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Abstract: The nested sampling (NS) method was originally proposed by John Skilling to calculate
the evidence in Bayesian inference. The method has since been utilised in various research fields,
and here we focus on how NS has been adapted to sample the Potential Energy Surface (PES) of
atomistic systems, enabling the straightforward estimation of the partition function. Using two
interatomic potential models of zirconium, we demonstrate the workflow and advantages of using
nested sampling to calculate pressure-temperature phase diagrams. Without any prior knowledge
of the stable phases or the phase transitions, we are able to identify the melting line, as well as the
transition between the body-centred-cubic and hexagonal-close-packed structures.

Keywords: nested sampling; potential energy surface; partition function; phase transition; interatomic
potential models

1. Introduction

Computational materials science has seen rapid evolution in recent years, providing an
increasing number of crucial tools for the prediction and discovery of material properties [1–3].
Gaining insight into the atomic-level behaviour of materials allows for the study of their
characteristics under extreme conditions; enables the clarification of structural details; and
offers specific atomic level data that is capable of guiding and augmenting experimental
research. One of the most important challenges for such atomistic level simulations is
how one can determine the particle configurations that are representative of a material’s
properties. Further, there is the question of how one may extract thermodynamically
relevant information from the simulation data of these configurations. Central to this
challenge is the unfathomable number of ways in which a group of particles may be
arranged. We therefore have a high-dimensional, multi-modal surface representing our
configurational phase space, with chemically relevant regions being exponentially localised
due in part to the probability of microstates being proportional to the Boltzmann factor,
as well as the number of potential configurations decreasing along with energy. This is
the potential energy surface (PES), which describes the potential energy of a system of
particles as a function of their spatial coordinates. Exploring the PES and determining the
location of the highly-localised energy “basins” is therefore akin to finding a needle in a
3N-dimensional haystack.

Thankfully, there exists a plethora of computational techniques developed to target
and sample specific parts of the PES. Among other outcomes, these methods allow for
the detection of ground state and metastable structures at zero temperature [4–6]; the
calculation of free energy differences between particular states [7]; or the locating of regions
that correspond to phase transitions [8,9]. However, while these methods are very efficient
at the tasks they were designed for, they are often limited as a result. For example, they may
be applicable to study only specific phases and properties of a material, or require prior
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information about the system that may not be readily available (e.g., relevant crystalline
structures). Acquiring a comprehensive and unbiased picture of the PES therefore presents
a significant challenge, requiring considerable human and computational commitment,
and likely the use of multiple techniques and/or software. The challenge is magnified even
further if, as is often the case, thermodynamically significant regions of the phase space
exist that have yet to be even considered.

The Nested Sampling (NS) method, introduced by John Skilling in the field of Bayesian
statistics [10,11], offers a unique way of tackling this problem. NS is a cleverly designed,
iterative approach to evaluate integrals that starts with a group of uniformly random
samples drawn from the entire likelihood region. Each step of the algorithm generates
new samples that are “nested” within the space bounded by the current point of lowest
likelihood. As a result, the samples will progress towards regions of increasing likelihood,
until the point of highest likelihood (or more precisely, the point beyond which an increase
in the likelihood has no consequence on the results) is found (or other stopping criteria are
satisfied). Uniquely, the process for choosing new samples means that NS conveniently
provides an estimate for the volume of each likelihood level [10,12]. Considering the
materials science problem, the above can be translated into a process for sampling the
PES by starting with a set of uniformly random configurations, generated within the high-
energy region (gas phase); and progressing towards the lowest energy configuration (the
global minimum) through the NS process, all while providing an estimate for the phase
space volume of each nested energy level. The integral we wish to evaluate is thus the
elusive partition function,

∆(N, β, P) =
∫

e−βH(q,p)dqdp, (1)

where β = 1/(kBT) is the thermodynamic temperature, P is the pressure, H is enthalpy
and (q, p) represents all possible configurations of position and momenta that the atomic
system may take. The importance of the partition function is clear from the number of
useful thermodynamic response functions to which it provides access, such as the heat
capacity and free energy [13], respectively, given by

cP(N, β, P) = −
(

∂

∂T
∂ ln ∆(N, β, P)

∂β

)
P

, G(N, β, P) = − 1
β

ln ∆(N, β, P). (2)

Nested sampling allows us to evaluate this integral as a discrete sum (with the mo-
mentum dependent part factored out)

∆(N, β, P) ≈ βP
N!h3N ∑

i
(Γi−1 − Γi)e−βHi , (3)

where Hi is the enthalpy at the ith nested sampling iteration, and Γi is its corresponding
phase space volume, i.e., the volume of the phase space with enthalpy less than or equal to
Hi. In the following section we will explain in more detail how the NS algorithm may be
used to evaluate a system’s partition function, its corresponding macroscopic properties, as
well as atomic-level thermodynamic behaviour.

2. Nested Sampling Algorithm

The NS algorithm is demonstrated in detail in Figure 1, showing the exploration of
the PES at constant pressure, P. The sampling starts by generating K initial configurations,
with particles positioned randomly inside simulation boxes that each have a random shape
and volume V large enough to represent the gas phase (kBT � PV). These configurations
constitute the “live set”, or the set of “walkers”. Rather than calculate the internal energy
U of each walker, we are instead concerned with their enthalpy, H = U + PV, due to the
isobaric nature of the simulation. At the beginning of each iteration the walker of the highest
enthalpy configuration is selected, corresponding to the lowest likelihood point within the
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context of Bayesian statistics. This sample is removed from the set and recorded along with
the total phase space volume of the PES below the enthalpy of said sample, given by the
simple expression Γi = [K/(K + 1)]i, where i is the iteration number. From this it is clear
that the difference in phase space volume between subsequent iterations, wi = Γi−1 − Γi
(otherwise referred to as the weight factor), decreases as the number of walkers increases,
and can be seen as roughly analogous to the increment size in typical numerical integration.
Increasing the number of walkers therefore improves the resolution of the sampling and
helps to capture basins of the PES with smaller phase space volume, at the cost of increased
computation time. To keep the number of walkers constant throughout the sampling, a
new sample is generated to replace the one previously selected, with the requirement that
the new sample is to be randomly picked within the region of phase space encompassed
below the enthalpy of the discarded (highest enthalpy) sample. A simple rejection sampling
quickly fails to provide new acceptable configurations, due to the phase space volume
decreasing dramatically with decreasing enthalpy. In one hand, all interatomic potentials
have a highly repulsive core (reflecting the Pauli exclusion principle) and hence any two
particles positioned too close to each other results in the entire configuration being rejected.
On the other, hand one can see that the probability of randomly generating dozens of
particle positions corresponding to a crystalline structure is infinitesimally small. Hence
new configurations have to be generated in an alternative way. Practically, this is achieved
by cloning a randomly selected configuration from the live set and performing a set of
steps until the configuration can be assumed to be independent from its parent sample.
There are various methods available to perform this walk, depending on the size of the
system and potential model, including a series of simple Monte Carlo steps; constant total
energy Hamiltonian Monte Carlo [14]; or Galilean Monte Carlo [14,15]. The above steps
are repeated until the desired enthalpy is reached, providing a list of energy samples and
their corresponding weight factors that can be used to approximate the partition function
via Equation (3). Through this process we also gain access to thermodynamic averages of
arbitrary observables,

A(N, β, P) ≈ 1
∆(N, β, P) ∑

i
Aiwie−βHi , (4)

where Ai are the calculated values for the given observable at each recorded enthalpy
level Hi.

From the description of the algorithm it is also clear that the actual sampling does
not include or depend on temperature in any way. Once the sampling of the PES is
complete, any given temperature may be substituted into the Boltzmann factor of the above
expression, and thus the partition function and other thermodynamic properties can be
calculated at arbitrary temperatures as a simple post processing step. Not only that, but
since the algorithm starts from the gas phase and generates consecutive configurations with
a simple energy or enthalpy criteria, a further advantage of the method becomes obvious:
no prior knowledge of the structures, e.g., crystalline phases are necessary. Hence the NS
method not only provides crucial thermodynamic information about the system, but is also
fully predictive.

To date, we have demonstrated how nested sampling can be applied to sample the
constant pressure ensemble and to evaluate the isobaric partition function, as we use this
to calculate the pressure-temperature phase diagram. Of course the NS technique can also
be used at constant volume, in which case the sampling propagates through nested energy
levels (instead of enthalpy levels) in order to determine the canonical partition function.
This can be the preferred process to investigate the formation of clusters or molecular
structures [13,16].
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Figure 1. Schematic overview of the NS algorithm with respect to materials-specific applications,
at constant pressure. Schematic configurations represent samples with varying particle positions,
volume and simulation cell shape. Sampling starts by generating K random configurations. In the
i-th iteration, the configuration with highest enthalpy is chosen and recorded for post processing
(shown in red), then substituted with a uniformly random configuration with lower enthalpy (shown
by blue). Sampling is finished once the desired enthalpy level, Hd is reached.

The power of the NS method and the insights it provides into the properties of ma-
terials has been demonstrated for several problems. One example is the determination
of continuous and first-order–like melting transitions in the heat capacity of small water
clusters, including how they stem from the relative phase space volume of competing
local minima [17]. The method has also been applied to evaluate and compare the perfor-
mance of interatomic potentials, highlighting that models designed to provide an accurate
description of microscopic properties can be significantly limited in their prediction of
macroscopic properties and phase stability; lithium [18], aluminium [19] and iron [20] being
notable examples. Alloys such as CuAu [21] and AgPd have also been studied, the latter
using sophisticated machine-learned potentials [22]. In several cases, nested sampling has
revealed thermodynamically stable phases that have not been previously considered. One
such example of this is the discovery of a new crystalline phase in the soft-core double
ramp model (often referred to as the Jagla model), showing that the model’s widely studied
liquid–liquid transition is in fact metastable [23]. Similarly, NS calculations have provided
evidence of new global minima in the bulk Lennard-Jones model that depend upon applied
pressure and interatomic cut-off radius, showing the stability of structures with different
close-packed stacking variants [24].

For an overview of materials applications of NS, we recommend the following re-
view article [25]. Implementations of the NS algorithm that utilise parallel-processing
are available in the pymatnest python software package [26], which uses the LAMMPS
package [27] to perform molecular dynamics steps.

3. Calculating the Phase Diagram: Zirconium

In this section, we demonstrate the use of the NS method in sampling the PES of
two embedded atom method (EAM) potentials of zirconium, in order to calculate their
respective pressure-temperature phase diagrams. Zirconium has been the subject of several
experimental and theoretical studies, due to its resistance to corrosion and favourable re-
sponse to radiation damage. At lower pressures zirconium crystallizes in the body-centered
cubic (bcc) structure, which transforms to the hexagonal close-packed (hcp) structure below
1136 K. With increasing pressure at room temperature, the hcp phase transforms into
another hexagonal structure, often referred to as the ω phase, which is not close-packed
and has three atoms per unit cell [28–30]. The first interatomic potential model we consider,
henceforth referred to as Zr95, was developed by Ackland et al. in 1995 [31], and uses
empirical values of several crystalline properties (e.g., elastic constants, binding energy, the
vacancy formation energy) to accurately reproduce properties of hcp zirconium. A signifi-
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cantly improved model devised by Mendelev and Ackland was published in 2007 [32]. The
model utilises an advanced fitting procedure that incorporates the fitting of pair correlation
functions to experimental X-ray diffraction data, as well as the fitting of two-phase coexis-
tence simulations with respect to experimental melting temperatures. We will refer to this
potential as Zr07.

Nested sampling calculations were performed as presented in Ref. [19]. Simulations
were run at constant pressure, using a simulation cell of variable shape and size that
contains 64 atoms. The initial configurations were generated randomly, while new samples
were generated from cloned configurations by performing walks with 1920 steps on average.
Each of these steps either consisted of a total-energy Hamiltonian Monte Carlo [14,33,34]
(all-atom) move; a change in the volume of the simulation cell; or a change in the shape of
the cell via the application of shear or stretch moves. When the sampling process is finished,
the heat capacity of the system is calculated as a function of temperature using the post
processing method described in the previous section and Equation (2). Peaks in the heat
capacity curve correspond to phase transitions, allowing one to quantify the corresponding
transition temperature via Gaussian fitting. Independent nested sampling runs exhibit
variations in the heat capacity, the size of which are inversely related to the number of
walkers used (i.e., the method’s resolution). The number of walkers is thus chosen such
that the maximum difference in phase transition temperatures is no greater than 100 K. In
the case of the zirconium potentials, between 640 and 960 walkers were required to achieve
the desired accuracy. The error bars reported below correspond to the total width at half
maximum of all heat capacity peaks. These calculations typically require 108–109 energy
evaluations per pressure, which scales linearly with the number of walkers.

Figure 2 shows a calculated heat capacity curve for the Zr07 potential at 1 GPa, as
well as the corresponding density as a function of temperature. It is immediately apparent
from the peaks in heat capacity and sudden changes in density that there are two phase
transitions at this pressure. The transition at around 2300 K is associated with an increase
in density, while the smaller heat capacity peak at 1200 K coincides with a slight decrease
in density. This negative change in density is an already-known feature of the bcc-hcp
transition of zirconium. The identification of the different phases, especially that of the
crystalline structures, can be aided by using a suitable order parameter, for example the
bond order parameters [35] or the radial distribution function. Since NS provides us with
the relative phase space volume of respective enthalpy levels, we can use Equation (4)
to easily calculate the expected value of an observable at a given temperature [13,25].
We have therefore calculated the average radial distribution function of Zr at a range of
temperatures, shown on the right panel of Figure 2. By comparing these RDF curves to the
ideal, fully-ordered RDFs for bcc and hcp structures (shown in figure with dashed vertical
lines), we are able to confirm that this solid–solid transition indeed corresponds to the
desired bcc-hcp transition.

Calculating the free energy difference between the different phases can also provide
insight into their relative stability. Traditionally the free energy difference is calculated
using a reference state or along a collective coordinate. The NS method automatically
assigns a weight coefficient to each configuration that is proportional to their relative
thermodynamic relevance, hence, by using an appropriate order parameter we can associate
each configuration with a given phase (or basin of the PES) and calculate the contribution
of that phase to the partition function. Thus, the free energies of given structures may be
calculated and compared using Equation (2). We demonstrate this in Figure 3, using the
average Q4 and W4 bond order parameters [35] to sort configurations between different
phases. These results accurately reflect the heat capacity curves shown in Figure 4, and
again confirm the stability of the bcc-hcp transition.

Repeating the NS calculations and post processing analysis at a series of different
pressures provides the entire pressure-temperature phase diagrams for each potential
model of interest, which can be seen in Figure 4 alongside experimental data [28,29]. From
these results it is evident that only the Zr07 potential is capable of capturing the bcc-hcp
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transition, presenting an obvious predictive advantage over Zr95. In addition, while the
Zr95 potential’s melting line shows reasonable agreement with experimental data at low
pressure, it clearly diverges from experimental measurements at pressures above 10 GPa. In
contrast, the Zr07 potential maintains reasonable agreement with the experimental melting
line up to 20 GPa. However, neither of the two potentials exhibit thermodynamic stability
of the ω phase, which has been shown to be stable at low temperatures and above ∼5 GPa
experimentally, highlighting an area for future improvements of these models.
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panel), calculated by nested sampling at p = 1 GPa using the Zr07 model[32]. Radial distribution
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Colouring is used as a guide for the different phases. Blue and purple vertical dotted lines show the
radial distribution function of the perfect bcc and hcp lattices, respectively.
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4. Summary and Outlook

In this manuscript we have utilised constant pressure NS to determine the phase
diagram of two Zr EAM interatomic potentials. We found that while the simpler of the two
potentials, Zr95, provides a reasonable prediction of Zr’s melting line at low pressures, its
advanced counterpart Zr07 provides a more accurate melting line at higher pressures and
is capable of accurately capturing Zr’s bcc-hcp solid transformation.

Nested sampling provides a new and unique way of sampling the potential energy
surface of materials. It provides an exhaustive exploration of the PES, sampling thermody-
namically relevant configurations automatically, without relying on advance knowledge of
phases or chemical intuition of potential structures. Having access to the partition function
means that phase transitions and thermodynamic properties can be simply evaluated in the
post processing step. Hence, NS removes a number of methodological barriers associated
with calculating a material’s entire pressure-temperature phase diagram, providing a fully
predictive approach that is independent of the type of transitions observed in the system.
It can therefore be straightforwardly utilised to validate the macroscopic properties of inter-
atomic potential models. Such easily attainable feedback on the performance of a model
can potentially be exploited to develop potentials with greater reliability in reproducing
experimentally observed behaviour. For example, in the context of the Zr system, to pro-
pose a further-modified form of the potential that could accurately model Zr’s bcc-hcp-ω
triple-point. Moreover, the thermodynamically relevant configurations can open novel
routes towards developing advanced machine-learned potentials, that use highly-accurate
electronic structure theory calculations as a data-set for functional parameterisation.

Author Contributions: Simulations L.B.P.; data analysis and investigation, G.A.M., L.B.P.; writ-
ing and editing, G.A.M., L.B.P. All authors have read and agreed to the published version of the
manuscript.

Funding: L.B.P. acknowledges support from the EPSRC through an Early Career Fellowship (EP/T000163/1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Generated thermodynamic data is available at https://data.mendeley.
com/datasets/j7sygcyswb/1.

https://data.mendeley.com/datasets/j7sygcyswb/1
https://data.mendeley.com/datasets/j7sygcyswb/1


Phys. Sci. Forum 2022, 5, 5 8 of 9

Acknowledgments: The authors thank Graham Ackland for providing the potential files.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pickard, C.J.; Needs, R.J. High-Pressure Phases of Silane. Phys. Rev. Lett. 2006, 97, 045504. [CrossRef] [PubMed]
2. Karabin, M.; Stuart, S.J. Simulated annealing with adaptive cooling rates. J. Chem. Phys. 2020, 153, 114103. [CrossRef] [PubMed]
3. Rowe, P.; Deringer, V.L.; Gasparotto, P.; Csányi, G.; Michaelides, A. An accurate and transferable machine learning potential for

carbon. J. Chem. Phys. 2020, 153, 034702. [CrossRef]
4. Doye, J.P.K.; Wales, D.J.; Miller, M.A. Thermodynamics and the Global Optimization of Lennard-Jones Clusters. J. Chem. Phys.

1998, 109, 8143–8153. [CrossRef]
5. Finkler, J.A.; Goedecker, S. Funnel hopping Monte Carlo: An efficient method to overcome broken ergodicity. J. Chem. Phys. 2020,

152, 164106. [CrossRef] [PubMed]
6. Kirkpatrick, S.; Gelatt Jr, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
7. Aqvist, J. Ion-water interaction potentials derived from free energy perturbation simulations. J. Phys. Chem. 1990, 94, 8021–8024.

[CrossRef]
8. Panagiotopoulos, A. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble.

Mol. Phys. 1987, 61, 813–826. [CrossRef]
9. Piaggi, P.M.; Parrinello, M. Calculation of phase diagrams in the multithermal-multibaric ensemble. J. Chem. Phys. 2019,

150, 244119. [CrossRef]
10. Skilling, J. Bayesian inference and maximum entropy methods in science and engineering. Aip Conf. Proc. 2004, 735, 395.
11. Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 2006, 735, 833–859. [CrossRef]
12. Ashton, G.; Bernstein, N.; Buchner, J.; Chen, X.; Csányi, G.; Feroz, F.; Fowlie, A.; Griffiths, M.; Habeck, M.; Handley, W.; et al.

Nested Sampling for physical scientists. Nat. Rev. Methods Primer 2022, 2, 39. [CrossRef]
13. Pártay, L.B.; Bartók, A.P.; Csányi, G. Efficient Sampling of Atomic Configurational Spaces. J. Phys. Chem B 2010, 114, 10502–10512.

[CrossRef] [PubMed]
14. Baldock, R.J.N.; Bernstein, N.; Salerno, K.M.; Pártay, L.B.; Csányi, G. Constant-pressure nested sampling with atomistic dynamics.

Phys. Rev. E 2017, 96, 43311–43324. [CrossRef] [PubMed]
15. Skilling, J. Bayesian computation in big spaces-nested sampling and Galilean Monte Carlo. AIP Conf. Proc. 2012, 1443, 145–156.
16. Wales, D.J.; Doye, J.P.K. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters

Containing up to 110 Atoms. J. Phys. Chem. A 1997, 101, 5111–5116. [CrossRef]
17. Dorrell, J.; Pártay, L.B. Thermodynamics and the potential energy landscape: Case study of small water clusters. Phys. Chem.

Chem. Phys. 2019, 21, 7305–7312. [CrossRef]
18. Dorrell, J.; Pártay, L.B. Pressure–Temperature Phase Diagram of Lithium, Predicted by Embedded Atom Model Potentials. J.

Phys. Chem. B 2020, 124, 6015–6023. [CrossRef]
19. Baldock, R.J.N.; Pártay, L.B.; Bartók, A.P.; Payne, M.C.; Csányi, G. Determining the pressure-temperature phase diagrams of

materials. Phys. Rev. B 2016, 93, 174108. [CrossRef]
20. Pártay, L.B. On the performance of interatomic potential models of iron: Comparison of the phase diagrams. Comput. Mater. Sci.

2018, 149, 153–157. [CrossRef]
21. Gola, A.; Pastewka, L. Embedded atom method potential for studying mechanical properties of binary Cu–Au alloys. Model.

Simul. Mater. Sci. Eng 2018, 26, 055006. [CrossRef]
22. Rosenbrock, C.W.; Gubaev, K.; Shapeev, A.V.; Pártay, L.B.; Bernstein, N.; Csànyi, G.; Hart, G.L.W. Machine-learned interatomic

potentials for alloys and alloy phase diagrams. npj Comput. Mater. 2021, 7, 24. [CrossRef]
23. Bartók, A.P.; Hantal, G.; Pártay, L.B. Insight into Liquid Polymorphism from the Complex Phase Behavior of a Simple Model.

Phys. Rev. Lett. 2021, 127, 015701. [CrossRef] [PubMed]
24. Pártay, L.B.; Ortner, C.; Bartók, A.P.; Pickard, C.J.; Csányi, G. Polytypism in the ground state structure of the Lennard-Jonesium.

Phys. Chem. Chem. Phys. 2017, 19, 19369–19376. [CrossRef] [PubMed]
25. Pártay, L.B.; Csányi, G.; Bernstein, N. Nested sampling for materials. Eur. Phys. J. B 2021, 94, 159. [CrossRef]
26. Bernstein, N.; Baldock, R.J.N.; Pártay, L.B.; Kermode, J.R.; Daff, T.D.; Bartók, A.P.; Csányi, G. Pymatnest. 2016. Available online:

https://github.com/libAtoms/pymatnest (accessed on 20 February 2022) .
27. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [CrossRef]
28. Zhang, J.; Zhao, Y.; Pantea, C.; Qian, J.; Daemen, L.L.; Rigg, P.A.; Hixson, R.S.; Greeff, C.W.; Gray, G.T.; Yang, Y.; et al. Experimental

constraints on the phase diagram of elemental zirconium. J. Phys. Chem. Solids 2005, 66, 1213–1219. [CrossRef]
29. Pigott, J.S.; Velisavljevic, N.; Moss, E.K.; Draganic, N.; Jacobsen, M.K.; Meng, Y.; Hrubiak, R.; Sturtevant, B.T. Experimental

melting curve of zirconium metal to 37 GPa. J. Phys. Condens. Matter 2020, 32, 355402. [CrossRef]
30. Hao, Y.J.; Zhang, L.; Chen, X.R.; Cai, L.C.; Wu, Q.; Alfè, D. Ab initio calculations of the thermodynamics and phase diagram of

zirconium. Phys. Rev. B 2008, 78, 134101. [CrossRef]
31. Ackland, G.J.; Wooding, S.J.; Bacon, D.J. Defect, surface and displacement-threshold properties of alpha-zirconium simulated

with a many-body potential. Philos. Mag. A 1995, 71, 553–565. [CrossRef]

http://doi.org/10.1103/PhysRevLett.97.045504
http://www.ncbi.nlm.nih.gov/pubmed/16907590
http://dx.doi.org/10.1063/5.0018725
http://www.ncbi.nlm.nih.gov/pubmed/32962382
http://dx.doi.org/10.1063/5.0005084
http://dx.doi.org/10.1063/1.477477
http://dx.doi.org/10.1063/5.0004106
http://www.ncbi.nlm.nih.gov/pubmed/32357793
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1021/j100384a009
http://dx.doi.org/10.1080/00268978700101491
http://dx.doi.org/10.1063/1.5102104
http://dx.doi.org/10.1214/06-BA127
http://dx.doi.org/10.1038/s43586-022-00121-x
http://dx.doi.org/10.1021/jp1012973
http://www.ncbi.nlm.nih.gov/pubmed/20701382
http://dx.doi.org/10.1103/PhysRevE.96.043311
http://www.ncbi.nlm.nih.gov/pubmed/29347557
http://dx.doi.org/10.1021/jp970984n
http://dx.doi.org/10.1039/C9CP00474B
http://dx.doi.org/10.1021/acs.jpcb.0c03882
http://dx.doi.org/10.1103/PhysRevB.93.174108
http://dx.doi.org/10.1016/j.commatsci.2018.03.026
http://dx.doi.org/10.1088/1361-651X/aabce4
http://dx.doi.org/10.1038/s41524-020-00477-2
http://dx.doi.org/10.1103/PhysRevLett.127.015701
http://www.ncbi.nlm.nih.gov/pubmed/34270313
http://dx.doi.org/10.1039/C7CP02923C
http://www.ncbi.nlm.nih.gov/pubmed/28707687
http://dx.doi.org/10.1140/epjb/s10051-021-00172-1
https://github.com/libAtoms/pymatnest
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1016/j.jpcs.2005.03.004
http://dx.doi.org/10.1088/1361-648X/ab8cdb
http://dx.doi.org/10.1103/PhysRevB.78.134101
http://dx.doi.org/10.1080/01418619508244468


Phys. Sci. Forum 2022, 5, 5 9 of 9

32. Mendelev, M.; Ackland, G. Development of an interatomic potential for the simulation of phase transformations in zirconium.
Philos. Mag. Lett. 2007, 87, 349–359. [CrossRef]

33. Skilling, J. Galilean and Hamiltonian Monte Carlo. Proceedings 2019, 33, 19. [CrossRef]
34. Betancourt, M. Nested Sampling with Constrained Hamiltonian Monte Carlo. AIP Conf. Proc. 2011, 1305, 165.
35. Steinhardt, P.J.; Nelson, D.R.; Ronchetti, M. Bond orientational ordel in liquids and glasses. Phys. Rev. B 1983, 28, 784. [CrossRef]

http://dx.doi.org/10.1080/09500830701191393
http://dx.doi.org/10.3390/proceedings2019033019
http://dx.doi.org/10.1103/PhysRevB.28.784

	Introduction
	Nested Sampling Algorithm
	Calculating the Phase Diagram: Zirconium
	Summary and Outlook
	References

