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Highlights

• Lateral Torsional Buckling of Pultruded Fibre Reinforced Polymer (PFRP) 

is studied through numerical analysis. 

• A simplified numerical modeling method is suggested. 

• The influence of vertical load height, initial out-of-straightness, and lateral 

load eccentricity was explored. 

• The combined effect of imperfections and load eccentricity may decrease 

or increase the load up to 17% and 19%, respectively. 

• A suggestion for the design of PFRP I beams is summarized. 
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ABSTRACT 

By way of computational analyses using Finite Element (FE) software this paper presents, by 

way of sensitivity studies, lateral-torsional buckling resistances of I-beams made of pultruded 

fibre reinforced polymer. Parameters changed in the studies are the geometric imperfections, 

the vertical load position and the load eccentricity.  Measured geometrical and material 

imperfections are incorporated into the geometrical nonlinear FE simulations. Constants in the 

FE work are three-point bending loading and the imperfection condition from having different 

elastic constants in the four flange outstands. Numerical results from the sensitivity studies are 

verified by comparing them with equivalent buckling load results from a series of physical tests 

conducted previously.  It is found that the influence of combined geometrical and material 

imperfections on LTB failure can be significant, such that an imperfect beam can be put into a 

near ‘perfect imperfection’ condition, in which it possesses a higher buckling resistance. The 

opposite can happen for a ‘more severe imperfection’ with poorer beam response under loading. 

The load eccentricity on I-beams confirms a complex structural response. To be able to have a 
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recognized design procedure for pultruded I-beam members the influence of combined 

imperfections on lateral-torsional buckling resistance needs to be reliably quantified.   

Keywords: Material and geometric imperfections, loading eccentricity, Finite Element

analysis, Pultruded fibre reinforced polymer, lateral-torsional buckling. 

1. Introduction 

Pultruded Fibre Reinforced Polymer (PFRP) sections have been increasingly used as structural 

components and systems in civil engineering works owing to their distinct advantages, such as 

high strength-to-weight ratios, environmental durability, magnetic and electronic transparent, 

and more [1]. These sections comprise of thin-walled panels of laminate materials made by the 

composite material process of pultrusion. In terms of their shapes, they can mimic the cross-

section shapes found in conventional steel structures. To increase further the interest in PFRP 

structural sections there is a need to understand their structural behaviour. PFRP sections are 

used as beam members with the preferable shape an I-section. This cross-section can either be 

a single I-section or a ‘built-up’ section formed from two-channel (back-to-back) sections.   

Lateral-torsional buckling (LTB) is an ultimate mode of failure of I-shaped beams under 

flexural deformation and can occur when the member is slender. The existence of this elastic 

instability can significantly reduce a beam’s resistance over failure with another mode of 

ultimate failure [2]. Moreover, the presence of inherent geometrical imperfections, material 

imperfections and loading eccentricities will change, and this change can be significant, the 

structural responses and resistances of these PFRP beam members [3-4].  

Akin to any structural component of any construction material, PFRP shapes are manufactured 

with inherent imperfections. Of importance to this study are the imperfections present in PFRP 

sections that are linked to material (e.g., variation of elastic constants in panels) and 
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geometrical properties (e.g., for out-of-straightness). The form of imperfection from a varying 

distribution of material properties has not been studied before. For example, the flange 

outstands and web in a I-section do not necessarily possess the same elastic constants [5, 6]. 

From the PhD work of the first author [6] the difference has been measured to be up to 20% in 

the case of the tensile longitudinal modulus of elasticity, which has symbol EL or E1, where 

subscript ‘L’ or ‘1’ is for the axis coinciding with centroid of the I-section. It is further observed 

that the longitudinal modulus of elasticity in the web can be significantly lower [6], and this is 

attributed to different proportions of the two fiber reinforcement types in the pultrusion process 

[7]. The web-flange junctions can also have different material properties, again, as these 

regions can be resin-rich or fiber-poor compared to flange outstands and web panels.  Although 

this physical feature has been studied by other researchers [8-11], the effect of changes in 

elastic constants at the web-flange junctions is not considered herein because the focused is on 

the global response of beam members. The presence the four fillet radii at the web-flange 

junctions is however included in the section properties of the I-shaped cross-section.  

Over the years, several studies have been carried out to understand the overall instability 

response of thin-walled PFRP members. These structural investigations have led to knowledge 

and understanding on; local buckling [12-15], modal-interaction buckling [16], sectional 

distortion [17] and lateral-torsional buckling [2, 3, 4, 18]. Such incremental studies focused on 

the individual influence of, for example, height of vertical load, lateral load eccentricity, 

warping fixity, and geometric imperfections (of various types). There is, of course, a necessity 

to understand the effect on buckling resistances and member deformations of the combination 

of all the above-mentioned influential variables, together with imperfections from the variable 

distribution of material properties.  

The contribution to knowledge presented herein endeavors to explore and understand the 

responses of a single PFRP I-section (120x60x6 mm) from Fiberline Composites A/S (now 
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Fiberline Building Profiles), in Denmark, subjected to three-point flexure that fails with the 

elastic instability mode of Lateral-Torsional Buckling (LTB) in the presence of combined 

influences from changes to: vertical load height; lateral loading eccentricity; geometrical 

imperfections; end displacement boundary conditions. Further background and detailed 

information on this research are presented in the PhD thesis by the first author [6]. The 

imperfection owing to the variable distribution of EL is a constant modelling parameter. 

ABAQUS® is the commercial simulation software employed for the Finite Element (FE) 

sensitivity analyses, which are conducted by modelling changes that involve five beam spans, 

two different end conditions to the simply supported beams, three vertical load heights, nine 

lateral load eccentricities and three types of geometrical imperfection. Initial FEs analyses 

using ABAQUS® are with Eigenvalue solutions for the elastic critical buckling loads. To 

rigorously analyze the LTB responses of the PFRP beams with combinations of variables, most 

FE analyses are of the geometrical nonlinear type. Because PFRP material is linear elastic for 

strains to LTB failure, the modelling methodology does not involve material nonlinearity.    

2. Numerical Modelling Methodology and Problem Definition  

The degree of numerical accuracy (in terms of the computational results) is affected by the 

choice of modelling using ABAQUS® capabilities that includes element type; meshing density, 

the criteria for material failure (based on material strength components and stress interactions) 

[2, 3, 5 and 19]. There are various material failure criteria for laminated composites, with 

popular Tsai-Hill [20 and 21] and Hashin Damage Initiation [22-24]. Such failure predictors 

are used, see [25-28], to investigate the structural responses of PFRP sections when ultimate 

failure is governed by material failures. In the present study we use linear elastic analyses to 

evaluate elastic buckling loads and corresponding deformed shapes linked to the LTB mode of 

failure of flexural members. To investigate PFRP beams failing in LTB our FE work does not 

need to introduce any nonlinear material behaviours (e.g., for initiation and progressive crack 
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growth); it only needs to consider geometrical nonlinear deformations associated with LTB 

instabilities.  

2.1 Choice of Numerical Modelling  

In general, ABAQUS [29] offers three options to model the laminated panels in thin-walled 

PFRP sections, and they can be classified as the:  

(i) ‘microscopic’ option, where matrix and fibre reinforcement constituents are 

modelled separately. This option is complex because it requires the analyst to know 

of the actual distribution of fibre reinforcements and mechanical properties such as: 

strength and toughness of the fibre-matrix interface; individual fibres; matrix 

materials; cohesive energies. It can only be used in FE modelling and simulations 

of relatively small volumes, and then the cost of computation can be very high. In 

terms of problem solving this option can be employed to analyse crack propagation 

and debonding between fibres.  

(ii) ‘macroscopic’ option where the laminated panels are modelled as a single layer of 

orthotropic material with directional mechanical properties. This option is suitable 

for the modelling and simulation of the overall structural behaviour of structural 

members. In terms of input data it requires knowledge of the following material 

properties or elastic constants (obtained by standard test methods): the Longitudinal 

modulus of elasticity, EL;, the Transverse modulus of elasticity, ET; the in-plane 

shear modulus, GLT; the Major Poisson’s ratio, νLT.  

(iii) ‘combined’ option, in which the thin-walled laminated panels are modelled by a 

number of discrete ‘macroscopic’ orthotropic layers, each of constant thickness 

within the panel. This option also, like option (i), requires individual properties for 

fibre architecture per layer, and for the matrix and fibre reinforcement constituents.  



M-7/42 

Of the above-mentioned three options that of (ii) for the ‘macroscopic’ approach is deemed 

appropriate and sufficient to obtain numerical predictions to understand the overall structural 

behaviour of PFRP members subjected to flexural deformation. By way of his PhD work, 

Nguyen [6] found this option for modelling PFRP material properties to be the most 

numerically reliable in terms of FE modelling and computational efficiencies. 

2.2. Geometric and Material properties  

Previous numerical studies, such as [30] and [31] have found that LTB failure of PFRP beams 

will occur when the maximum longitudinal strains are within the linear elastic range. 

Experimental studies [2] and [6] also confirm this physical fact for the modelling methodology 

to involve linear elastic material.  

Figure 1. Modelling of the geometry an I-section: (a) ignoring presence of fillet radii 
volumes; (b) accounting for material in the fillet radii volumes. 

The element type and meshing density were chosen by Nguyen [6] based upon evaluations of 

FE bifurcation buckling loads that can be compared with analytical predictions using closed-

form formula solutions. The numerical predictions for LTB resistances were obtained from 

conducting eigenvalue analyses. It is noted that in this FE study the fillet volumes (for the 

junctions between flange and web) in I-sections were included in the meshing of the beam’s 
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volume for sectional properties. Shown schematically in Figs. 1(a) and 1(b) is the change from 

modelling of a I-section of depth h, without and with, respectively, the presence of the fillet 

volumes, which will, for example, increase the second moment of area about the axis of flexure 

and the torsional constant associated with failure in the LTB mode.

In general, PFRP laminated panels [1] can be modelled for their elastic constants as either 

orthotropic or transversely isotropic [32 and 33]. An orthotropic material has three mutually 

orthogonal axes for different directional material properties. Transversely isotropic material is 

a special case of an orthotropic material, in which the transverse plane is a plane with isotropic 

properties. By denoting ‘1’ for the (longitudinal) direction of the laminate (with the highest 

proportion of unidirectional fibres), ‘2’ for the transverse direction (in the plane of the laminate 

and perpendicular to ‘1’ direction), and ‘3’ for the through-thickness direction, the definition 

of an orthotropic material involves nine independent elastic constants namely: three moduli of 

elasticity (E1,  E2,  E3), three shear moduli (G12, G13, G23), and three Poisson’s ratios (12,  13, 

23). If the distribution of fibres in the 2 and 3 directions is the same, the material is transversely 

isotropic and the elastic constants reduce to five [33].  

PFRP sections comprise of laminates having alternative reinforcing layers of continuous 

unidirectional fibres and fibre mats (in which continuous fibres can be randomly and uniformly 

distributed). It is acceptable to assume that these laminates are transversely isotropic [2, 18, 

and 31], and for FE modelling the five independent elastic constants are E1, E2,12, 23 and G12. 

By noting the ‘1’-direction as the Longitudinal direction in pultrusion and the ‘2’ direction as 

the Transverse direction there is the association that E1, E2, G12,12 can be written as EL, ET,

GLT,LT.  

The simplest modelling option to define a transversely isotropic material with ABAQUS® is to 

specify the ‘nine’ engineering constants of: E1, E2 = E3, 12, =  13, 23, G12 = G13, G23 with E2
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= 2G23 (1 + ν23).  Under plane stress conditions, as is the formulation of shell finite elements in 

ABAQUS®, only the elastic constants in the L-T plane (i.e., EL, ET, GLT and LT) are required 

for input modelling data [33]. Shear moduli GTL and GTT are only important in modelling 

should the computational analysis require the determination of transverse shear deformations 

[34]. For PFRP materials, the Poisson’s ratioTT is a matrix dominant elastic constant that is 

known to be > 0.35 [33]. By letting this Poisson’s ratio equal 0.35 the shear modulus GTT  can 

be specified by E2/2.7.  

Taken from [6] are the measured mean elastic constants summarized in Table 1 for an I-section 

of glass fibre reinforcement and a fire retardant vinylester based matrix. The nominal size of 

this section, a standard profile pultruded by Fiberline Composites A/S, is 102x60x6 mm. For 

the six panels (four flange outstands, labelled I1 to I4) and two web sub-panels, labelled I5 and 

I6) in the I-section columns (1) to (6) in Table 1 report their elastic constants for a constant 

parameter input data in the ABAQUS® FE models. 

Table 1. Elastic constants for flange and web panels in Fiberline Building Profiles 
Composites’ I-sections 120x60x6mm 

Shape 
Flange 

I1
Flange 

I2
Flange 

I3
Flange 

I4
Web 

I5
Web 

I6

LE  = E1 (GPa) 34.4 29.7 34.5 31.2 26.3 26.2 

TE  = E2 (GPa) N/A N/A N/A N/A 10.8 10.8 

LTG  = G12 (GPa) N/A N/A N/A N/A 4.2 4.2 

TTG = G23 (GPa) N/A N/A N/A N/A 4.0 4.0 

LT = 12 0.23 0.25 0.24 0.21 0.22 0.23 

I section

I1
I2

I5

I6

I3
I4
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Table 1 reports that the I-section possesses different tensile values of Longitudinal modulus of 

elasticity, EL, in the four flange outstands (at 29.7 to 34.5 GPa) and two web sub-panels (at 

26.2 and 26.3 GPa). The Transverse modulus of elasticity, ET, at 10.8 GPa was only measured 

using web material, and this limitation is not important because the influence of changing ET

to carry out the sensitivity studies on LTB resistance is insignificant. It is shown in [6] that a 

change of 30% in ET will reduce or increase LTB resistance by only < 1%. This finding is 

because the transverse modulus does not contribute to the governing stiffnesses of flexure and 

torsional for the LTB response. Major Poisson’s ratio LT is found to lie in the narrow range 

0.21 to 0.24. In-plane shear modulus GLT at 4.0 GPa was measured using web material only 

[6]. It is acceptable in this FE work to assume that the flange outstands have the same ET and 

GLT as measured for the web.  

The choice of finite element type is between solid and shell. Shell elements are popular for 

thin-walled  structural problems, in which through-thickness effects, such as shear stresses, can 

be neglected. Compared with using solid elements, a modelling methodology with shell 

elements is generally simpler and the mesh specification based on elements located on the mid-

depth planes of the panels is more straightforward to specify, generate and change in a 

sensitivity study. In terms of computational resourcing, shell elements are timesaving because 

they enable modelling with many fewer elements (and many fewer degrees of freedom) than 

when meshing the same volumes with solid elements. Application of solid elements is 

necessary when the objective of the FE analysis is, for example, to determine structural failure, 

say owing to: through-thickness fracture; in-plane delamination damage; the presence of joints 

and connections. Because no material failure is to be modelled and simulated in this FE work 

it is appropriate to use shell elements, and it is observed that a similar shell element modelling 

approach for instability analyses of PFRP members have been used by other researchers [25-

28].  



M-11/42 

With ABAQUS® the three shell element types of S4R, S4R5, and S8R are commonly adopted 

for Eigenvalue buckling analyses [35-38]. For general-purpose modelling, the four-noded 

linear elastic shell elements S4R and S4R5 apply linear shape functions to interpolate 

deformations between nodes and are suitable for representing both thin and thick shell elements 

[34]. The ‘5’ in element type S4R5 is because each node has 5 degrees of freedom by ignoring 

the degree of freedom for rotation about the axis normal to the shell’s element mid-surface. 

This specific element formulation improves computational efficiency. Thick shell element S8R 

employs quadratic shape functions by having eight nodes per element and the formulation for 

the element stiffness matrix adopts the Mindlin plate theory for first-order shear deformation. 

Between adjoining element sides element S8R has displacement compatibility that avoids there 

being any displacement discontinuities. These finite element attributes are known to give 

higher numerical accuracy when the mesh specification is coarser [39]. The ‘R’ in element 

types S4R and S8R denotes that the number of Gaussian integration points is Reduced. This is 

another finite element formulation attribute known to improve computational efficiency, as 

well as avoiding the modelling and numerical problem of shear locking [34].  

The pultruded I-shape in the numerical study has cross-section of 120×60×6 mm. The beam’s 

span is 1500 mm with the simply supported end conditions imposing torsion to be fully 

restrained. As introduced earlier, the elastic constants for LTB load predictions are those listed 

in Table 1. Eigenvalue analyses were carried out with this beam example subjected to a point 

vertical load at mid-span, and at the shear centre. The objective of this study is to be able to 

compare the numerical performances of the three shell elements S4R, S4R5 and S8R against 

resistance predictions using the closed-form formulae for LTB given in [40], noting that the 

end boundary conditions are for k = kw = 1.0; k and kw are the effective length factors for lateral 

flexure and warping, respectively. The closed-form solution by Kollár and Springer [40] is for 

LTB of beams of orthotropic (and thereby transversely isotropic) materials. It was formulated 
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by exchanging the force-strain relationships for isotropic materials with those for orthotropic 

material. It is relevant to this study because it also accounts for the reduction in LTB resistance 

due to the influence of shear deformation, which the ABAQUS® elements will inherently 

provide. It is noted that the reduction will be highest for wide-flange beams (when flange 

breadth dimension equals the section’s depth dimension) and/or for laminates having a 

relatively high ratio of EL/GLT (which can be up to 80 when fibres are of carbon). For this study 

with a narrow-flange I-beam of PFRP (EL/GLT is 8 to 10), the maximum load reduction at LTB 

instability is about 5%.  

Equation (1) is for the closed-form solution, without shear deformation, for the elastic critical 

buckling load (kN), Pcr, for simply support pultruded beams (with kw = 1.0): 

2 2
2cr wL z LT T

cr g g3 2
z L z

4 5.39π
= + +0.40 - 0.63

π

M IE I L G I
P z z

L L I E I

 
  

 
 

(1)

In Eq. (1) the geometrical properties for the I-beam are: L is for the span (mm); Iz is for the 

second moment of aera for flexure about the minor-axis (mm4); Iw is for the warping rigidity 

(mm6); IT is for the torsional rigidity (mm4). Parameter zg is for the height of the load from the 

shear centre. zg is zero at the shear centre and positive when above (towards top flange) and 

negative (towards bottom flange) when below.  

Because it is known that the difference in elastic critical buckling loads with the shear 

deformation solution or from Equation (1) is not significant, see [41], the effect of shear 

deformation on LTB resistance can be ignored in this numerical study. 

2.3 Mesh Sensitivity Analysis, Web-flange junction modelling 

On taking the mean values from the testing (see Table 1) for the elastic constants we have EL

= 30.4 GPa and GLT = 4.2 GPa in the closed-form equation in [40], with shear deformation, to 
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predict Pcr,sh = 7.6 kN.  The same beam parameters are modelled in an ABAQUS® Eigenvalue 

analysis for LTB resistance, noting that the inputted elastic constants taken from Table 1 are: 

EL (or E1) = 30.4 GPa; ET (or E2) = 10.8 GPa; GLT = G12 or G13 = 4.2 GPa; LT = 12 = 0.2; GTT

= G23 = 4.0 GPa. A mesh sensitivity analysis is conducted by the authors for each of the three 

element types to check convergence of the numerical predictions. Table 2 reports in columns 

(3) to (5) the elastic critical buckling loads, Pcr,FEA, for the element types with varying mesh 

size. The number of elements per m of span are given in column (2) with in column (1) are the 

element lengths in millimetres in the spanning direction. The size and number of elements in 

the models are varied by changing the side aspect ratio when meshing the 30 mm wide flange 

outstands and 114 mm deep web. For the flange outstands the element dimensions are: 5×5 

mm; 10×10 mm; 15×15 mm; 30×30 mm, or 6, 3, 2 or 1 elements across an outstand width 

dimension. Whilst for the web the element sizes are: 5.18×5 mm, 9.5×10 mm; 14.25×15 mm; 

28.5×30 mm, or 22, 12, 8 or 4 elements in the depth dimension.  

Table 2. Elastic LTB loads for three shell element types with mesh refinement 

Element side 
length in span 
direction (mm) 

Total number of 
elements per m 

span 

Pcr,FEA (kN)  
S4R5  

Pcr,FEA (kN) 
S4R  

Pcr,FEA (kN)  
S8R  

30 2567 6.15 6.15 7.48
15 1067 7.16 7.15 7.45
10 2400 7.34 7.32 7.45
5 9200 7.42 7.41 7.44

From inspection of the changing Pcr,FEA in the table it can be observed that there is an 

insignificant ( 3% ) change when the element side length with elements types S4R5 and S4R 

is < 15 mm, and convergence with mesh refinement is to Pcr,FEA = 7.4 kN (to nearest 0.1 kN). 

This is 4% lower than, Pcr,sh, with shear deformation, by way of the closed form formula [40]. 

Showing a loss in numerical reliability is the reduction in Pcr,FEA by 16% on doubling the side 
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length to 30 mm. The best performing element type is S8R, which gives the most reliable set 

of Pcr,FEAs  with range from 7.48 to 7.44 kN and differences of < 1%. Because of its superior 

numerical performance, this ABAQUS® double-curved thick shell element with meshing side 

length of maximum 15 mm, is adopted in all following numerical sensitivity studies.  

Geometry modelling of an I-section without a corner fillet radius is illustrated in Figure 1(a). 

This modelling geometry is acceptable when the fillet radius at the flange/web junctions is 

relatively small and/or when the torsional constant, IT, is not an influential parameter in how 

the loaded member response to loading. For the LTB failure mode, the magnitude of IT plays a 

significant role because it controls the torsional stiffness term in the lateral-torsional 

deformation; refer to the second term of GLTIT under the square root in Equation (1). 

Calculations for TI in [6] shows that for the Fiberline Composite profile 120x60x6 mm the four 

fillet radius volumes cannot be ignored. By introducing their areas into the section properties 

it is found by Equation (1) that Pcr increases by 15% higher [42 and 43]. This result translates 

to the four fillet radius volumes being introduced into the FE work for the sensitivity studies 

for elastic critical buckling loads. An appropriate modelling approach to compensate for the 

‘losses of fillet radii material is presented in [44] and [45]. Practically, the four ‘volumes’ along 

the I-section’s length in the mesh are assigned to shell elements having increased (constant) 

thicknesses, as illustrated in Figs. 1(b) and for the profile 120x60x6 mm with the meshing 

dimensions in Fig. 2.  

Figure 2 shows the modification to the flange outstand and web ‘constant’ thicknesses of 6 mm 

to develop the junction volumes. As illustrated, the original thickness of 6 mm is increased by 

1.5 mm to 7.5 mm over a width of 21 mm in a flange and over a height of 10.5 mm (from the 

mid-plane of the flange) at both ends of the web. This updated geometrical modelling increases 

IT by 28% (to 2.15×104 mm4) [6], with accompanying smaller increases of 3% and 0.4% in the 
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warping constant, Iw, and the second moment of area about the minor-axis, Iz. The latter 

increases in geometrical properties Iw and Iz do not have a significant effect on Pcr; the 15% 

increase from using Equation (1) is solely due to the dramatic change in the torsional constant. 

Figure 2. Changes in thicknesses in the region of the web-flange junction to account for fillet 

radius volumes. 

For a sensitivity study on LTB resistance with changing vertical height of the central point load 

requires P to be applied: on the top surface of the Top Flange (TF); at the Shear Centre (SC); 

on the bottom surface of the Bottom Flange (BF). By default, the shell element modelling uses 

the mid-thickness plane for the vertical web as the reference plane for loading. Because of this 

modelling feature the top or bottom flange load cases would inherently place, P, at half-flange 

thickness (which is 3 mm) below the flange’s outermost surface. ABAQUS® [29] has the 

modelling option to define a distance from a reference surface where the nodes to apply forces 

and moments are located. This enabled a modelling modification to be made by constructing a 

reference surface for both top and bottom flanges so that P is applied with zg = +h/2 (top flange) 

and zg = -h/2 (bottom flange) from the shear centre of the I-section (where zg = 0). 

2.4 Different End Conditions  

19.5 21 19.5

1
0.

57
.5

6

6

7.5

I-section
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ABAQUS® FE analyses are carried out with two different displacement boundary conditions 

at the end supports, which are named End Conditions 1 (EC1) and End Conditions 2 (EC2).  

EC1 conditions allow for ‘free’ warping and ‘free’ minor-axis rotation at both ends. This 

simulates the end conditions having a lower LTB resistance compared to any other simply 

supported (for major-axis flexure) end conditions and is thereby the most conservative 

calculated resistance. Conditions EC2 allow for ‘free’ warping but is ‘fixed’ for minor-axis 

rotation owing to minor-axis flexure. EC1 and EC2 conditions are those that were implemented 

in a physical testing programme by Nguyen [6], with the EC2 achieved by effectively clamping 

ends to lateral flexure of the beam. Figure 3 shows an end of the beam with a Cartesian 

coordinate system for the FE modelling. The labelling defines the three translational (Ux, Uy, 

Uz) and three rotational displacements (URx, URy, URz) that are be specified to model 

displacement boundary conditions EC1 and EC2. The schematic drawings in Figs. 4 and 5 

introduced the end conditions in the physical testing that satisfy EC1 and EC2, respectively.  

Figure 3. Cartesian coordinate system in FE modelling. 

Fig. 4 shows that EC1 is realized by having one pair of vertical steel rods in contact with both 

sides of the I-section at the ends, and the photograph in Figure 6(a) shows this test set-up. In 

the FE modelling the EC1 boundary conditions are simulated, as shown in Figure 6(b), by 

restraining the horizontal movement (Uy = 0) at four nodes in a section plane, with one node in 
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U x

U y

U Rx

U
Ry

Z

U z
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each flange outstand. These nodes represent the contacting points between the I-section and 

the steel supporting rods. The roller end for the simply support condition is modelled by 

imposing the restraint for vertical movement, Uz = 0, over the contacting area. At the other end 

where the beam is fully restrained from translation along its axis, both Uz  and Ux are set equal 

to zero. 

Figure 4. Schematic drawing for test set-up with end boundary conditions EC1; note that 

lateral unrestrained span Lb equals the major-axis flexural span L. 

Figure 5. Schematic drawing for test set-up with end boundary conditions EC2; note that 

lateral unrestrained span Lb is < major-axis flexural span L. 
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(a) (b)

Figure 6. Arrangement of EC1 for I-section in: (a) testing; (b) FE modelling. 

To model the EC2 condition the EC1 displacement restraints have the addition of restraining 

at the position of the second vertical roller the horizontal movement (Uy = 0) at four nodes in a 

section plane, with one node in each flange outstand. 

2.5 Lateral Torsional Buckling loads  

To characterize LTB loads both linear Eigenvalue and geometrical nonlinear analyses are 

employed. Eigenvalue analyses predict the elastic critical buckling loads, Pcr,FEAs, for 

bifurcation failure based on the unloaded beam geometry. By applying geometry perturbations 

in the meshed geometry, and looking for local and/or global deformations that, owing to 

second-order effects, might promote the onset of LTB instability, this FE simulation approach 

gives load factors (the Eigenvalues) for buckling loads. To obtain Pcr,FEA the input load in the 

model is multiplied by the ABAQUS® load factor. The associated eigenvector to each 

Eigenvalue establishes the corresponding deformation mode shape, which is defined by a 

normalized vector for nodal displacements on setting the maximum nodal displacement 

U y = 0U y = 0

U y= 0U y = 0

U z = 0 for one end
U z = U x = 0 for the other
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component to 1.0 [46]. For an Eigenvalue analysis the mode shape only shows how the beam 

buckles, it gives no results on the load-deflection response.  

To extract Eigenvalues ABAQUS® provides the two solution methods of Lanczos and 

Subspace iteration, with the latter being the default solver [29]. Subspace iteration is effective 

computationally for calculating a small number of eigenmodes, whilst the Lanczos method is 

expected to be more resource efficient when a larger number of eigenmodes are required for 

structural systems possessing many degrees of freedom [46]. Because this study need only 

focus on the first few modes for LTB failure the subspace iteration approach is employed. 

For geometrical nonlinear analysis the actual load-deflection response predicted by applying P

in small increments and calculating the current (static equilibrium) deformation state at each 

load increment. The FE deformations follow the beam loading until instability occurs 

(imperfection initiated), and this corresponds closer to practice and what is observed in a 

physical testing programme, such as detailed in [6]. Because the pultruded material is linear 

elastic [1] there is no material nonlinearity. It is noted that this modelling assumption remains 

appropriate, providing loading (to failure) is short-term and deformations from viscoelasticity 

remains negligible, which is acceptable for the test programme presented in [6].  

ABAQUS® solves a geometrical nonlinear problem by employing a modified Riks method [47]. 

To cope with structural nonlinearity this is a commonly used numerical method, known also as 

the arc-length method, originally derived by Riks and was improved for computational 

efficiency by Crisfield [48]. Since post-buckling responses are not being studied the nonlinear 

analyses are terminated after a few load increments when the beam become unstable and overall 

deformations are found to be progressing into the post-buckling region.  

To investigate the influence of the governing imperfection on the LTB response of the PFRP 

I-beams an initial minor-axis out-of-straightness is introduced into the FE model for spans, L, 
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from 1900 to 4100 mm, by assuming the centreline of the I-beam follows a sinusoidal wave 

with maximum imperfection, max, at mid-span. This imperfection linked to lateral flexure is 

expressed by δmax sin (πx/L), where x is a distance along the length of the beam. It is introduced 

into the beam’s mesh, as shown by the (exaggerated) deformed shape from an Eigenvalue 

analysis in Figure 7, by modifying the nodal coordinates through the adoption of a vector field 

[6]. It is note that the modified shapes for the five spans reported in Table 3 were obtained by 

scaling the first Eigenvalue buckling mode shape for Euler buckling of a perfectly straight 

concentrically loaded column.  

Figure 7. Minor-axis out-of-straightness imperfect shape in FEA (exaggerated). 

Table 3. Minor-axis maximum out-of-straightness with span L

Span, L
(mm) 

I-section
max (mm) L/max

1900 0.78 2435
2500 2.86 874
3000 1.95 1538
3500 2.72 1286
4100 2.66 1541

Average 2.19 1535

The values of max used for this geometric imperfection at five spans were measured by Nyugen 

[6]. They are summarized in Table 3, with the average maximum being L/1535. Relative to the 

original straight beam the minor-axis initial curvature can be for two imperfection modelling 

options (or directions), as illustrated in Fig. 8.   
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Figure 8. Two imperfection options of the minor-axis out-of-straightness for lateral flexure. 

3. Results for Influence of material and geometric imperfections 

Nonlinear analyses were carried out with the imperfection shapes shown in Fig. 8 and the other 

variable parameters being the three vertical loading cases of: top flange (TF); shear centre (SC); 

bottom flange (BF). As an example, of the adopted labelling, the model EC1_3500_SC is for 

the beam having End Conditions 1, a span L of 3500 mm (Table 3), and the vertical point load 

applied at Shear Centre of the I-section (and always at the mid-span). For a geometrical 

nonlinear analysis Figure 9 presents a typical plot of predicted load P with vertical deflection, 

w. Owing to the influence on beam deformation of the minor-axis out-of-straightness the curve 

goes nonlinear and there is no bifurcation point, which in an Eigenvalue buckling analysis 

defines the elastic critical buckling load, Pcr,FEA. It can be shown that, for any specific beam 

configuration, the bigger the initial imperfection is, the lower will be P at the same w, and it’s 

not straightforward to quantify the imperfection sensitivity on LTB resistance. The influence 

of having the governing imperfection associated with lateral flexure is that under increasing, P, 

there is a progressive loss in flexural stiffness as the beam twists and bend laterally. Figure 9 

Imperfect shape 1

Imperfect shape 2

Original perfect shape
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shows that the buckling load from nonlinear analyses cannot be Pcr,FEA, and that it is to be 

defined by the limiting value PLimit,FEA. 

Figure 9. Definitions of limiting buckling load in Lee [42] and Nguyen et al. [4] and [43]. 

Nguyen in [6] and [50] proposes a ‘stiffness reduction method’ to establish what is PLimit,FEA

and this method is illustrated in Figure 9, together with the ‘tangent method’ of Lee [49]. The 

new definition for PLimit,FEA comes from the observation that, in nonlinear analyses, the flexural 

stiffness P/w is observed to only vary slightly during pre-buckling. PLimit,FEA is taken as the 

value of P at which the secant stiffness is reduced by 50% (and we call this the ‘transition point’ 

between stable and unstable static equilibrium).  

Clearly, to apply the method in data reduction following physical testing requires precise 

readings for vertical deflection, w. Satisfying this requirement in practice is technically 

challenging because when there is LTB failure the readings from two displacement transducers, 

at mid-span (and originally measuring vertical movement via the top and bottom flange) cannot 

give the exact vertical displacement at the shear centre. To therefore obtain reliable values of 

PLimit,FEAs from test results, the method adopted by Nguyen [6] is equivalent to that applied by 

L
o

ad
, 

P

Vertical deflection, w

PLimit,e (Lee, 2001)

PLimit,FEA (Nguyen et al., 2013)

Reduction of 'Stiffness' P/w by 50%
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Stoddard [1], who used measured load-rotations (P/) and a limiting angular of rotation (twist) 

for a specified reduction in torsional stiffness. 

Figure 10.  P vs.  curves for beam EC1_3500_SC. 

Figure 10 shows four plots of load P with mid-span rotation for beam EC1_3500_SC. The 

plots with circular, square, and rectangular symbols are from FEA having the three different 

imperfection types (refer to Table 3 and Figure 8), and they are compared with the physical test 

results taken from [6]. It is observed from testing (the curve on the right side with lowest P) 

that at  = 5o (or 82.7 mrad), the beam has deformed significantly into the LTB post-buckling 

region. At this angle of twist of the mid-span cross-section the FE generated curves are 

observed to have reached ultimate load and the beam’s rotational stiffness is negligible. Based 

on engineering judgment, the PLimit,FEA's reported in Tables 4 and 5 have been established from 

the P with   curves at the constant   = 3o. Note that for the limiting load determined from a 

physical test [6], again when   = 3o the notation in the tables is PLimit,e.  
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Table 4. Limiting buckling loads for FEA (with different max ) and tests for EC1 

Span 

(mm) 

Top Flange (TF) Shear Centre (SC) Bottom Flange (BF) 

PLimit,FEA

(kN)

PLimit,e

(kN)

PLimit,FEA 

(kN)

PLimit,e

(kN)

PLimit,FEA

(kN)

PLimit,e

(kN)

-δmax 0 +δmax -δmax 0 +δmax -δmax 0 +δmax

1828 3.38 3.61 3.86 3.48 4.62 4.97 5.36 5.96 6.91 7.50 8.10 8.64 

2438 1.56 1.93 1.81 2.10 2.05 2.58 2.44 2.50 2.80 3.52 3.39 3.83 

2844 1.27 1.45 1.48 1.55 1.66 1.92 1.97 2.00 2.25 2.62 2.74 2.60 

3454 0.81 0.95 0.92 0.96 1.00 1.20 1.17 1.04 1.28 1.53 1.51 1.33 

4064 0.62 0.72 0.70 0.57 0.76 0.90 0.88 0.72 0.96 1.15 1.13 0.83 

It can be seen from the three FE-generated P with  curves in Figure 10 that when max = 0 

(curve with open square symbol) the beam has the same progressive twist to instability as 

predicted when max = ±2.72 mm. Furthermore, with the same imperfection magnitude of 2.72 

mm but in the opposite directions the P vs.  curve (open triangle symbol) is not identical (in 

absolute terms). The engineering reason for this is because the I-section has different elastic 

constants in the four flange (and two web) panels. Had there not been an imperfection seeded 

into the FE model to simulate the variable distribution in EL there would be no PLimit,FEA

prediction when max = 0. An important finding from the plots in Figure 10 is that that the curve 

(open circle symbol) from the FE model with max = -2.72 mm is comparable with the 

experimental generated curve (filled circle symbol).   

Figure 11 presents the same plotting of P  curves as in Figure 10 for beam EC1_1900_TF.  

The test results are plotted as the discontinuous curve with filled circle symbol. It is observed 

for this shorter span beam with Top Flange loading that when max = +0.78 mm (triangular 

symbol) the highest PLimit,FEA is realized. This observation is similar what we have from the FE 
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results plotted in Fig. 10 for EC1_3500_SC and is for the recognition that combinations of 

imperfections (here geometrical and material) can create a loaded beam set-up producing a 

better response than had the beam, say, no out-of-straightness imperfection. It is seen from the 

FE curves in Figure 11 that the lateral movement for LTB deformation is in the same direction 

when max = +0.78 mm,  max = 0 mm (curve with open square symbol) ormax = -0.78 mm 

(curve with open circle symbol). Because this response is not found with the curves for beam 

EC1_3500_SC in Figure 10 it can be attributed to the difference in span and relative 

magnitudes of the combined imperfections.  

Figure 11. P vs.   curves for beam EC1_1900_TF. 

Presented in Tables 4 and 5 are values of PLimit,FEA with their PLimit,es for the five beam spans 

(Table 3) and either EC1 or EC2 end conditions, respectively. The tabulated predictions 

provide a direct comparison for the single pultruded I-beam having: five different spans, three 
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different loading cases of Top Flange (TF), Shear Center (SC) or Bottom Flange (BF); three 

different geometrical imperfections, namely -max, 0 and +max. Both tables have the following 

format. Column (1) lists the beam spans in the range 1828 to 4046 mm; the depth of the I-

section is 120 mm. Next, we observe that columns (2) to (4), columns (6) to (8) and columns 

(10) to (12) are reporting PLimit,FEAs for the three maxs. The change between these three groups 

of 15 PLimit,FEA results is that they are for, respectively, top flange, shear centre and bottom 

flange load cases. For the same left-to-right entry order for vertical load height, columns (5), 

(9) and (13) report the experimental limit loads, PLimit,es.  

By comparing the PLimit,FEAs at each loading case, it is observed that, as expected, the value of 

max has a significant influence on the predicted LTB resistance. The difference between the 

highest and lowest resistance (in terms of lowest of three predictions) is for: TF_EC1 between 

7 and 24%; SC_EC1 between 8 and 26%; BF_EC1 between 8 and 22%. As expected, PLimit,FEA

when modelling with max = 0 the prediction of PLimit,FEA is not the highest, which is always  

predicted with +max (see Table 3), and this finding is shown in Figure 11 using model 

EC1_1900_TF. This outcome, again, reflects the important influence on buckling strengths 

from the combination of geometric and material imperfections. The differences in predicted 

resistances when the boundary conditions are EC2 are for similar ranges, namely: TF_EC2 

between 6 and 23% (at 1% lower than EC1 lower and upper bounds); SC_EC2 between 6 and 

24% (at 2% lower); BF_EC2 between 6 and 25% (at 2% lower and 3% higher).  

To be able to compare ABAQUS® predictions with PLimit,es their differences are expressed, as 

a percentage, using the formula Limit = (PLimit,e/PLimit,FEA - 1)100%. Note that a positive 

percentage for Limit means the FE prediction is lower than the experimental test result. Plotted 

in Figures 12 to 14, for EC1 modelling, is Limit with L (Table 4) for the three loading cases of 
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TF, SC, and BF. It is noted that there is no single trend on assuming there can be a linear change 

in Limit between each of the five spans. Inspection does show that at the lower two spans the 

Limit percentages are mostly positive and at the higher spans they are mostly negative. It is 

assumed that a difference lying between ±10% is for an acceptable agreement, and so in the 

figures horizontal lines are introduced to bound the reliable comparisons. There are several 

data points plotted in Figures 12 to 14 that are within these limits. The physical reason is 

unknown for why Limit can be > -20% at the largest span of 4048 mm. An explanation could 

be that there had been an additional imperfection in the testing, from how the vertical load is 

transferred into the beam [6], that further lowered the measured LTB load.  

Figure 12. Plots of Limit vs. span L for TF_EC1
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Figure 13. Plots of Limit vs. span L for SC_EC1 

Figure 14. Plots of Limit vs. span L for BF_EC1 
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Figure 15 Plots of Limit vs. span L for TF_EC2 

Figure 16 Plots of Limit vs. span L for SC_EC2 
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Figure 17. Plots of Limit vs. span L for BF_EC2 

Figure 18. Lateral load positions for load eccentricities on the top flange (not to scale) 

To continue this study, Figures 15 to 17 are the equivalent plots with the FE models having the 

EC2 end conditions. Now we observe that for beams where there is end-restraint against lateral 

SC
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flexure, only three Limits out of 45 are found to lie within ±10%, and the other 42 are for a 

greater negative percentage, and with the highest being > 40%. Because PLimit,FEA is > PLimit,e it 

can be inferred that the presence of the two steel rods per side per end only gave the beam 

partial restraint to full fixity against lateral flexure end rotation.  

The nonlinear FE predictions to PLimit,FEA presented in Table 4 and 5 have shown that LTB 

resistance is sensitive to the magnitude and direction of the initial geometric imperfection (in 

the form of a minor-axis half-sine wave). Next, a sensitivity study considers the influence of 

load eccentricity in terms of lateral positioning from the no-eccentricity plane, which is the 

minor-axis plane passing through the I-section’s centroid. Figure 18 illustrates the locations on 

the top surface of the top flange for nine lateral eccentricities where the vertical load is imposed 

in FE models. Clearly, the introduction of load eccentricity generates, at the mid-span, a 

secondary moment or torque that twists the I-beam, with positive rotation in the anti-clockwise 

direction. The effect of this on reducing the LTB resistance is evaluated by conducting 

nonlinear FE analyses for the single beam span of 3000 mm, having either EC1 or EC2 end 

conditions. The modelling methodology also involves a constant initial out-of-straightness 

imperfection of δmax = -1.95 mm, as reported for this span in Table 3. The vertical load applied 

at the vertical plane for the Shear Center (SC) (no-eccentricity case) is denoted as P0. The other 

eight positions are offset by 3 mm, 5 mm, 10 mm, and 15 mm from P0 in both directions and 

are labelled P3, P5, P10, P15, P-3, P-5, P-10 and P-15.  
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Table 5. Limiting buckling loads for FEA (with different max ) and tests for EC2 

Span 

 (mm) 

Top flange Shear center Bottom flange 

PLimit,FEA 

(kN)

PLimit,e

(kN)

PLimit,FEA

(kN)

PLimit,e

(kN)

PLimit,FEA 

(kN)

PLimit,e

(kN)

-δmax 0 +δmax -δmax 0 +δmax -δmax 0 +δmax

1828 8.20 8.69 9.22 6.28 10.7 11.4 12.1 - 15.9 16.8 17.9 - 

2438 3.34 4.10 3.89 3.28 4.40 5.44 5.22 3.53 6.17 7.67 7.47 5.71 

2844 2.46 2.79 2.87 2.13 3.23 3.69 3.83 2.68 4.44 5.08 5.53 3.97 

3454 1.47 1.75 1.70 1.32 1.89 2.28 2.22 1.49 2.52 3.04 3.00 2.06 

4064 1.04 1.23 1.19 0.81 1.31 1.56 1.52 1.06 1.69 2.02 2.00 1.14 

Figure 19.  vs. P  for EC1_3000_TF for nine lateral load eccentricities (refer to Figure 18) 
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Figure 20.  vs. P  for EC2_3000_TF for nine lateral load eccentricities (refer to Figure 18) 

Plotted in Figures 19 and 20 are the predicted P with  curves for nine lateral load eccentricities 

with end conditions EC1 and EC2, respectively. It is seen in both figures that for the ‘no-

eccentricity’ position P0 the beam has twist in the positive direction (i.e., URx > 0). This 

twisting is because of the combination in having different elastic constants in the flange 

outstands I1 to I4 (creating an unsymmetrical beam) and the minor-axis out-of-straightness 

imperfection (which is on the ‘left-side’, thereby promoting rotation, , in the positive 

direction). Modelling cases with the vertical load having lateral eccentricities on the right-side 

(i.e., P15, P10 and P5) deform the beam-section at mid-span towards the right with  negative. 

This shows that the effect on deformation from load eccentricity outweighs the combined effect 

of the initial geometrical and material imperfections. For load case P3, that has an eccentricity 

of 3 mm to the ‘right’ it is observed that the beam deforms to the ‘left’, after an initial load 
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where there is virtually no mid-span rotation. This indicates that the effect of lateral load 

eccentricity is now opposite and very similar to the combined geometrical and material 

imperfections. Once load P is applied in the FE analyses for the five load eccentricities of P0, 

P-3, P-5, P-10 and P-15 there is rotation from beam twisting that is positive (to the ‘left’).  

Figure 21. Influence of lateral load eccentricity (ey) on PLimit,FEA for beams EC1_3000_TF 

and EC2_3000_TF 

Plotted in Figure 21 are the PLimit,FEAs obtained when  = 3o  with increasing lateral load 

eccentricity, ey. For end conditions EC1, the nine plotted values are with a circular symbol and 

when displacement boundary conditions are changed to EC2 the equivalent nine data points 

are with a square symbol. The points have been connected for a linear trend curve. The results, 

as presented in Figure 21, show that PLimit,FEA is highest for load case P3. Whilst the limiting 

buckling load for P3 is 19% higher than for P0, PLimit,FEA with P-3 is 15% lower. One important 

finding from this sensitivity study is to observe that from the shapes of the two curves in Figure 

21 the variation in PLimit,FEA with ey is not influenced by end conditions of EC1 or EC2.  
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4. CONCLUDING REMARKS 

Presented is the modeling methodology using ABAQUS® Finite Element (FE) package to 

conduct sensitivity analyses for the Lateral Torsional Buckling (LTB) instability of flexural 

members of Pultruded Fibre Reinforced Polymer (PFRP). The thin-walled panels in the flange 

outstands and web of the single I-section are treated as single-layered transverse isotropic 

materials, but with different elastic constants, which introduces a constant material 

imperfection. The PFRP profile is of size 120x60x6 mm, and the spans modelled are from 1500 

to 4046 mm. The loading arrangement is for three-point bending. Adopted element type 

following a study on the numerical performance of various shell elements in the ABAQUS® 

element library is the 8-noded thick shell element (S8R) with side length of maximum 15 mm 

along the beam’s mesh. The fillet volumes at the flange-web junctions are modelled by 

assigning ‘increased constant thickness’ elements in these four specific localized regions. The 

modelling and simulation parameters varied in the sensitivity studies are: vertical loading 

positions; lateral loading eccentricity; end boundary conditions at the simple supports; 

geometrical imperfections. The FE results for LTB resistances were validated against relevant 

and reliable physical test results taken from the PhD thesis of the first author. The following 

observation and findings can be drawn from this new contribution:  

1. The FE modelling methodology that includes the additional fillet radius volumes gives 

considerably better comparison for predicted LTB resistances with respect to the 

experimental limiting buckling loads.  

2. It is found that the influence on LTB resistance of the vertical load height (relative to the 

shear center of the I-section) is very significant when the material is PFRP. It has been 

shown that, when compared to shear centre loading, the numerical limiting buckling load 

can decrease by 20% for top flange loading and increase by 30% for bottom flange loading. 

In other words, the reported sensitivity study is for a 50% difference in LTB resistance 
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between the load introduced at the top or bottom flange, and without any lateral load 

eccentricity. 

3. As expected, a flexural member’s deformation response and resistance is significantly 

influenced by the lateral position of the vertical loading. This FE sensitivity study shows 

that, for the specific geometrical and material imperfections modelled, having a load 

eccentricity of 3 mm predicts a limiting buckling load that will either be reduced by up to 

17% or increased by up to 19%. This significant change in resistance is dependent on how 

the secondary moment from the presence of the load eccentricity is interacting with the 

combination of the initial geometrical and material imperfections.  

Further sensitivity studies with other FE modelling and simulation parameters are required to 

be able to fully understand the quantified overall influences from practical combinations of 

geometrical and material imperfections, eccentric lateral loads, and vertical loading positions.  
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Nomenclature used in this paper 

ey  -  Lateral load eccentricity from the minor-axis centroid plane of the cross-section  

                        (mm) 

b -  Breadth of I-section (mm) 

h -  Depth of I-section (mm) 

k -  Restraint factor for lateral flexural bending at end supports; 0.5 for full  

restraint to 1.0 for fully unrestrained 

kw  -  Restraint factor for warping at end supports; 0.5 for full restraint to 1.0  

for fully unrestrained 

x          - Distance along the length of a beam (mm) 
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w         - Vertical deflection at mid-span (mm) 

EL  -  Longitudinal modulus of elasticity (tensile), E1 (GPa)  

ET  -  Transverse modulus of elasticity (tensile), E2 (GPa) 

GLT  -  In-plane shear modulus, G12 or G13 (GPa)  

GTL  -  Out-of-plane shear modulus, G23 (GPa)  

νLT  -  Major Poisson’s ratio 

IT - Torsional constant (mm4) 

IWw  -  Warping rigidity (mm6) 

Iy -  Second moment of area for flexure about the beam’s major-axis (mm4) 

Iz -  Second moment of area for flexure about the beam’s minor-axis (mm4) 

L          -  Major-axis flexural span of beam for defining the magnitude of out-of-

straightness (mm) 

Lb  - Lateral unrestrained span (mm)  

P           -  Central vertical point load which can be applied at different heights from the 

shear centre of the I-section (kN) 

Pcr        -  Elastic critical buckling load for lateral-torsional failure of a simply supported 

beam subjected to central point loading (kN) 

Pcr,sh      - Elastic critical buckling load for lateral-torsional failure with shear deformation 

of a simply supported beam subjected to central point loading (kN) 

Pcr,FEA -  Elastic critical buckling load obtained from linear (Eigenvalue) finite  

element analysis (kN) 

PLimit,FEA -  Limit load for lateral-torsional buckling failure by Finite Element Analysis (kN) 

PLimit,e -  Limit load for lateral-torsional buckling failure by experiment (kN) 

zg -  Distance (height) from the shear centre to the point of load application (mm) 

δmax  -  Maximum out-of-straightness imperfection at mid-span (mm) 

 - Mid-span rotation (rad) 
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