highest harmonic

number of the signal, fs is the sampling frequency, Ak is the amplitude and 'k is

the phase of the kth harmonic. The N of a multisine can be flexibly determined

and the frequency resolution is set to f0 = fs/N Hz. From Shannon sampling

theorem, the highest possible harmonic K has to be less than or equal to N/2.
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Thus, the highest possible frequency of the multisine signal can be obtained as the

product f0 ⇥K, and should span the characteristic frequency range of the battery

for characterisation. To ensure a steady-state behaviour (equilibrium state in the

case of batteries) during the characterisation duration, the DC frequency, which is

n = 0 harmonic, is suppressed for obtaining a zero-mean current signal.

When a multisine signal is applied to a nonlinear system (for e.g. a bat-

tery), some energy injected at the excited harmonics in the excitation signal will be

transferred and observed at the other harmonic positions in the output spectrum,

which indicates the system nonlinearity [230]. To characterise the nonlinearity of

a battery, the harmonic content fk, amplitude spectrum Ak, and harmonic phases

'k are the key factors to be determined in the signal design procedure. For the

harmonic content fk, the excited and suppressed harmonics of a multisine signal

can be selected within the bandwidth considered according to specific objectives.

The set of excited harmonics is denoted as Hexc and the sets of suppressed harmon-

ics as Hsupp,odd and Hsupp,even with respect to the odd and even harmonics. The

motivation of suppressing harmonics is that the suppressed odd and even harmonics

can be utilised for detecting the odd and the even order nonlinearities, respectively

[231].

Theoretically the amplitude Ak can be flexibly determined to drive a system

into a nonlinear state. Various amplitudes lead to di↵erent level of system nonlin-

earity [47]. Nevertheless, for simplicity, a flat spectrum, which sets the amplitude

of all the excited harmonics to unity, is generally applied in the signal design. Then

the root-mean square (RMS) value of the designed multisine signal can be scaled in

the time domain for a specific amplitude.

The phases of the excited harmonics 'k can be set to obtain di↵erent ampli-

tude distributions to excite the dynamics around a certain operating point [232, 233].

Depending on the technical constraints imposed by the tester’s current and voltage

limits, as well as safety concerns (cell temperature, over and under voltage), large

peaks in a designed signal should be minimised, and thus the multisine may require

to be optimised by minimising a phase-related criterion known as the crest factor

(CF) [234].

An example of a random-phase multisine signal in both time domain and

frequency domain is shown in Figure 3.9. The time domain multisine current signal

is applied to a battery at preset conditions (e.g., temperature and SOC), and the

voltage response is recorded for analysis. The input current i[p](t) and output voltage

v[p](t) data are then recorded in time domain as follow:
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Figure 3.9: An example of a random-phase multisine, with fs = 200, N = 200, Ak = 1. (a)
The multisine signal in the time domain, (b) DFT magnitude of multisine showing excited
and suppressed harmonics. Hexc: all odd harmonics up to 20Hz.

i[p](n), v[p](n) p = 1, 2, ..., P n = 0, ..., N � 1, (3.10)

where p indicates the pth period of the input signal i(n) and of the output voltage

response v(n) and P denotes the total number of periods at each condition. By Dis-

crete Fourier Transform (DFT), the discrete time domain data can be transformed

to the frequency domain, as input and output spectra:

I [p](k) =
N�1X

n=0

i[p](n)e�2j⇡kn/N , V [p](k) =
N�1X

n=0

v[p](n)e�2j⇡kn/N , k = 0, ..., N � 1,

(3.11)

where I [p](k), V [p](k) in Equation (3.11) denote the spectrum of i[p](n), v[p](n) at

the kth harmonic.

In the frequency domain, the spectrum of measured voltage output data can

be separated out into the excited (Hexc) and suppressed harmonic sets (Hsupp,odd

and Hsupp,even) as:

V [p](k) = V [p]
0

(k) + V [p]
S

(k) +N [p]
V (k) k 2 Hexc, (3.12a)

V [p](k) = V [p]
S

(k) +N [p]
V (k) k 2 Hsupp,odd [Hsupp,even, (3.12b)

where V [p]
0

(k) is the linear voltage response of a battery that only appears on the

excited harmonics, V [p]
S

(k) indicates the battery nonlinearity, and N [p]
V (k) indicates

the noise distortion from practical environment and measurement hardware in the

voltage output spectrum [233].
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Based on the voltage output spectra V [p](k), the mean spectrum V̄ (k) can

be estimated by averaging over the P periods to reduce the e↵ect of noise (N [p]
V (k)),

as shown in Equation (3.13a). Note that the P here indicates the measured periods

when the battery reaches a steady-state. Further, according to Equation (3.13b),

the corresponding variance �̂2

V̄(k)
, which suggests the uncertainty of V̄(k), can be

calculated. Statistically, the uncertainty is related to the noise of environment and

hardware equipment, and the smaller variances indicates the higher reliability of

characterisation results. It is worth mentioning that all calculated results are shown

in decibels by directly using the MATLAB command ’dB ’.

V̄ (k) =
1

P

PX

p=1

V [p](k) (3.13a)

�̂2

V̄ ,k(k) =
PX

p=1

��V [p](k)� V̄ (k)
��2

P (P � 1)
(3.13b)

In theory, the output response of a linear system will retain the same har-

monics as the input signal, and only the di↵erent amplitude and phase will vary.

However, for a non-linear system, intermodulation of the input signal leads to addi-

tional harmonic components at non-excited harmonic positions in the output spec-

trum. Thus, odd and even order nonlinearities V̄ (k) can be observed and quantified

according to the energy shown at the suppressed harmonics k 2 Hsupp,odd and

k 2 Hsupp,even in the voltage response spectrum.

There are only few publications in the literature that discuss capturing bat-

tery dynamics using multisine signals. Zappen et al. designed and performed mul-

tisine excitation signals as a fast characterisation technique to gather impedance

information [234]. However, the research only focuses on the linear dynamics of

a battery. Widanage et al. designed pulse-multisine signals as the identification

excitation to characterise the battery linear and nonlinear dynamic behaviour for

battery modelling [45]. The concept of the pulse-multisine is to excite the battery

over a higher frequency, which combining the advantage that the signal has su�cient

power. Unfortunately, the battery system nonlinearity was not explicitly analysed

in terms of odd and even non-linear distortions in the study. In addition, the char-

acteristic frequency range was selected to be less than 1Hz, as such the higher

frequency range electrochemical processes were ignored. Relan et al. employed a

random phase multisine to characterise the battery electrical response for developing

a data-driven polynomial nonlinear state-space battery model [235], and Firouz et

al. applied random phase multisine signals with multiple realisations which allows
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separating the nonlinear distortion variance and noise variance from the linear part

of battery [47]. Multisine excitation signals require a short testing time in compar-

ison with conventional single sine sweep measurements. However, multiple signal

realisations for characterising random phase nonlinear distortion will prolong the

testing duration and increase computation of signal design procedure. Up to now,

the multisine signal is rarely employed to capture battery dynamics as a specialised

nonlinear characterisation method.

Compared with single-sine sweep nonlinear characterisation tests, the multisine-

based method have shown great potential and superiority. Firstly, the testing dura-

tion is significantly reduced from few hours to hundreds seconds with same frequency

range [47]. Furthermore, the odd and even order nonlinearities can be characterised

by the multisine-based method. According to findings of the NFRA, the nonlinear-

ity can provide detailed insight into the ageing status and degradation mechanism

[225, 224]. Given these two features, it is thought that the multisine-based method

has the potential to be used as on-board characterisation tests in the future. In

addition, a significant advantage of the multisine-based method is the simultaneous

capture of linear and nonlinear dynamics, which is di�cult to achieve with other

standard nonlinear characterisation tests. For example, the NFRA is frequently

combined with the EIS test to obtain a comprehensive description of the dynam-

ics [223]. Eventually, as mentioned previously, the origin of multisine signals is

as the perturbation signal which serves for nonlinear system identification [233].

Thus, on the basis of results from the multisine-based method, the battery models,

which reflect the linear and nonlinear dynamics of the battery, can be identified in

a frequency domain identification approach [152]. Taking all of these factors into

account, the multisine-based nonlinear characterisation technique is determined to

be employed in this thesis for investigating battery nonlinear dynamics as well as

for developing an advanced battery model.

3.4 Summary

In this chapter, a range of characterisation tests which are commonly used for battery

modelling and nonlinearity analysis have been introduced. The spectrum of these

non-destructive methods is provided and tabulated in Table 3.1. Note that, since

the research objective of establishing the NLECM-di↵ model has been determined

in previous chapters, only the characterisation tests that can provide relevant infor-

mation are in the scope of this chapter. As described in Chapter 2, the NLECM-di↵

model is composed of four components: a di↵usion dynamic block, an OCV curve, an
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impedance linear block, and a nonlinearity block; thus, the corresponding character-

isation tests for these blocks are determined. Firstly, the constant current capacity

test is believed as an ideal method to extract parameters linked to di↵usion pro-

cesses, due to the ability to capture large time constant dynamics. In addition, the

GITT is determined to be applied in this work for obtaining the OCV vs. SOC curve,

as the OCV without polarisation is unavailable by the pseudo-OCV test. Regarding

the linear and nonlinear blocks, it is determined that the multisine-based test is

employed in this thesis to collect cell impedance and nonlinearity, and a frequency

domain system identification approach can be used to establish the mathematical

models. Details of battery modelling will be demonstrated in Chapter 6.

Table 3.1
Summary of characterisation test methods, data provided, test duration, and applicability
of methods in the literature.⇤

Test method Data extracted Test duration (h) Modelling application Nonlinearity analysis

CC Capacity test Cell capacity 3-20 X Not considered

GITT Actual OCV vs. SOC >100 X Not considered

Pseudo-OCV test pOCV vs. SOC 25-100 X Not considered

EIS Cell Impedance 2-4 X ⇥

THD Nonlinear distortion 2-4 ⇥ X
NLEIS Cell nonlinearity 2-4 ⇥ X
NFRA Cell nonlinearity 2-4 ⇥ X

Multisine test Cell impedance and nonlinearity <1 X X

⇤Note that only the characterisation tests required for establishing the NLECM-di↵ model described in Chapter 1 are reviewed.

Taking advantage of the ability to capture battery nonlinearity, the multisine

tests can also be applied as a specialised nonlinear characterisation method. Ac-

cording to the existing literature on NFRA, battery nonlinearity has demonstrated

promise for estimating SOH and identifying ageing mechanisms, which has signif-

icant implications for BMS design. Unfortunately, the protracted measuring time

of single-sine sweep methods is an obstacle to practical EV applications. In con-

trary, the testing duration of multisine-based tests is significantly shorter than that

of the single-sine sweep methods with same frequency range, which is preferred for

on-board applications. However, there is no systematic investigation of battery non-

linearity captured by the multisine-based method in the existing literature. Thus,

there is a knowledge gap in insu�cient understanding of battery nonlinearities in

terms of the source of the nonlinearity and the major electrochemical process that

contributes to the nonlinearity.

In the next chapters, an enhanced random phase odd multisine nonlinear

characterisation method that utilise a single realisation is devised to capture battery
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nonlinearity while simultaneously obtaining the information required for battery

modelling. Furthermore, a model-based analysis and an experimental investigation

are performed to further understand the battery nonlinearity in Chapter 4 and 5.
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Chapter 4

A Model-based Investigation of

Lithium-ion Battery

Nonlinearity†

4.1 Introduction

To understand the origins of lithium-ion battery nonlinearity, for further practical

applications including modelling, an e�cient nonlinear characterisation method is

required. As detailed in Section 3.3.2 existing approaches are either hindered by the

lengthy experimental process or are not employed as a particular characterisation

technique to systemically investigate the nonlinearity [47, 223]. Thus, these methods

need to be improved further for nonlinearity analysis to meet “Research Objective

(2): Understand the electrochemical process contributing to nonlinearity.” The most

exciting aspect of multisine signals is the flexibility that allows in choosing the

harmonics, phases, amplitudes and frequency range [233]. As such, the author

asserts that, by employing a multisine signal with specially modulated harmonics,

it may be feasible to characterise the nonlinearity of a battery cell while reducing

the test duration. As a part of this study, a novel multisine signal is designed

to partially fulfil “Research Objective (1): Design a characterisation method

capable of capturing battery nonlinearity.”

By applying the proposed multisine-based method, nonlinearity of lithium-

ion batteries can be characterised for subsequent analysis. Prior to this work, anal-

ysis of battery nonlinearity by multisine-based methods has not been theoretically

analysed. To fulfil this knowledge gap, a model-based investigation, conducted on

†
Parts of this chapter have been published in [1]
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a comprehensive electrochemical mathematical model, is performed in this chapter,

as the physical parameters that directly attribute to corresponding processes can

be identified and studied. Note that, in order to avoid the e↵ect from environment,

temperature dependency and heat generation are disregarded in this work. The

most recognised electrochemical model is the Doyle Fuller Newman (DFN) model

[36], despite the DFN model’s limitations to fully retrieve all phenomena, as de-

scribed in Chapter 2. Its framework is extensively used in the battery field and has

remained mostly unchanged over the last two decades. For example, charge-transfer

coe�cients in the Butler-Volmer equation can be related to the charge-transfer ki-

netics on the electrode and electrolyte interface, and di↵usion coe�cients in the

equation of Fick’s second law is linked to di↵usion processes in the electrode active

material [236]. By tuning the specific parameters of interests, variations in observed

nonlinearity (via the multisine characterisation approach) can be linked to the e↵ect

of the underlying processes. In addition, refer to [73], Nonlinear Frequency Response

Analysis (NFRA) is performed on the DFN model to identify which processes can be

observed with NFRA and how the processes a↵ect individual higher harmonics and

their sum. Measurements of three di↵erent cell types, a commercial 18650 cell with

a capacity of 800mAh and two hand-made pouch cells from the Battery LabFac-

tory Braunschweig with a capacity of around 35mAh (Lithium Manganese Oxide

(LiMn2O4) for pouch cell A and Nickel Manganese Cobalt (Ni1/3Mn1/3Co1/3) for

pouch cell B), show that characteristic frequency ranges can be detected for all

cells, though the cell spectra strongly diverge. Amplitude and the progression of

individual higher harmonics strongly di↵ers between cells type and chemistry. Wol↵

et al. concluded that the model-based analysis is indeed essential to get a deeper

understanding of the nonlinear response and the underlying processes and as such

to interpret experimental studies. Furthermore, the linear and nonlinear physics

of the DFN model is employed to evaluate the fundamental and higher harmonic

response of a LiCoO2|LiC6 cell subject to NLEIS method [220]. It is therefore be-

lieved that the influence of each electrochemical process to battery nonlinearity can

be determined and understood correspondingly by using the DFN model.

To evaluate the influence of parameters on a model output, sensitivity anal-

ysis (SA) methods can be used. The SA approach quantifies the uncertainty in a

mathematical model’s output, which is attributed to the uncertainty of model input

factors (MIFs), e.g. assumptions, errors in the data, resolution, and parameters

[237]. To date, several studies have focused on the SA of various battery mod-

els in the time domain to investigate how sensitive the model output voltage is to

changes in its parameters. Lai et al. investigated the sensitivities of a 2RC (resistor-
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capacitor) branch model with one-state hysteresis (2RCH) to determine the crucial

parameters to reduce the cost of SOC estimation and retain the results accuracy

[238]. Deng et al. analysed the parameter sensitivity of a typical physics-based

model for an all-solid-state battery model and proposed a joint estimation method

of model parameters and states [239]. The results show that the maximum and min-

imum lithium-ion concentrations have the greatest influence on the model output.

Grandjean et al. identified that the most sensitive parameters of a single particle

model with electrolyte (SPMe) using the Morris screening method are the anode

di↵usion coe�cient and cathode di↵usion coe�cient [240]. Most of the existing SA

studies focus on the e↵ect of parameters on the voltage output of battery models,

however, very few researchers investigated the battery nonlinear response by sensi-

tivity analysis methods. The e↵ect of parameters on nonlinear voltage response of

the P2D model and simple fundamental models are respectively analysed by using

NFRA method [73, 228]. In these two studies, only one parameter was examined

while keeping the other parameters at their nominal values at a single time, which

is termed as the local sensitivity analysis method. However, it is unable to detect

the presence of interactions between parameters of interests [241]. Compared to

the local SA method, global SA methods consider the sensitivity across the whole

MIF space and study all the possible parameter combinations to evaluate the e↵ect

from parameters interactions [238]. Therefore, global SA methods are universally

recognised as more comprehensive methods for sensitivity analysis. It’s worth em-

phasising that, in this chapter, the MIFs are defined as the parameters with physical

significance, while the battery nonlinearity (in the frequency domain, which is elab-

orated in the subsequent sections) is specified as the model output. According to the

SA results, the most sensitive parameter contributing to battery nonlinearity can be

determined, and thus the electrochemical process associated with this parameter is

recognised as having the greatest influence towards the battery nonlinear response.

As a result, the most sensitive parameter can be estimated by fitting data captured

by the multisine-based nonlinear characterisation when applied to a battery (rather

than a mathematical model), which can save extra cost of experimental approaches

for parameterisation.

The remainder of this chapter is structured as follows: The methodology to

understand battery nonlinearity with a model-based approach is detailed in Section

4.2. Section 4.3 presents the sensitivity analysis results to attribute the e↵ect of

electrochemical processes to the nonlinear response. Conclusions of this research

are given in Section 4.4.
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4.2 Methodology

This section presents the methodology for determining the sensitivity of the DFN

model parameters to battery nonlinearity in the frequency domain to investigate

the electrochemical processes that contribute to voltage dynamic response. Firstly,

the design of random phase odd multisine signal is explained for nonlinear anal-

ysis. Secondly, nonlinearities of the DFN model with published parameters are

characterised and compared to experimental data from a 11.5mAh three-electrode

configuration cell, which was related to a commercial NMC811 cathode Graphite-

SiOx anode cylindrical 21700 cell with 5Ah capacity. Thirdly, the most sensitive

parameter contributing to battery nonlinearities is determined by applying a global

sensitivity analysis (GSA) method. Finally, a value of the most sensitive parameter

that produces the closest nonlinear response to the commercial battery is estimated

by minimising the root mean square error (RMSE) of the characterised nonlinearity.

To clarify, the success of the methodology is not dependent on the correctness of

parameter values, as the sensitivity analysis method is focus on investigating how

sensitive the model output is to the parameters variation [237] and the parameters

could be unrealistic within the possible range, for example, 0.3 charge-transfer co-

e�cient in [228] and 0.5-1.5 parameter range in [238]. Nonetheless, the valid model

parameters can lead to an intuitive understanding of the nonlinearity di↵erence be-

tween the battery model and actual cell. Note that, in this chapter, the design of

multisine signals, model simulation and sensitivity analysis, as well as data collec-

tion and analysis, were the author’s original work. The three-electrode configuration

experimental cell was provided by collaborators from University of Birmingham.

4.2.1 Multisine signal design

A random phase odd multisine signal, which is specifically designed for this thesis to

meetResearch Objective (1), is explained in this section. The background theory

of multisine signal has been introduced in Chapter 3, and this section demonstrates

the selection of critical parameters, such as frequency range, harmonics, phases,

and amplitudes, in the signal design. These critical parameters for battery non-

linear characterisation should be determined by considering the battery dynamics,

hardware/software limitation, safety concerns and specific objective [47].

Frequency range of signal

As described in Section 2.3, the dynamic response of a lithium-ion battery is gov-

erned by di↵usion processes, thermodynamics, and charge-transfer kinetics [48].
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Each process has a distinct characteristic frequency range that allows it to be iden-

tified in the frequency domain. For instance, Harting et al. concluded that, for a

NMC pouch format cell used in [223], the low frequency range from 0.02Hz to 1Hz

is for thermodynamics and di↵usion processes, the medium frequency range from

1Hz to approximately 200Hz is for porous electrode reactions, such as double-layer

capacitance and charge transfer kinetics, and the high frequency range from approx-

imately 200Hz to 10 kHz is for faster processes such as ionic transport between SEI

and electrolyte. As the ionic transport processes have been proved to contribute

only minor nonlinearity (around 10�2 times than the other processes), the high

frequency range can reasonably be neglected for nonlinearity characterisation and

analysis. In addition, limitations of the hardware sampling frequency needs to be

taken into consideration. According to Shannon sampling theorem the maximum

frequency of the multisine signal has to be less than fs/2. Referring to [228], results

of the NFRA simulation conducted on the DFN model show that the nonlinearity

related to the charge-transfer kinetics decreases monotonously as the characteristic

frequency increases, the smallest part of the medium frequency range is su�cient to

evaluate the magnitude of nonlinearity related to the electrode reactions.

Thus, in this study, the maximum frequency fmax of the multisine signal

was set as 10Hz to include the low and partial mid characteristic frequency ranges,

such that the nonlinearities caused by both di↵usion and charge-transfer kinetics

behaviour can be characterised. The frequency range was determined by the same

experimental process as described in [228] which was based on the EIS result on the

actual experimental cell. Furthermore, the sampling frequency fs was set as 50Hz to

avoid signal aliasing. The number of sample per periodN was set toN = 5000 giving

a signal period of T = N/fs = 100 s and the minimum frequency fmin = 10mHz. In

addition, the frequency resolution was obtained as f0 = fs/N = 0.01Hz.

Harmonics, phases, and amplitudes of signal

After determining the frequency range of the signal, the harmonics, phases, and am-

plitudes of the multisine signal were determined in order to detect the nonlinearity

in the frequency domain; this is referred to as a random phase odd multisine signal.

The fundamental (DC) frequency, which is n = 0 harmonic, was suppressed for ob-

taining a zero-mean current signal to ensure the cell has no net charge or discharge

from the application of the signal.To detect even order nonlinear distortions, all

even harmonics within the considered frequency range of the designed signal were

suppressed, termed as even detection harmonics Hsupp,even. Furthermore, some odd

harmonics were randomly suppressed by considering three consecutive odd harmon-
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ics and randomly suppressing one harmonic from each group. Denoted as odd detec-

tion harmonics Hsupp,odd, the suppressed odd harmonics detect odd order nonlinear

distortions. As described in Chapter 3, energy appearing at the suppressed even har-

monics in the voltage spectrum are caused by even order nonlinearity and the energy

appearing at the suppressed odd harmonics are due to odd order nonlinearity [233].

In this signal example, a total of 334 odd harmonics out of all K = N/2 = 2500

harmonics were excited giving Hexc = {1, 5, 7, 9, 13, 15, 21, 23, ..., 999} within the

bandwidth (10mHz to 10Hz).

In addition the phase 'n of the excited harmonics (Hexc) was a uniformly

distributed random variable between 0 to 2⇡ in order to make the signal has gener-

ality and randomness. The odd only excited harmonics and random phases assigned

to them classifies the signal as random phase odd multisine. For simplicity, the am-

plitude of the harmonics was identical to unity across all excited harmonics (a flat

spectrum). According to the literature, di↵erent levels of battery nonlinearity can

be excited depending on signal amplitudes, e.g. referring to [223], a signal with 1.5

C-rate is su�cient to excite battery nonlinearity of 32mAh NMC|C lithium-ion

batteries in the pouch format for NFRA, and 0.2/0.27/0.33 C-rate signals are ap-

plied for NLECM analysis on commercially available Samsung 1.5Ah NMC|C cells

(INR 18650-15M) [221]. To obtain su�cient nonlinearity for analysis, the multisine

signal in this work was formalised in the time domain, and its root mean square

(RMS) was scaled to 1.5 C-rate. As the battery model employed in this study was

parameterised to an experimental cell with 11.5mAh rated capacity, the RMS of

the multisine signal was set as 17.25mA. Given that the peak value of the signal

was relatively small in comparison to the hardware constraint and safety range, the

crest factor optimisation problem was not required for this study. Furthermore, to

improve the robustness of the characterisation results, the multisine signal u(n) was

repeated P = 10 times and thus the total duration was Ttotal = P ⇥ 100 s = 1000 s

for each operational condition.

4.2.2 Experimental setup and measurements

In this work, a three-electrode configuration cell, which was related to a commercial

5Ah cylindrical 21700 cell, was constructed and termed as Cell3. The voltage

response of the full-cell was measured at 10%, 50%, and 90% SOC in order to

compare it to the electrochemical model simulation results under the same operating

conditions. These three SOC levels were chosen for the following reasons: first, to

consistent with the existing experimental procedures that both NFRA and NLECM

are performed at 50% SOC [223, 221], 50% is also selected for this work. In addition,
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in order to understand the nonlinearity at low and high SOC levels, 10% and 90%

SOC, which are symmetrical with respect to 50%, are determined. The detailed

experimental setup and measurements, including the construction of three-electrode

configuration cell and the design of experimental plan, will be presented in Section

5.2.

4.2.3 Electrochemical model

The DFN model, which was introduced in Chapter 2, is applied in this work, and

the readers can refer to [36] for more details. In this work, the electrochemistry-

based battery modelling toolbox proposed in [242], which allows the user to easily

select simplifications to make the desired trade-o↵ between model accuracy and

computation time, was employed to perform simulations in MATLAB R2019b en-

vironment. Furthermore, the validated parameters used in the DFN model were

referred to [24], in which parameters for the electrochemical model are extracted by

using experimental techniques.

To investigate the e↵ect of the parameters towards the nonlinear response,

some nonlinearity-related physical parameters were determined for sensitivity analy-

sis. Theoretically, nonlinearity can be attributed to inherent nonlinear equations or

time-varying parameters in linear equations during operation. As described in Sec-

tion 2.3, the electrochemical processes in a lithium-ion battery, which are represented

by nonlinear partial di↵erential equations (PDEs) or nonlinear di↵erential algebraic

equations (DAEs), contribute to the nonlinearity of the battery terminal voltage

dynamic response. For example, the Butler-Volmer equation, which describes the

charge-transfer kinetics on electrodes, is a typical nonlinear equation in the DFN

model system. Given that this equation is inherently nonlinear, small changes in the

parameters result in variations in the system’s nonlinearity. Therefore, the charge

transfer coe�cients ↵ and the reaction rate coe�cients k are considered as MIFs for

the sensitivity analysis in this study. Note that, as one of the assumptions of the

SPMe model is “define molar ion flux as proportional to current,” which results in

an ”open-loop” overpotential representation, the nonlinearity within charge-transfer

kinetics may not be observable. Thus, the SPMe may not be a suitable candidate

to be used for nonlinearity analysis study. In contrast to the majority of modelling

research, which assumes that the anodic and cathodic charge transfer coe�cients

(↵a and ↵c) are equal to 0.5 by default, this study evaluates system nonlinearities

when ↵a was randomly selected within a range around the nominal value point 0.5

and ↵c equals to 1 � ↵a. Note that the charge transfer coe�cients for the cathode

and anode are assumed to be equal to 0.5 in this study.
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To simulate the DFN model, spatial discretisation has to be applied on the

governing PDEs in Table 2.1, and the resulting set of linear original di↵erential

equations (ODEs) describes the di↵usion processes of lithium-ion concentration and

phase potential. In many modelling literature, the parameters of the solid di↵u-

sion coe�cient Ds,k, electrolyte di↵usion coe�cient De and ionic conductivity  are

assumed as constant values for simulation simplicity. However, referring to [24],

the experimental results show that these parameters are functions of lithium-ion

concentration during battery operation. Thus, the variation of these concentration-

dependent parameters also act as a source of non-linearity towards the voltage re-

sponse, and these parameters are taken into account in this SA study.

As tabulated in Table 4.1, seven nonlinearity-related parameters were deter-

mined for the analysis of sensitivity, and a su�ciently wide range of parameters was

chosen under the condition that the DFN model can function properly to emulate

the behaviour of a physical lithium-ion cell. Note that this work is limited by the

fact that its parameter range is not physical, which could result in the model output

to be mathematically fitted but based on unrealistic parameter values. Given that

the success of this work’s methodology is not dependent on the correctness of param-

eters, this work can be used for sensitivity analysis, however, a physical parameter

possible range merits additional investigation in the future. The other parameters

in the DFN model assume to have negligible e↵ect on battery nonlinearity, which

will be verified in the following sections.

Table 4.1
Nonlinearity-related parameters of the DFN model and their possible ranges.

Parameters Unit Nominal Value
⇤

Possible range

↵a � 0.5 [0.4� 1.6] ⇤Nom.
 Sm�1 0.9487 [0.5� 1.5] ⇤Nom.

Ds,n m2s�1 3.3⇥ 10�14 [0.5� 1.5] ⇤Nom.
Ds,p m2s�1 4⇥ 10�15 [0.5� 1.5] ⇤Nom.
De m2s�1 1.7⇥ 10�10 [0.5� 1.5] ⇤Nom.
kn Am2.5mol�1.5 6.48⇥ 10�7 [0.5� 1.5] ⇤Nom.
kp Am2.5mol�1.5 3.42⇥ 10�6 [0.5� 1.5] ⇤Nom.

⇤Note Nom. is the abbreviation of Nominal Value.
⇤All parameters used in the DFN model are refereed to [24].

To consistent with the procedure of existing nonlinearity analysis [223, 221],

battery voltage response at 50% SOC was considered. Under the assumption that

the DFN can fully replicate battery dynamics, the nonlinearity of the DFN model

should be close to that of an actual battery cell once a good agreement was reached
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between the voltage response of the model and the cell. Moreover, considering that

the DFN model with constant parameters was commonly regarded as providing suf-

ficient accuracy across the whole SOC range, identical findings are expected for SOC

levels of 10% and 90%. Figure 4.1 presents the validation result of the DFN model

on the experimental battery cell Cell3, at 50% SOC, while the 1.5 C-rate multisine

signal is applied. Note that the relevant information of the experimental cell will

be provided in Chapter 5. A good agreement between the terminal voltage of the

experimental data and of simulation is observed in Figure 4.1a. Furthermore, a 10 s

segment is randomly selected and locally amplified, and it shows that the DFN model

has a minor overestimation of 0.12V at peak voltage. Figure 4.1b shows the voltage

error which is determined as the model value subtracted by the measured voltage

value. The black dashed lines in Figure 4.1b include the 0.050V and �0.050V error

boundaries, and most of the voltage error is within the boundaries. Additionally,

the voltage root mean square error (RMSE) of the DFN model was calculated over

the entire testing period and it equals to 0.049V, which indicates the DFN model

can predict the battery voltage response and provide su�cient accuracy (within the

accuracy requirement proposed in Section 1.3). Due to the fact that the majority

of physical class models do not account for SOC-dependent parameter variations

[24, 243], the same set of parameters is expected to be valid for the other SOC

levels. Sensitivity analysis is more meaningful when a high fidelity validated model

is used, as the nominal values of the parameters are realistic for the commercial

cell. In this work, the parameterised model was not a fully validated model due to

the limitations of the DFN model and unrealistic parameters. However, because the

output is mathematically fitted to experimental data, this work could give plausible

global sensitivity analysis results.

4.2.4 Sensitivity analysis method: Morris method

For sensitivity analysis, nonlinearities of the DFN model with nominal values were

characterised by the multisine-based method and quantified. As shown in Equations

(3.11) and (3.12), the time-domain voltage response is converted to the frequency-

domain spectrum by applying DFT. The mean spectrum Vk is calculated by taking

the average over P periods. The root mean square of the odd order nonlinearity

Vrms,odd and the even order nonlinearity Vrms,even are calculated as model outputs

in this work, as shown in Equation (4.1).
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Figure 4.1: DFN model prediction vs experimental data at 50% SOC under 1.5C multisine
signal. (a) Terminal voltage between the DFN model and Cell3; (b) Error voltage between
the DFN model and Cell3. The simulation result of the DFN model has a good agreement
with the experimental result, which indicates the high accuracy of the parameterised DFN
model in this study.
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Here Vrms,l is the root mean square of nonlinearities at detection harmonics

(suppressed odd or even harmonics), ✓̄ denotes the nominal value of parameters,

subscript j is the jth parameter, and Cardinal(k) indicates the total number of

odd or even detection harmonics. The root mean square is a well-known measure in

engineering, also for nonlinearity analysis in total harmonic distortion, and it gives

a mean value of the overall nonlinearity of a system [228, 217].

The global sensitivity analysis method proposed by [244], which is recognised

as the simplest but e↵ective method, is utilised in this work. The Morris method

overcomes the limitation of the local SA by performing partial derivative calcula-

tions in di↵erent locations of the input variable domain of variation. The method

is global because the input variables can vary over their entire domain of defini-

tion [245]. It has been utilised to research the SPM [240] and DFN model [246]

and this method was favoured as it is fast, requires fewer simulation samples and

its qualitative ranking of variable sensitivities is close to more complex SA meth-

ods. The approach, however, cannot be utilized to quantitatively assign relative

importance [247]; it simply provides insight into whether characteristics are more or
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less significant. It is consequently appropriate for tasks such as sorting parameters

based on their sensitivities or picking subsets of unimportant or di�cult-to-identify

parameters [248]. The Morris method enables the classification of inputs into three

categories: inputs with negligible e↵ects, inputs with large linear e↵ects but with-

out interactions, and inputs with large non-linear and/or interaction e↵ects. The

method entails discretising the input space for each variable, followed by a prede-

termined number of “One At a Time” (OAT) designs in which each input is varied

while fixing the others [249]. These experimental designs are picked at random from

the input space, and the variation direction is also random. It allows elementary

e↵ects for each input to be estimated by repeating these processes, and sensitivity

indices are derived from these e↵ects [250].

Suppose each parameter ✓j, j = 1, 2, ..., d in the DFN model is independent,

and the input space is discretised into a d-dimensional grid per input. Denote r

as the number of OAT designs. The elementary e↵ect (EE) of the jth parameter

obtained at the ith repetition, is defined as,

EE(i)

j
=
���Vrms,l

⇣
✓̄(i)
j

+�(i)

j

⌘
� Vrms,l

⇣
✓̄(i)
j

⌘ ���, i = 1, 2, ..., r (4.2)

where ✓̄(i)
j

denotes the nominal parameter values in the ith repetition, �(i)

j
denotes

the random perturbation value from a standard uniform distribution on the open

interval (0,1) and ✓̄(i)
j

+ �(i)

j
is always within the corresponding possible range as

listed in Table 4.1. In this study, the Morris method is applied for nonlinearity

analysis with r = 15 repetitions and d = 7, which requires n = r(d+1) = 120 model

calls.

Indices of elementary e↵ect (EE) distribution are calculated to evaluate the

sensitivity of parameters, as follows:

µj =
1

r

rX

i=1

EE(i)

j
(4.3a)

�j =

vuut 1

r � 1

rX

i=1

⇣
EE(i)

j
� µj

⌘2
(4.3b)

where µj is mean of the elementary e↵ects and �j is standard deviation of the

elementary e↵ects.

The interpretation of the indices is as following, µj is a measure of influence

of the jth input on the output. A large µj indicates a high contribution of the jth

input to the dispersion of the output. �j is a measure of nonlinear and/or interaction
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e↵ects of the jth input. If �j is small, elementary e↵ects have low variations on the

support of the input. Thus, a perturbation has the same e↵ect throughout the

support, implying a linear relationship between the analysed input and output. On

the other hand, the large �j indicates that the linearity hypothesis is less likely.

Thus a variable with a large �j value is regarded to have nonlinear e↵ects or to have

interactions with at least one other variable. A plot linking µj and �j allows the

three groups to be distinguished. More details can be found in [240, 250].

4.3 Results and discussions

To understand the nonlinearity of lithium-ion battery systems, the multisine-based

method was applied on the DFN model and the three electrode cell at 10%, 50%

and 90% SOC levels. The measured voltage response were transformed into the fre-

quency domain, and the frequency spectrum of the measured voltage was compared

to that of the DFN model and analysed. Furthermore, the Morris method (Sec-

tion 4.2.4) was employed for sensitivity analysis and the most sensitive parameter

towards battery nonlinearities and the linear response was evaluated respectively.

The detailed results and discussions are presented in the following sections.

4.3.1 Comparison of battery frequency response

In this section, the results analysis and discussion focus on the nonlinearity of the

DFN model and the experimental cell at 10% SOC. The motivation is that, as men-

tioned in [47], the battery nonlinearities of both NMC|C are much stronger at low

SOC levels than at higher SOC levels. The terminal voltage spectrum of the DFN

model (with nominal parameters) and the experimental cells at 1.5 C-rate 10% SOC,

characterised by the multisine-based method (Section 4.2.1), are plotted in Figure

4.2. As mentioned in the signal design section, the energy shown at the excited

harmonics (blue curve) indicates the dominant linear response spectrum (Equation

3.13a with k 2 Hexc) at the operating point (10% SOC). In the non-excited detection

harmonics, the level of nonlinear contributions (termed as the battery nonlinearity)

can be separated to odd (red circle) and even (yellow triangle) order, respectively

(Equation 3.13a with k 2 Hsupp,even or Hsupp,even). The purple points indicates

the noise standard deviation from measurement and environment error (Equation

3.13b). It can be noticed that the dominant linear response spectrum (blue) and

the noise floor (purple) in the DFN model agrees well with the experiment results.

However, there are significant di↵erences in the nonlinear contributions in the DFN

model compared to the experimental results (4.2a vs 4.2b). The dominant non-
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linearity in the DFN model is the odd nonlinearity over the whole characterisation

frequency range, while it is the even nonlinearity in the experiment data. Given that

the DFN model is commonly used in model-based nonlinearity investigation work

[220, 227, 228], it is assumed that the DFN model covers the nonlinearity-related

battery dynamics of a lithium-ion battery, although the DFN model’s limitations,

such as its mathematical approximation and lack of non-homogeneity interpreta-

tion, still exist and may a↵ect the model’s nonlinear response. In this study, it

is considered that the DFN model is suitable for interpreting nonlinear dynamics,

thus, inspired by model parameterisation procedure, the inconsistent nonlinearity

results between the experimental data and model simulation are attributed to the

incorrect parameters in the model, which motivates further investigation employing

sensitivity analysis.
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Figure 4.2: Comparison of terminal voltage spectrum at 1.5 C-rate 10% SOC. (a) Voltage
spectrum of the DFN model; (b) Voltage spectrum of experimental data.

4.3.2 Analysis of parameter sensitivity towards nonlinearities

Figure 4.3a depicts the parameter sensitivity analysis results to battery odd nonlin-

earity (plotting equations 4.3b vs equation 4.3a) at 1.5 C-rate 10% SOC. In the SA

results, the value of µ and � can be classified into three categories, such as large,

average, and minor. The MIF (Table 4.1), which has the largest µ and �, is deemed

as the most sensitive factor and marked with a diamond. The minor level, marked

with a dot, is when the value of µ and � are less than 1/10 of the most sensitive

factor, and the MIFs can be considered insensitive. The remaining factors between

‘large’ and ‘minor’ levels are defined as average sensitivity MIFs and marked with a
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square. Therefore, it is observed that the charge transfer coe�cient ↵∗ is the most

sensitive parameter and has strong non-linear e↵ects and/or interactions e↵ect (large

µ and large �). It’s noted that, in the Morris method, the sensitivity of MIF is qual-

itatively ranked, thus the higher sensitivity of one parameter value does not imply

that the others do not contribute to nonlinearity. The anode reaction rate constant

kn has average non-linear e↵ects and/or interactions e↵ect (average µ = 3.49 dB

and average � = 3.05 dB). The remaining parameters, such as ionic conductivity ,

cathode reaction rate constant kp, cathode di↵usion coe�cient Ds,p, anode di↵usion

coe�cient Ds,n, and electrolyte coe�cient De, are insensitive towards the odd dis-

tortions observed in the spectrum, since the value of µ and � of these MIFs are one

order of magnitude smaller than the most sensitive parameter (µ<0.47 dB). The

sensitive parameters ↵ and k fulfil their roles in the Butler-Volmer equation, which

indicates that any slight variation of the charge transfer behaviour can lead to con-

siderable change in the battery nonlinear response. Since the Butler-Volmer kinetic

is an odd symmetric function (between the over-potential and current density) and

shows point symmetry in the nonlinear current voltage relation with ↵a = ↵c = 0.5,

it’s reasonable to observe the variation of battery nonlinearities when the ↵a is no

longer 0.5 and the Butler-Volmer kinetics is not symmetric anymore.

To further validate the nonlinearity related parameters, the sensitivity of an

extended physical parameters space was analysed at the same condition, as shown in

Figure 4.3b. This extended parameter space consists of the 7 aforementioned non-

linearity related parameters and 14 extra physical parameters (See Table 4.2) which

are normally taken into account in electrochemical model SA studies. Consistent

with Figure 4.3a, the most sensitive parameter in the extended parameters case is

still the charge transfer coe�cient ↵ followed by the anode reaction rate constants

kn, which means the selection of nonlinearity related parameters is reasonable and

the major source of battery nonlinearities is the charge transfer reaction. Further-

more, Figure 4.3b verifies that the extended physical parameters have a negligible

e↵ect towards battery nonlinearities compared to the non-extended parameter set

(See Table 4.1). From a computational perspective, applying the global sensitivity

analysis method on the DFN model is relatively costly, for instance, a total of 5188 s

operation time was required for the 7 parameters case using a standard laptop.

Given that the most sensitive parameter is included in both cases, the 7 parameters

case for subsequent analysis was utilised in this work, rather than the extended 21

parameters, to reduce computational cost by two-thirds.

∗
The charge transfer coe�cient ↵ in the legend denotes the anodic charge transfer coe�cient

↵a.
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Figure 4.3: Parameters sensitivity analysis results of the DFN model based on the Morris
screening method at 1.5 C-rate 10% SOC. (a) Sensitivity of nonlinearity related parameters
to odd nonlinearity; (b) Sensitivity of extended physical parameters to odd nonlinearity;
(c) Sensitivity of nonlinearity related parameters to even nonlinearity; (d) Sensitivity of
nonlinearity related parameters to terminal voltage.

The sensitivity analysis results of nonlinearity related parameters to battery

even nonlinearity are shown in Figure 4.3c. It is observed that the sensitivity of the

charge transfer coe�cient ↵ is again the greatest, followed by those of anode reaction

rate constant kn and cathode reaction rate constant kp, and the other parameters

are insensitive.

The sensitivity of the parameters towards the terminal voltage were analysed

by the same method and is shown in Figure 4.3d. The results show that the charge

transfer coe�cient ↵ is the most sensitive parameter to terminal voltage, followed

by anode reaction rate constant kn and cathode reaction rate constant kp. The

charge transfer coe�cient ↵ has strong interaction e↵ects (large µ and large �). The

anode reaction rate constant kn and cathode reaction rate constant kp have average

non-linear e↵ects and/or interactions e↵ects (average µ = 5.57mV and average
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Table 4.2
Extended model input factors (MIFs) - 14 extra physical parameters for the extended sen-
sitivity analysis.

Parameters Dimension Nominal Value
⇤

Possible range

Rn

f
⌦⇥m2 10�4 [0.5� 1.5] ⇤Nom.

Rp

f
⌦⇥m2 10�4 [0.5� 1.5] ⇤Nom.

Ln m 0.9487 [0.5� 1.5] ⇤Nom.
Ls m 3.3⇥ 10�14 [0.5� 1.5] ⇤Nom.
Lp m 4⇥ 10�15 [0.5� 1.5] ⇤Nom.
Rn m 1.7⇥ 10�10 [0.5� 1.5] ⇤Nom.
Rp m 6.48⇥ 10�7 [0.5� 1.5] ⇤Nom.
"s,n % 0.75 [0.5� 1.5] ⇤Nom.
"s,p % 0.665 [0.5� 1.5] ⇤Nom.
"e,n % 0.25 [0.5� 1.5] ⇤Nom.
"e,s % 0.47 [0.5� 1.5] ⇤Nom.
"e,p % 0.335 [0.5� 1.5] ⇤Nom.
b � 1.5 [0.5� 1.5] ⇤Nom.
t+ � 0.2594 [0.5� 1.5] ⇤Nom.

⇤Note Nom. is the abbreviation of Nominal Value.
⇤The nominal value of parameters are refereed to [24].

� = 5.41mV). The remaining parameters, such as cathode di↵usion coe�cient Ds,p,

anode di↵usion coe�cient Ds,n, electrolyte coe�cient De, and ionic conductivity

, are deemed to have no e↵ect since they are one order of magnitude smaller

than ↵ (µ<0.41mV). Furthermore, compared to the literature which analyses the

sensitivity to model voltage output in the entire SOC window [240], the sensitivity of

the solid di↵usion coe�cients Ds (in this analysis) is insensitive. The reason may be

due to the variation of SOC is negligible during a multisine-based characterisation

test, which leads to the e↵ect of di↵usion behaviour to terminal voltage being minor.

Furthermore, Figure 4.4 presents the sensitivity results of nonlinearity related

parameters to the odd and the even order nonlinearity at 50% and 90% SOC levels.

In the Morris method, as the perturbation�i of a MIF in Equation (4.1) is randomly

selected from the corresponding possible range, the sensitivity results of a MIF varies

within a certain extent. However, overall, the sensitivity of each nonlinearity related

parameter is still consistent with the 10% SOC case.

The results shown in Figure 4.3 and Figure 4.4 reveal that the charge transfer

coe�cient ↵ is the most sensitive parameter to nonlinearities of a lithium-ion battery.

Moreover, the sensitivity analysis results indicate that the charge-transfer reaction

plays a vital role in the lithium-ion battery dynamic response at a SOC level.
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Figure 4.4: Sensitivity results of nonlinearity related parameters to nonlinearities at var-
ious SOC levels of; (a) Odd nonlinearity at 50% SOC, (b) Odd nonlinearity at 90% SOC,
(c) Even nonlinearity at 50% SOC, and (d) Even nonlinearity at 90% SOC .

4.3.3 E↵ect of charge-transfer coe�cient towards battery nonlin-

earities

Based on the sensitivity analysis results, the charge transfer coe�cient ↵ has been

identified as the most sensitive parameter towards the battery nonlinearity and

terminal voltage response at a specific SOC level. To further understand the e↵ect

of charge transfer coe�cient ↵, the nonlinearities of the DFN model with various

charge transfer coe�cients ↵ were characterised and compared to each other in this

section (Figure 4.5). The nominal values of the anodic charge transfer coe�cient

↵a and cathodic charge transfer coe�cient ↵c are 0.5, and the level of nonlinearity

at nominal values are the yellow lines in Figure 4.5a and Figure 4.5b. The anodic

charge transfer coe�cient ↵a is varied by multiplying the nominal value by a gain

factor, where the range of gain factors is defined from 0.6 to 1.8. It leads to the

anodic charge transfer coe�cient ↵a examined in this section to vary between 0.3
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and 0.9. Then, the corresponding cathodic charge transfer coe�cients ↵c can be

obtained by 1 � ↵a. While for a simple one electron transfer reaction, the sum of

↵a and ↵c equals to 1 is rational [251].

0 2 4 6 8 10
Frequency (Hz)

-120

-100

-80

-60

-40

-20

0

20

40

D
FT

 m
ag

ni
tu

de
 (d

B)

0.6 Nomi
0.8 Nomi
1.0 Nomi
1.2 Nomi
1.4 Nomi
1.6 Nomi
1.8 Nomi0 0.2 0.4 0.6 0.8 1

Frequency (Hz)
-40

-20

0

20

40

(a)

0 2 4 6 8 10
Frequency (Hz)

-120

-100

-80

-60

-40

-20

0

20

40

D
FT

 m
ag

ni
tu

de
 (d

B)

0.6 Nomi
0.8 Nomi
1.0 Nomi
1.2 Nomi
1.4 Nomi
1.6 Nomi
1.8 Nomi0 0.2 0.4 0.6 0.8 1

Frequency (Hz)
-60

-40

-20

0

20

(b)

Figure 4.5: Nonlinearities comparison at various ↵a values at 1.5 C-rate 10% SOC. (a) Odd
nonlinearity comparison with various ↵a; (b) Even nonlinearity comparison with various ↵a.

The battery odd nonlinearities to the varying ↵a (with a 1.5 C-rate odd

random phase multisine current) when at 10% SOC are compared in Figure 4.5a. It

clearly shows that the odd nonlinearity shifts in the interval from around �30 dB to

20 dB in accordance with the variation of ↵a. As ↵a increases from the nominal value

of 0.5 (“1.0 Nomi” yellow line) in Figure 4.5a), the magnitude of the odd nonlinearity

simultaneously decreases. Moreover, when ↵a decreases from the nominal value the

odd nonlinearity increases. Unlike the e↵ect towards the odd nonlinearities, the

even nonlinearities excited by the same charge transfer parameters do not increase

or decrease continuously with the decrease or increase in ↵a, as shown in Figure

4.5b. The DFN model with the nominal value excites the weakest even nonlinearity

which is at around �35 dB. Furthermore, the even nonlinearities of all the other

cases are stronger than the nominal value case and vary between �10 dB to 20 dB.

This interesting phenomena of the even nonlinearity was also noticed in [228] when

the NFRA was applied on the Butler-Volmer equation. When ↵a is not 0.5, the

perfectly symmetric charge-transfer reaction will not exist, thereby leading to an

increase of the even nonlinearity.

To get a further understanding of charge transfer symmetry in the linear

and nonlinear voltage response, a Taylor series expansion can be carried out to the

Butler-Volmer equation,

j =
i0,k
F

(exp(
↵aF

RT
⌘)� exp(�

↵cF

RT
⌘)), k 2 {n, p}, (4.4)
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and the first three dominant terms are contained for a comprehensive analysis of

even and odd order higher harmonics,

j =
i0,k
F

✓
(↵a + ↵c)F

RT

◆�
⌘ +

i0,k
F

✓
(↵2

a � ↵2
c)F

2

2!R2T 2

◆�
⌘2

+
i0,k
F

✓
(↵3

a + ↵3
c)F

3

3!R3T 3

◆�
⌘3 +O(⌘4)

(4.5)

where i0,k is the exchange current density, ⌘ is the overpotential, ↵a and ↵c are the

anodic and cathodic transfer coe�cients, and F , R, and T are Faraday’s constant,

the gas constant, and the temperature, respectively. In this Taylor series expansion,

the first three terms in the right-hand side of Equation (4.5) can be classified into

the linear term, the even nonlinear term, and the odd nonlinear term which are

related to linear response as well as even and odd nonlinearities with respect to the

order of the independent variable ⌘ [233], and the reminder term O(⌘4) is neglected.

Given that the assumption ↵a + ↵c = 1, the change of ↵a and ↵c will not a↵ect the

first linear term. However, the variation of charge transfer coe�cients will influence

the second and third terms in Equation (4.5), especially the second term which is

related to the even nonlinearity. For many electrochemical model studies using the

values ↵a = ↵c = 0.5 indicate a symmetric charge-transfer kinetic, and the even

nonlinear term in Equation (4.5) is eliminated, which explains the extremely minor

magnitude of even nonlinearity in the DFN model simulation in Figure 4.2a. In

the case of ↵a 6= ↵c caused by an asymmetric charge-transfer reaction, the even

nonlinear term appears and leads to the even nonlinearity in the results of the

nonlinear characterisation observed in the experimental data (Figure 4.2b). As the

di↵erence between ↵a and ↵c increases, the factor (↵2
a � ↵2

c) of the even nonlinear

term will increase, which will excite a greater even nonlinearity as shown in Figure

4.5b. Compared to the even nonlinear term, the odd nonlinear term in Equation

(4.5) will always be present due to the summation of ↵3
a and ↵3

c . However, the

physical interpretation of the even and odd nonlinearities is still an open question

which requires further research.

Referring to Figure 4.5, the nonlinear response of the DFN model could

approach the experimental results by tuning the charge transfer coe�cients to an

appropriate value. For example, Figure 4.6 shows the terminal voltage spectrum of

the DFN model with various ↵a values at 10% SOC. To highlight the e↵ect of ↵a

values, the voltage spectrum of DFN model with ↵a = 0.5 and the experimental

result shown in Figure 4.2 are represented as Figure 4.6c and 4.6d. In Figure 4.6a,

the odd and even nonlinearities are overlapped over the whole characterisation fre-
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quency, which is consistent with the experimental data especially at high frequency

range 6Hz to 10Hz (Figure 4.6d). On the contrary, it is noticed that the level of

odd and even nonlinear contributions in the low frequency range from 10mHz to

4Hz are roughly comparable to the experimental case shown in Figure 4.6d. Fur-

ther, the even nonlinear is now the dominant nonlinearity in the DFN model which

is the opposite of the case with ↵a = 0.5 (See Figure 4.6c). However, there are

still di↵erences in the trend of the nonlinearities and the linear response level of the

DFN model in both Figure 4.6a and Figure 4.6b compared to the experiment results

(Figure 4.6d), such as the overlapping of the odd and even distortions in the high

frequency range and the trend of the linear response and nonlinearities decreasing

as frequency increases over the whole frequency range, which are observed in the

experimental data but not in the simulations.
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Figure 4.6: Terminal voltage spectrum from DFN model at 1.5 C-rate 10% SOC when (a)
↵a is set at 0.8; (b) ↵a is set at 0.9; (c) ↵a is set at 0.5; (d) Voltage spectrum of experimental
data. Note that (c) and (d) are adapted from Figure 4.2 for comparison.

To determine the ↵a value that will lead to a comparable experimental result,
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the RMSE of the odd and even nonlinearity of the DFN model with various ↵a values

were calculated and listed in Table 4.3. The nonlinearity error between the model

and experimental result shows that with the nominal ↵a = 0.5 value the DFN

model’s odd nonlinearity RMSE is 29.15 and at medium error level, as well as the

even nonlinearity RMSE (22.20) is the largest among all various ↵a value cases.

This information is consistent with the results shown in Figure 4.5. According

to Table 4.3, a value of ↵a = 0.8 results in the smallest odd nonlinearity RMSE

and with ↵a = 0.9 leads to the least even nonlinearity RMSE. Compared with the

nominal case, both 0.8 and 0.9 could reduce the RMSE by more than a half, which

indicates that these two cases lead to a non-linear voltage response that is closer to

the experimental data.

Table 4.3
The odd and even nonlinearity RMSE with various ↵a values, while the DFN model is at
10% SOC and under 1.5 C-rate multisine signal.

↵a Odd Nonlinearity RMSE [dB] Even Nonlinearity RMSE [dB]

0.3 38.37 15.27
0.4 34.03 8.79
0.5⇤ 29.15 22.20
0.6 22.53 8.33
0.7 10.48 11.33
0.8 3.98 7.87
0.9 7.80 0.41

⇤The nominal value of ↵a referred to [24].

4.3.4 E↵ect of charge-transfer coe�cient towards a battery linear

response

Di↵erent from the results in Figure 4.6c (with the nominal DFN parameter values of

Table 4.1), Figure 4.6a and 4.6b present that the odd and even nonlinearities of the

DFN model with ↵a values 0.8 and 0.9 are overlapped, which is consistent with the

experimental results shown in Figure 4.6d. However, the smooth “ramp-shaped”

curve of measured linear response shown in Figure 4.6d, which gradually decreases

in magnitude as frequency increases throughout the whole frequency range, is not

observed. This section investigates the e↵ect of charge transfer coe�cient ↵ towards

a battery linear response.

Figure 4.7 shows the linear responses at various ↵a values when the DFN

model is at 10% SOC. Firstly, the linear response of the full cell over the whole

84



0 2 4 6 8 10
Frequency (Hz)

10

15

20

25

30

35

40

45

50

55

60

D
FT

 m
ag

ni
tu

de
 (d

B)

0.6 Nomi
0.8 Nomi
1.0 Nomi
1.2 Nomi
1.4 Nomi
1.6 Nomi
1.8 Nomi

(a)

0 0.2 0.4 0.6 0.8 1
Frequency (Hz)

10

15

20

25

30

35

40

45

50

55

60

D
FT

 m
ag

ni
tu

de
 (d

B)

0.6 Nomi
0.8 Nomi
1.0 Nomi
1.2 Nomi
1.4 Nomi
1.6 Nomi
1.8 Nomi

(b)

Figure 4.7: Dominant linear responses at various ↵a values at 1.5 C-rate 10% SOC. (a)
‘Fluctuating’ and ‘smooth’ dominant linear responses in the whole characterisation range;
(b) ‘Ramp-shaped’ dominant linear responses at low frequency range.

characterisation frequency range is plotted in Figure 4.7a. An interesting phenomena

is, when the value of ↵a is selected from 0.3 (0.6 * Nomi) to 0.6 (1.2 * Nomi), the

linear response curve exhibits fluctuations from the input multisine current. On

the contrary, with larger ↵a values, such as 0.7, 0.8, and 0.9, a relatively flat linear

response curve is obtained, which is more close to the experimental results in Figure

4.6d. Considering that the change of ↵a leads to an asymmetrical charge-transfer

reaction, it could act as a bandpass or low pass filter which a↵ects the overpotential

on the solid electrolyte interfaces. In addition, compared with the experimental

linear response in Figure 4.6d which decreases from around 30 dB to 25 dB, the

magnitude of the linear response in Figure 4.7a remains almost unchanged over the

bandwidth. However, as shown in Figure 4.7b, a decreasing ’ramp’ shape trend

exist when ↵ is large enough like 0.8 and 0.9, but only in the low frequency range

(less than 0.2Hz), compared to the experimental linear response which occurs over

the full characterised frequency range. The reason for this di↵erence still requires

further research. From the perspective of the linear response, it is also therefore

reasonable to use an ↵a value between 0.8 to 0.9 rather than 0.5 to minimise the

di↵erence when compared to the experimental data at 10% SOC case.

4.4 Conclusion

In this work, a random phase odd multisine nonlinear characterisation method was

developed to capture battery nonlinearities, and the Morris method was employed

to perform a global sensitivity analysis on the DFN model to evaluate the e↵ect
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of physical parameters in the frequency response. By applying the multisine-based

method, the linear response, odd and even nonlinearities of the parameterised DFN

model were compared with experimental data. The significant nonlinearity di↵er-

ence between the DFN model and experimental cells suggests that the nominal

values of DFN model parameters may not be realistic. The most sensitive parame-

ter is determined as the charge transfer coe�cient ↵, and thus the charge-transfer

kinetic is determined as the main contributor to the nonlinearities of a lithium-ion

battery. Furthermore, e↵ect of ↵ on the frequency domain nonlinear response was

investigated by comparing the dynamic responses of the DFN model with various

values of ↵. The DFN model simulation results indicate that, as ↵a increases from

0.3 to 0.9, the magnitude of odd nonlinearity decreases correspondingly, but the

even nonlinearity does not increase or decrease consistently with the decrease or

increase in ↵a. Results of the nonlinearity RMSE show that, rather than the com-

monly used value of 0.5, ↵a set as 0.8 or 0.9 provides a good model agreement with

the experimental data while the commercial cell is at 10% SOC, whereas the LIB

cell exhibits significant nonlinearity leading to poor accuracy of ECM battery mod-

els. This phenomenon indicates that the charge-transfer reactions in a lithium-ion

battery is an asymmetrical behaviour, rather than the commonly assumed perfect

symmetrical reaction, which is consistent with the conclusions in [220, 228]. The

physical implication of the asymmetrical charge transfer reactions is asymmetry in

oxidation and reduction on both electrodes; i.e. the magnitude of the kinetic over-

potential is not identical during charge and discharge. It’s worthy to note that there

is no intrinsic reason to assume charge transfer symmetry or asymmetry on either

electrode. A di↵erence in ↵a and ↵c for either electrode would reflect asymmetry

in the charge transfer processes on that electrode, which deserves further investi-

gation on individual electrodes in the future work. Lastly, this study demonstrates

the ability of the multisine-based characterisation method to determine the optimal

value of the charge transfer coe�cients to achieve a good agreement with exper-

imental results by relying on the battery nonlinearities in the frequency domain.

Overall, this chapter demonstrates the feasibility of the developed nonlinear charac-

terisation method, which is based on random phase odd multisine signal to capture

and separate odd and even nonlinearities, in the analysis of battery nonlinearity,

which fulfils the requirement of “Research Objective (1): Design a characteri-

sation method capable of capturing battery nonlinearity.” In addition, this chap-

ter enhances the understanding of lithium-ion battery nonlinear dynamic response

through the model-based investigation that charge transfer kinetic is the most sen-

sitive to battery nonlinearity at a SOC level, which indicates that lack of charge
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transfer kinetic interpretation could lead to inaccuracy of battery model. Thus this

work provides a theoretical basis for the development of the new accurate battery

model in Chapter 6.

In future work, the multisine-based nonlinear characterisation method can be

performed on lithium-ion batteries in di↵erent health status to analysis the variation

of the nonlinear responses. Due to the advantages of the short testing duration, it is

worthy to investigate the capability of the method as an on-broad characterisation

technique for battery state-of-health estimation. Furthermore, though ↵a = 0.8 and

↵a = 0.9 gives a smaller nonlinearity RMSE to the experimental results by about

20 dB while the cell is at 10% SOC, the nonlinearity magnitude reduction over the

frequency range observed in the experimental data is still an open question. To in-

vestigate this inconsistency in the future, it will be necessary to take into account not

only the charge-transfer coe�cients, but also the other nonlinearity-related physical

parameters, such as di↵usion coe�cients, as the trend of nonlinearity magnitude

reduction is observed in the low characteristic frequency range, which is associated

with battery di↵usion dynamics [47]. The DFN model that achieves a good agree-

ment with experimental results on both the nonlinearity root mean square error

(RMSE) and the slope of nonlinearity magnitude reduction in the di↵usion charac-

teristic frequency range will be obtained through the application of an optimisation

technique that permits multiple input variables. If the physical parameter values

are within a reasonable range and the voltage response spectrum of the model over-

laps the experimental results over the entire characterisation range, the origin of

the nonlinearity magnitude decrease may be recognised, and the understanding of

battery nonlinearity can be extended.
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Chapter 5

An Experimental Investigation

of Lithium-ion Battery

Nonlinearity†

5.1 Introduction

This chapter presents an experimental investigation to fulfil “Research Objective

(2): Understand the electrochemical processes contributing to nonlinearity.” As

presented within Chapter 4, the simulation study demonstrates how the proposed

multisine-based method characterises battery nonlinearity, and the findings show

that the charge-transfer reactions have the greatest e↵ect to battery nonlinearities.

However, the preceding chapter only experimentally examined battery nonlinearities

at a specific operating condition, 10% SOC, which is insu�cient for a thorough

nonlinear analysis of lithium-ion batteries. Thus, based on the multisine-based

method developed in Chapter 4, this chapter presents nonlinear characterisation

tests performed on an experimental set-up of a commercial 5Ah cylindrical 21700

cell at diverse operating conditions to understand the electrodes contributing to any

observed non-linear responses.

To extend the understanding of nonlinearity from a full lithium-ion battery

cell to individual electrodes, a three-electrode configuration experimental cell was

assembled and employed in this study. Previous nonlinear analysis research was

conducted on full-cells with a variety of di↵erent cell geometry and chemistries; as

a result, non-linear voltage responses of the individual electrodes have not been de-

coupled and attributed to relevant electrochemical processes taking place on each

†
Parts of this chapter have been published in [2]
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electrode. In addition, the contribution of nonlinearity from anode and cathode is

still an open question and not fully understood. Thus, the intervention of novel tech-

niques are required to deconvolute the voltage dynamics of the individual electrodes

from a full-cell in order to conduct nonlinear characterisation tests presented in

Chapter 4 for each electrode. In the literature, the deconvolution of individual elec-

trodes is generally achieved by using half-cell configurations, where a lithium metal

electrode is utilised as both the counter and reference electrode [252]. However, the

use of a lithium metal counter electrode means the behaviour does not closely re-

semble the commercial battery [253, 254]. In comparison to half-cell arrangements,

the three-electrode configuration is a potential alternative since it closely resembles

a commercial cell arrangement, which makes the conclusions more relevant to prac-

tical applications [255, 256, 257, 258]. In [255], the insertion method with a pure

metallic lithium reference electrode enables direct observation of voltage responses

of the individual electrodes. Moreover, for assigning the entire cell behaviour into

individual electrodes, Wunsch et al. proposed an experimental method to depict the

separation of individual electrodes through impedance spectra [258]. The author as-

serts that the three-electrode configuration is a promising experimental set-up for

investigating battery nonlinearities, as it provides the accurate and realistic voltage

response of both a full-cell stage and individual electrode.

This chapter is structured as follows: In Section 5.2, the experimental setup

and measurements are discussed. In Section 5.3, the frequency domain analysis,

which has been applied on the simulation study in Chapter 4, is performed on mea-

surements of the experimental cells, and the odd and even order nonlinearities of the

full-cell and individual electrodes are analysed and discussed. Overall conclusions

of this study are given in Section 5.4.

5.2 Experimental setup and measurements

To quantify the nonlinearities, measurement of voltage response of the full-cell and

individual electrodes is required. Taking advantage of three-electrode configuration

cell, both voltage measurements relating to a commercial 5Ah cylindrical 21700

cell can be simultaneously achieved over several operating conditions by employing

a variety of multisine signals. The detailed experimental setup and measurements,

including the construction of three-electrode configuration cell, the determination of

characteristic frequency range, and the design of multisine signal and experimental

plan, are presented in the following sections. Note that, in this chapter, the design

of multisine signals, as well as data collection and analysis were the author’s original

89



work. Assembly of three-electrode configuration experimental cells and characteri-

sation tests were provided by collaborators from University of Birmingham.

5.2.1 Three-electrode configuration experimental cell

The experiments were conducted using a three-electrode configuration to determine

the cathode and anode behaviour from the full cell potential. Note that, as three-

electrode configuration experimental cells were provided by collaborators from Uni-

versity of Birmingham, the experiment battery parameters were same as those used

in [24]. The PAT-Cell setup of the EL-Cell is comprised of a 21.6mm FS-5P sepa-

rator (EL-Cell), 100 µL of R&D281 electrolyte (Soulbrain), and the extracted pos-

itive and negative electrodes punched into 18mm disks [259]. This three-electrode

configuration cell design is constructed as shown in Figure 5.1. The electrodes (an-

ode/cathode) were harvested from a fresh 21700 LGM50 cylindrical cells following

the reported teardown procedure [24]. Note that the fresh cylindrical cells from the

manufacturer and stored in a fridge (5�C) until they were discharged to 2.5 V and

then disassembled. The cell’s interior is comprised of a housing, in which a fibreglass

separator is clamped and encased by an annular lithium reference electrode. The

reference electrode purchased from EL-Cell comprise of a stainless steel ring that

had lithium metal deposited on it, and applied to a reed contact. This enables the

reference electrode to be connected to the cell’s inner contacts and therefore to the

battery tester. As a result, the reference is located outside the anode and cathode’s

real active region, and so has no e↵ect on the di↵usion routes or internal resistance

of the test cell. The lithium reference electrode is positioned horizontally between

the electrodes in the separator frame. This results in the formation of a symmetri-

cal field distribution. The upper and lower sides of the enclosure can be fitted with

electrode stampings of 18mm diameter (area 2.54 cm2) and secured with appropri-

ate plungers. The advantages of this method include the reproducible contacts of

the individual potentials (anode, cathode, and reference) across the cell’s underside

[258]. The extracted NMC811 cathode and bi-component Graphite-SiOx anode had

the coating on one-side removed to allow testing in a small format cell. The elec-

trode is generally double-sided in a commercial cell and to make it in a coin cell or

an EL-Cell, the electrode was removed from one current collector. In addition, to

remove it without damaging the other electrode, the electrode was taped on a glass

plate and the electrode was exfoliated with a sponge. Detailed methods for cell tear

down, cell assembly and characterisation are referred to [260]. Furthermore, the

composition of Soulbrain R&D281 is ethylene carbonate (EC):ethylmethyl carbon-

ate (EMC) 3:7 v/v + 1 wt% vinylene carbonate (VC). The nominal rated capacity
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of an EL-Cell in this study is 11.5mAh, which also decides the magnitude of the 1

C-rate (1C) as 11.5mA.

Figure 5.1: The exploded view of three-electrode configuration PAT-CELL and separator
frame by EL-CELL [258].

Before the multisine signals were applied to the assembled cells, a formation

protocol was used to ensure that the solid electrolyte interphase (SEI) had reformed

[261]. Extraction of the electrodes and using a di↵erent electrolyte meant this step

was required to ensure cell longevity. Refer to [24], this formation protocol for

three electrode configuration cell consisted of two cycles at C/10 constant current

constant voltage (CC-CV) charge and constant current (CC) discharge between the

recommended voltage window 2.5-4.2V. The CV step was terminated when the

current decayed to C/50. The signals were programmed using the ‘Batch Mode’

function in the EC-Lab software (Bio-Logicr).

5.2.2 Characteristic frequency range of experimental cell

As mentioned in Chapter 4, the characteristic frequency range of lithium-ion battery

cells may be not identical for di↵erent geometries. In this study, the instrument

configuration setup of the three-electrode experimental cells causes an increase in cell

impedance, which may result in distinct characterisation frequency ranges. Thus,

the potentiostatic electrochemical impedance spectroscopy (PEIS), as described in

Section 3.3.1, was performed on the experimental cells at 50% SOC to separate

and identify the electrochemical processes in the frequency domain. In the PEIS

experiment design, the AC perturbation signal was limited to 10mV for minimising
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non-linear e↵ects, and also the PEIS frequency range was controlled between 10mHz

and 100 kHz.
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Figure 5.2: PEIS Nyquist plot of the NMC EL-Cell at 50% SOC. Note that the frequency
range of PEIS was from 10mHz to 100 kHz.

Figure 5.2 presents the impedance spectra of the cathode, anode and full-cell.

The measured impedance can be divided into two distinct parts for low frequency

range 10mHz to 4Hz and a semi-circle for medium frequency range 4Hz to 100 kHz.

As described in Chapter 3, the low frequency range represents the frequency response

of di↵usion process and the medium frequency range corresponds to charge-transfer

reactions. In general, the EIS plot of a commercial cell format (rather than a PAT-

cell) at 100 kHz and above would surpass the real axis [166, 262, 197]. However, no

such response is presented in any of the impedance spectra of Figure 5.2. The reason

of such phenomenon is the low inductive internal structure caused by the optimised

voltage measurement and contacting of the three-electrode cell configuration [258].

In addition, it’s worthy to note that, due to the uneven current distribution within

the experimental cells, the three-electrode configuration measurements with refer-

ence electrode occasionally show artefacts, such as inductive loop [263], however,

this artefact was not observed in this work. Furthermore, the impedance value of

the anode is lower than the cathode at the same frequency. In the anode spectrum,

the impedance at the highest frequency almost reaches the real axis, which is com-

monly considered as the beginning of the high frequency part of lithium ion battery

impedance. However, the cathode impedance at the same frequency is still in the

semi-circle of the medium frequency range. Such phenomena are consistent with the
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results in [258], and the reason can be interpreted as the higher electrical resistances

of the cathode NMC material than the anode graphite material.

5.2.3 Multisine signal and experimental plan

To analyse the battery nonlinearity over several operating conditions, the multi-

sine excitation signal was revised accordingly and the experimental plan was de-

signed in this section. Refer to [47], battery nonlinearity varies according to the

signal amplitude and the SOC of the battery cell. Thus, in this study, the mul-

tisine signal was scaled to various C-rates and applied on the battery cell over a

wide range of SOC levels, as given in Table 5.1. The bandwidth of the designed

signal was from 10mHz to 10Hz, and the period length was 100 s. A total of

334 odd harmonics out of all K = N/2 = 2500 harmonics were excited giving

Hexc = {1, 5, 7, 9, 13, 15, 21, 23, ..., 999}. The sampling frequency fs was set as 50Hz.

Readers can refer to Section 4.2.1 for further details. The designed multisine cur-

rent signals were applied to fresh three-electrode cells, and the RMS amplitude of

the multisine signals were set as 2.3mA, 5.75mA, 11.5mA, 17.25mA, and 23mA,

corresponding to 0.2C, 0.5C, 1.0C, 1.5C and 2.0C, respectively. In addition, each

input signal was repeated at di↵erent SOC levels (2%, 10%, 50%, and 90%) for all

EL-Cells (see Table 5.1). The state of charge is defined exclusively by the discharge

voltage to avoid the SOC uncertainty caused by voltage hysteresis and cell capacity

variations. To attain the desired SOC, the battery cell was charged to maximum

voltage limit 4.2V at C/10 CC-CV (C/50 current cut-o↵) profile, then discharged

by C/10 constant current, via predetermined voltages∗, to each of the desired SOCs

in descending order, i.e. 90% - 50% - 10% - 2% SOC, as in Figure 5.3 shown.

The 2.0C multisine signal at 50% and 90% SOCs resulted in large voltage

drops associated with the high current being applied, and the anode voltage dropped

below 0V during experiments which indicates the ageing mechanism, known as

lithium plating, taking place on the anode [264]. These two operating conditions

were therefore excluded from the investigation to prolong cell longevity and minimise

undesirable consequences associated with lithium plating. In addition, it was also

observed that, at 2% SOC, the voltage data samples didn’t occur around the zero

mean value and the average terminal voltage of the EL-cell in each period remained

decreasing, which indicates that the dynamic voltage response of an EL-Cell did not

reach a steady-state behaviour within 10 periods. Thus, the testing was extended

to 20 periods from 10 periods to drive the cells into a steady-state behaviour and

∗
The predetermined voltages associated to each SOC levels are decided by Coulomb counting

using C/10 constant current discharge before the multisine tests.
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Table 5.1
Test matrix of studied multisine experiments for EL-Cells at ambient temperature 25 °C.
Tested combinations of SOC and C-rate are marked by an ’x’ for 10 periods and an ’4’ for
20 periods.

SOC C-rate

0.2C 0.5C 1.0C 1.5C 2.0C

2% 4 4 4 4 4

10% x x x x x

50% x x x x

90% x x x x

reduce the influence of any transient behaviour for further analysis [152].

As an example, Figure 5.4 presents the averaged measured data (averaged

over the 10 periods) of input current and voltage response at 0.2 C-rate excitation

and 90% SOC. The positive current value implies a charge process in Figure 5.4a

and negative current for a discharge. Furthermore, the error between the measured

current and the designed signal is shown in Figure 5.4b which indicates the current

error generated by the Biologic VMP3 hardware. In this manuscript, all experiments

in this study were conducted in a thermal chamber at room temperature (25�C) and

the SOC variation due to the multisine experiment was estimated by the Coulomb

counting method [50]. It shows that, for 0.2 C-rate testing, less than 0.01% SOC

change occurs over a particular period (refer to Figure 5.4b), and a maximum of 1%

SOC change occurs for all other experiments. On the basis of this constraint, the

SOC can be treated as a constant throughout the analysis, and the OCV variation

during the multisine tests can be neglected [151].

When an excitation signal is applied the initial response of the battery is

known as the transient response. After a period of time, the steady state response

occurs and is employed for the subsequent analysis [45]. A transient error analysis

can be applied to determine whether the battery system has reached steady state.

For the calculation of transient error, the last measured voltage period of each

experiment was considered, and the transient error was obtained by comparing

the voltage response against the previous periods. In this study, after the first 3

periods, the battery system can be considered to have fully passed through the

transient stage. Therefore, the first 3 periods were excluded from all datasets in

the following data analysis processes to ensure the transient error can be neglected.

It is worth noting that, for the 2.0% SOC experiment which requires 20 periods,
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Figure 5.3: Discharge voltage profiles for the anode, cathode and full cell. Annotations
illustrate the voltages that correspond to the SOCs 2%, 10%, 50%, and 90%

the first 13 periods were eliminated to reach steady state. Since the input current

was designed as a zero-mean signal, the cell system can remain in steady state after

passing through the transient stage. As a result, the irregular number of periods

has no discernible e↵ect on the interpretation of the data.

In the following section, the battery nonlinearity will be characterised for a

full cell and individual electrodes in an three-electrode configuration experimental

battery cell, following Equations (3.10), (3.11), and (3.12) in Section 3.3.2. The be-

haviour of each electrode can be quantified and analysed, which helps to understand

the internal behaviour of lithium-ion batteries at various operating conditions.

5.3 Results and discussions

In this section, the frequency domain analysis is performed on the multisine input

current and measured output voltage data of the full-cell and individual electrodes

obtained from the three-electrode cell. At various SOC and excitation current levels,

the electrode responsible for the nonlinearity observed in the full-cell voltage is inves-

tigated. Starting with the full-cell voltage, the nonlinearities are analysed across the

di↵erent SOCs and C-rates, and are separated into odd and even order distortions to

evaluate if a particular form of nonlinearity is prevalent in battery dynamics, which

can be considered as the basis for nonlinear battery system identification in Chapter

6. Finally, the magnitude of the anode and cathode nonlinearities are studied to
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Figure 5.4: One period (averaged over the periods) of the measured current and voltage
data at 0.2 C-rate 90% SOC: (a) averaged measured current and voltage, (b) averaged
measured current error and estimated SOC.

identify which electrode contributes to the overall nonlinear battery behaviour.

5.3.1 Multisine current input spectrum

In Figure 5.5, the spectrum of the measured current signals for all SOC levels is

plotted in the frequency domain. It shows the flat spectrum of the excited harmonics,

the signal generator disturbances at the non-excited odd and even harmonics and

standard deviation of the noise level. As described in Section 3.3.2, the measured

current signal has a flat amplitude spectrum over the excited odd harmonics within

10mHz to 10Hz for 0.2C, 0.5C, 1.0C and 1.5C, respectively. Furthermore, the noise

spectrum is around 90 dB lower than the excited frequencies spectrum. Note that

the MATLABr function dB was used to calculate the magnitude of the energies

in this study. This indicates that the noise impact is minimal for the nonlinearity

characterisation, which can be ignored in the following analysis.

As mentioned in Chapter 4, the input current signal was designed with all

even and several odd harmonics suppressed. However, in practise, the VMP3 sig-

nal generator is unable to provide a near-perfect current signal, thus the harmonic

content of the generated or measured current signal is distorted and extra energy

is added to the non-excited harmonics. The separation of energy (in the measured

current signal) into the non-excited harmonics reveals the type of nonlinearity gen-

erated by the signal generator at the excited harmonics. Additionally, in comparison

to the energy detected in the excited harmonics, the nonlinearities (odd and even)

are relatively low and shift upward as the amplitude of excitation signal increases.

The error between the designed and measured current signals, which is shown in
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Figure 5.4b, can also be observed in the frequency domain in Figure 5.5. Taking

advantage of the nonlinear characterisation method, the error caused by the signal

generator is observed and separated into the signal nonlinearities at even and odd

non-excited harmonics, while the error induced by environmental noise is seen at all

harmonics.
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Figure 5.5: Current input spectrum while C-rate is: (a) 0.2C, (b) 0.5C, (c) 1.0C and (d)
1.5C

5.3.2 Dominant nonlinearity analysis - Full-cell

Figure 5.6 presents the full-cell voltage spectrum at the excited harmonics, the

battery nonlinearities and the standard deviation of the noise when the multisine

signal was at 1.5 C-rate and the cell was set at di↵erent SOC levels (90% SOC, 50%

SOC, 10% SOC and 2% SOC). Considering the fluctuations of voltage spectrum on

various frequencies within the frequency range, the battery voltage spectrum was

plotted using the same method as in [47] rather than using mathematical evidence.
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The results show that the battery nonlinearities at low SOC levels, such as 10%

SOC and 2% SOC, are stronger than at higher SOC levels, and the di↵erence in

the even-order nonlinearity between 2% case and 90% case is at most 40 dB. This

phenomena demonstrates that the battery exhibits more nonlinear behaviour at

lower SOC levels. Furthermore, Figure 5.6 shows that there is no clear separation of

the magnitude of even and odd-order nonlinearities within the frequency range when

at 90% and 50% SOC, but a clear nonlinearity magnitude separation can be observed

at 10% and 2% SOC. In addition, the amplitude of the even order nonlinearity is

larger than the odd order nonlinearity. At 10% SOC, the separation is only noticed

during the low frequency range and the nonlinearities are of similar magnitude in

medium frequency range. However, at 2% SOC, the separation is clear over the

whole testing frequency range. Moreover, contrary to the flat noise distortion floor

in the other SOC levels, the noise standard deviation at 2% SOC shows a downward

slope-type curve, which gradually decreases from �10 dB to �30 dB, indicating some

non steady-state behaviour in the voltage response.

Based on the nonlinear behaviour at 10% SOC level, Figure 5.7 shows the

variation of the full-cell voltage spectrum when the input current level increases from

0.2 C-rate to 1.5 C-rate, which indicates the e↵ect of C-rate on battery nonlinearities.

At 0.2 C-rate, both even and odd order nonlinearities are at the noise level, which

means the battery cell was performing linearly. When the current level increases, the

nonlinearities shift upwards and separate from the noise floor. Therefore, the upward

shifting of nonlinearities indicates that the battery behaviour gradually changes

from a linear to nonlinear behaviour. Furthermore, the magnitude of the even

order nonlinearity is greater than odd at the low frequency range, especially at

the higher current levels. This shows the dominance of the even nonlinearity over

the characteristic frequency range of di↵usion processes, which is consistent with

[47]. Wol↵ et al. also concluded that the even harmonic is more sensitive than odd

harmonic for di↵usion processes based on simulation results [228].

From these results it can be concluded that significant nonlinearity occurs

at the lowest SOC level and the highest current level. The nonlinearities in the low

frequency range vary significantly at various operating conditions, while the even

nonlinearity is dominant in the lithium-ion battery. From the aspect of electrochem-

ical reaction processes, since the low frequency range mainly reflects the dynamic

response of solid di↵usion processes, the results reveal that the di↵usion process

of solid particles is sensitive to the battery SOC and excitation current, which is

consistent with [47]. However, there is currently no theoretical electrochemical ex-

planation of this results.
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Figure 5.6: Full cell voltage output spectrum at 1.5 C-rate while SOC is: (a) 90% SOC,
(b) 50% SOC, (c) 10% SOC and (d) 2% SOC

Compared with the simulation results shown in Figure 4.6, the nonlinearities

in the low frequency range in Figure 5.6 exhibits a greater magnitude and a ‘ramp’

shape (especially at 2% SOC), which could be due to the linear di↵usion PDEs

utilised in the model but the actual di↵usion processes are non-linear. Furthermore,

according to the finding in Chapter 4 that the asymmetrical charge transfer coef-

ficient is related to the nonlinearities at middle frequency range and the variation

of charge transfer coe�cient leads to the changes of nonlinearity magnitude shown

in Figure 4.5, the increased magnitude of nonlinearities at 10Hz indicates that the

asymmetry of the experimental cell charge transfer reactions may vary throughout

four SOC levels, and it may imply that the magnitude of the kinetic overpotential

is not identical and varies during charge and discharge at various SOC levels.

99



0 1 2 3 4 5 6 7 8 9 10
Frequency (Hz)

-80

-60

-40

-20

0

20

40

D
FT

 m
ag

ni
tu

de
 (d

B)

Excited Odd Frequencies
Odd Nonlinearity
Even Nonlinearity
Noise

(a)

0 1 2 3 4 5 6 7 8 9 10
Frequency (Hz)

-80

-60

-40

-20

0

20

40

D
FT

 m
ag

ni
tu

de
 (d

B)

Excited Odd Frequencies
Odd Nonlinearity
Even Nonlinearity
Noise

(b)

0 1 2 3 4 5 6 7 8 9 10
Frequency (Hz)

-80

-60

-40

-20

0

20

40

D
FT

 m
ag

ni
tu

de
 (d

B)

Excited Odd Frequencies
Odd Nonlinearity
Even Nonlinearity
Noise

(c)

0 1 2 3 4 5 6 7 8 9 10
Frequency (Hz)

-80

-60

-40

-20

0

20

40

D
FT

 m
ag

ni
tu

de
 (d

B)

Excited Odd Frequencies
Odd Nonlinearity
Even Nonlinearity
Noise

(d)

Figure 5.7: Full cell voltage output spectrum at 10% SOC while current signal is: (a)
0.2C, (b) 0.5C, (c) 1.0C, and (d) 1.5C

5.3.3 Dominant nonlinearity Analysis - Electrodes

Taking advantage of the three-electrode configuration experimental cell, the voltage

response of the anode and cathode is also recorded while the full-cell data is being

captured. Applying the same theory as in the last section, the voltage spectrum of

the cathode and anode can be plotted to evaluate the contribution of electrodes to

the nonlinearities that have been identified at the full-cell level. The odd and even

order nonlinearities of the cathode and anode at two extreme operating conditions

(90% SOC/0.2 C-rate and 10% SOC/1.5 C-rate) are extracted and plotted in Figure

5.8 to determine the electrode that contributes the most nonlinearity, which can be

considered as the basis for modelling individual electrode system in Chapter 6. For

instance, if the cathode provides the most nonlinearity and the anode contributes

little nonlinearity, a decoupled-electrode battery model consisting of a nonlinear

cathode model and a linear anode model can be developed for greater accuracy.

Corresponding to the conclusion of the previous section there is a low level of non-
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linear distortion at high SOC and low C-rate (90% SOC/0.2C-rate in Figure 5.8a

and Figure 5.8b) and a high nonlinearity case when at low SOC and high C-rate

(10% SOC/1.5C-rate in Figure 5.8c and Figure 5.8d). In Figure 5.8a and Figure

5.8b, both the cathode and anode nonlinear distortion levels are around the full-cell

level, regardless of even or odd order. In contrast, the low SOC and high current

rate level (10% SOC/1.5 C-rate) shows a considerable level of nonlinearity in Figure

5.8c and Figure 5.8d. It’s clear that the cathode is the major contributor towards

the full-cell nonlinearity, as both odd and even nonlinearities of the cathode almost

overlap on the full-cell level. Furthermore, the magnitude of the cathode even order

nonlinearity is around 20 dB larger than the anode even nonlinearity, and the cath-

ode’s odd order nonlinearity is around 15 dB higher than that of the anode. There

is a special case when at 2% SOC where the anode nonlinearities start to dominate

in the full-cell for the high C-rate currents, which will be discussed in Section 5.3.6.
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Figure 5.8: Even and odd order nonlinearities of the three-electrode configuration battery
cell at: (a) Even order nonlinearity at 90% SOC 0.2C-rate, (b) Odd order nonlinearity at
90% SOC 0.2C-rate, (c) Even order nonlinearity at 10% SOC 1.5C-rate, and (d) Odd order
nonlinearity at 10% SOC 1.5C-rate
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In conclusion, even-order nonlinear distortions from the cathode have been

identified as the major contributor towards the full-cell nonlinearity. Therefore,

the full-cell nonlinear dynamic behaviour can be better understood by investigating

the variation of cathode even non-linearity. In the following sections, the SOC

dependency and C-rate dependency of the even nonlinearity of the cathode will be

studied.

5.3.4 SOC dependency of cathode even non-linearity

Figure 5.9 shows the even nonlinearity of the cathode at various SOC levels when

di↵erent C-rate multisine signals are applied. As the SOC level decreases, the mag-

nitude of nonlinearity monotonously increases, which is consistent with [47]. For ex-

ample, in Figure 5.9d, the cathode even nonlinearity at 10mHz raises from �30 dB

to around 15 dB when the SOC level decreases from 50% to 2%. Nevertheless, from

90% to 50% SOC, no noticeable increase is observed in the level of nonlinearity.

Referring to [228], the exponential trend is also obtained at low frequency range by

simulating the model of Fick’s law for di↵usion process. Therefore, the nonlinearity

variations in the low frequency range indicate that the battery nonlinearity caused

by di↵usion processes depends on the SOC level of a lithium-ion battery. From

the minimum frequency 10mHz to the maximum frequency 10Hz, the magnitude

di↵erence of the cathode nonlinearity between 2% SOC and 90% SOC decreases

from 45 dB to around 5 dB correspondingly. It appears that the nonlinearity asso-

ciated with di↵usion processes is susceptible to SOC. Furthermore, given that the

conclusion in Chapter 4, the results suggest that, at the same current excitation,

the variation in nonlinearity caused by asymmetrical charge-transfer reactions is less

substantial than that related by the di↵usion process at di↵erent SOC levels.

It is also observed (in Figure 5.9) that the cathode even nonlinearity at

2% and 10% SOC substantially increases when the excitation signal C-rate level

enhances. However when at 50% and 90% SOC, the level of nonlinearity is low and

fairly constant across the frequency range with no clear separation at all four C-rate

levels. This suggests that at high SOC levels, the nonlinear behaviour is not as

sensitive to the amplitude of the excitation current as it is at low SOC levels. This

will be investigated further in the next section.

5.3.5 C-rate dependency of cathode even non-linearity

As a lithium ion battery exhibits di↵erent intensities of non-linearity at various

C-rates, to investigate the C-rate dependency, the cathode even nonlinearities are
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(a) (b)

(c) (d)

Figure 5.9: Cathode even nonlinearities at various SOC levels while current signal is: (a)
0.2C, (b) 0.5C, (c) 1.0C and (d) 1.5C

shown against each SOC level in Figure 5.10. Consistent with the previous section,

the amplitude of the nonlinearity at high SOC levels is similar regardless of the

C-rates, as evidenced by a fluctuation of less than 10 dB at 0.01Hz shown in Figure

5.10a (90%) and Figure 5.10b (50%) but around 30 dB variation at 0.01Hz (10%)

shown in Figure 5.10c. Such results indicate both charge-transfer reactions and

di↵usion process are not sensitive to di↵erent excitation C-rate levels at higher

SOC. At lower SOC levels (Figure 5.10c and Figure 5.10d), the even nonlinearity

of di↵usion processes monotonously increases in the lower frequency range as the

C-rate increases. The overall trend of nonlinearity variation rises monotonically

with increasing C-rate, which is consistent with [47]. Such results indicate that the

di↵usion processes show stronger nonlinear behaviour at low SOC regions when the

C-rate increases.

However, Figure 5.9d shows an anomaly that the nonlinearity level at 2%

SOC is lower than 10% over the medium frequency range with the 1.5C multisine
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(a) (b)

(c) (d)

Figure 5.10: Cathode even nonlinearities at various C-rates while SOC is: (a) 90% SOC,
(b) 50% SOC, (c) 10% SOC and (d) 2% SOC

current input. This phenomenon does not conform to theory that a higher C-

rate excites stronger nonlinearity. In the next section, the special case of dynamic

response at 2% SOC will be analysed.

5.3.6 Frequency response at 2% SOC

It’s supposed that the 2% SOC dynamics are di↵erent due to the extreme dis-

tribution of lithium ion concentration between cathode and anode. Therefore, to

investigate this behaviour, the even and odd nonlinearities of the cathode and anode

at 10% and 2% SOC levels are plotted in Figure 5.11. Overall, the even nonlinearity

is still the dominant contributor in either the anode or cathode, and is about 10 dB

larger than the magnitude of odd nonlinearity. However, Figure 5.11c shows that

the major contributor towards the even nonlinearity shifted from the cathode to

anode around 2Hz at low SOC (2%), which suggests that the anode’s dynamics

changed under low SOC levels and that a “empty” anode behaved more nonlinearly
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than a “full” anode. However, there is currently no electrochemical explanation for

the observed results.
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Figure 5.11: Nonlinearities of the experimental cell at 1.5 C-rate: (a) even nonlinearity at
10%, (b) odd nonlinearity at 10% SOC, (c) even nonlinearity at 2%, and (d) odd nonlinearity
at 2% SOC

Focusing on this low SOC condition, the even and odd nonlinearities at 2%

SOC when excited by di↵erent C-rates signal are shown in Figure 5.12 and Figure

5.13, respectively. Consistently, the cathode remains as the dominant contributor

towards the odd nonlinearity between individual electrodes at every current level

(see Figure 5.13). However, as the C-rate increases, the anode’s even nonlinearity

increased substantially and became dominating. The variation of the cathode even

nonlinearity magnitude increased by around 20 dB from 0.5 C-rate to 2.0 C-rate,

nevertheless, there was almost a 30 dB magnitude rise for the anode. Referring to

[228], the simulation results show that, as the asymmetry of charge-transfer kinetics

varies, the nonlinearity of even harmonic is significantly excited, which is also cor-

roborated in Chapter 4. Therefore, the low lithium ion concentration in anode and
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high C-rate may generate a large kinetic overpotential change on the anode during

charge and discharge at 2.0% SOC. As the 2.0% SOC here is the average SOC level

at equilibrium state of battery, as opposed to the 10% SOC situation, while the

battery at 2% SOC was excited by a high C-rate current, the surface SOC on the

anode particles may reach below 0% and over-discharge due to polarisation, thereby

increasing the even nonlinearity. Hence, when analysing non-linear behaviour, the

2% SOC level should be paid attention as a special case.
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Figure 5.12: Even nonlinearities of the experimental cell at 2.0% SOC while at : (a) 0.5C,
(b) 1.0C, (c) 1.5C and (d) 2.0C

5.3.7 Reproducibility of multisine method

To verify the reproducibility of the multisine nonlinear characterisation method, two

additional EL-cells, termed as Cell 2 and Cell 3, were constructed using the same

manner as described in Section 5.2.1 and characterised by the multisine signal.

Frequency voltage response and nonlinearities of three experimental EL-Cells at

1.5 C-rate current signal are presented in Figure 5.14. Note that the results of
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Figure 5.13: Odd nonlinearities of the experimental cell at 2.0% SOC while C-rate at: (a)
0.5C, (b) 1.0C, (c) 1.5C and (d) 2.0C

Cell 1, which are shown in Figure 5.14a, 5.14d, and 5.14g, have been analysed in

previous sections. As presented in 5.14, it is evident that all three cells exhibit

consistent frequency voltage responses and nonlinearities, which suggests that the

characteristics of Cells 2 and 3 are comparable to those of Cell 1, and results of the

multisine method can be reproduced with di↵erent battery cells.

Furthermore, the multisine method was applied on two commercial 5Ah

LGM50 21700 cells, termed as LGM50 Cell1 and LGM50 Cell2, for nonlinear char-

acterisation. The same hardware configuration as in previous sections was employed

for signal generation and recording measurement, and a 10A current booster was

interfaced to the VMP3 to scale the multisine signal for commercial cells. In this

case, due to the limitation of maximum current amplitude, the RMS of the multisine

signal was scaled to 5A (1.0C) for LGM50 cells. Figure 5.15 presents that frequency

voltage responses and nonlinearities of two commercial LGM50 21700 cells at 1.0C.

It is obviously to observe that the results of LGM50 Cell1 are consistent with those of
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(a) Cell 1
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(b) Cell 2
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(c) Cell 3
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(d) Cell 1
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(e) Cell 2
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(f) Cell 3
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(g) Cell 1
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(h) Cell 2
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(i) Cell 3

Figure 5.14: Frequency voltage response and nonlinearities of three experimental EL-Cells
while current signal is 1.5 C-rate: (a), (d), (g) Cell 1, (b), (e), (h) Cell 2, and (c), (f), (i)
Cell 3

LGM50 Cell2. In Figure 5.15a and 5.15b, the frequency voltage response spectrum

at 10% SOC are plotted. The linear response and even and odd order nonlinearities

are separated. Consistent with the nonlinearities of experimental EL-cells, the even

nonlinearity is dominant in the low frequency range. Two noise levels (purple dots)

with a magnitude greater than the nonlinearities are visible in the spectrum, indi-

cating that the experimental setting is not optimal. Such results may be a result of

the current booster’s introduction, which requires more optimisation in the future

work. In addition, the even and odd order nonlinearities at various SOC levels are

presented. It shows that the even order nonlinearity at low SOC (10%) is larger

than those at higher SOC levels, and odd order nonlinearities exhibit comparable

magnitude at various SOC levels. These findings are congruent with those obtained

using experimental EL-cells, indicating that the multisine method is reproducible

and suitable for commercial battery cells.
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(b) LGM50 Cell2

0 2 4 6 8 10
Frequency (Hz)

-80

-70

-60

-50

-40

-30

-20

-10

0

D
FT

 m
ag

ni
tu

de
 (d

B)

Full Cell Even Non-linear distortion at 1.0C - Cell1

90%
70%
50%
30%
10%

(c) LGM50 Cell1
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Figure 5.15: Frequency voltage response and nonlinearities of two commercial LGM50
21700 cells while current signal is 1.0 C-rate: (a), (c), (e) LGM50 Cell1, and (b), (d), (f)
LGM50 Cell2
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5.4 Conclusion

In this chapter, non-linear distortions of NMC lithium-ion three-electrode configura-

tion cells have been experimentally characterised using the multisine-based method

proposed in Chapter 4. These distortion analysis was performed over a wide range

of excitation signal amplitudes and SOC levels. The random phase odd multisine

with all even and several odd harmonics suppressed were employed as an excitation

input current signal, which leads to a 8 times faster characterisation procedure of

the battery nonlinearity than the NFRA technique. The analysis, which focused

on the di↵usion processes and charge-transfer reactions of the cathode, anode and

full-cell, was performed by analysing the non-excited harmonics in the voltage out-

put spectrum, which provides valuable information for contributing to knowledge

of battery nonlinearity at cell level. Currently, there is no evidence that nonlinear

characterisation methods can be used as on-board techniques for commercial battery

modules or packs. This may be because BMS hardware cannot provide su�cient

current or voltage excitation signals for large-scale battery modules and packs.

Overall conclusions of this chapter are summarised as following: First, it can

be concluded that nonlinearities are very low at high SOCs (>10%), as such the

battery current to voltage relationship is behaving linearly in these regions. From

the perspective of battery modelling, a linear model su�ces to emulate the current-

voltage relationship of a lithium-ion battery at the high SOC region. Moreover, at

low SOCs (6 10%), the nonlinearities of a lithium-ion battery significantly increase,

and the even nonlinearity originating from the cathode was determined as the dom-

inant contributor of a lithium-ion battery. Possible sources for this nonlinearity

include the considerable change of electrode open circuit voltage that occurs at low

SOC for the cathode, and the di↵usion processes due to the high concentration of

lithium ion in the cathode. The open circuit voltage is an important factor for this

phenomenon, however, at the moment, the multisine characterisation method can

only capture battery nonlinearity related to di↵usion process and charge-transfer

kinetic, however, the contribution related to the thermodynamic (open circuit volt-

age) has not been separated and analysed. Thus, it merits further investigation to

decouple the contribution of thermodynamic towards battery nonlinearities. Addi-

tionally, the dominance of the even nonlinearity indicates that an even order non-

linear characteristic function may be required for modelling non-linear behaviour

of a lithium-ion battery. Lastly, the dynamics of the anode changes when at 2%

SOC and starts to contributes with a significant even-order nonlinear distortion

comparable to that of the cathode. Overall, this chapter experimentally investi-
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gates the contribution of battery di↵usion process and charge transfer kinetics to

nonlinearity by employing the developed multisine-based nonlinear characterisation

method, which fulfils the requirement of “Research Objective (2): Understand

the electrochemical processes contributing to nonlinearity.” In addition, this chapter

concludes that di↵usion process mainly contributes nonlinearity at low SOC range,

which indicates that lack of interpretation of di↵usion process could be the reason

of linear ECM models’ inaccuracy in the low SOC area. Thus this chapter suggests

the nonlinearity-related di↵usion process merits to be modelled during the battery

system identification in Chapter 6.

As proposed in Chapter 1, strong nonlinearity of battery is defined as a fac-

tor that the existing linear ECM models could hardly provide accurate voltage and

SOC results in low SOC range, and an overestimation of SOC could lead to battery

energy exhaustion before expectation and force the EV into limp-home status [39].

As a result, a certain part of battery energy needs to be reserved in real-world appli-

cations by technically setting a relatively large SOC cut-o↵, and the battery energy

could hence not be fully implemented and the EV driving range is restricted. If a

sophisticated model can be developed to account for these nonlinearities then the

model accuracy at low SOCs can be improved, thus the artificially set cut-o↵ can be

released and the driving range of EV can be extended without additional cost. From

the perspective of frequency domain system identification theory, the nonlinearity of

the battery has to be captured and quantified in advance. Furthermore, according

to the characterised level of the nonlinearity, it can be accounted for using an ap-

propriate nonlinear function (e.g. sigmoid, neural nets or polynomials) and coupled

with linear equivalent circuit models to improve model accuracy, as the nonlinear

equivalent circuit models introduced in Chapter 2. Therefore the multisine current

signal and voltage response, is not limited to nonlinear characterisation, but can also

be used to model the voltage losses and necessary time-constants in the voltage dy-

namics. In addition, the voltage response and nonlinearity of individual electrodes

are captured by using the three-electrode cell configuration in this chapter, and the

cathode is determined as dominant nonlinearity contributor. Thus, an decoupled-

electrode battery model, which consists of a nonlinear cathode model and a linear

anode model, can be developed, and it will have the advantage of providing the

voltage response of each electrode and can be validated with widely-used electro-

chemical models (such as an SPMe which explicitly account for anode and cathode

losses) to evaluate the accuracy at low SOC levels. The identification procedure and

validation of the developed battery model is presented and discussed within Chapter

6.
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Chapter 6

A Nonlinear Equivalent Circuit

Battery Model with Di↵usion

Dynamics†

6.1 Introduction

This chapter presents an unique equivalent circuit battery model and corresponding

system identification procedure to fulfil “Research Objective (3): Develop a bat-

tery mathematical model which requires minimal identification cost while achieving

a high level of accuracy over the entire SOC range.” As introduced in Chapter 2,

a conventional linear equivalent circuit model (ECM) utilises a number of simple

electrical circuit components, such as resistors, capacitor and inductors, to imitate

the current and voltage relationship of a lithium-ion battery [40]. Taking advantage

of the lower computational load and fewer parameters than electrochemical models,

the ECM is widely employed in battery management systems for model-based state-

estimation methods [14, 114, 115]. However, there are numerous restrictions that

may result in the model being inaccurate and limit future applicability; An ECM

is a phenomenological description and cannot directly associate an electrical circuit

component to a certain battery physical phenomena, which limits the detailed in-

sight of lithium-ion battery behaviours. Additionally, ECMs are Linear Parameter

Varying models. The model parameters (ohmic resistance and time constants) can

vary with SOC and temperature, but the current to voltage relationship is linear for

any given operation condition, and then nonlinear behaviour of batteries is absent

from conventional ECMs. Furthermore, ECMs are typically at most 2nd order (2

†
Parts of this chapter have been published in [3]
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RC pairs) and usually parameterised via HPPC pulses [40]. The losses, which is

accounted for by the model, are the Ohmic loss (via the series resistor) and the

polarisation loss (via the 2 RC branches). These are low time constant (⇠ 10s of

seconds) losses, and an ECM therefore does not account for large time constant

(⇠ 1000s of seconds) losses due to di↵usion dynamics. Although Warburg elements

are used to account for emulating large time constant behaviour, however, as men-

tioned in Chapter 2, these elements currently are only applied in frequency domain

ECMs, which are hard to be implemented in practical BMS applications, due to the

di�culty in identification and the lack of appropriate numerical approaches for im-

plementation. These limitations must be addressed in order to increase the fidelity

of ECMs.

From a modelling standpoint, the probable sources of low-SOC-area error,

which are identified in Chapter 1 as battery nonlinearity and large time constant

dynamics, are required to be integrated into the conventional ECMs to improve

model accuracy. As described in Chapter 4 and 5, battery nonlinearity has been

firstly characterised and analysed by applying the proposed multisine-based non-

linear characterisation method. The experimental results presented demonstrate

that lithium-ion batteries exhibit a stronger nonlinear current-voltage relationship

at the low SOC region, which is consistent with the hypotheses regarding probable

sources of considerable low-SOC-area error proposed in [39]. However, it remains

an open question whether properly interpreted nonlinearity can increase the accu-

racy of equivalent circuit battery models. Note that additional degrees of freedom

for interpreting nonlinearity is not considered in this work, as it is seldom studied

in ECM modelling literature [33, 152]. In addition, large time constant dynam-

ics due to di↵usion processes are also necessary to be taken into consideration for

modelling. On contrary to electrochemical models, the e↵ect of di↵usion processes

in a lithium-ion battery is seldom considered in the ECMs, which leads to poor

accuracy in long time (low frequency) operational cases [265]. To the best of the

author’s knowledge, there is only few literatures took into account the di↵usion pro-

cesses in the ECM modelling. Wang et al. proposed to incorporate the e↵ect of

di↵usion processes as a resistance into an one resistor-capacitor (RC) pair model to

improve the power prediction [265]. However, the di↵usion resistance is assumed as

an additional conventional resistance in the RC pair and is not considered during

the ECM parameter estimation. To enhance the model accuracy at the low SOC

range, Ouyang et al. proposed an extended equivalent circuit model (EECM) to

represent the e↵ect of di↵usion processes to terminal voltage by considering the

SOC di↵erence in electrode particles calculated from two RC branches [39]. Unfor-
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tunately, the charge-transfer kinetic is still hidden in the two RC branches which

are in essence linear components and cannot capture battery nonlinearity, and the

number of EECM parameters that needs to be estimated increases from six to ten

for addressing the di↵usion e↵ect only. In [266], the authors incorporated three

distinct di↵usion models, such as using a common Resistor-Capacitor (RC) circuit

element and using a di↵usion equation in an idealised particle with or without the

parameter indicating the open circuit voltage curve dependency on SOC, into con-

ventional linear ECMs, respectively. The results show that the di↵usion models

improved the voltage prediction capabilities when compared to a ECM not includ-

ing any di↵usion. However the performance of the suggested ECM with di↵usion

was evaluated by comparing it to convention ECMs under dynamic current loads

rather than including the physical-based electrochemical models, as well as the per-

formance over a long time constant current charge or discharge was not considered.

In [49], a fractional-order model is proposed to interpret dynamics in a lithium-ion

battery including an electrochemical impedance spectroscopy (EIS) sub-model for

mid-high frequency dynamic. However, transformation of EIS model elements into

the time domain for real-time applications is not trivial. Thus, an advanced model

with a high computational e�ciency and ease of implementation that can also cap-

ture the physical meaning and nonlinearity of batteries is still missing and would be

beneficial to develop for real-world applications.

In this chapter, an advanced non-linear equivalent circuit model with di↵u-

sion dynamics, termed as NLECM-di↵, is established by employing a data-driven

identification approach, and the model can explicitly interpret the essential phys-

ical phenomena in a lithium-ion battery such as ohmic, charge-transfer kinetics,

and di↵usion dynamics. In the NLECM-di↵, a non-linear equivalent circuit model

(NLECM) encompassing a linear block for ohmic impedance and a non-linear block

for charge-transfer kinetics is identified by applying the multisine-based nonlinear

characterisation method on a 21700 LGM50 NMC three-electrode configuration ex-

perimental cell. Note that the characterisation method and experimental cell are

identical to those utilised in Chapter 5. In addition, a lumped di↵usion model in-

spired by the single particle model using a SOC equation in an idealised particle is

incorporated into the NLECM for interpreting the large time constant losses due to

di↵usion dynamics in the terminal voltage on the cell level [266]. The NLECM-di↵

model is fully parameterisable with voltage and current data without the need to

perform specific experiments to get geometric, transport and kinetic parameters.

Additionally, taking advantage of the experimental cell with a stable reference elec-

trode, NLECM-di↵ models for cathode and anode are also identified to estimate
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the internal electrode potential variable. The accuracy of the NLECM-di↵ models

are compared to that of the single particle model with electrolyte dynamic (SPMe)

proposed in [38] when validation experiments including both a long time constant

discharge and charge profile and a strong dynamical driving cycle are conducted.

The remainder of this chapter is organised as follows: Section 6.2 explains

the modelling approach of the non-linear equivalent circuit battery model with dif-

fusion dynamics (NLECM-di↵), including a frequency domain identification method

for the NLECM and a parameterisation process for the di↵usion model. The ad-

vantage of the proposed model over the reference model NLECM is also evaluated

and analysed in Section 6.3. The model validation and performance comparison

to the electrochemical model are discussed in Section 6.4. Section 6.5 presents the

conclusion of this research.

6.2 Methodology of model identification

As demonstrated in Chapter 5, a lithium-ion battery is a nonlinear system exhibiting

a non-linear voltage response caused by electrochemical behaviour when at di↵erent

SOC levels and excitation input cases. However, for conventional ECMs, any non-

linearity is commonly neglected and the interpretation of physical phenomena are

discarded. This chapter tries to develop a unique model, as shown in Figure 6.1, to

associate the electrochemical behaviours in a lithium-ion battery, which consists of a

linear equivalent circuit model for ohmic and polarisation losses, a nonlinear sigmoid

function for the nonlinear current-voltage relationship caused by the charge-transfer

kinetics, an OCV-SOC block, and a simplified SOC dependent di↵usion block for

voltage loss caused by di↵usion processes.

6.2.1 Experimental setup and identification procedure

Figure 6.2 shows the experimental setup for battery testing, which includes the

three-electrode experimental EL-Cell, a charge and discharge test equipment (VMP3),

a thermal chamber and a programmable upper computer. The battery was mounted

in a thermal chamber at 25 °C for maintaining the cell surface temperature, and a

VMP3 hardware was utilised to control the cell and record experimental data.

In addition, the data-driven identification procedure and corresponding bat-

tery tests presented in Figure 6.3 were performed to fully characterise and validate

the NLECM-di↵ model, including a OCV test for the OCV-SOC curve, multisine

tests for the linear ECM and nonlinear sigmoid function, and a fully 0.5C constant

current (CC) discharge test for the SOC dependent di↵usion block. Following that,
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Figure 6.1: Lithium-ion battery NLECM-di↵ structure. The overall model consists of a
linear ECM followed by a non-linear over-potential function, a parallel OCV block, and a
parallel di↵usion block.

0.3C/0.5C/1.0C CC discharge and CC-CV charge tests, as well as a NEDC test,

were performed to validate the proposed model. In this study, 0.3C, 0.5C, and 1.0C

correspond to low, medium, and high current conditions, respectively. To evaluate

the model accuracy at low and high C-rates conditions, the medium 0.5C CC dis-

charge test was used for system identification. The following subsections describe

the identification steps of the corresponding model blocks in detail. Note that, in

this chapter, the design of identification methodology and characterisation tests,

data collection and analysis, as well as model validation were the author’s origi-

nal work. Three-electrode configuration experimental cells and the driving cycle

(NEDC) profile were provided by collaborators from University of Birmingham.

6.2.2 Impedance estimate and equivalent circuit transfer function

For a lithium-ion battery, its impedance is commonly recognised as the linear part

of battery dynamics response [152]. In the first step, an linear equivalent circuit

model (ECM) is estimated by fitting the model parameters based on the best linear

approximation from the measured current and voltage dataset. With the assistance

of the periodic characteristic of multisine signal, a non-parametric function of bat-

tery impedance estimate can be obtained [233]. The multisine tests were conducted

at 2%, 10%, 30%, 50%, 70%, and 90% SOC levels and P = 10 successive periods

multisine signal for each SOC levels in this study. To acquire an impedance estimate

under steady-state conditions, the first three periods of the measured dataset were

reserved for validation, and Period 4-10 were used for parameterisation. Consider-
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Figure 6.2: Experimental setup of data-driven identification and validation.

ing the discretised current and voltage measurement data in the remaining P � 3

periods, the averaged data over periods can be obtained as:

ī(n) =
1

P � 3

PX

p=4

i[p](n), v̄(n) =
1

P � 3

PX

p=4

v[p](n) n = 0, 1, ..., N � 1 (6.1)

where p indicates the pth period of the current i(n) and the voltage data v(n)

measured at a given SOC.

As the thermodynamics would be accounted for by the OCV block and the

di↵usion process has no e↵ect on voltage output during each multisine test when the

SOC change is minimal, the over-potential, denoted as v̄0(n), can be calculated by

removing the mean voltage at the corresponding SOC from v̄(n) prior to estimating

the impedance [152].

v̄0(n) = v̄(n)�
1

N

N�1X

n=0

v̄(n) (6.2)

Then, by the Discrete Fourier transform (DFT), the time domain measured

data can be transformed to frequency domain, termed as current and voltage spectra

of pth period:

I(k), V (k) k = 0, 1, ..., N � 1 (6.3)
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OCV Test
Fully charge and discharge

Current: C/25

Multisine Test
Odd random phase multisine 

signal

CC Discharge Test
From 100% SoC to 0% SoC

Current: 0.5C

CC Discharge 
& CC-CV charge

From 100% SoC to 0% SoC
Current: 0.3C, 0.5C, 1.0C

NEDC Test
From 100% SoC to 0% SoC

Figure 6.3: Flowchart of the data-driven identification procedure and the corresponding
battery tests.

where I(k), V (k) in Equation (6.3) denote the DFT of ī(n), v̄0(n) at the kth har-

monic.

In the frequency domain, the relationship between DFT voltage V (k) and

the DFT current I(k) through the battery impedance Z(k) is

V (k) = Z(k)⇥ I(k) + E(k) (6.4)

where E(k) indicates the summation of error from any practical environment and

distortion from non-linear battery behaviour.

The spectrum of over-potential V (k) in the frequency domain at 10% SOC

with 1C multisine current input is shown in Figure 6.4a. Odd random phase mul-

tisine enables us to separate and quantify the odd and even nonlinearities through

suppressed harmonics Hsupp,odd and Hsupp,even, which can provide further insight

about lithium-ion battery non-linear behaviour. Details on the non-linear charac-

terisation method can be found in Chapter 5. Given V (k) in Figure 6.4a and I(k) in

Figure 5.4, both the impedance Z(k) and standard deviation E(k) can be estimated

by minimising the error term using the local-polynomial method (LPM) [152, 267],

as shown in Figure 6.4b. The estimated impedance to standard deviation ratio was

more than 25 dB, which indicates the high confidence of this impedance estimation.

Then, a transfer function was fitted to the estimated impedance.

Zm(k) =
bnb(j!k)nb + ...+ b1j!k + b0
(j!k)nb + ...+ a1j!k + a0

(6.5)
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Figure 6.4: (a) Over-potential spectrum and (b) Estimated impedance and standard de-
viation at 10% SOC of an experimental cell.

where Zm(k) denotes a transfer function model, !k = 2⇡kfs/N is the discrete angu-

lar frequency at harmonic k, and nb is the model order. The coe�cients of Equation

(6.5) can be identified by minimising the error between the transfer function output

and the estimated impedance. In this work, the Frequency domain System Iden-

tification Toolbox in Matlabr is applied to estimate transfer function coe�cients

[268].

Figure 6.5 shows the 1st and 2nd order transfer function fits of the impedance

which indicates that the 2nd order model has a better agreement between the esti-

mated impedance and fit than the 1st order, which shows the advantage of multisine

signal that it can assist in deciding an appropriate ECM model order and structure

in the form of a transfer function which can be fitted to obtain the ECM model

parameters [152]. Note that both fits cannot perfectly match the impedance at

few extreme low frequencies, which might be a limitation of the wide bandwidth

multisine excitation. Unlike the previous literature [152, 151] only focusing on the

extreme low frequency range ( 1Hz), the bandwidth in this work was extended

to 10Hz to comprise characteristic frequency ranges of both di↵usion process and

charge transfer kinetics. A rapid decrease in the impedance magnitude and a peak

in the phase at low frequency range are shown in Figure 6.5, which is a phenomenon

that has not been found in previous work, i.e. in [152], the magnitude response of

the impedance with a decreasing gain at low frequencies and the phase response

with a increasing trend as the frequency increases are observed. Such di↵erence

should be due to the limitation of the bandwidth ( 1Hz) in [152] which only cap-

tures the response attributed to the di↵usion process [269], but in this study a wider

bandwidth ( 10Hz) is applied and the response due to charge-transfer kinetic can

119



0 2 4 6 8 10
Frequency (Hz)

18

20

22

24

26

M
ag

ni
tu

de
 (d

B)

Estimated impedance
2nd Order Fit
1st  Order Fit

0 2 4 6 8 10
Frequency (Hz)

-30

-20

-10

0

10

Ph
as

e 
(d

eg
)

Figure 6.5: 1st and 2nd order transfer functions for impedance estimated of the cell at
10% SOC.

also be captured. Although it leads the di�culty to fit all frequencies using 1st and

2nd order transfer function, a di↵usion block would subsequently be introduced and

coupled to comprise the influence caused by the phenomenon.

In addition, using orders greater than two generally generated better fits,

however, the higher order model in this work resulted in positive poles which in-

dicates an unstable system, and conjugate negative poles which is not possible to

be implemented in practical applications [152]. Therefore, the model order was

selected as two in this work, and the corresponding ECM is shown in Figure 6.1.

Furthermore, in order to get the circuit parameters of an equivalent circuit model,

the transfer function has to be expanded by a partial fraction expansion as shown

in Equation (6.6).

Zm(k) = �R0 �
Rp1

⌧1j!k + 1
�

Rp2

⌧2j!k + 1
(6.6)

where R0 denotes the internal ohmic resistance, Rp1 and Rp2 the polarisation resis-

tances and ⌧1 and ⌧2 the time constants. The capacitances shown in Figure 6.1 can

be obtained as Cp1 = ⌧1/Rp1 and Cp2 = ⌧2/Rp2.

Thus, the linear voltage losses vl(t) due to the ohmic and polarisation can be

simulated with the corresponding 2nd order ECM with respect to a time-dependent

current load i(t) as Eq.(6.7).

vl(t) = ECM[i(t)] (6.7)
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6.2.3 Non-linear over-potential function

The non-linear over-potential function f(vl) shown in Figure 6.1 is inspired by the

charge-transfer kinetics in electrochemical reactions. The Butler-Volmer equation,

which relates the over-potential ⌘ct of an electrode to the current density Ibatt(t),

is commonly utilised to represent the charge-transfer kinetics in electrochemical

models [36, 38], as shown in Equation (6.8).

⌘ct =
2RT

F
sinh�1

✓
Ibatt(t)

2i0

◆
(6.8)

where R is the molar gas constant, F is Faraday’s constant, T the temperature and i0

the exchange current. Equation (6.8) represents the non-linear relation between cur-

rent and over-potential, which is seldom interpreted in conventional battery ECMs.

By plotting the measured over-potential v̄0 against the modelled ECM output vl(t)

at each SOC, the presence of any non-linear deviations can be examined and cap-

tured through a non-linear function [152].

The over-potential data points and non-linear function fitting of the battery

at 10% SOC are plotted in Figure 6.6. The blue “curve” formed by compact data

points represents the non-linear characteristic of over-potential which shows a weak

non-linear dependence in this study. Such a phenomenon is expected because, refer

to [152], the strong non-linear dependency is only shown at low temperature (i.e.

0 °C) while a linear dependence is observed at 25 °C, which might be the reason

that many conventional linear ECMs neglect the non-linearity during modelling.

However, according to the nonlinearity characterisation results on the same three-

electrode configuration cell in Chapter 5, nonlinearity of the cell exists at 10% SOC

level. A non-linear function is used to estimate such phenomena, and the good

agreement between the data points and the fit indicates non-linear deviations are

well captured.

Given that the “S”-shape characteristic of the ideal Butler-Volmer kinetics

(using symmetry anodic and cathodic charge-transfer factors equal to 0.5), a sig-

moid function was used to model the non-linear characteristic as its bounded and

di↵erentiable features can ensure the function convergence. Note that, refer to 4, the

anodic and cathodic charge-transfer factors may be not symmetrical in a practical

lithium-ion battery, which leads to more possibilities including the polynomials and

logistic functions that should be considered to model the non-linear phenomena.

Impact of model function selection is still an open question and will be studied in

the future work.

In this study, the non-linear voltage loss ⌘R(v̄l), caused by ohmic, polarisation
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Figure 6.6: The non-linear characteristic and non-linear function fitting at 10% SOC and
25 °C.

and possible dynamic non-linear e↵ects was obtained by the following sigmoid func-

tion, which was used to fit the measured (v̄l) against modelled linear over-potential

(v̄l) data

⌘R(v̄l) =
c1v̄lq
1 + c2v̄2l

(6.9)

where c1 is the linear and c2 is the non-linear sigmoid coe�cients in Equation (6.9).

The lsqcurvefit function from the Matlabr Optimisation Toolbox was used to es-

timate two sigmoid coe�cient at each SOC. Then, a linear look-up table of the

estimated coe�cients at each SOC was built up for model simulation.

6.2.4 Open circuit voltage (OCV)

From electrochemical point of view, the battery open circuit voltage UOCV account-

ing for thermodynamic is related to the potential of the cathode Uc(c̄c) and anode

Ua(c̄a), as shown in Equation (6.10), which depends separately on the bulk average

lithium concentration of individual electrode particles (c̄c and c̄a).

UOCV = Uc(c̄c)� Ua(c̄a) (6.10)

For modelling purposes, the single particle model (SPM) assumes the size and

dynamics of electrode particles to be identical within an electrode; consequently,
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the cathode and anode can be treated as two electrode particles [38]. Thus, the

battery macroscopic SOC is defined as the ratio of the average usable lithium ion

concentration c̄ to the maximum usable lithium ion concentration in the electrode

particle in Equation (6.11)

z̄ =
c̄c � c̄c,0%

c̄c,100% � c̄c,0%
=

c̄a � c̄a,0%
c̄a,100% � c̄a,0%

(6.11)

where c̄100% indicates the battery is full (100% SOC) and c̄0% indicates the battery

is empty (0% SOC). Then, the open circuit voltage UOCV can be related to the

average SOC z̄ which is represented as a z̄-UOCV curve in battery models. Given

that the NMC cell, which exhibits minor hysteresis [40], was employed in this study,

an extremely low current (typically C/25) was used to fully charge and discharge the

battery to acquire the battery pOCV curves, which potentially can minimise battery

kinetics to reduce battery hysteresis. Then the z̄-UOCV curve can be estimated by

averaging the measured charge and discharge pOCV curves [270]. In this work, the

three-electrode cell was employed to record not only the OCV of the full-cell (UOCV)

but also that of the cathode and anode (Uc, Ua). Then a Look-Up Table was used

to archived each OCV curve to act as the open circuit voltage block in the model.

Up to this point in the paper, an NLECM similar to proposed in [152],

consisting of a linear ECM block, a non-linear over-potential block, and an OCV

block with respect to the macroscopic SOC achieved by current integration method,

has been identified and parametrised by applying a multisine excitation at each

SOC, and the performance of the NLECM will be reported and used for comparison

in Section 6.3.

6.2.5 SOC dependent di↵usion block

When a battery is in operation, due to the di↵usion processes, the distribution of

lithium ion concentration in the particle is not uniform [48]. Thus, the open circuit

voltage U(t) is directly reflected by the lithium ion concentration at the particle

surface (cc,surf and ca,surf), i.e. cathode surface potential Uc(cc,surf) and anode surface

potential Ua(ca,surf), in which the potential subtraction is noted as 4Usurf . Refer

to [39], in order to design the proposed model more suitable for BMS applications,

the relationship between the potential subtraction 4Usurf and the particle surface

lithium concentration csurf during operation can be approximated by the z̄-UOCV

curve with the surface SOC, noted as zsurf , as the input. Thus 4Usurf can be

represented as shown in Equation (6.12)
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4Usurf = Uc(cc,surf)� Ua(ca,surf) = UOCV(zsurf) (6.12)

Furthermore, the voltage loss ⌘D related to the di↵erence of average concen-

tration and surface concentration in di↵usion processes can be written as Equation

(6.13).

⌘D = UOCV(z̄)� UOCV(zsurf) (6.13)

However, the conventional linear ECM commonly neglects the di↵usion pro-

cess inside particles and only represents the open circuit voltage by using a DC

power source, which results in poor model accuracy over the whole SOC range [44].

Therefore, a simplified SOC dependent di↵usion block was introduced in this sec-

tion to account for the voltage loss ⌘D caused by the di↵usion process. It is noted

that the aforementioned ECM and nonlinear function were identified by multisine

characterisation testing that was designed to minimise battery SOC change to a

minimum during operations, thus no voltage loss caused by the di↵usion process

was taken into account. Such that the large time constant dynamics associated

with the di↵usion process and the small time constant dynamics associated with

ohmic and charge-transfer kinetics were decoupled for easy identification.

To interpret the variation in average and surface SOC caused by di↵usion pro-

cess using a simplified mathematical representation, the di↵usion equation solving

SOC variable z for a battery particle, refer to [266], is defined on a one-dimensional

geometry, using a dimensionless variable x ranging from 0 (centre of the particle)

to 1 (surface of the particle) according to the following partial di↵erential equation

⌧D
@z

@t
�

@2z

@x2
= 0 (6.14)

where ⌧D is a time constant which is related to the di↵usion coe�cient determined

by battery chemical materials and manufacturing process.

The boundary conditions are

@z

@x

���
x=0

= 0,
@z

@x

���
x=1

=
⌧Di(t)

Q
(6.15)

where Q is the parameter corresponding to the battery capacity. The di↵usion

block was only implemented in the Cartesian coordinate system in this work, and

the other coordinate dimensions were not studied here, but, refer to [266], only a

minor impact is shown when using di↵erent coordinate systems.

To solve Equation (6.14) with low computational cost, a Chebyshev pseudo
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spectral method, termed as the discrete Chebyshev-Gauss-Lobatto (CGL) orthogo-

nal collocation method, was applied in this work [271]. Unlike the finite di↵erence

method in [272] and the finite element method in [236] which require very a high

spatial resolution, the pseudo–spectral method is a global method which uses all

available function values to construct the necessary approximations to simplify cal-

culation [273]. With the orthogonal collocation method, it is possible to find the

SOC variable z(t, 0  x  1) at the grid points xj = (1+cos(j⇡/N))/2, j = 0, ..., N ,

which distributes in the battery particle from the centre to the surface, by solving

the following system of (N + 1) di↵erential algebraic equations (DAEs):

8
>>>>><

>>>>>:

@zj(t)

@t
= 4

NP
k=0

bjkzk(t), j = 1, ..., N � 1

z0(t) = 0

zN (t) =
⌧Di(t)

Q

(6.16)

where D2 = D · D = (bjk)0jN,0kN is the square of the derivative matrix D,

and N is arbitrarily selected as 6 in this study. Details on the CGL orthogonal

collocation method are found in [274], while a brief description of the procedure is

presented in Appendix A.

In the di↵usion block, the surface SOC zsurf can be directly obtained from

Equation (6.14) while the grid point at surface is selected, as well as the average

SOC z̄ of the battery particle in this work can be obtained by

z̄ =

Z
1

0

z@x (6.17)

The voltage loss of SOC dependent di↵usion block ⌘D in Equation (6.13) has

been available for the NLECM-di↵ model.

To estimate Q and ⌧D of the di↵usion block, a global optimisation method,

named simulated annealing (SA) algorithm proposed by Kirkpatrick [275], was ap-

plied here for the model parameterisation. Simulated annealing (SA) is a random-

search strategy that utilises an analogy between the annealing process and the search

for a minimum in a more general system. SA’s advantage over other methods is its

ability to avoid becoming locked in local minima. The approach performs a random

search that accepts changes that reduce the objective function (assuming a minimi-

sation problem), but also some modifications that raise it. Simulated annealing is

considered as reliable and universal method that can deal with highly nonlinear mod-

els, chaotic and noisy data and many constraints [276]. In this work, two unknown

parameters ⌧D and Q in the NLECM-di↵ model were estimated by the simulated
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annealing approach which obtains the optimised parameters by minimising the cost

function (J) defined in Equation (6.18) as the sum of the weighted squared error

between voltage measurement and the NLECM-di↵ model output voltage.

J =
X����

v(t)� vm(t)

�v(t)

����
2

(6.18)

In Equation (6.18), v(t) is the voltage measurement, vm(t) is the model-

calculated voltage, and the �v(t) is the standard deviation of the voltage measure-

ment. Given that the di↵usion process is long time operation [265], a parameteri-

sation process under a long time profile (separate and in addition to the multisine

characterisation experiments) is required for the NLECM-di↵ model. Thus, the op-

timisation is based on a 5.75mA (0.5C) constant current (CC) discharge experiment

(from 4.2V to 2.5V) followed by a 4 h relaxation at 25 °C, and the optimised model

fit will be reported in Section 6.3. During the optimisation process, the results

show that the voltage response during the discharge period, especially the ending

estimated voltage value, depends on the time constant ⌧D. Furthermore, the final

estimated voltage value in the relaxation is strongly related to Q, and in this work

the Q is determined to equal to 0.0113 which is close to the rated capacity of the

battery 0.0115Ah .

By coupling the identified NLECM and the SOC-dependent di↵usion block,

the NLECM-di↵ model, which accounts for key battery dynamics, including the

ohmic response, the charge-transfer kinetics, and the di↵usion processes, has been

accomplished. The model defines time-dependent voltage Ebatt when subject to a

time-dependent battery current load using the Equation (6.19), and overall nine

parameters of the proposed model are listed in Table 6.1.

Ebatt = UOCV(z̄) + ⌘R + ⌘D (6.19)

6.3 Comparison between NLECM-di↵ and NLECM

To quantify the advantage over an NLECM, the accuracy of the proposed NLECM-

di↵model and the NLECMwas compared under di↵erent load profiles in this section.

The reasons to use the NLECM rather than a multiple RC linear ECM (e.g., 4RC

ECM) for comparison are as follows: Refer to [40], over-fitting characteristics of

high order multiple RC model (higher than 2nd order) declines the accuracy of

the model, the 4RC ECM may show worse accuracy than the 2RC ECM, and the

2RC linear ECM is thus preferred to be used as a reference model in many literature
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Table 6.1

Overall 9 parameters in the NLECM-di↵ model.

Parameters Description Unit

R0 Ohmic resistance ⌦

Rp1 Resistance of the first polarization process ⌦

⌧1 Time constant of the first polarization process s

Rp2 Resistance of the second polarization process ⌦

⌧2 Time constant of the second polarization process s

c1 Linear coe�cient of sigmoid function �

c2 Non-linear coe�cient of sigmoid function �

Q Parameter corresponding to the battery capacity Ah

⌧D Time constant of di↵usion process s

[33, 39, 152]. Furthermore, the accuracy of NLECM has been demonstrated superior

than the 2RC linear ECM in [152], which indicates the NLECM could be a better

reference model from the perspective of accuracy. In addition, the NLECM-di↵

model is developed from the NLECM; the purpose of comparing between NLECM-

di↵ and NLECM is to evaluate the advantage of the NLECM-di↵ model over the

NLECM reference model.

Figure 6.7a and Figure 6.7d show the voltage estimation and voltage error

results under a multisine excitation current when the battery is at 50% SOC. Note

that, consistent with [151], the measured multisine dataset here is not the ones

used for the model identification, and the average of first three periods measured

data was used for validation. The results show that the voltage estimation of the

two models almost overlap the experimental data and that most of voltage error

is less than ±0.02V. Furthermore, the goodness-of-fit R2 and voltage root mean

square error, which are widely used metrics for model performance evaluation, of

the NLECM and NLECM-di↵ under the two testing profiles are listed in Table 6.2.

The R2 value of the NLECM-di↵ result is 99.67% which is 0.01% higher than the

NLECM, while the RMSE value of NLECM-di↵ is 0.0006V less than that of the

NLECM. The high R2 and small RMSE value indicate both the NLECM and the

NLECM-di↵ have great precision under the multisine test, while the minor di↵erence

between these two metrics imply that the accuracy of two models are really close.

In addition, Figure 6.7b and Figure 6.7e present the voltage estimation and voltage

error results under a multisine excitation current when the battery is at 10% SOC.
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Both NLECM and NLECM-di↵ still demonstrate comparable accuracy. However,

in Table 6.2, compared with the results in 50% SOC case, two models show less R2

and greater RMSE value in 10% SOC case, which is due to the battery stronger

nonlinearity introduced in Chapter 5. Furthermore, it is important to notice that

the NLECM-di↵ model is more accurate than the NLECM model in two multisine

tests, indicating the improvement of the NLECM-di↵ than the reference model.

0 20 40 60 80 100
Time [s]

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

Vo
lta

ge
 [V

]

Experiment
NLECM
NLECM-diff

(a)

0 20 40 60 80 100
Time [s]

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Vo
lta

ge
 [V

]

Experiment
NLECM
NLECM-diff

(b)

0 0.5 1 1.5 2 2.5
Time [s] 104

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Vo
lta

ge
 [V

]

Experiment
NLECM
NLECM-diff

(c)

0 20 40 60 80 100
Time [s]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Vo
lta

ge
 E

rro
r [

V]

y = 0.02V

y = -0.02V

NLECM Error
NLECM-diff Error

(d)

0 20 40 60 80 100
Time [s]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Vo
lta

ge
 [V

]

y = 0.02V

y = -0.02V

NLECM
NLECM-diff

(e)

0 0.5 1 1.5 2 2.5
Time [s] 104

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Vo
lta

ge
 E

rro
r [

V]

NLECM
NLECM-diff

(f)

Figure 6.7: Comparison between NLECM and NLECM-di↵ under di↵erent load profiles.
(a, d) Voltage estimation and voltage error results when subjected to a multisine current at
50% SOC, (b, e) Voltage estimation and voltage error results when subjected to a multisine
current at 10% SOC, and (c, f) Voltage estimation and voltage error results under a 0.5C
constant current discharge followed by a 4 h relaxation.

Furthermore, the accuracy of two models was evaluated using a 0.5C constant

current discharge with relaxation profile, as illustrated in Figure 6.7c. Compared

with the significant deviation of the NLECM results, a good agreement between

the NLECM-di↵ results and the experimental data is clearly observed. The reason

leading to significant error of minimum voltage for the NLECM model is due to the

lack of di↵usion process interpretation. In this work, the input current for simulation

was identical to the experimental current excitation. In a battery there is a voltage

loss caused by the solid di↵usion process and leads to the terminal voltage reaching

the minimal voltage limit (2.5V in this case) before the average SOC calculated by

Coulomb counting reduces to 0. As the NLECM uses average SOC to determine the

value of OCV and disregards the interpretation of di↵usion process, the NLECM

terminal voltage at the end of the validation test is significantly worse than that of
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the NLECM-di↵ model. Moreover, when the discharge profile ends, the NLECM-

di↵ can smoothly transit into the relaxation status (as black array shown), which

is a typical di↵usion behaviour. However, the NLECM voltage response directly

changes to a flat straight line after an instant ohmic voltage recovery, which is not

consistent with physical reality. Additionally, as shown in Figure 6.7f, although the

voltage error slightly increases at the low SOC range during the discharge profile,

the maximum voltage error is less than 0.15V and the final voltage value converge to

the experimental result in the relaxation process, which indicates the high accuracy

of the NLECM-di↵ through the whole SOC range. In contrary, the NLECM results

deviated from the experimental data from the beginning of discharge and the error

increases to around 0.5V, which illustrates the drawback of the NLECM, especially

in the low SOC range. Such phenomena demonstrate the NLECM-di↵’s advantage

of capturing di↵usion dynamics and the importance of a di↵usion process block in a

battery model for long time discharge operation. In addition, according to Table 6.2,

the NLECM-di↵ could reduce the voltage RMSE by more than 49.6% and improve

the R2 value by 4.6% when compared to NLECM, which indicates the significant

accuracy improvement of NLECM-di↵ compared to the traditional NLECM in the

0.5C CC discharge test.

Table 6.2

Goodness-of-fit (R2) and voltage RMSE comparison of NLECM and NLECM-di↵ in the
multisine and 0.5C CC discharge tests.

Multisine 50%SOC Multisine 10%SOC CC Discharge

R2 [%] RMSE [V] R2 [%] RMSE [V] R2 [%] RMSE [V]

NLECM 99.66 0.0018 99.50 0.0093 94.05 0.0930
NLECM-di↵ 99.67 0.0012 99.56 0.0087 98.65 0.0469

From a parameterisation point of view, only two extra parameters were added

in the NLECM-di↵ model, resulting in relatively limited increase of the cost in pa-

rameter identification. No experimental methods and chemical analysis were in-

volved in the identification of the NLECM-di↵ model which provides a promising

modelling pattern for the battery management system (BMS) developers without

specific electrochemical techniques. Furthermore, the introduction of the di↵usion

processes block accounts for the potential variation inside the battery electrode par-

ticles, such that an evident accuracy improvement under long time operation profiles

could be made by the NLECM-di↵ model, in contrast to the NLECM and even the

traditional ECM only contains the OCV block with respect to the average SOC.
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6.4 Model validation: Results and Discussions

In this section, the voltage estimation accuracy of the NLECM-di↵ model, which

was identified using the methodology presented in Section 6.2, was validated under

various load profiles. Taking advantage of the reference electrode instrumentation,

the NLECM-di↵ model was developed not only for the full cell to emulate the bat-

tery terminal voltage dynamics, but also for the individual electrodes, labelled as

NLECM-di↵ (PE) for the positive electrode and NLECM-di↵ (NE) for the negative

electrode. Section 6.4.1 presents that the applicability of the NLECM-di↵ model on

the prediction of the electrode potential response, which was compared to the single

particle model with electrolyte dynamics (SPMe) proposed in [38] with a constant

current (CC) discharge and constant current-constant voltage (CC-CV) charge tests.

Furthermore, to validate the model e↵ectiveness for a full cell in a variety of opera-

tional scenarios, the aforementioned CC discharge CC-CV charge tests and the New

European Driving Cycle (NEDC) experimental test were conducted in the validation

procedure to examine and compare the accuracy of the NLECM-di↵ model and the

SPMe in Section 6.4.2 and 6.4.3, respectively. Note that, in this study, the partial

di↵erential equations in the SPMe were solved by the finite di↵erence method, as

well as the parameters in the SPMe were obtained from [24] for LGM50 21700 NMC

cells, which were same as the cells used in this study. Lastly, the dominant battery

phenomenological behaviours in terms of voltage losses under di↵erent load profiles

were found by the NLECM-di↵ and reported in Section 6.4.4.

6.4.1 CC discharge and CC-CV charge profiles - Electrodes

An essential feature of electrochemical models is that the dynamic response of in-

dividual electrodes can be predicted, which can be employed to estimate internal

potential variables for practical applications, such as charging strategy optimisation.

For instance, the cells’ current can be controlled during charging in a way to main-

tain the potential of negative electrode constantly above 0V vs. Li/Li+ to prevent

lithium plating [277]. However, the extensive parameterisation procedure, related to

the geometrical and kinetic dynamics, of electrochemical models introduce di�culty

for practical applications. Using three-electrode configuration experimental cells

with a lithium reference electrode, the positive and negative electrode potential can

be measured simultaneously. On the basis of the measured electrode potential and

excitation current signal, the NLECM-di↵ model can be more easily developed (as

discussed in Section 6.2) for individual electrodes to achieve same objectives by us-

ing electrochemical models. This section evaluates the potential response accuracy
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of decoupled electrode NLECM-di↵ models in comparison with the experimental

measured data and the potential estimation from the SPMe.

The performance of the NLECM-di↵ was evaluated under a set of constant

current (CC) discharge and constant current-constant voltage (CC-CV) charge pro-

files. The profile was determined as a two-period cycle, in which the battery ex-

periences constant current discharge until the lowest cut-o↵ voltage followed by a

relaxation for 4 h in the first period, and, in the second period, a 0.3C constant cur-

rent charge was applied at the beginning and when the voltage reaches a threshold

value, followed by the CV phase where the voltage is held constant (at 4.2V) and the

current reduces accordingly as SOC increases. The long constant-current discharge

period was used to simulate stable driving conditions with relatively constant speed

and demand, the rest period was used to verify the accuracy of the voltage esti-

mation during the depolarisation process, and the CC-CV charge period was used

to evaluate the model’s performance under a widely used battery charging strategy.

Three di↵erent current discharge tests were conducted, that include 3.83mA (0.3C),

5.75mA (0.5C), and 11.5mA (1C), to discharge the battery from 4.2V (Max rated

voltage) to 2.5V (Min rated voltage) in order to examine the impact of discharge

rates on model accuracy throughout the whole voltage window, and the other parts

of the profiles remain consistent.

Figure 6.8 shows the results of the model voltage and voltage error of the

SPMe and the NLECM-di↵ models for the positive electrode (PE) and negative

electrode (NE) in comparison with experimental measurements in CC discharge

and CC-CV charge tests with di↵erent discharging current rates. It is worth noting

that the model simulations use the same excitation current signal as recorded in the

experiments. The measured experimental data (black line) of the positive electrode

potential for 0.3C, 0.5C, and 1C discharging scenarios are plotted in Figure 6.8a,

6.8b and 6.8c. Both SPMe (PE) in blue line and NLECM-di↵ (PE) in red line can

obtain a high degree of agreement with the experimental PE potential over the entire

validation profiles. In the relaxation periods with no current excited, the gradually

increasing potential of the positive electrode is observed in both models, and the

model estimations at steady state are overlapped on the measured results. Further-

more, Figure 6.8d, 6.8e and 6.8f present the model estimations and measured data

of the NE potentials under the various discharging profiles. It can be observed that

the NLECM-di↵ (NE) model in green dash line is consistent with the SPMe (NE) in

yellow dash line among the three scenarios, there is however an overestimation from

SPMe (NE) at the end of discharge in 6.8e. The voltage error of the NLECM-di↵

model is in good agreement with the SPMe results for each electrode and is mostly
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within the boundary range, which indicates that the accuracy of the NLECM-di↵

model is as high as the SPMe for electrode potential estimation. However, contrary

to the accurate potential estimations obtained for positive electrode, the model es-

timated results of the negative electrode potential show the relatively large error in

comparison with the experimental data.
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Figure 6.8: Positive electrode (PE) and negative electrode (NE) potential estimations and
voltage error results of SPMe and NLECM-di↵ (Electrode) in CC-CV discharge and charge
test with di↵erent discharge current values: (a, d, g) under 0.3C discharge current; (b, e, h)
under 0.5C discharge current; (c, f, i) under 1C discharge current.

The estimated voltage error of the positive and negative electrode models

are plotted in Figure 6.8g, 6.8h, and 6.8i. Note that the error is determined by the

measured value subtracted by the model estimated value under the same current

input, such that a positive error indicates that model overestimate the voltage while

a negative error implies underestimation. The black dashed lines in the voltage

error figures reflect the 0.03V and �0.03V error boundaries. The results show

that the estimation error increases as the discharging current rate enhances when

the cell discharges. The model results only show comparable small voltage error

132



in the 0.3C and 0.5C cases, however, in the 1C case, a significant error can be

noticed in the result of each model. It’s worthy to note that the accuracy of the

parameterised SPMe model has been validated in previous work [46]. Such that

the NLECM-di↵ model can achieve a high degree of accuracy as SPMe model.

During the CC-CV charge duration, all models can maintain a good accuracy within

the boundary. In addition, Figure 6.8g presents the underestimation of estimated

positive and negative electrode potential during the discharge period, except the

positive electrode potential at end of the period. It is worth to note that, during

discharging, the larger voltage error of PE models is found in the middle of SOC

range, as well as the significant voltage error of NE models is shown in the low

SOC region. Furthermore, the error value of NE models is greater than that of the

PE models in the low SOC area. The similar phenomena can be more obviously

observed in Figure 6.8h and 6.8i. The largest voltage error of positive electrode

reaches around �0.09V in the 0.5C case and �0.11V in the 1C case at 65% SOC,

and then, the voltage error gradually decreases until the end of discharging. For the

negative electrode, it is shown that when the SOC decreases, the voltage inaccuracy

increases. The voltage error can reach to �0.5V at end of discharging in Figure 6.8i,

where the voltage error of positive electrode is almost neglectable. Moreover, the NE

potential in the SPMe with validated parameters also exhibits as large voltage error

as the NLECM-di↵ (NE) model. Such results illustrate that the dominant voltage

error source, which leads to poor accuracy of battery models in the low SOC region,

is from the negative electrode rather than from the positive electrode.

Table 6.3

Goodness-of-fit (R2) and voltage RMSE of SPMe (PE), NLECM-di↵ (PE), SPMe (NE),
and NLECM-di↵ (NE) in 0.3C/0.5C/1.0C discharge and 0.3C CC-CV charge tests.

R2 [%] RMSE [V]

0.3C 0.5C 1C 0.3C 0.5C 1C

SPMe (PE) 99.43 99.31 99.46 0.0224 0.0258 0.0204
NLECM-di↵ (PE) 99.66 99.65 99.58 0.0176 0.0181 0.0181
SPMe (NE) 97.68 96.15 59.23 0.0378 0.0393 0.0680
NLECM-di↵ (NE) 97.52 96.82 56.78 0.0397 0.0352 0.0701

In addition, the goodness-of-fit (R2) and voltage RMSE of electrode models

under the long time discharge and charge profiles are compared and then listed in

Table 6.3. It can be seen that, for two PE models, the maximum di↵erence of R2 is

less than 0.15% and the maximum di↵erence of RMSE values is less than 0.0054V
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in all three validation scenarios, which indicates that the PE models can maintain

high accuracy under various current density loads. Furthermore, the NLECM-di↵

(PE) model shows higher R2 and lower RMSE than SPMe (PE), which suggests the

accuracy of the proposed model is comparable to SPMe in the positive electrode

case. On the other hand, the results describe that, in the negative electrode case,

the NLECM-di↵ (NE) model accuracy is di�cult to maintain under high current

condition, as the R2 value significantly drops from 96.82% in 0.5C test to 56.78%

in the 1C test, and approximately 0.0349V RMSE value increment exists while the

1C validation profile is applied in comparison with the 0.5C test. Moreover, the

minor R2 and voltage RMSE di↵erence between the NLECM-di↵ (NE) model and

the SPMe (NE) suggests that the fidelity of these two models is still comparable

and the estimation error may be not due to the model inaccuracy. Given that the

accuracy of both PE models is reasonably high and does not decrease with increasing

current load, the estimation inaccuracy should not be attributable to a modelling

flaw. Moreover, given both NE models use the same negative electrode OCV and

exhibit comparable error in the 1C case, one possible explanation is that the NE

inaccuracy may be attributed to the error of negative electrode OCV measurement

in the low SOC range, as, refer to [278], the OCV measurements of the negative

electrode of LG M50 21700 cells exhibit a relatively large deviation at low SOC

range between C/25 charging and discharging, thus the pOCV calculated by average

value could result in OCV error at low SOC range.

Table 6.4

Voltage RMSE comparison of SPMe (PE), NLECM-di↵ (PE), SPMe (NE), and NLECM-di↵
(NE) at various SOC intervals in the 0.5C discharge test.

RMSE [V]

100%-80% 80%-20% <20%

SPMe (PE) 0.0435 0.0481 0.0586
NLECM-di↵ (PE) 0.0394 0.0363 0.0300
SPMe (NE) 0.0447 0.0836 0.0645
NLECM-di↵ (NE) 0.0401 0.0901 0.0580

To investigate the improvement of NLECM-di↵ model in low-SOC-area, Ta-

ble 6.4 presents voltage RMSE comparison of SPMe (PE), NLECM-di↵ (PE), SPMe

(NE), and NLECM-di↵ (NE) at various SOC intervals (100%-80%, 80%-20%, and

<20% SOC) in the 0.5C discharge test. Note that the relaxation period and charge

period are excluded from this comparison. It can be observed that the voltage
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RMSE in the low SOC range (<20% SOC) for both electrode NLECM-di↵ models

is less than the medium SOC range (80%-20%), which indicates that the low-SOC-

error issue has been relieved by the NLECM-di↵ model. In addition, the voltage

RMSE of NLECM-di↵ model in the low SOC range is lower than that of the SPMe

model, indicating that the NLECM-di↵ model achieves a comparable accuracy to

SPMe in the low SOC range (<20% SOC). It is worth noting that, consistent with

Figure 6.8h, the voltage RMSE of the NLECM-di↵ (NE) and SPMe (NE) models in

the medium SOC range (80%-20%) is relatively larger than the low and high SOC

ranges, which may be attributed to the measurement error of negative electrode

OCV as mentioned previously.

In this section, the modelling methodology presented in Section 6.3 was em-

ployed to develop the NLECM-di↵ model for both electrodes, and the performance

of the electrode NLECM-di↵ models was compared with the SPMe. The results

indicate that these two models have comparable fidelity, to the point where the

NLECM-di↵ model may be used in place of the SPMe for estimating the battery in-

ternal potential variable. Additionally, in comparison to the minor error associated

with positive electrode models, both negative electrode models exhibit relatively

large low-SOC-area error when is subjected to a high current load, which demon-

strates that the negative electrode dynamic response may be the primary reason

resulting in the inaccuracy of battery models in the low SOC region.

6.4.2 CC discharge and CC-CV charge profiles - Full-cell

To fulfil the requirement of general practical applications where access to the indi-

vidual electrode potentials is not possible, a NLECM-di↵ model for a full cell was

developed based on terminal voltage of the three-electrode experimental cell for sim-

ulating the dynamic response of commercial cells. The performance of the full cell

NLECM-di↵ model was evaluated and compared to the SPMe terminal voltage in

this section.

Figure 6.9 presents the voltage estimation and error of the SPMe and the

NLECM-di↵ model for a full cell in the various validation loads. The results un-

der 0.3C discharge current are shown in Figure 6.9a which suggests both models

provide minor voltage error at the high and middle SOC range with the errors less

than 0.03V. For the low SOC range (lower than 20%), the voltage error surpasses

the boundary, which indicates the model voltages are overestimated. During the

discharge period, the voltage error of the NLECM-di↵ model is comparable to the

SPMe results. Furthermore, when the battery transits to the relaxation period, the

largest deviation from the measured voltage gradually decreases due to the battery
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Figure 6.9: Voltage estimation and voltage error results of the SPMe and the NLECM-di↵
model for a full cell in CC-CV discharge and charge test with di↵erent discharge current
values: (a) under 0.3C discharge current; (b) under 0.5C discharge current; (c) under 1C
discharge current.

di↵usion process. It is also noticed that, the voltage error of the NLECM-di↵ model

follows closely the SPMe results which indicates that the NLECM-di↵ model main-

tains a comparable fidelity as the SPMe. Moreover, in the 0.3C CC-CV charging

period, both models underestimate the terminal voltage. Compared with the around

0.03V error of SPMe during charging, the NLECM-di↵ model exhibits poorer ac-

curacy with maximum 0.11V estimated error. It might be caused due to the fact

that the lumped SOC di↵usion block, which is calibrated at 0.5C constant current

discharge profile, is not suitable for the charge process. At the end of the valida-

tion test, the estimated voltage can converge to the measured value with less than

0.007V error.

The estimated voltage and error under the 0.5C CC discharge and CC-CV

charge load are demonstrated in Figure 6.9b. Similar to the electrode model results

in the previous section, the error of the two models increases in the discharge period,

especially in the low SOC range. The NLECM-di↵ model overestimates the terminal
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voltage, and its error is greater than that of SPMe (Max. 0.118V versus Max.

0.087V). However, the voltage error during relaxation are minor, even less than

that in the 0.3C case, which might because the models were calibrated under the

0.5C discharge case. Same as the 0.3C case, the NLECM-di↵ voltage error in the

relaxation period has a good agreement with that of the SPMe at around 0.002V.

Figure 6.9c shows the estimated results of two models in the 1C discharge

case where the voltage error remains within the boundaries at the start of discharge,

but the large deviation from the experiential data appears from 64% SOC in the

discharge process. Not only the NLECM-di↵ model, the SPMe exhibits a significant

voltage error in the low SOC range. Furthermore, it is to noticed that, according

to the average SOC (purple line) obtained by current integration method, when the

experimental battery voltage is discharged to the minimum limit 2.5V under 1C

constant current, the average SOC only reaches to 22.8% rather than to around 0%.

Although the mathematical fit of voltage output is successful, such a result is not

expected, as the SOC di↵erence is extremely large. It may be due to the limitation

of the SOC dependent di↵usion block. Unfortunately, there is no published evidence

for this source; in the referenced literature [266], only the mathematical fit of voltage

output is presented, but the SOC di↵erence is not mentioned. The dominant battery

process which results in a significant error in the low SOC range as well as the

unexpected SOC variation will be discussed in Section 6.4.4. It is worthy to note that

according to the validation results in this section, the magnitude and appearance

time of both full-cell models’ error are consistent with those of the negative electrode

models for individual electrode models validation. Given that both NLECM-di↵ and

SPMe positive electrode models exhibit relatively minor error, such results support

the conclusion mentioned in Section 6.4.1 that the negative electrode dominantly

contributes to the low-SOC-area error.

In addition, the goodness-of-fit (R2) and voltage RMSE under 0.3C/0.5C/1.0C

discharge profiles are compared and then listed in Table 6.5. Note that all charge

profiles followed by the charge profiles are 0.3C CC-CV charge profile. According

to the R2 results, although the NLECM-di↵ model has a slightly worse accuracy,

the di↵erence between NLECM-di↵ and SPMe are minor in the 0.3C (0.78%) and

0.5C (0.79%) cases, however, there is a 2.74% reduction than SPMe in accuracy of

the NLECM-di↵ model during the 1C discharge. Likewise, the RMSE results report

that the NLECM-di↵ model has larger voltage error than SPMe in the long time

discharge and charge tests.

Overall, by comparing the estimated voltage and error, it is shown that the

model estimation error increases as the excitation current enhances and the SOC
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Table 6.5

Goodness-of-fit (R2) and voltage RMSE comparison of SPMe and NLECM-di↵ in
0.3C/0.5C/1.0C discharge and 0.3C CC-CV charge tests.

R2 [%] RMSE [V]

0.3C 0.5C 1C 0.3C 0.5C 1C

SPMe 99.48 99.56 97.05 0.0373 0.0351 0.0624
NLECM-di↵ 98.70 98.77 94.31 0.0579 0.0541 0.0870

decreases. Furthermore, the accuracy of the NLECM-di↵ model is slightly lower

than the SPMe under CC discharge and CC-CV charge profiles.

6.4.3 NEDC profile - Full-cell

A further model validation was carried out under the New European Driving Cycle

(NEDC) load profile. The NEDC is a typical vehicle-level dynamic cycle profile to

test the performance of conventional, hybrid, and electric vehicles in the European

Union, which consists of periods of constant acceleration, deceleration and speed

[279]. The NEDC profile utilised in this section was generated for the three-electrode

experimental cell by University of Birmingham collaborators. It’s noteworthy that

the pack configuration assumptions of certain number of strings in series and number

of cell in parallel in a string are critical to determine the C-rates and change in SOC

of the cells when scaling from a drive cycle at vehicle level to the cell level. There are

di↵erent ways of connecting batteries in parallel. Commonly employed topologies

include the Z shape or ladder shape configurations being the most common approach

[35]. In addition, the size of interconnection resistance between the cells needs to

be considered as it can result in a current mismatch [280]. Generally, for simplicity

it is assumed that all the resistance values are the same. It is noteworthy that in

an actual interconnection resistance system is dependent on the busbar design and

they can slightly vary at di↵erent locations of the pack. However as they are at

the same order, considering identical values for interconnection resistance is a valid

assumption [281] when scaling cell level driving cycle.

As shown in Figure 6.10a, the test is performed starting from fully charged

until the terminal voltage reaches the cut-o↵ voltage 2.5V. The zoom-in figure

corresponds to the current with average SOC in the 10th cycle, where the SOC

changes from 55.9% to 51.3% in a NEDC cycle within 0.33 h. In addition, the

estimated voltage of the SPMe and the NLECM-di↵ model are compared with the

measured voltage under the NEDC test as well as the detailed 10th cycle results
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in Figure 6.10b. A total of nineteen complete plus a partial NEDC cycles are

accomplished in this test, and the 10th and 19th cycles are analysed in detail.

According to the zoom-in figure in Figure 6.10b, the NLECM-di↵ model can capture

the cell voltage response and has a good agreement with the SPMe, however, the

voltage amplitude estimated by the NLECM-di↵ model is smaller than the SPMe

at peak values. Note that, in the end of the NEDC test, the model voltage value,

which is less than 2.5V, is the limitation of mathematical models caused by the

extrapolation, which requires to avoid by setting proper saturation.
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Figure 6.10: Comparison of SPMe and NLECM-di↵ in NEDC test: (a) Current and SOC
variation; (b) Voltage estimation results; (c) Voltage Error in the 10th cycle; (d) Voltage
Error in the 19th cycle.

Figure 6.10c illustrates the voltage error in the 10th cycle with the black

dashed lines as the ±0.05V boundaries. Most of the voltage error is within the

±0.05V range, but an underestimation is noticed for the estimated voltage in the

NEDC cycle. Figure 6.10d is related to the 19th cycle in low SOC range with SOC

13.6%� 8.9%. Compared with the results in the 10th cycle, a obvious underestima-

tion, which is out of the boundaries, can be noticed and the largest error appears at

the end of each NEDC cycle caused by 22mA (about 2C) current discharge. Fur-
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thermore, the NLECM-di↵ model shows better performance (smaller error) than the

SPMe in this cycle.

The goodness-of-fit (R2) and voltage RMSE under NEDC are compared and

then listed in Table 6.6. The R2 results illustrate that the NLECM-di↵ model has

2.78% higher accuracy than the SPMe in the NEDC dynamic profile. According

to the RMSE voltage results, the NLECM-di↵ model shows a 0.11V RMSE higher

accuracy than the SPMe.

Table 6.6

Goodness-of-fit (R2) and voltage RMSE comparison of SPMe and NLECM-di↵ in NEDC
test.

R2 [%] RMSE [V]

SPMe 92.83 0.0854
NLECM-di↵ 95.61 0.0744

In this section, the NEDC driving cycle test is carried out for validation

and the estimated voltage of two models are compared. The results show that the

estimated voltage error increases as the SOC decreases, which is consistent with the

results in previous sections.

6.4.4 Dominant electrochemical process under di↵erent load pro-

files

In this section, the fundamental rationale, which leads to the higher accuracy of

the NLECM-di↵ model in the NEDC test rather than in the 1C constant current

discharge, was discussed according to the variation of surface SOC and average SOC

obtained by the di↵usion block. Furthermore, the dominant electrochemical process

in a lithium-ion battery under di↵erent profiles was determined by analysing voltage

losses of the NLECM-di↵ model.

Figure 6.11a and Figure 6.11b show the comparison between the surface SOC

and average SOC under the 1C constant current discharge and the NEDC profile, re-

spectively. It’s clear to observe that the di↵erence between surface SOC and average

SOC appears in these tests when the excitation starts and the battery equilibrium

state no longer exists. In Figure 6.11a, the surface SOC is always less than the av-

erage SOC at the same moment during the discharge. According to the purple line,

which indicates the di↵erence between the surface SOC and average SOC, termed

as �SOC, it’s shown that the absolute value of �SOC increases from 0 to the maxi-

mum value of 22.8% within 1287 s of simulation time when the battery is discharged
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Figure 6.11: Comparison between SOCs and between voltage losses under di↵erent load
profiles: (a) Comparison between surface SOC and average SOC under 1C discharge; (b)
Comparison between surface SOC and average SOC under NEDC profile; (c) Comparison
between ohmic and di↵usion process voltage loss under 1C discharge; (d) Comparison be-
tween ohmic and di↵usion process voltage loss under NEDC profile.

to 64% average SOC, and maintains the maximum value until the discharge ends,

then decreases to 0 through the relaxation process over 1687 s of simulation time.

Recall the estimated voltage results in Figure 6.9c, it is reported that the start of

the deviation of estimated voltage also appears at 64% average SOC, and when the

measured voltage reaches the cut-o↵ voltage, the remaining 22.8% SOC is exactly

same as the maximum di↵erence between the surface SOC and average SOC. Such

results illustrate a strong dependence between the large estimated voltage error at

1C discharge and the SOC di↵erence �SOC caused by the di↵usion process. As de-

scribed in Section 6.3, Q and ⌧D are two parameters which requires to be identified in

the di↵usion block. In Figure 6.9c, when the battery relaxes to the equilibrium state

after 1C discharge, the estimated voltage of the NLECM-di↵ model is overlapped

on the measured experimental voltage data, which indicates the released capacity

estimated by the NLECM-di↵ model is identical to the actual extracted capacity
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from the cell in the test, thus it can be confirmed that the parameter Q, which

is related to the cell capacity, is accurately identified. On the other side, because

the NLECM-di↵ model is optimised at 0.5C, the significant voltage error observed

during discharging could be caused by the fact that the variation of the di↵usion-

related characteristics results in the identified di↵usion-related time constant ⌧D is

inappropriate for the case of the 1C discharge. Taking into account that the voltage

error and the maximum �SOC concurrently appear, the reason may be attributed

to the value of ⌧D in adequately simulating the greater �SOC caused by the dif-

fusion process under large current loads. Note that, as described in Section 6.4.1,

the negative electrode is determined as the origin of the low-SOC-area error, the

dominant factor is thus determined as the di↵usion-related characteristic changes of

the negative electrode, which leads to the considerable error in the low SOC region

under high current load. Refer to [24], the e↵ective di↵usion coe�cient needs to be

adjusted for a given current profile, due to the concentration depends on the applied

current profile. In the future work, to improve the accuracy of NLECM-di↵ model

under large current loads, several di↵usion-related time constants, especially for the

negative electrode, may need to be identified under di↵erent typical CC discharge

tests (i.e., 0.3C/0.5C/1.0C/1.5C) and tabulated in a look-up table for interpolation,

rather than only the parameter under 0.5C discharge test is identified in this case.

Then, while a current load is applied on the NLECM-di↵model, the di↵usion-related

time constant, which is corresponding to the magnitude of the current load, will be

selected and employed in the model. Such that the situation of insu�cient di↵usion

block under large current load will be addressed.

In addition, Figure 6.11b reports the variation of the surface SOC and average

SOC in the NEDC test and the 10th cycle shown in detailed. It’s demonstrated that

the variation of surface SOC is more drastic than average SOC in the whole test, and

the maximum 12.4% SOC di↵erence is found within a single NEDC cycle. Given that

the maximum SOC di↵erence which can be provided by the identified NLECM-di↵

model is 22.8% larger than 12.4%, the di↵usion block with the identified parameter

⌧D is su�cient to provide the dynamic response caused by di↵usion processes, which

may be the reason that the NLECM-di↵ shows high accuracy under the strong

dynamic NEDC profile.

In order to understand the role of electrochemical processes inside a lithium-

ion battery, the dominant battery losses under di↵erent current loads was determined

using the NLECM-di↵ model. Figure 6.11c and Figure 6.11d exhibit the variation

of the ohmic voltage loss with charge-transfer reaction e↵ect ⌘R and the voltage loss

caused by di↵usion process ⌘D under di↵erent load profiles. During the 1C constant
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current discharge, it’s noticed that both ⌘R and ⌘D exist when the discharge starts.

The ⌘R is shown as the dominant voltage loss contributor at the beginning, then,

as the discharge duration increases, the ⌘D replaces ⌘R to contribute most voltage

loss in the estimated voltage output. At the end of discharge process, the voltage

loss contributed by the ⌘D is 4.93 times than that by the ⌘R. Contrary to the

constant current discharge, it’s obviously shown that the ⌘R is the dominant voltage

loss contributor in most of the NEDC test in Figure 6.11d, except for several peak

current moments within the low SOC range. It can therefore be concluded that

the di↵usion process is the behaviour dominating the battery voltage under the

large current load profile, but in the strong dynamic load profile, e.g. NEDC, the

ohmic voltage loss with charge-transfer reaction e↵ect becomes to the dominant

contributor. The conclusion that the dominant voltage loss varies depending on

di↵erent load profiles is supported by observations in [282].

6.5 Conclusions

To address Research Objective (3) defined in Chapter 1, a non-linear equivalent

circuit model with di↵usion dynamics, termed as a NLECM-di↵ model, is proposed

in this chapter, which is identified with a multisine-based nonlinear characterisa-

tion method and a constant current discharge test. The NLECM-di↵ model is able

to account for the battery electrochemical processes, in which a 2nd order linear

equivalent circuit model (ECM) presents the battery impedance, a sigmoid func-

tion accounts for any non-linearity, and a lumped SOC dependent di↵usion block

accounts for the di↵usion processes. Furthermore, the surface SOC and average

SOC are calculated by the di↵usion model, thus the voltage losses due to di↵usion

processes and the open circuit potential can be determined correspondingly. Taking

advantage of the three-electrode cell used in this work, not only the NLECM-di↵

model for a full cell but also for individual electrodes are developed. The accuracy

of the NLECM-di↵ models is validated in two types current load experiments as well

as compared with the widely-used single particle model with electrolyte dynamics

(SPMe).

The validation results highlight that, by involving the di↵usion block at the

cost of adding two extra identifiable parameters, the voltage estimation error in

the low SOC range is significantly reduced by employing the NLECM-di↵ model,

and the RMSE value decreases by more than 49.6% in comparison of the conven-

tional NLECM as a benchmark. From the perspective of battery modelling, unlike

a total of 35 parameters in the SPMe which requires extensive experimental experi-
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ments, the NLECM-di↵ model needs only 9 easily-identifiable parameters obtained

by 2 characterisation tests, but it can achieve a comparable accuracy with the elec-

trochemical model. In addition, as the computational cost is well controlled with

10 equations, the NLECM-di↵ model can be a suitable candidate for accurately

predicting battery voltage in real-world BMS applications. Furthermore, the dom-

inant behaviour contributing to the total voltage loss is determined by applying

the NLECM-di↵ model under di↵erent current loads, in which the di↵usion process

is the dominant voltage loss when under the long time current discharge, and the

ohmic voltage loss is the dominant dynamic when under a dynamic NEDC pro-

file. Overall, this chapter demonstrates that the developed NLECM-di↵ model can

achieve a comparable accuracy to the SPMe by accounting for battery nonlinearity

and di↵usion dynamic, which fulfils the requirement of “Research Objective (3):

Develop a battery mathematical model which requires minimal identification cost

while achieving a high level of accuracy over the entire SOC range.”

To extend the conventional ECM function to simulate the battery internal

behaviours, the decoupled electrode NLECM-di↵ models are established for the pos-

itive and negative electrodes by utilising voltage data from individual electrodes of a

three-electrode configuration experimental cell acquired during the same identifica-

tion tests. The validation results indicate that the developed model can achieve com-

parable accuracy to the SPMe model for the full-cell and individual electrodes. Such

that the decoupled electrode NLECM-di↵ model can be used similarly to electro-

chemical models to estimate internal electrode potential variables, and it enables the

applications of state observer or controller for real-time estimation and control of the

physical states inside the battery [46, 283], but significantly reduces computational

and parameterisation costs. In addition, by comparing with the SPMe electrodes

voltage response under the identical current load, the variation of the di↵usion-

related characteristics of the negative electrode is determined as the primary reason

of the battery models’ low-SOC-area error under di↵erent applied current intensities.

This discovery extends knowledge that the role of individual electrodes contribut-

ing to full-cell voltage estimation error and suggests that future lithium-ion battery

modelling research should place a greater emphasis on investigating the model of

battery anode under di↵erent operating conditions for a comprehensive and reliable

battery model.

The NLECM-di↵ model exhibits a favourable trade-o↵ between accuracy

and identifiability in comparison to the regular ECM and electrochemical models,

making it well-suited for usage in real-world applications. In Chapter 7, both local

and internet distributed Hardware-in-the-Loop platform setups involving a battery
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model and a simplified battery management system are established as well as the

applicability of the NLECM-di↵ model to the HIL application is evaluated to fulfil

the requirements of VCHV project outlined in Chapter 1.
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Chapter 7

An Initial Investigation of

Cloud-based Battery

Management System†

7.1 Introduction

This chapter presents three case studies of Hardware-in-the-Loop (HIL) applications

to address “Research Objective (4): Evaluate the applicability of the proposed

battery model to Hardware-in-the-Loop simulations.” As mentioned in Chapter 1,

this PhD research is aligned with the externally funded project ‘Virtually Connected

Hybrid Vehicle (VCHV)’. The goal of VCHV is to build a real-time simulation frame-

work with an internet distributed Hardware-in-the-Loop (ID-HIL) platform spread

across di↵erent geographical locations. There are six UK universities simultaneously

working on this project, and every facility holds one essential hardware component

of a hybrid electric vehicle (HEV), as known as Unit-Under-Test (UUT) and shown

in Figure 7.1, which needs to communicate with each other in real-time. The author

is responsible for the HIL applications of the virtual vehicle’s electrical energy stor-

age and battery management system. As required by VCHV project, this chapter

records the establishment of HIL and ID-HIL platforms and the performance of the

developed battery model in Chapter 6 in HIL applications serving as contributions

to VCHV project.

Over the last two decades, the HIL simulation technique has been proposed

and widely used as a revolutionary simulation and hardware testing technique [284].

HIL simulation can be used for a system which combines controller hardware with

†
Parts of this chapter have been published in [4]
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Figure 7.1: Possible configuration and in-scope components within orange dotted lines.
Each spoke is represented with a di↵erent colour: Bath (Internal Combustion Engines),
DETC, Loughborough (Hybrid Controls and Communications), Newcastle (Electric Mo-
tors), Nottingham (Power Electronics), UCL (Fuel Cells), and Warwick (Batteries).

mathematical models of the system to be controlled (plant model). By this tech-

nique, the cost of simulation and the hardware testing can be maintained e�ciently,

especially in automotive industry research and development work. Most hardware-

in-the-loop (HIL) simulation are physically allocated in the same place or laboratory.

However, it will require researchers to transport the test rigs from di↵erent places to

the same one. Due to the expenses of transporting scenarios over vast distances, re-

searchers have been investigating the feasibility of connecting physical test rigs and

mathematical simulation models located in separate locations and then running the

HIL simulation in real-time.

The early researchers, who connected two geographically separated Hardware-

in-the-Loop testing rigs together, are Ersal et al. in 2009-2013 [285, 286]. This is

an illustration of the notion of Internet-distributed hardware-in-the-loop (ID-HIL)

simulation. The objective is to integrate physical and virtual prototypes of a system

over the Internet, allowing for system simulations to be conducted independent of

the location of the system’s components. Two HIL rigs used in this work were a 6L

V8 diesel engine-in-the-loop simulation setup located at the University of Michigan

(UM) in Ann Arbor, MI, USA, and a virtual human operator driver-in-the-loop

ride motion simulator located at the TARDEC Simulation Laboratory in Warren,

MI, USA [285]. Additionally, the UDP (User Datagram Protocol) has been used

to transmit the signals between two rigs. In [285], the authors summarised the

most-widely known negative factors such as the Internet’s time-delay, jitter, and

message loss with the numerical expressions. In addition, the concept of “trans-
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parency” is proposed in [286], which means a measure of closeness to ideal coupling.

A higher transparency indicates the more accurate and useful the results. Ersal

et al. concluded that transparency and how it is a↵ected by delay, jitter, and loss

associated with the Internet network is dependent on the signal of interest [286].

They asserted that the e↵ect of distributed simulation is greater than that of the

Internet network. In a recent project, a feasibility check for su�cient real-time con-

nectivity is presented for remote and shared experiments, where testing parts are

allocated in di↵erent geographical places [287]. However, in this study, Schreiber et

al. investigated the feasibility of shared and distributed hardware-in-the-loop test-

ing techniques for automotive systems, and a preliminary attempt using test setups

located in di↵erent countries (South Africa, United States of America, The Nether-

lands, and Germany) have been performed through UDP communication. Another

recent project was conducted on internet-distributed vehicle-in-the-loop simulation

for Hybrid Electric Vehicles that has been published in [288]. The feasibility of a cen-

tralised internet-distributed hardware-in-the-loop configuration is exploited in that

study to co-simulate the entire vehicle’s performance with diverse subsystems. To

the best of the author’s knowledge, the Internet-distributed Hardware-in-the-Loop

(ID-HIL) simulation has not been employed in the battery related field.

From the perspective of automotive engineering, a battery management sys-

tem is physically integrated into the battery pack to provide critical services such as

SOC/SOH/SOP estimates and control algorithms in real-time. However, with the

rapid growth of cloud computing and big data techniques, an avant-garde concept

of cloud-based BMS is recently suggested to make e↵ective use of massive data sets

from EVs [51]. Xiong et al. proposed a framework of cloud-based combining BMS

with big data platform as shown in Figure 7.2 [51]. Voltage, current, temperature,

and other data are constantly transferred to a big data platform built on cloud

technology during the daily driving process of EVs. Machine learning systems may

be trained in a practical context using the data obtained to produce more accurate

predictions. In comparison to the embedded BMS microprocessors’ limited compu-

tational power, cloud computing technology facilitates the execution of procedures

that need a high level of computation and memory. The findings of the data pro-

cessing will be transmitted to a battery monitoring centre, such that the battery

state and fault information throughout the duration of the battery’s life can be

recorded and stored in the monitoring centre for further analysis. Remote diagnosis

and maintenance will be accomplished by transferring real-time battery state and

legible fault information to electric vehicles.

Although fully realising this cloud-based BMS is impractical during this
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Figure 7.2: A framework of cloud-based combining BMS with big data platform [51].

PhD period due to the methods need massive hardware and large computation,

the internet-distributed Hardware-in-the-Loop simulation platform in this chapter

enables an initial investigation of the remote network-connected BMS’s feasibility.

Additionally, the ID-HIL configuration, which comprises of a battery model and a

cloud-based BMS, can be viewed as a prototype for simulating network communica-

tion across universities as part of VCHV project by alternating the Unit-Under-Test.

The remainder of this chapter, as shown in Figure 7.3, is organised as fol-

lows: To establish a HIL platform for VCHV project, Section 7.2 presents a classic

local HIL simulation case study in which an SPMe model (as a battery plant) and

a Kalman Filter-based state-of-charge observer (as a simplified BMS) were imple-

mented in two HIL rigs physically positioned in the same laboratory. In this chapter,

this local HIL platform was the foundation of the other two case studies. Section

7.3 is an extension of Section 7.2 to establish a ID-HIL platform for VCHV project,

in which the HIL rigs for the SPMe model and simplified BMS were remotely com-

municated with each other in two separate campus buildings. Note that, due to

the lack of battery model and parameters at the beginning of this PhD, the SPMe

model with a general parameter set, which leads to a 25Ah rated capacity, was

employed in Section 7.2 and 7.3 for testing. In addition, to demonstrate the appli-

cability of the NLECM-di↵ model proposed in Chapter 6 to VCHV project, Section

7.4 presents real-time model validations under various current loads in the local HIL

platform established in Section 7.2. Conclusions of three case studies in this chapter

are summarised and presented in Section 7.5.
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Case study 1: A local Hardware-in-the-Loop application 
of a simplified battery management system

Case study 2: An initial investigation of the internet-
distributed Hardware-in-the-Loop BMS application

Case study 3: The applicability of the NLECM-diff 
model to Hardware-in-the-Loop applications

To establish HIL platform 
for VCHV

To establish ID-HIL 
platform for VCHV

To test the developed 
model in HIL for VCHV

Figure 7.3: Block diagram of organisation and motivations in Chapter 7.

7.2 Case study 1: A local Hardware-in-the-Loop appli-

cation of a simplified battery management system

7.2.1 Motivation

As described in Chapter 2, di↵erent types of battery models demand various degrees

of computational complexity, which may be a constraint in real-time Hardware-in-

the-Loop applications. In the case of the dSPACE HIL simulation platform, which

is commonly used in real-world automobile industrial testing, each iterative opera-

tion step must be computed precisely within the specified simulation period. If the

system model is overly sophisticated or has an excessive number of computations,

HIL rigs will overrun and fail. While equivalent circuit models are frequently used

in practical applications due to their low computational complexity, electrochemical

models are rarely used in real-time applications. In this case study, an electrochem-

ical battery model and a SOC observer are implemented in the dSPACE Hardware-

in-the-Loop platform to act as a battery plant and a simplified BMS, respectively,

for the purpose of evaluating the system’s applicability to HIL simulations.

7.2.2 Methodology

To build up a real-time simulation framework with distributed Hardware-in-the-

Loop platform for VCHV project, the dSPACE hardware platform was selected,

which requires battery Simulink model to achieve HIL simulation in real-time. Con-

sidering the eventual goal in the future may be not only about SOC, but also about

SOH estimation, the electrochemical model proposed in [38], named ‘single particle

model with electrolyte (SPMe)’, was selected to be applied in this work, as the physi-

cal phenomena of this model can be presented. In addition, the Kalman Filter-based

SOC observer was developed based on a reduced order model of SPMe to further
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reduce computational cost for real-time applications. Eventually, the SPMe and

SOC observer model were respectively implemented into the SCALEXIO for the

real-time HIL simulation. Note that, in this Section, the setup of HIL platform,

model implementation, as well as data collection and analysis were the author’s

original work. The driving cycle (FTP-75) profile was provided by collaborators

from Energy Systems Group, WMG, University of Warwick.

Reduced Order Model

To further reduce the computational cost of the SOC observer, the reduced-order

model (ROM) was derived from the SPMe introduced in Chapter 2. The idea here

is to approximate the linear concentrations dynamics in Equation (2.24) and (2.25)

with low order models, while maintaining the nonlinear voltage output equation.

Equation (2.24) and (2.25) are simplified to Equation (7.1) and (7.2), respectively,

using the balanced truncation method in [97]. Here, the truncated Hankel values

should account for no more than 0.5% of the sum of all system Hankel values.

ẋ±s,rom(t) = A±
s,romx

±
s,rom(t) +B±

s,romI(t)

c±ss,rom(t) = C±
s,romx

±
s,rom(t) +D±

s,romI(t)
(7.1)
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ce,rom(0
+, t) = C+

e,romxe,rom(t) +D+
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(7.2)

The voltage output is calculated using the concentration outputs of the ROM

as following,
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where i±
0,rom(t) = k±

⇥
c±ss,rom(t)

⇤↵c
⇥
⇥
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Note that the accuracy of the reduced order model is relatively degraded due

to the numerical approximation during order reduction, despite the reduced order

model’s ability to considerably lower calculation cost [289].

State estimation method

The SOC observer acting as a simplified BMS comprises two subsystems: Output

Function inversion and the solid phase concentration Kalman Filter. In this work,

the observer schematic is shown in Figure 7.4.

Figure 7.4: The Schematic of SOC observer.

The procedure of SOC observer design is listed as follow,

(i) The voltage error is calculated from cell terminal voltage V (t) and the observer

estimated voltage V̂ (t), the output function inversion calculates the inversion

cathode surface concentration c̆+ss(t). Consequently, with the assumption of

conservation of mass∗, the anode surface concentration c̆�ss(t) can be calculated.

(ii) With the inversion estimated concentrations and input current, the standard

Kalman filters based on ROM for both electrode concentration dynamic sub-

systems can be implemented. Next, the electrodes estimated surface concen-

tration c±ss(t) and bulk concentration c±s (t) can be observed by each Kalman

filter.

(iii) Finally, the estimated solid phase surface concentrations and electrolyte con-

centrations are fed into the observer nonlinear output function subsystem
∗
The total moles of lithium in the solid phase, nLi,s, are assumed known beforehand. If we con-

sider initial estimates corresponding to a steady-state condition, the relationship between cathode Li

concentration c+ss and anode Li concentration c�ss is shown as following: nLi,s = "+s L
+c+ss+ "�s L

�c�ss.
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which is same as the function as in the SPMe to produce the observer es-

timated output voltage V̂ (t) (Equation 7.3).

In this part, a nonlinear gradient algorithm is developed to calculate cathode

concentration from the measured I(t) and V (t) by inverting the nonlinear output

function (7.3).

To focus on the task at hand, the output function is rewritten as

V (t) = g(c+ss(t), t) (7.4)

where the dependence on c�ss(t), c
�
e (0

�, t) and c+e (0
+, t) has been suppressed

into a singular dependence on t.

The inversion result from output function can be represented as c̆+ss(t). And

then, expand the output function by Taylor series with respect to the di↵erence

between c+ss(t) and c̆+ss(t) about zero. Finally, rewrite the nonlinear output function

in ‘Gradient Method’ form [290], and the gradient update law for c̆+ss(t) to minimise

cost function J = 1

2
�(g(c+ss(t), t)� g(c̆+ss(t), t))

2 is given by,

d

dt
c̆+ss(t) = � · (g(c+ss(t), t)� g(c̆+ss(t), t)) ·

@

@c+ss(t)
g(c̆+ss(t), t) (7.5)

where � is the gain to compromise between accuracy and speed.

Kalman Filter

Kalman filter is a widely applied algorithm for state and parameter estimation,

which utilises a system’s input and output data to seek for the optimal state of

linear systems under process and measurement white noise [14]. The discrete-time

system can be represented as follow:

Xk = AXk�1 +BUk�1 + wk�1

Yk = CXk + vk
(7.6)

Where X represents the states of system, Y denotes the output of estimation,

u is the model input and here is the current, A represents the state transition matrix,

B denotes control-input matrix, C denotes measurement matrix, and index k, k� 1

denote time steps of system, while wk represents the system process noise and vk

represents measurement noise, respectively. These two variables are defined as white

noise and with Gaussian probability distributions:

153



p(wk) ⇠ N(0, Q)

p(vk) ⇠ N(0, R)
(7.7)

where Q and R represents process noise and measurement noise covariance

matrices.

Then, the state vector X̂k and output Ŷk estimated by Kalman filter algo-

rithm can be mathematically expressed as ‘Prediction Time Update’ and ‘Measure-

ment Update’. In addition, the symbol ‘�’ means the priori variables in each time

step.

Prediction Time Update:

X̂k = AX̂k�1 +BUk�1 + wk�1

P�
k = AkPk�1A

T
k +Qk�1

Ŷk = CX̂�
k + vk

(7.8)

Measurement Update:

Kk = P�
k CT

k (CkP
�
k Ck +Rk�1)

X̂k = X̂�
k +Kk(Yk � Ŷk)

Pk = (I �KkCk)P
�
k

(7.9)

The Kalman filter can provide the optimal state estimations, and its error elimina-

tion ability is suitable for practical real-time application. The readers can refer to

[14] for more details.

As the battery plant and SOC observer are to start from equilibrium states,

the solid phase surface concentration is set as bulk concentration. Therefore, the

initial conditions along the radius are identical in each electrode of the SPMe model.

As for the SOC observer, two bulk concentration states require to be set as the initial

conditions. In order to evaluate the observer’s ability of tracking actual state, various

initial conditions are set in di↵erent models, as listed in Table 7.1. Note that the

total moles of lithium in the electrolyte in the battery and observer are known

beforehand and might be provided by the manufacturer [38].

The battery model SPMe and Kalman filter based observer are implemented

in ‘MATLAB/Simulink 2017b’. In addition, these models are downloaded in the

hardware device ‘SCALEXIO’ from ‘dSPACE’ for hardware-in-the-loop simulation

in real-time. In this work, the reference current profile of the simulations are the city
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Table 7.1

Initial conditions of battery plant and SOC observer variables. Note that the value of
initial conditions and parameters in this work are the general battery parameters determined
artificially.

Initial lithium ion concentration (mol/m3)

Positive Electrode Negative Electrode

Battery plant (SPMe) 3000 30000
SOC observer 3900 21000
Output Inversion 2700 /

drive cycle ‘FTP-75’ (EPA Federal Test Procedure) with capped current magnitude

at 1.5C, as shown in Figure 7.5. Note that the primary purpose of this section is

to construct the HIL platform; hence, the testing profile was arbitrarily chosen, and

the driving cycle was provided by our research group and scaled specifically for this

25Ah battery model.
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Figure 7.5: The ’FTP-75’ city driving cycle profile with capped current magnitude at
1.5C.

7.2.3 Results and discussions

Figure 7.6 presents the output voltage of the observer and the voltage error compared

with battery plant’s voltage. Even the initial voltage output of the observer was

di↵erent from battery plant, the observer can still closely converge to plant’s output.

The reason of the fluctuation in the end should be from the model reduction error
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and the anode surface concentration conversion process. But the voltage error is

acceptable with a maximum error of less than 10mV for the real-time electric vehicle

application [291].

(a) (b)

Figure 7.6: Voltage and error profiles of battery plant and SOC observer.

Figure 7.7 shows the performance of the SOC observer in estimating solid

phase surface lithium ion concentration. While the initial conditions of lithium ion

concentrations were set di↵erently as shown in Table 7.1, the observer can promptly

track to the actual surface concentration state and roughly fit the plant’s concentra-

tion profile. In Figure 7.7b, the surface concentration mole errors between the plant

and observer were indicated, and after the beginning of observer tracking process,

the cathode error could retain less than 1% in the all discharge regime. Further-

more, in practice, in order to improve battery life, batteries should be designed not

to discharge to out of charge. Therefore, the proposed observer can o↵er reasonable

accuracy for the solid phase surface concentration estimation.

(a) (b)

Figure 7.7: Surface lithium ion concentration and error profiles of battery plant and SOC
observer.

Additionally, in Figure 7.8, the other objective of the proposed observer SOC
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estimation in both electrodes is shown. Since in the ROM, the electrode bulk lithium

concentration state is designed. And the change of SOC is directly related to the

change of Lithium ion bulk concentration in the electrodes [25]. According to the

bulk concentration, the SOC can be estimated for each electrode by the following

SOC definition equation:

SOC± =
c±s � c±

s,SOC=0%

c±
s,SOC=100%

� c±
s,SOC=0%

(7.10)

After short transient process, both electrodes SOC were almost overlapped

in the whole operational process, and the SOC error between these two electrode

observers were less than 0.5%, as shown in Figure 7.8b.

(a) (b)

Figure 7.8: Estimated SOC and error profiles of SOC observer.

In this work, the battery plant and simplified BMS are implemented in

hardware-in-the-loop simulation device ‘SCALEXIO’ from dSPACE. In the dSPACE

platform, the Run-Time Behaviour ‘Period’ controls the period of a periodic task

or the period constraint of a runnable function. In addition, the ’Step Size’ in

the Simulink specifies the fundamental sample time used by the selected fixed-step

solver. These two configuration parameters control the resolution of the proposed

system in the real-time HIL simulation.

Table 7.2 presents the availability of the SPMe and Kalman Filter in various

configuration setups of Run-Time Behaviour ‘Period’ and Simulink ’Step Size’. The

results of this case study suggest that the proposed system comprises of battery

plant and BMS is successfully employed in the Hardware-in-the-Loop simulation

platform, which makes it a potential choice for VCHV project. Furthermore, due

to the computational cost, a maximum 0.1 s resolution is available in the real-time

HIL application for the proposed system. In the real-world, the BMS should have a

higher resolution to promptly respond to emergencies and record batteries operating
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Table 7.2

Availability of the SPMe and SOC observer system in the various HIL configuration setups

Simulink ’Step Size’ HIL platform ’Period’

0.01 s 0.1 s 1 s

0.01 s ⇥ X X
0.1 s ⇥ X X
1 s ⇥ X X

behaviours.

7.3 Case study 2: An initial investigation of the internet-

distributed Hardware-in-the-Loop BMS application

7.3.1 Motivation

The SPMe and SOC observer have been examined in Section 7.2 for their applica-

bility to classic Hardware-in-the-Loop simulation in order to meet the requirements

of VCHV project. In this case study, an internet-distributed Hardware-in-the-Loop

(ID-HIL) configuration was established on the campus of University of Warwick to

emulate the circumstance of network communication between VCHV partners. Not

only can this case study contribute a potential network communication approach to

VCHV project, but it can also serve as an initial investigation of the cloud-based

BMS mentioned in Section 7.1 from an engineering practise standpoint. The idea

of the cloud-based BMS in the ID-HIL configuration was to allocate the battery

plant and simplified BMS to two geographically distinct buildings instead of the

physically connection in the classic HIL configuration. Additionally, the network

communication was utilised to remotely transmit data between the battery plant

and the remote BMS. If the remote BMS functions properly, it is demonstrated that

the ID-HIL configuration is feasible for deployment in VCHV project, as well as the

practicality of constructing a cloud-based BMS.

7.3.2 Methodology

This section describes the implementation of the ID-HIL configuration on campus, as

shown in Figure 7.9, in which a ’relay’ method is devleoped to connect two dSPACE

HIL devices, ‘MicroAutoBox’ and ‘SCALEXIO’, assigned to two buildings (IDL and

IARC) on campus, as well as the system models which are modified for the network
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communication. In addition, a ’Virtual Local Area Network (VLAN)’ is built to

enable real-time data transmission by applying UDP protocol, and the internet

quality of the network communication in the ID-HIL configuration is evaluated.

Note that, in this Section, the setup of ID-HIL platform, model implementation,

network characterisation, as well as data collection and analysis were the author’s

original work. The driving cycle (FTP-75) profile was provided by collaborators

from Energy Systems Group, WMG, University of Warwick.

Figure 7.9: Diagram of the internet-distributed Hardware-in-the-Loop configuration on
campus.

Description of the ’Relay’ method

Generally, the simplest way to connect two dSPACE devices is plugged these two

devices into the same sub-network. By this way, the dSPACE inherent system can

find each other and connect these two devices, and then the real-time data generated

from the HIL simulations can be transmitted directly. However, because of the

campus network distribution, the IDL and IARC buildings are set in the distinct

sub-networks, such that the direct network connection cannot be applied. Therefore,

a ‘Relay’ method is developed to connect dSPACE devices for data transmission in

this case.

In the ’Relay’ method, two Host PCs are used not only as monitors for

the real-time simulation results from dSPACE devices, but also as the relay mod-

ules for network connection via MATLAB/Simulink. Even though the dSPACE

devices cannot communicate with each other across multiple sub-networks, MAT-
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LAB/Simulink is capable of connecting to and transmitting signal data to another

MATLAB/Simulink instance located in a di↵erent sub-network. To achieve the

data transmission, the relay module is implemented in the MATLAB/Simulink of

the Host PC, and an example in the IDL building is shown in Figure 7.10. The

’Home’ subsystem is used to receive the data from the dSPACE device, and the

’Away’ subsystem is employed to send the data over to the other Host PC in the

ID-HIL configuration. The IP addresses utilised in the IDL building’s relay module

is tabulated in Table 7.3. For the other relay module in the IARC building, the IP

addresses in the two subsystems are required to be swapped to configure the setup.

Figure 7.10: Example of the relay module MATLAB/Simulink implementation in the IDL
building.

Table 7.3

IP addresses of the dSPACE devices and Host PCs in the ID-HIL configuration.

Location Device

dSPACE device Host PC

IDL 192.168.1.21 192.168.1.22
IARC 172.16.62.41 172.16.94.40

Description of the models

The SPMe and SOC observer in Section 7.2 were employed and implemented in the

dSPACE devices in this work. Practically, each dSPACE device was connected with

the Host PC by two network wires. A wire was used for the normal dSPACE-Host
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PC connection setup and simulation monitor, and the other one was utilised as a

network channel for data transmission between the dSPACE device and the Host

PC’s MATLAB/Simulink. In addition to the original Simulink models, some blocks,

which were related to the Network communication, were required to be added into

the models. The ‘Ethernet Setup’, ‘Ethernet UDP/IP Setup’, ‘Ethernet UDP/IP

RX’, ‘Ethernet UDP/IP TX’, ‘Ethernet decode’ and ‘Pack’ blocks are necessary for

this ‘relay’ method, especially the ‘Ethernet decode’ and ‘Pack’ blocks were required

for the data type and byte packing normalisation. Thus, the final Simulink model

of the battery plant and simplified BMS, which were implemented in the dSPACE

devices, were shown in Figure 7.11 and Figure 7.12.

Figure 7.11: Battery Model Simulink Setup with Network Communication

Description of the network characteristics

As required by VCHV project, the User Datagram Protocol (UDP) was utilised

for data transmission between two Host PCs. The User Datagram Protocol (UDP)

is a data communication protocol that is primarily used to build low-latency and

loss-tolerant connections between internet-connected applications. UDP speeds up

transfers by allowing data to be transferred prior to the receiving side providing

an agreement. As a result, UDP is advantageous for time-sensitive communications

such as voice over IP (VoIP), DNS search, and video or audio playback. UDP is a

protocol that is an alternative to the Transmission Control Protocol (TCP). Both

UDP and TCP are protocols that run on top of IP and are referred to as UDP/IP or
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Figure 7.12: BMS Simulink Setup with Network Communication

TCP/IP. However, significant distinctions exist between the two. For instance, UDP

provides communication between processes, whereas TCP enables communication

between hosts. TCP transmits data in individual packets and is regarded as a reli-

able transport method to mitigate the data loss during transmission, however, such

protocol increases the delay and is not suit for real-time applications. On the other

hand, UDP communicates through messages called datagrams and is considered a

best-e↵ort communications. This means that UDP makes no promises about the

delivery of data or on the availability of special features for retransmitting lost or

corrupted messages, but this protocol is recommended for control purpose real-time

applications since the control algorithm is time-sensitive but more tolerable to data

loss [285, 292].

To characterise the VLAN network quality between IDL and IARC, a series

of time delay experiments were conducted between a computer the IDL building and

a computer at the IARC building in one week using UDP/IP protocol. A typical

result for round trip time delay vs. time of seven days recorded from the tests is

shown in Figure 7.13. The figure clearly shows a character in the sense that some

packets experience a delay around 1.5ms, and some around 12ms (spikes), while

others are dropped (shown as 0 delay in the figure). A packet is considered dropped

in this case if it does not arrive within 1 s. Table 7.4 provides some statistics of the

results shown in Figure 7.13.

The statistics of Figure 7.13 is shown in Table 7.4. Compared to the network
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Figure 7.13: Characterisation of VLAN network quality between IDL and IARC in one
week. Note that the network testing software ’WireShark’ is applied to characterise the
network quality.

Table 7.4

Statistics for the results in Figure 7.13.

Number of packets 586089
Avg. delay 1.5ms
Min. delay 0.5ms
No of spikes 159(0.021%)
No of drops 71(0.012%)

characteristics in [286] with a delay around 25ms and some around 350ms spikes,

the variation around 1.5ms in this case being small makes this network suitable for

the purposes of ID-HIL applications.

7.3.3 Results and discussions

In this section, the real-time experimental results of the ID-HIL configuration under

di↵erent current loads are presented, and the performance of the cloud-based BMS

is evaluated. As with the HIL system in Section 7.2, the SPMe was considered to

be a battery plant, and the SOC observer was supposed to be a simplified BMS

but allocated independently in this study. In addition, the e↵ect of the internet

distribution in the ID-HIL was determined by comparing with the results of the

Model-in-the-loop and local Hardware-in-the-loop configurations.

163



Performance of the cloud-based BMS in the ID-HIL configuration

The performance of the cloud-based BMS in the ID-HIL configuration was eval-

uated under two widely-used current loads, referred to as the constant current

charge/discharge profile and the dynamic driving with charge profile. The constant

current charge and discharge profile was set at 1C (25A for the general battery

model used in this work) to emulate a general battery test situation, and the FTP-

75 city driving cycle∗was applied to emulate an actual driving situation. Note that

the FTP-75 in this work was from our research group and specifically scaled for

this 25A battery model. A total three cycles of each profile, as shown in Figure

7.14, is applied in this work to evaluate the performance of the BMS in the ID-HIL

configuration.
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Figure 7.14: Two current loads for the performance evaluation of ID-HIL configuration.
(a) 1C constant current discharge and charge profile, and (b) FTP-75 driving cycle with 1C
charge profile.

Figure 7.15 presents the voltage and SOC results of the battery plant and

BMS throughout the first cycle of the experiments. Note that the experimental re-

sults are recorded on the Host PC of the battery plant in the IDL building. Due to

the fact that two dSPACE devices are distributed over two buildings and the ”Re-

lay” blocks in MATLAB must be manually initiated, it is not possible to initiate a

simultaneous start. In this work, the BMS end is started manually first, followed

by the battery plant end, which results in the BMS’s estimated voltage remaining

zero for the first few seconds (7 s in Figure 7.15a and 6 s in Figure 7.15c). The BMS

then functions normally, estimating the battery plant’s voltage and tracking the

battery plant’s SOC. Even though the BMS’s initial conditions di↵ered from those

of the battery plant, resulting in a rather high inaccuracy at first, the BMS’s esti-

∗
The FTP-75 city driving cycle is a series of tests defined by the US Environmental Protection

Agency (EPA) to measure tailpipe emissions and fuel economy of passenger cars.
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mated voltage and SOC eventually mirrored the battery plant’s actual states. In the

constant current case, the estimated voltage of the BMS overlaps with the battery

plant’s voltage at 97 s as illustrated in Figure 7.15a. Meanwhile, the BMS’s SOC

converges to that of the battery plant as shown in Figure 7.15b, which indicates the

cloud-based BMS in the ID-HIL configuration can estimate the SOC remotely. In

the rest of the experiment duration, the cloud-based BMS can continuously estimate

the battery plant’s voltage and SOC. Additionally, as presented in Figure 7.15c and

Figure 7.15d, the cloud-based BMS is capable of estimating the battery plant’s volt-

age and SOC within around 100 s during driving cycle current load. However, due

to the internet distribution of ID-HIL configuration, the BMS’s estimated voltage

and SOC show relatively larger error than the results from local HIL configuration,

as will be discussed in greater detail below.
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Figure 7.15: Experimental results of the battery-BMS system under the first cycle of two
current loads: (a) voltage results in the constant current discharge and charge profile, (b)
SOC results in the constant current discharge and charge profile, (c) voltage results in the
driving cycle profile, and (d) SOC results in the driving cycle profile.
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E↵ect of internet distribution

To ascertain the e↵ect of internet distribution on the ID-HIL configuration, two

current profiles are applied on the the Model-in-the-Loop (MIL) and HIL configu-

rations, respectively, and the ID-HIL simulation results are compared to those of

the Model-in-the-Loop (MIL) and HIL configurations. The MIL simulation is used

to test the developed model while it is operating in a simulation environment like

as Simulink. The MIL configuration captures the majority of the critical features

of the hardware system and has the potential ability to improve convenience and

minimize costs [293]. Note that the MIL simulation runs in processor-time, which

is frequently significantly faster than real-time and does not require a fixed time

step, and the results of the MIL simulation can be used as a baseline for validation,

as the entire system is assumed to operate in an ideal state without any delay or

disturbance caused by data transmission or environment [294]. Additionally, the

HIL simulation described in Section 7.2 is employed for comparative purposes in

this work. In comparison to the ID-HIL simulation, the HIL simulation omits only

the network communication component; the rest of the configuration is identical.

Thus, by comparing these two HIL configurations, it is possible to deduce the e↵ect

of internet distribution on the real-time battery-BMS system.

Figure 7.16 presents the voltage and SOC error profiles of MIL, HIL, and ID-

HIL configurations under the constant current charge/discharge and the dynamic

driving with charge loads. The error values are derived by subtracting the corre-

sponding data of the battery plant from the data of the BMS, and the positive

value indicates the BMS overestimates the corresponding variable. Due to the fact

that the devices cannot be started concurrently in the ID-HIL configuration, the ex-

periment’s first period data are discarded; hence, the second and third experiment

periods are chosen to analyse the influence of network communication. Taken as

a whole, both voltage error and SOC error in Figure 7.16 increases as the battery

SOC decreases, which might be related to the inaccuracy of the mathematical model

employed in the SOC observer. Furthermore, the error profiles in the second and

third periods are identical which indicates the good stability of the systems in all

three configurations. In addition, it is clearly observed that the voltage and SOC

error of the MIL (blue curves) and HIL (red curves) configurations are quite small

and almost overlapped in Figure 7.16, which indicates that the implementation of

the HIL configuration has nearly no e↵ect on the performance of the BMS. However,

the BMS’s estimated voltage and SOC in the ID-HIL configuration (yellow curves)

shows significant error in both current load cases. Attributed to the fact that the

main di↵erence between the HIL and ID-HIL configurations is the internet distribu-
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Figure 7.16: Voltage and SOC error profiles of MIL, HIL, and ID-HIL configuration under
two current loads: (a) voltage error in the constant current discharge and charge profile,
(b) SOC error in the constant current discharge and charge profile, (c) voltage error in the
driving cycle profile, and (d) SOC error in the driving cycle profile.

tion, these results show that the internet distribution in the ID-HIL configuration

results in the poor accuracy of the BMS.

Table 7.5 presents the maximum error and RMSE of the BMS estimated

voltage and SOC in each configuration. Consistent with the Figure 7.16, the BMSs

in MIL and HIL configurations exhibits comparable and great accuracy in the volt-

age and SOC estimations under each current load. However, under the constant

current discharge and charge load, the BMS in the ID-HIL configuration exhibits

an estimated voltage RMSE almost tenfold that of the HIL configuration and a

maximum error fourfold that of the HIL configuration. The SOC maximum error

increases from 0.56% to 4.08%, and the RMSE of SOC grows from 0.17% to 2.45%.

Similarly, the accuracy of the BMS in the ID-HIL deceases significantly under the

driving cycle load and RMSE SOC increases from 0.18% to 2.72%. In both cases,

the SOC RMSE is more than the 2% criterion for the accuracy of a state-of-the-art
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Table 7.5

Maximum error and RMSE of the BMS estimated voltage and SOC in the experiments of
three configurations under two current loads.

MIL HIL ID-HIL

Max. Error RMSE Max. Error RMSE Max. Error RMSE

Voltage [CC] (mV) 18.7 2.2 22.0 2.3 79.4 23.2
SOC [CC] (%) 0.57 0.17 0.56 0.17 4.08 2.45

Voltage [FTP-75] (mV) 12.7 2.4 14.3 2.6 92.9 21.9
SOC [FTP-75] (%) 0.67 0.16 0.70 0.18 5.22 2.72

SOC estimator [295].

This case study establishes an internet-distributed Hardware-in-the-Loop

configuration to emulate the circumstance of network communication between VCHV

partners. The cloud-based BMS experimental results demonstrate that the sug-

gested ID-HIL configuration is capable of real-time data transmission, indicating

that it could be used in VCHV project. However, the accuracy of the cloud-based

BMS is relatively poor due to the internet distribution. Thus, advanced state esti-

mate algorithms, that are tolerant of data loss and time delay, are suggested to be

utilised in the future work to improve the accuracy of the cloud-based BMS. For

example, in [296], one straightforward extension of Extended Kalman Filter which

can handle time-delays was proposed. In this method, the key point is to return

to the time step of the delay measurement to incorporate the delay measurement,

and then, re-compute the entire estimation progress till the newest step which is

without time-delay. The simulation results of this study show that this approach

is more reliable than existing approaches for state estimation using measurements

with unknown time delays.

7.4 Case study 3: The applicability of the NLECM-di↵

model to Hardware-in-the-Loop applications

7.4.1 Motivation

This case study presents the HIL validation of the NLECM-di↵ model to fulfil

“Research Objective (4): Evaluate the applicability of the proposed battery

model in the internet distributed Hardware-in-the-Loop simulation platform.” As

specified in VCHV research proposal, the author was responsible for developing

and providing an accurate battery mathematical model for the internet distributed
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Hardware-in-the-Loop applications. In Chapter 6, a unique battery model, termed

as nonlinear equivalent circuit model with dynamics (NLECM-di↵), was proposed

and parameterised for the LG M50 experimental three-electrode cell. Taking ad-

vantages of the experimental cell, the NLECM-di↵ models for the full-cell and for

individual electrodes were developed, and the accuracy of the NLECM-di↵ models

has been examined in a software simulation environment. However, the applicability

of the NLECM-di↵ model to the ID-HIL applications has not been evaluated yet. In

addition, the terminal voltage of the battery models can be provided by either the

full-cell model or a combination of individual electrode models named the decoupled-

electrode model. To select the appropriate battery model for VCHV project, the

accuracy of these two types of NLECM-di↵ models in the HIL applications must

be evaluated under a diversity of current loads. Thus, in this case study, both the

NLECM-di↵ full-cell model and the decoupled-electrode NLECM-di↵ model were

implemented in the HIL platform to assess their applicability to HIL applications

as well as their accuracy for terminal voltage estimation. Note that, due to facility

access restrictions, the NLECM-di↵ models were not demonstrated on the ID-HIL

platform.

7.4.2 Methodology

The ID-HIL configuration was developed by evolving from the local HIL config-

uration in Section 7.3, and the feasibility of the ID-HIL configuration has been

evaluated. Taking advantage of the flexibility of the HIL simulation, it is su�cient

to replace the mathematical models in the hardware devices when testing a new

model of the Unit-Under-Test. In this work, the NLECM-di↵ model proposed in

Chapter 6 was implemented in the dSPACE device ‘MicroLabBox’ for the HIL val-

idation, as shown in Figure 7.17. To be consistent with the simulation validation

of the NLECM-di↵ model in Chapter 6, the successive CC discharge and CC-CV

charge and the NEDC current profiles were applied on the NLECM-di↵ model and

the actual LG M50 21700 battery cell in the HIL validation. Note that the current

loads were normalised to the rate capacity of the NLECM-di↵model which is param-

eterised for the experimental cell with 11.5mAh capacity, as the the current profile

was designed for the experiments on the LG M50 21700 5Ah cell. The measured ter-

minal voltage data of the LG cell (V Experiment) was then utilised to validate that

of the NLECM-di↵ model generated from the HIL device. As presented in Chap-

ter 6, not only the full-cell model, but also the models of the individual electrodes

were developed. Thus, the NLECM-di↵ model was capable of providing three esti-

mations in terms of full-cell terminal voltage (V HIL), cathode voltage (Vwe HIL),
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and anode voltage (Vce HIL) while excited by the current loads. According to the

relationship between battery cell and individual electrodes, an alternative estima-

tion of the full-cell terminal voltage V HIL[we-ce] can be represented by the voltage

di↵erence between the cathode and anode follows Equation (7.11),

V HIL[we-ce] = Vwe HIL - Vce HIL (7.11)

Therefore, two estimated terminal voltage profiles obtained by the NLECM-

di↵ can be validated with the measured experimental terminal voltage data. The

voltage of individual electrodes in Equation (7.11) are obtained by using three-

electrode experimental configuration, which means the voltage drops across sepa-

rator and electrolyte are already included [24]. Note that, in this Section, model

implementation, data collection and analysis, as well as HIL validation were the

author’s original work. Three-electrode configuration experimental cells and the

driving cycle (NEDC) profile were provided by collaborators from University of

Birmingham.
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Figure 7.17: Diagram of the NLECM-di↵ model HIL validation.

7.4.3 Results and discussions

Figure 7.18 shows two current loads applied in this work for examining the appli-

cability of the NLECM-di↵ to HIL applications. The successive CC discharge and

CC-CV charge current profile between 4.2V and 2.5V, which consists of a 0.3C CC

discharge and 0.3C CC-CV charge, a 0.5C CC discharge and 0.3C CC-CV charge,
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and a 1C CC discharge profile, is applied to emulate the voltage response of the

NLECM-di↵ model in stable driving and charging conditions, as shown in Figure

7.18a. The NEDC driving cycle profile employed in Chapter 6 is utilised in this

work as shown in Figure 7.18b. The blue curves in Figure 7.18 are the current

profile recorded from the LG cell experiments, but the amplitude of the current

data has been normalised for the NLECM-di↵ model with 11.5mAh rated capacity.

The red curves, which represent the current profiles recorded by the HIL device, are

seen to overlap with the normalised experimental current signal. This results indi-

cate that the hardware device has the ability to accurately reproduce the imported

experimental current signal. Due to a system problem during the experiment, the

15th cycle of the NEDC driving profile in Figure 7.18b is incomplete; however, the

current signal employed in the HIL device remains unchanged for consistency.
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Figure 7.18: Two current loads for examining the applicability of the NLECM-di↵ model
in the HIL applications. (a) Successive CC discharge and CC-CV charge profile, and (b)
NEDC driving cycle profile.

Voltage and error profiles of the model estimated full-cell terminal voltage

under the successive CC discharge and CC-CV charge current load are presented in

Figure 7.19. By and large, the NLECM-di↵ model is capable of being applied in the

HIL applications, and the model estimated voltage has a good agreement with the

experimental data as shown in Figure 7.19a. Similar with the results demonstrated

in Chapter 6, the NLECM-di↵model shows the best performance with around 0.12V

error in the 0.5C discharge duration, as the model is optimised with 0.5C discharge

current. However, the estimated voltage error up to 0.5V in the 1C discharge

duration, which is deserved to be improved in the future. In addition, Figure 7.19b

presents the voltage error obtained from full-cell terminal voltage estimations of two

NLECM-di↵ models; V HIL for full-cell NLECM-di↵ model and V HIL[we-ce] for

decoupled-electrode NLECM-di↵ model. It is observed that the NLECM-di↵ model
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overestimates the full-cell terminal voltage during discharge and underestimates it

during charge time. Furthermore, the lower value of V HIL[we-ce] illustrates that

the estimated full-cell voltage calculated from individual electrodes is slightly more

accurate than the full-cell model, particularly while charging. Given the conclusion

reached in Chapter 6 that the di↵usion dynamics is dominating in long time constant

charge and discharge processes, this result could be explained by the fact that two

di↵usion blocks for both electrodes in decoupled-electrode model provide one more

degree of freedom than the full-cell NLECM-di↵ model.
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Figure 7.19: Voltage and error profiles of the estimated full-cell terminal voltage under the
successive CC discharge and CC-CV charge current load. (a) Voltage profile of the NLECM-
di↵ model estimation, and (b) voltage error profile of the NLECM-di↵ model estimation.

Figure 7.20 demonstrates the voltage and error profiles of the model esti-

mated full-cell terminal voltage under the NEDC driving cycle current load. The

voltage profile obtained from the HIL device agrees well with the experimental data,

indicating that the NLECM-di↵ model is appropriate to HIL applications in driving

scenarios. Similar with the simulation validation results in Chapter 6, the NLECM-

di↵ model shows a relative large voltage error at extreme low SOC area, which could

be improved by introducing the output limitation into the model. As illustrated in

Figure 7.20b, there is no discernible di↵erence in the estimated voltage error be-

tween the full-cell and decoupled-electrode models, which might indicate that the

improvement achieved by combining individual electrode models is insignificant in

dynamic driving scenarios driven by ohmic and polarisation dynamics.

Goodness-of-fit (R2) of the NLECM-di↵ full-cell and decoupled-electrode

models are calculated and tabulated in Table 7.6. Consistent with the results demon-

strated in Figure 7.19 and 7.20, the decoupled-electrode model only exhibits the im-

provement of the accuracy in the successive CC discharge and CC-CV charge profile.

Thus, a trade-o↵ between model complexity and accuracy must be undertaken while
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Figure 7.20: Voltage and error profiles of the estimated full-cell terminal voltage under
NEDC driving cycle current load. (a) Voltage profile of the NLECM-di↵ model estimation,
and (b) voltage error profile of the NLECM-di↵ model estimation.

selecting a model that is appropriate for real-world applications.

Table 7.6

Goodness-of-fit (R2) comparison of the NLECM-di↵ model estimated terminal voltage be-
tween the full-cell and decoupled-electrode model.

R2 [%]

CC NEDC

Full-cell model 97.9 96.7
Decoupled-electrode model 98.7 96.7

7.5 Conclusions

This chapter demonstrates three engineering practical case studies to fulfil “Research

Objective (4): Evaluate the applicability of the proposed battery model to Hardware-

in-the-Loop simulations.” which the author, on behalf of WMG, University of War-

wick, has determined to contribute to VCHV project. In Section 7.2, the virtual

battery-BMS system, comprised of the SPMe battery model and a Kalman filter-

based SOC observer, has been implemented in the dSPACE HIL hardware devices

to evaluate the electrochemical battery model’s suitability for VCHV project. On

the basis of the success of the HIL configuration, an internet distributed Hardware-

in-the-Loop configuration for the battery-clouded-BMS system has been proposed

and implemented on the University of Warwick’s campus in Section 7.3. This con-

figuration replaces the HIL configuration’s communication method from wires to
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the internet network to remove the geographical constraints used to emulate the

circumstance of the distributed HIL network connection across VCHV partners.

Given that the limitations of existing battery models for the practical applications,

the advanced NLECM-di↵ model proposed in Chapter 6 is implemented in the HIL

configuration to evaluate the applicability to the ID-HIL applications in Section 7.4.

To select the appropriate battery model, the accuracy of the NLECM-di↵ full-cell

and decoupled-electrode models is evaluated and compared under successive CC

discharge and CC-CV charge, as well as the NEDC current profile loads.

The following conclusions can be drawn according to the experimental re-

sults; Firstly, in Section 7.2, the battery-BMS system, consisting of the simplified

electrochemical battery model SPMe and the Kalman filter-based SOC observer,

is demonstrated to be available for VCHV project. However, due to the massive

computational cost, the resolution of the HIL simulations has to be limited as 0.1 s

for a single battery cell, as demonstrated in this Chapter, which may not be su�-

cient for algorithms that consider multiple battery cell models for battery modules

or packs. Further, in Section 7.3, the ID-HIL configuration with ’relay’ modules is

proven as a feasible solution for data transmission between geographically dispersed

HIL devices. However, the decrease of observer accuracy due to the e↵ect of internet

distribution is fairly significant, even in the case of a high-quality network, which is

deserved to further investigation. Furthermore, Section 7.4 demonstrates the appli-

cability of the NLECM-di↵ model to HIL applications, and the real-time simulation

results exhibit a good agreement with the experimental data under various current

loads. In addition, the NLECM-di↵ decoupled-electrode model slightly outperforms

the full-cell model in the successive CC discharge and CC-CV charge current pro-

file cases; nevertheless, in the NEDC profile scenario, the two models exhibit equal

accuracy. While the full-cell model performs similarly to the decoupled-electrode

model in terms of accuracy but at a lower computing cost, the decoupled-electrode

model has the advantage of being able to estimate the voltage of individual elec-

trodes, and hence merits consideration for VCHV project, such that the state es-

timation and control algorithms that require internal electrode potential variables

can be achieved for optimising charging strategy and preventing lithium-ion plat-

ing [46, 278]. Overall, this chapter demonstrates that the developed NLECM-di↵

models (full-cell model and decoupled-electrode model) can be utilised in both lo-

cal HIL and ID-HIL simulations for VCHV project, which fulfils the requirement

of “Research Objective (4): Evaluate the applicability of the proposed battery

model to Hardware-in-the-Loop simulations.”
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Chapter 8

Conclusions and future work

The motivation underpinning this thesis, as described in Chapter 1, is to develop a

unique battery mathematical model which requires minimal identification cost while

achieving a high level of accuracy over the entire SOC range for Hardware-in-the-

Loop applications aligned with the externally funded project “Virtually Connected

Hybrid Vehicle (VCHV)”. Following a critical review of the existing literature re-

lating to battery mathematical models within Chapter 2, it was concluded that

the existing battery models obtained from previous research are developed either

by interpreting battery dynamics at a high expense of identification or by fitting

the battery current-voltage relationship without regard for physical significance. In

terms of practical applications, the former class model is di�cult to employ for orig-

inal equipment manufacturers due to a lack of extensive laboratory conditions, while

the latter class model is believed to result in a relatively large voltage estimation

error at low SOC range due to nonlinear distortions caused by battery dynamics.

Therefore, a lack of a high computational e�ciency and easily implementable model,

which also can describe battery physical meaning and nonlinearity, for practical ap-

plications was identified as a first knowledge gap.

Furthermore, it was found that the absence of the aforementioned battery

model could be partially attributed to a lack of nonlinear characterisation methods

suitable for battery modelling. As such, developing a novel nonlinear character-

isation method is a precondition for building a battery model that performs as

expected. To address this, Chapter 3 critically reviewed characterisation methods

for battery modelling. It was found that no systematic approach exists for capturing

battery nonlinearity while also providing information for battery modelling. Based

on these shortcomings, it was concluded that the existing system identification ap-

proaches for a lithium-ion battery cell are insu�cient for practical applications, and
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a second knowledge gap is described as the absence of such nonlinear characterisa-

tion method .

8.1 Contributions to knowledge

Innovations and key contributions to knowledge corresponding to research objectives

proposed in Chapter 1 are summarised in Figure 8.1. In brief, the innovation of this

work is to develop a comprehensive system identification methodology of a lithium-

ion battery cell for BMS applications, which includes the nonlinear characterisation

method, battery system modelling, and practical implementation.

 

Research objective Innovation Key contribution Contribution to 
academia 

Chapter in 
thesis 

(1) Design a characterisation method 
capable of capturing battery 
nonlinearity. 
 

A new multisine-based nonlinear 
characterisation method capable of capturing 
battery nonlinearity while obtaining the 
necessary information for parameterisation 

Odd and even nonlinearities are 
captured and separated by 
random phase odd multisine 
signal.  
 

Published in [1] [2] 4 and 5 

(2) Understand the electrochemical 
processes contributing to nonlinearity. 
 

A model-based procedure to investigate the 
origins of the battery nonlinearity 

Charge transfer kinetic is 
determined as the most 
sensitive to nonlinearity at a 
SOC level. 

Published in [1] 4 

An experimental procedure to investigate the 
dominant electrochemical process 
contributing to nonlinearity 

Diffusion process mainly 
contributes nonlinearity at low 
SOC range. 

Published in [2] 5 

(3) Develop a battery mathematical 
model which requires low 
identification cost while achieving a 
high level of accuracy over the entire 
SOC range. 
 

A new ECM model with low identification 
and computational costs that achieves a high 
level of accuracy over the entire SOC range 
by accounting for battery nonlinearity and 
diffusion dynamic 

The developed NLECM-diff 
model achieves a comparable 
accuracy to the SPMe. 
The diffusion characteristic of 
the anode is identified as the 
cause of low-SOC-error. 

Published in [3] 6 

(4) Evaluate the applicability of the 
proposed battery model to Hardware-
in-the-Loop simulations. 
 

An internet distributed Hardware-in-the-
Loop platform which enables real time co-
test across different geographical locations 

The decoupled-electrode 
NLECM-diff model is 
determined to be a suitable 
substitute for the SPMe in real-
time applications. 

Published in [4] 7 

Figure 8.1: Summary of innovations and key contributions to knowledge.

This development and implementation of the system identification method-

ology on the use case of VCHV project has addressed the research gaps identified

within Chapter 2 and 3 through the accomplishment of a series of four research

objectives.

The first process was defined in “Research Objective (1): Design a charac-

terisation method capable of capturing battery nonlinearity.” As battery nonlinear-

ity, which is required to be included in the predicted model, is a relatively new topic,

it is vital to develop a feasible nonlinear characterisation approach and to analyse

and comprehend the corresponding results. In Chapter 4, an odd random-phase mul-

tisine signal, the basis of the innovative frequency domain nonlinear characterisation

method, is designed, and the method is employed on a widely used electrochemical
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battery model (DFN) and an experimental battery cell to investigate the nonlin-

earity of a lithium-ion battery. The proposed nonlinear characterisation method

o↵ers an e�cient and rapid approach to access and capture battery nonlinearity for

further analysis and application, and lays the groundwork for the development of

new system identification methods for lithium-ion batteries.

In Chapter 4, the dominant linear, odd and even order nonlinearities from

experimental data and the DFN model are analysed and compared in the frequency

domain, and a significant di↵erence in the nonlinearities between the mathematical

model and the real battery is observed. Furthermore, the most sensitive parame-

ter to battery nonlinearities is determined as the charge transfer coe�cient ↵ by

applying a global sensitivity analysis, and thus the charge-transfer reactions are de-

termined as the main contributor to the nonlinearities of a lithium-ion battery at

a SOC level. In addition, results of the nonlinearity RMSE show that, rather than

the commonly used value of 0.5, ↵a set as 0.8 or 0.9 provides a good model agree-

ment with the experimental data while the commercial cell is at 10% SOC. This

phenomenon indicates that the charge-transfer reactions in a lithium-ion battery is

an asymmetrical behaviour, rather than the commonly assumed perfect symmet-

rical reaction. Lastly, this study demonstrates the ability of the multisine-based

characterisation method to estimate the charge transfer coe�cients ↵ by relying on

the battery even and odd order nonlinearities in the frequency domain rather than

only using measured current-voltage curves. Overall, this chapter demonstrates

the feasibility of the developed nonlinear characterisation method, which is based

on random phase odd multisine signal to capture and separate odd and even non-

linearities, in the analysis of battery nonlinearity, which fulfils the requirement of

“Research Objective (1): Design a characterisation method capable of captur-

ing battery nonlinearity.” In addition, this chapter enhances the understanding of

lithium-ion battery nonlinear dynamic response through the model-based investiga-

tion that charge transfer kinetic is the most sensitive to battery nonlinearity at a

SOC level, which indicates that lack of charge transfer kinetic interpretation could

lead to inaccuracy of battery model. Thus it provides a theoretical basis for the

development of the NLECM-di↵ model in Chapter 6. The resulting methodology

including the signal design and simulation data analysis were published in Transac-

tions of the Institute of Measurement and Control [1].

The second stage of the process was defined in “Research Objective (2):

Understand the electrochemical processes contributing to nonlinearity.” This task is

a representation of the data collection stage of the system identification procedure,

and the completion of this study fulfils the knowledge gap relating to a lack of the
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understanding of battery nonlinearity. Chapter 5 presents the successful experi-

mental investigation that was conducted employing the proposed frequency domain

nonlinear characterisation method on battery cells, which allows for the capture of

battery nonlinearity and the collection of the necessary experimental data for the

following model identification step. The feasibility of the proposed characterisation

method for capturing battery nonlinearity is thus experimentally demonstrated, as

well as the source of battery nonlinearity and the dominant electrochemical process

contributing to the nonlinearity are determined in this work.

Overall conclusions of Chapter 5 are summarised as following: First, it can

be concluded that nonlinearities are very low at high SOCs (>10%), as such the

battery current to voltage relationship is behaving linearly in these regions. More-

over, at low SOCs (6 10%), the nonlinearities of a lithium-ion battery significantly

increase, and the dominant contributor to lithium-ion battery nonlinearity was de-

termined as the cathode even order nonlinearity. Additionally, the dominance of

the even nonlinearity indicates that an even order nonlinear characteristic function

may be required for modelling non-linear behaviour of a lithium-ion battery. Lastly,

the dynamics of the anode changes at 2% SOC and starts to contributes with a

significant even-order nonlinear distortion comparable to that of the cathode. Over-

all, this chapter experimentally investigates the contribution of battery di↵usion

process and charge transfer kinetics to nonlinearity by employing the developed

multisine-based nonlinear characterisation method, which fulfils the requirement of

“Research Objective (2): Understand the electrochemical processes contributing

to nonlinearity.” In addition, this chapter concludes that di↵usion process mainly

contributes nonlinearity at low SOC range, which indicates that lack of interpreta-

tion of di↵usion process could be the reason of linear ECM models’ inaccuracy in

the low SOC area. Thus it suggests that the nonlinearity-related di↵usion process

merits to be modelled during the battery system identification in Chapter 6. The

characterisation methodology, results, and explanation for the battery nonlinearity

from this experimental work have been published in Journal of Energy Storage [2].

By employing the multisine-based method, Chapter 6 addressed “Research

Objective (3): Develop a battery mathematical model which requires minimal

identification cost while achieving a high level of accuracy over the entire SOC

range.” It describes the experimental characterisation procedures, the identification

methodology, and the validation process. The nonlinear equivalent circuit model

with di↵usion dynamics (NLECM-di↵), as listed in Table 8.1, is proposed, which

takes into accounts of di↵usion dynamics and nonlinearity interpretation caused by

charge-transfer reactions. The validation results shown in Figure 8.2 and Table 8.2
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highlight that, by involving the di↵usion block at the cost of adding one extra iden-

tification test, the voltage estimation error of the NLECM-di↵ model in both the

entire SOC range and the low SOC range is significantly reduced in comparison of

the linear 2nd order ECM, and the proposed NLECM-di↵ model achieves compara-

ble accuracy to the SPMe model but with much less computational time cost, which

conforms to the accuracy requirements proposed in Section 1.3. Furthermore, the

dominant behaviour contributing to the total voltage loss is determined by applying

the NLECM-di↵ model under di↵erent current loads, in which the di↵usion process

is the dominant voltage loss when under the long time current discharge, and the

ohmic voltage loss is the dominant dynamic when under a dynamic NEDC pro-

file. Additionally, the validation results from the decoupled electrode NLECM-di↵

models suggest that, during discharging, a relatively large voltage estimation error

is shown in the negative electrode NLECM-di↵ model during the low SOC range,

and the variation of the di↵usion-related characteristics of the negative electrode

is determined as the primary reason of the battery models’ low-SOC-error under

di↵erent applied current intensities. This discovery extends knowledge that the role

of individual electrodes contributing to full-cell voltage estimation error, and this

finding suggests that future lithium-ion battery modelling research should place a

greater emphasis on investigating the model of battery negative electrode under dif-

ferent operating conditions for a comprehensive and reliable battery model. Overall,

this chapter demonstrates that the developed NLECM-di↵ model can achieve a com-

parable accuracy to the SPMe by accounting for battery nonlinearity and di↵usion

dynamic, which fulfils the requirement of “Research Objective (3): Develop a

battery mathematical model which requires minimal identification cost while achiev-

ing a high level of accuracy over the entire SOC range.” The modelling methodology,

validation results and analysis have been published in Applied Energy [3].

Table 8.1
Contribution of this work to knowledge of equivalent circuit battery models for BMS appli-
cations.

Model Characterisation Tests Nonlinearity
Interpretation

Di↵usion Dynamics Ref.

ECM HPPC, OCV % % [40]

FOM EIS, OCV % " [139]

NLECM Multisine test, OCV " % [152]

NLECM-di↵ Multisine test, CC test, OCV " " [3]

The results of the practical implementations and their analysis are presented

within Chapter 7 and fulfil “Research Objective (4): Evaluate the applicability

179



0 1000 2000 3000 4000 5000 6000 7000
Time [s]

2.5

3

3.5

4

4.5

V
ol

ta
ge

 [V
]

Experiment
SPMe
Linear ECM
NLECM-diff

Figure 8.2: Voltage predictions of the linear 2nd order ECM, the SPMe model, and the
proposed NLECM-di↵ model discharged from 100% SOC to 0% SOC at 0.5C constant
current load.

Table 8.2
Features of three battery models at 0.5C constant current load.

Model 100%-0% RMSE [V] 20%-0% RMSE [V] Parameterisation tests Computational Time [s]

Linear ECM 0.172 0.493 2 2.30

SPMe 0.048 0.036 7 301.33

NLECM-di↵ 0.047 0.057 3 4.89

of the proposed battery model to Hardware-in-the-Loop simulations.” As this PhD

is aligned with the externally funded project VCHV, the Hardware-in-the-loop ap-

plications required by the project proposal are implemented in the form of three

related case studies in this chapter, which is linked to the model application step of

the system identification procedure. The experimental results provide a straightfor-

ward demonstration that the simplified electrochemical model, named single particle

model with electrolyte dynamics (SPMe), is employable in HIL applications to esti-

mate battery cell’s voltage response with regards to the corresponding current load.

In the same local HIL configuration, the applicability of the NLECM-di↵ model for

HIL applications is examined, which fulfils the demand of VCHV project. From the

experimental results obtained within this work, it is inconclusive about the amount

of computational cost savings gained by substituting the NLECM-di↵ model for the

SPMe in HIL applications. However, in terms of model parameterisation, in com-

parison to the 30 parameters required by the SPMe, the NLECM-di↵ with only 9

parameters is projected to be more advantageous for usage in practical BMS ap-

plications. In additional, by utilising the decoupled-electrode NLECM-di↵ model,

it is possible to determine the potential of individual electrodes concurrently with

the battery terminal voltage during operation. Such that, for certain practical BMS
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operations that require access to individual electrode behaviour, such as preventing

lithium plating during fast charging, the decoupled-electrode model may be a better

candidate than the sophisticated electrochemical models. Furthermore, this chapter

discusses a possible approach for constructing an internet distributed Hardware-in-

the-Loop simulation platform as a contribution to the VCHV project, which can

be regarded as a working hypothesis of cloud-based BMS applications. However,

a relatively poor accuracy caused by the internet distribution in the cloud-based

BMS system is observed, which requires to be investigated in further studies. This

chapter discusses three practical instances (MIL, HIL, and ID-HIL) from the stand-

point of engineering practice that may be of interest to engineers in the automotive

sector. Overall, this chapter demonstrates that the developed NLECM-di↵ models

can be utilised in both local HIL and ID-HIL simulations as contributions to VCHV

project, which fulfils the requirement of “Research Objective (4): Evaluate the

applicability of the proposed battery model to Hardware-in-the-Loop simulations.”

The model selection, HIL implementation, and results from parts of this chapter

have been published in 2019 IEEE Vehicle Power and Propulsion Conference [4].

This thesis contributes a multisine-based nonlinear characterisation approach

as well as an ECM-based battery model (NLECM-di↵model) that may be of interest

to LIB-related researchers in specific scenarios. Concrete steps for use of those con-

tributions are listed respectively: As for the nonlinear characterisation method, this

thesis suggests that the multisine-based method should be utilised for quick battery

nonlinearity analysis using throughout characteristic frequency range of 10mHz to

10Hz in a room temperature laboratory environment. Furthermore, as for the bat-

tery model, this thesis recommends that the NLECM-di↵ model should be employed

in the HIL simulation case where the current rate is not larger than 1C throughout

100% to 0% SOC at room temperature.

In addition, this thesis has a number of implications for the broader scien-

tific community. Due to the fact that the peak value of the current signal for the

multisine-based method is few times greater than the designed RMS value, compared

to conventional nonlinear characterisation methods, the implementation of which is

not always feasible for commercialised vehicles due to the equipment involved. Sec-

ondly, from the perspective of battery modelling, the unequal anodic and cathodic

charger transfer coe�cients indicate that the nonlinear characteristic of a battery

cell should be modelled using alternative functions (such as polynomial, logistic and

hyperbolic tangent) rather than the sigmoid function with the symmetrical “S”-

shape characteristic. Finally, given the critical nature of a di↵usion process model

for modelling large time constant dynamics, constant current profiles are essential
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in identifying equivalent circuit battery models, and mathematical models (such as

the NLECM-di↵) with di↵usion processes are required to account for the variation

in di↵usion voltage loss under various current intensity cases.

8.2 Future direction and further work

Both the proposed nonlinear characterisation method and battery model provide

opportunities for additional research and further work.

Pertaining to the battery characterisation method, further work can be con-

ducted in two directions: parameter estimation and degradation characterisation.

In Chapter 4, the initial capability of the multisine-based nonlinear characterisation

approach to estimate charge-transfer coe�cient parameters has been demonstrated

by minimising the total nonlinearity error through the frequency range between the

model simulation and experimental results. Although the conclusion of the unequal

anodic and cathodic charge transfer coe�cients is consistent with literature, the

precise values of charge transfer coe�cients has not been determined by this charac-

terisation method yet. By optimising the algorithm to take the distribution of char-

acterised nonlinearity into account, the values of charge transfer coe�cients would

be precisely estimated, which will be beneficial for improving the accuracy of elec-

trochemical models. Furthermore, as described in Chapter 3, nonlinear characterisa-

tion methods has been employed in the study of battery cell degradation. However,

within this thesis, the experimental database is obtained through the tests on fresh

battery cells. As such, the capability of the proposed multisine-based method in

degradation characterisation cannot be evaluated. Thus, conducting ageing tests on

commercial batteries and applying the multisine non-linear characterisation method

is necessary in the future work, and the usefulness of the multisine-based method

to degradation characterisation would be investigated by analysing the nonlinearity

variation as the battery cell degrades.

From the perspective of battery models, the battery model scale-up and SOC

estimation deserve further research. The system identification research within this

thesis is limited to cell level because this is the most practical route given the avail-

able resources and research risks. For example, identifying a system at a battery

pack level requires specialised testing equipment capable of containing the battery

pack, and the risk associated with the battery pack’s high voltage and power ne-

cessitates additional safety precautions. However, for actual BMS applications in

EVs, it is important to construct an e�cient mathematical model at the scaled-

up battery module or pack level for monitoring and controlling the vehicle’s power
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storage system. A common pattern in theory to achieve the model scale-up ob-

jective is connecting multiple battery cell models in series and parallel, which may

emphasis the proposed model’s advantage of low computational cost. However, it is

unknown whether this design is applicable in practice. Thus, scaling up the battery

model from cell level to module or pack level needs to be studied in further work.

Additionally, SOC estimation algorithm plays a key role in the BMS applications,

but, unfortunately, it is not involved within the thesis. In contrast to the SOC

estimation methods for numerous conventional equivalent circuit models that are

associated with the Coulomb counting and Kalman filter, the proposed model in-

corporates a lumped di↵usion block inspired by electrochemical models in electrode

particles’ lithium ion concentration distribution which can be related to battery

SOC. As a result, a novel SOC estimation algorithm based on the di↵usion block

needs to be developed specifically for the proposed model and implemented in the

practical applications to evaluate the e�ciency in the future.
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Appendix A

Discrete

Chebyshev-Gauss-Lobatto

orthogonal collocation method

Refer to [274], in the orthogonal collocation method, the grid points are defined by

yj = cos
j⇡

N
, j = 0, ..., N (A.1)

where j is the index of grid points. Mathematically, yj represents the loca-

tions of the extrema of the first kind Chebyshev polynomials, TN (l) = cos(N arccos(l)).

The (N + 1)⇥ (N + 1) Chebyshev derivative matrix D at the quadrature points is:

D = (djk)0jN,0kN (A.2)

with

8
>>>>><

>>>>>:

d00 =
2N2 + 1

6
djj = �

xj
2(1� y2j )

1  j  N � 1

dNN = �
2N2 + 1

6

For 0  j  N, 0  k  N with j 6= k, the element djk is

djk =
cj(�1)j+k

ck(yj � yk)

with
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8
>>>>>><

>>>>>>:

c0 = 2

cj = 1 1  j  N � 1

ck = 1 1  k  N � 1

cN = 2

If v is the vector formed by the values of the function u(y) at the locations

yj , j = 0, ..., N , the values of the approximations v0 and v00 of the derivates u0 and

u00 of u at the grid points yj are calculated as follows:

v0 = Dv; v00 = D2v

where D is the di↵erentiation matrix. .
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[72] S. Raël and M. Hinaje, “Using electrical analogy to describe mass and

charge transport in lithium-ion batteries,” Journal of Power Sources, vol. 222,

pp. 112–122, 2013.

[73] N. Wol↵, N. Harting, M. Heinrich, F. Röder, and U. Krewer, “Nonlinear fre-
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R. F. Escobar-Jiménez, “Fractional operator without singular kernel: Appli-

cations to linear electrical circuits,” International Journal of Circuit Theory

and Applications, vol. 46, no. 12, pp. 2394–2419, 2018.

[132] M. E. Orazem and B. Tribollet, “Electrochemical impedance spectroscopy,”

New Jersey, pp. 383–389, 2008.

198



[133] K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics i. alter-

nating current characteristics,” The Journal of chemical physics, vol. 9, no. 4,

pp. 341–351, 1941.

[134] A. Maheshwari, M. Heck, and M. Santarelli, “Cycle aging studies of

lithium nickel manganese cobalt oxide-based batteries using electrochemical

impedance spectroscopy,” Electrochimica Acta, vol. 273, pp. 335–348, 2018.

[135] J. Li, D. Sun, Z. Chai, H. Jiang, and C. Sun, “Sinusoidal alternating cur-

rent heating strategy and optimization of lithium-ion batteries with a thermo-

electric coupled model,” Energy, vol. 186, p. 115798, 2019.

[136] C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, and V. Feliu-Batlle,

Fractional-order systems and controls: fundamentals and applications.

Springer Science & Business Media, 2010.

[137] Y. Zheng, Z. Shi, D. Guo, H. Dai, and X. Han, “A simplification of the

time-domain equivalent circuit model for lithium-ion batteries based on low-

frequency electrochemical impedance spectra,” Journal of Power Sources,

vol. 489, p. 229505, 2021.

[138] J. Sabatier, P. Lanusse, P. Melchior, and A. Oustaloup, “Fractional order

di↵erentiation and robust control design,” Intelligent systems, control and

automation: science and engineering, vol. 77, pp. 13–18, 2015.

[139] C. Zou, L. Zhang, X. Hu, Z. Wang, T. Wik, and M. Pecht, “A review of

fractional-order techniques applied to lithium-ion batteries, lead-acid batter-

ies, and supercapacitors,” Journal of Power Sources, vol. 390, pp. 286–296,

2018.

[140] A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, “Frequency-

band complex noninteger di↵erentiator: characterization and synthesis,”

IEEE Transactions on Circuits and Systems I: Fundamental Theory and

Applications, vol. 47, no. 1, pp. 25–39, 2000.

[141] X. Liao, J. Yu, and L. Gao, “Electrochemical study on lithium iron

phosphate/hard carbon lithium-ion batteries,” Journal of Solid State

Electrochemistry, vol. 16, no. 2, pp. 423–428, 2012.

[142] C. Zou, X. Hu, S. Dey, L. Zhang, and X. Tang, “Nonlinear fractional-order

estimator with guaranteed robustness and stability for lithium-ion batteries,”

199



IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5951–5961,

2017.

[143] B. Wang, Z. Liu, S. E. Li, S. J. Moura, and H. Peng, “State-of-charge estima-

tion for lithium-ion batteries based on a nonlinear fractional model,” IEEE

Transactions on Control Systems Technology, vol. 25, no. 1, pp. 3–11, 2016.

[144] J. Zhu, Z. Sun, X. Wei, and H. Dai, “An alternating current heating method

for lithium-ion batteries from subzero temperatures,” International Journal of

Energy Research, vol. 40, no. 13, pp. 1869–1883, 2016.

[145] R. Yang, R. Xiong, H. He, and Z. Chen, “A fractional-order model-based

battery external short circuit fault diagnosis approach for all-climate electric

vehicles application,” Journal of cleaner production, vol. 187, pp. 950–959,

2018.

[146] M. Hu, Y. Li, S. Li, C. Fu, D. Qin, and Z. Li, “Lithium-ion battery modeling

and parameter identification based on fractional theory,” Energy, vol. 165,

pp. 153–163, 2018.

[147] A. Ehsani, M. G. Mahjani, and M. Jafarian, “Electrochemical impedance spec-

troscopy study on intercalation and anomalous di↵usion of alcl 4̂-ions into

graphite in basic molten salt,” Turkish Journal of Chemistry, vol. 35, no. 5,

pp. 735–743, 2011.

[148] W. D. Widanage, J. Stoev, A. Van Mulders, J. Schoukens, and G. Pinte,

“Nonlinear system-identification of the filling phase of a wet-clutch system,”

Control Engineering Practice, vol. 19, no. 12, pp. 1506–1516, 2011.

[149] J. E. Stephen, S. S. Kumar, and J. Jayakumar, “Nonlinear modeling of a

switched reluctance motor using lssvm-abc,” Acta Polytechnica Hungarica,

vol. 11, no. 6, pp. 143–158, 2014.

[150] A. F. Esfahani, P. Dreesen, K. Tiels, J.-P. Noël, and J. Schoukens, “Polyno-
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