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Abstract—As more and more wind turbines (WTs) are in-
stalled, there is an increasing interest in actively controlling
their power output to meet power set-points and to participate
in the frequency regulation for the utility grid. Conventional
inertial and droop control loops use fixed gains, making it
difficult to utilise the kinetic energy of WTs in a wind farm
in a synergistic manner based on real-time information. In
this paper, the fixed gains are modified to adaptive gains to
improve frequency support performance and reduce the impact
on mechanical structures. The cooperative frequency control
problem for all WTs in a wind farm is modelled as a decentralised
partially observable Markov decision process (Dec-POMDP) and
solved using a multi-agent deep reinforcement learning (MADRL)
algorithm. MATLAB/Simulink and FAST are run in connection
to simulate the frequency response of a wind farm, where FAST
simulates the mechanical part of WTs and Simulink simulates
the electrical part. Simulation results show that the proposed
method is effective in reducing frequency drops and the impact
of frequency control on the mechanical structure.

Index Terms—Frequency regulation, wind generation, inertia
and droop control, multi-agent deep reinforcement learning.

I. INTRODUCTION

In recent years, there has been significant growth in the pen-
etration of offshore wind power into power systems and this
trend is expected to continue in the future. Unlike conventional
synchronous generators, wind turbines (WTs) do not naturally
possess inertial response or participate in frequency distur-
bance events. The effective system inertia could be severely
reduced with high penetration of wind power, resulting in high
rates of change of frequency (RoCoF) and large frequency
deviation after a sudden loss of generation or the connection
of large loads.

Many works have investigated inertia control schemes for
variable-speed WTs which temporarily release the kinetic
energy stored in their rotating mass to arrest the frequency
nadir. These schemes employ additional loops based on the
measured frequency, i.e. inertia loop and droop loop [1]–[3].
However, in these schemes, the control gains are set to be
fixed, making it difficult to adjust their kinetic energy uptake
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in real time based on information such as the wind speed and
rotor speed of the WT. Due to the wake effect, each WT in
a wind farm contains varying degrees of releasable kinetic
energy. Therefore, in contrast to the constant gain control
scheme, a control scheme with stable and adaptive gains is
proposed in [4], [5]. The values of the two loop gains are
proportional to the kinetic energy stored in the WT to exploit
the releasable kinetic energy. The effect of wake effects on the
inertial response of the turbine is analysed in [6]. Wu et al. [7]
propose an advanced control strategy with time-varying gains
for inertia and droop control loops. In the proposed strategy,
the gains are determined according to the desired frequency-
response time.

Although the above works consider that WTs should have
different responses in different states, most of them ignore
the synergistic operation between WTs. In [8], the primary
frequency response of the WT is significantly improved by
continuously adjusting its droop in response to wind velocities.
However, the proposed method needs communication among
the WTs in a wind farm, and the droop gain of each WT in the
wind farm is somehow dependent on other WTs’ performance.
In order to be free from the limitations of communication,
this paper will focus on the use of local information to
collaboratively control the WTs in a wind farm.

When WTs are involved in frequency regulation, their
output power needs to change frequently in response to
changes in frequency, which adds fatigue loads to WTs.
However, the inertia and droop control methods proposed in
previous works do not take into account the impact on the
mechanical structure. To fill the research gap, this paper will
design control policies that can reduce the impact on the
mechanical structure. The flexibility of WTs structure such as
blades, tower, drivetrain and other components [9] cannot be
neglected when the interactions between the electrical and the
mechanical aspects of WTs need to be assessed. An accurate
WT model must contain many degrees of freedom to capture
the most important dynamic effects. Therefore, in this paper,
the detailed aerodynamic and structural systems of the WT are
modelled using FAST software [10]. FAST is a comprehensive
aeroelastic simulator capable of predicting both the extreme
and fatigue loads of three-bladed, horizontal-axis WTs.



Recent years witnessed tremendous success in deep rein-
forcement learning (DRL) in modeling computational chal-
lenging decision-making problems such as Atari [11], Go
[12], and StarCraft [13]. In this paper, we develop a DRL-
based controller to improve the performance of wind farm
frequency regulation. Specifically, we consider each WT as
an agent and model the problem of collaboratively controlling
WTs for frequency regulation as a decentralized partially
observable Markov decision process (Dec-POMDP) [14]. We
use multi-agent deep deterministic policy gradient (MADDPG)
[15], a multi-agent DRL (MADRL) algorithm, to solve this
Dec-POMDP. The proposed method follows the centralised
training, decentralised execution (CTDE) paradigm [16], thus
avoiding the requirement for communication for online col-
laborative operation.

The rest of this paper is organised as follows. Section II
presents the structure of the inertial and primary frequency
controllers. In Section III, we model the joint frequency
control problem for WTs in a wind farm as a Dec-POMDP.
In Section IV, we run experiments connecting FAST to MAT-
LAB/Simulink to verify the effectiveness of the proposed
method. Finally, we conclude the paper in Section V.

II. INERTIA AND PRIMARY FREQUENCY CONTROL

This section briefly describes a conventional fixed-gain
inertial control scheme [1]–[3], which uses two additional
loops: inertial and droop loops, as shown in Fig. 1. The active
power reference of WT, Pref , consists of three terms: PMPPT,
for the MPPT control; ∆Pin, which is the output of the inertial
loop; and ∆Pdr, the output of the droop loop.

Fig. 1: Inertia and primary frequency controller.

∆Pin can be expressed as

∆Pin = −Kfsys
dfsys
dt

(1)

where K is the inertial gain and fsys denotes the measured
system frequency. The function of the differentiator d

dt is to
obtain the RoCoF, and the inertial gain K determines the
increase in the active power output when the system frequency
declines.

∆Pdr can be expressed as

∆Pdr = −
1

R
(fsys − fnorm) (2)

where 1
R is the droop gain and fnorm is the nominal frequency

of power system. A high droop gain provides a large output
from the droop control loop.

III. DEC-POMDP FORMULATION

We consider a wind farm consisting of N WTs. We tune
the inertia gain and droop gain for each WT in real time at a
series of discrete time t = 1, . . . , T . We consider each WT as
an agent, and model the joint frequency regulation problem as
a Dec-POMDP, where the major components are as follows:

1) State: At each time step t, each WT n’ observation on
consists of its wind speed, rotor speed, rotor torque, generator
power, pitch angle and mechanical structure information. The
mechanical structure information includes blade flap-wise tip
deflection db,flapn , blade edge-wise tip deflection db,edgen , tower
fore-aft displacement dt,foren , and tower side-to-side displace-
ment dt,siden . The state of the entire wind farm consists of the
observations of all WTs, i.e. s = {o1, . . . , oN}.

2) Action: At each time step t, the action of each WT n
(ant ) includes the inertial gain and droop gain in current time
step.

3) Reward: After all agents take actions, they obtain a
shared reward:

rt =− C1(fnom − fsys)
2 − C2

∣∣∣∣dfsysdt

∣∣∣∣
− C3

N

N∑
n=1

(|db,flapn |+ |db,edgen |+ |dt,foren |+ |dt,siden |)

(3)

The three terms of equation above are used to improve the
nadir of frequency, reduce the RoCoF, and reduce the dis-
placements of mechanical quantities. C1, C2, C3 are adjustable
weight factors for each term. Note that we can also use
other forms of penalty functions to reduce fluctuations in fre-
quency and mechanical quantities. The mechanical quantities
db,flapn , db,edgen , dt,foren , dt,siden that we use are normalised data.
For example, if the original value of the blades flap-wise
deflection is d̃b,flapn , the mean is d̄b,flap, and the variance is
σb,flap, then the normalised deflection is

db,flapn =
d̃b,flapn − d̄b,flap

σb,flap
(4)

IV. MADRL

We use the MADRL algorithm MADDPG [15] to solve this
Dec-POMDP problem. MADDPG is an actor-critic, model-
free algorithm based on the deterministic policy gradient [17]
that can operate in continuous state and action space. In
MADDPG, each agent has a policy function and an action-
value function: the policy function acts as an actor, generating
actions and interacting with the environment; the action-value
function acts as a critic, which evaluates the performance of
the actor and guides the follow-up of the actor. Consider a
collaborative operation with N WT agents with policies pa-
rameterized by θ = {θ1, . . . , θN}, and let µ = {µ1, . . . , µN}
be the set of all agent policies. Then we can write the gradient
of the expected cumulative reward of agent n as:

∇θnJ(θn) =Es,a∼D
[
∇θnµn(an|on)

∇an
Qµ

n(s, a1, . . . , aN )|an=µn(on)

] (5)



Here Qµ
n(s, a1, . . . , aN ) is a centralised action-value function

that takes as input the actions of all agents, a1, . . . , aN , in
addition to some state information s, and outputs the Q-value
for agent n. The experience replay buffer D contains the tuples
(s, s′, a1, . . . , aN , r), recording experiences of all agents. The
centralised action-value function Qµ

n is updated as:

L(θn) = Es,a,r,s′ [(Q
µ
n(s, a1, . . . , aN )− y)2] (6)

where

y = r + γQµ′

n (s′, a′1, . . . , a
′
N )|a′

j=µ′
j(oj)

(7)

where µ′ = {µθ′
1
, . . . , µθ′

N
} is the set of target policies with

delayed parameters θ′n. Pseudo-code for MADDPG algorithm
is shown in Alg. 1.

Algorithm 1: MADDPG for controlling WTs

for episode = 1 to number of episodes do
foreach time step t do

for each agent n, select action
an = µθn(on) +Nt

Execute actions a = (a1, . . . , aN ) and observe
reward r and next state s′

Store (s, a, r, s′) in replay buffer D
s← s′

for agent n = 1 to N do
Sample a random minibatch of S samples
(sj , aj , rj , s′j) from D

Set
yj = rji + γQµ′

n (s′j , a′1, . . . , a
′
N )|a′

k=µ′
k(o

j
k)

Update critic by minimizing the loss
L(θn) = 1

S

∑
j(y

j −Qµ
n(s

j , aj1, . . . , a
j
N ))2

Update actor using the sampled policy
gradient: ∇θnJ ≈ 1

S

∑
j ∇θnµn(o

j
n)·

∇an
Qµ

n(s
j , aj1, . . . , a

j
N )|an=µn(o

j
n)

Update target network parameters for each
agent n: θ′n ← τθn + (1− τ)θ′n

V. CASE STUDY

As shown in Fig. 2, the simulation experiments are carried
out on a two-area test system, which is scaled down from a
two-area benchmark power system [18]. The two-area system
has four synchronous generators each rated at 15 MVA and
they are divided between the two areas equally. The wind
farm is made up of three NREL 5 MW Baseline WTs.
The major properties of the NREL 5 MW Baseline WT are
shown in Table I. Detailed aerodynamic and mechanical WT
model are connected to MATLAB/Simulink simulation where
the electrical aspects were simulated, resulting in the grid-
connected full-scale converter (FSC)-WT system [19] shown
in Fig. 3.

We generated wind speeds for the three WTs using NREL
TurbSim [20], which is a stochastic, full-field turbulence
simulator. The wind speed of each WT is shown in Fig. 4.

Fig. 2: Four-machine two-area test system with a wind farm.

Fig. 3: Developed FSC-WT model using FAST and Simulink.

TABLE I: Properties of the NREL 5 MW Baseline WT

Rating 5 MW
Rotor orientation, configuration UpWind, 3 blades
Control variable speed, collective pitch
Rotor, hub diameter 126 m
Tower height 90 m
Cut-in, rated, cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s
Rated generator speed 122.91 rad/s
Rotor mass 110 T
Nacelle mass 240 T
Tower mass 347.460 T

In this experiment, the length of each time step is set to 0.2
seconds, i.e., the values of inertia and droop gains are updated
every 0.2 seconds. We use a sudden connection to a 12 MW
load to produce a drop in frequency.

The proposed method is compared with three other methods:
zero-valued gains, non-zero constant gains and parabolic gains.
A value of zero for gains is equivalent to the fact that WTs
do not participate in frequency regulation, which is noted as
“None” in the following figures. In the constant gains setting,

Fig. 4: Wind speed of 3 WTs.



the inertia gain is constant at 25 and the droop gain is constant
at 6 [7]. Parabolic gains are proposed by [7] as a coordinated
control method that combines a parabolic function for the
inertia variable and a linear function for the droop variable. In
this method, large gains are set to increase the power output
from the WTs at the instant of frequency drop. As the time
increases, the gains decreases gradually, preventing the WTs
from overdecelerating.

Fig. 5 illustrates the cumulative reward variation of MAD-
DPG algorithm during the training process. After 25 episodes
of training, the cumulative reward of MADDPG algorithm
converges and outperforms the other three methods. Parabolic
gains perform better than constant gains, and gains of zero are
the least effective.

Fig. 5: Episodic average cumulative reward during training.

After training, the MADDPG-based gains of the three WTs
as a function of time are shown in Fig. 6. Fig. 6 also shows
the gains of the other three methods. Since the MADDPG
algorithm tunes the gains based on the state of the WT, the
gains are different for different WTs. The other three methods
do not consider the state of the WT, so all three WTs have the
same gains. It can be seen that the gains of WT 1 and WT 2
based on the MADDPG algorithm drop rapidly at the instant
when the frequency drops. This is because the |dfsysdt | is very
large at this moment, and reducing the gains appropriately will
prevent the rotor from dropping too fast and causing shocks
to the mechanical structure. However, WT 3 still maintains
large gains due to its high wind speed and thus more energy
available to be consistently taken from the wind.

The frequency variation curves for the different methods
are shown in Fig. 7. It can be seen that both MADDPG-based
gains and parabolic gains are effective in suppressing the drop
in frequency, with frequency nadirs of 49.608 Hz and 49.631
Hz respectively. Constant gains are less effective than time-
varying gains, with a frequency nadir of 49.581 Hz for non-
zero constant gains and a frequency nadir of 49.439 Hz for
zero gains.

The mechanical response of WT 1 for the different methods
is shown in Fig. 8. It can be seen that blade flap-wise tip
deflection and tower fore-aft displacement are greater with
time-varying gains than with constant gains. This means that
the faster the WT releases kinetic energy to the grid, the
better the frequency regulation, but also the greater the me-
chanical structure vibrates. The MADDPG-based gains and the
parabolic gains have similar frequency regulation capabilities,

(a)

(b)

Fig. 6: Inertial and droop gains (a) inertial gains; (b) droop gains.

Fig. 7: System frequency variation under different frequency regula-
tion methods.

but the mechanical structures have smaller deflections with
MADDPG-based gains.

VI. CONCLUSION

In this paper, we model the cooperative frequency regulation
problem of WTs in a wind farm as a Dec-POMDP and solve it
using the MADRL algorithm. Each WT tunes its inertia gain
and droop gain in real time based on its own observation. Sim-
ulation experiments based on FAST and MATLAB/Simulink
verified that the proposed method is not only effective in
raising the frequency nadir, but also in reducing the impact
of frequency control on the mechanical structure.
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