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ABSTRACT Deep learning techniques have been recently widely used in the field of texture image
generation. There are still two major problems when applying them to tile image design work. On the one
hand, there is still lack of enough diverse ceramic tile images for the training process. On the other hand, the
output image is difficult to control and adjust, and cannot meet the designer’s requirements of interactivity.
Therefore, we propose a multi-stage generation algorithm of tile images based on generative adversarial
network(GAN). First, the multi-scale attention GAN is applied to generate controllable texture image. Then,
the SWAG texture synthesis GAN is also applied to obtain controllable and diverse image style. And finally,
through the style iteration mechanism and the multiple step magnification method based on image super-
resolution reconstruction network, the final tile images can be automatically generated with larger-size and
higher-precision. The relevant experiments demonstrate that our method can not only generate high-quality
tile images in a relatively short period of time, but also consider human interaction to a certain extent, and
maintain a certain degree of control over the main texture and style of the final generated tile images. It has
good and wide application value.

INDEX TERMS Tile images, generative adversarial networks, style transfer, image super-resolution
magnification.

I. INTRODUCTION

With the improvement in household living conditions, the
demand for high-quality ceramic tiles continues to grow, and
more attention is being paid to tile pattern texture aesthetics
and personalized design. Although there are many diverse
ceramic tiles, it is often difficult to meet various personalized
demands.

Two traditional methods are used to design tile images.
One is that a tile image is obtained by scanning marble
veins and processed with some image transformation [1].
However, it is too difficult to diversify and customize tile
images. Another is that multiple texture image blocks are
first designed by the designer, and then stitched and fused
through a stitching algorithm to generate the final tile texture
image, such as Liang [2] and Wang [3]. This requires the
designer to make repeated adjustments to the design texture
pattern based on the generated tile image effect. In short,

these methods rely heavily on manual design, and are difficult
to meet varied individual needs.

In recent years, with the development of deep learning
techniques, a growing number of deep-learning-based ap-
proaches for texture image generation have been proposed.
For example, some approaches [4], [5], [6] can perform
secondary editing or fusion of user-specified image regions
by learning the correlation between pixels. Although it can
generate a diversity of texture images based on a specified
region, it has the drawback of being capable of performin-
glocal editing only.

Based on the Encoder-Decoder theory, VAE [7], UNet [8]
and other networks were also proposed for the automatic
generation of texture images. The input image is mapped
into the feature space by an encoder, which generates an
image with different texture representation by a decoder
when slightly being perturbed. However it is often less con-
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trollable, and hard to edit the texture of generated images
upon perturbation.

Some scholars have attempted to utilize GAN [9] to gen-
erate texture images. Random noise is input to a generator
and transformed into a random output image through multi-
ple convolution layers and up-sampling layers. Through the
joint generator-discriminator training, the generated random
images can gradually show the texture features of the image
in the training dataset by iterations. Although it increases the
diversity of the output image by changing the input random
noise, it has no control over the main texture structure. For
the texture image that the user wants to generate, a specific
input noise vector cannot be found. In addition, limited by
computational performance, the training image size is small
and the output image is often blurred.

Other scholars proposed the style transfer methods [10]
to generate diverse images. A pre-trained feature extraction
model was used to extract high-level abstract feature repre-
sentations of the original content and style image, respec-
tively. Then given a random input noise image, a new fused
image with original texture and different style is generated
by iterative optimization. Although diverse images can be
generated by varying the input style images, since the net-
work parameters remain fixed during the training process,
separate training is required to generate different original
images, resulting in longer time to generate multiple images
and making it difficult to guarantee the image quality.

As existing ceramic tiles have strict requirements for large
image sizes and high-precision, the tile images generated by
the above approaches are rarely satisfactory. Therefore, we
propose a multi-stage tile image generation algorithm based
on generative adversarial network. First, the multi-scale
attention GAN(MSA-GAN) is applied to generate control-
lable texture. Next, the stylization with activation smoothing
texture synthesis GAN(SWAG-TS-GAN) is also applied to
achieve controlled and diverse image styles. Finally, through
the style iteration mechanism and the stepwise magnification
method based on super-resolution reconstruction network,
the final tile image can be automatically generated with larger
size and higher precision.

The main accomplishments with this paper are summa-
rized as follows.

(1)A multi-scale GAN with attention is present for en-
hancing the controllability of tile textures. The attention
mechanism is added to multi-scale shortcut weights, where
the shortcut connections are built on the basis of the same
feature map size of the discriminator and generator. Thus,
compared with the traditional MSG-GAN and ResNet, whose
multi-scale shortcut weights are set to 1, while the weights
are updated adaptively during the network training process,
which gives the different importance of the texture features
at different scales in our method. Meanwhile, the conver-
gence speed and efficiency of the network are significantly
improved.

(2)A texture synthesis GAN network with SWAG is also
designed to strengthen the controllability of tile image style.

The traditional texture synthesis GAN is prone to produce
large amplitude in the activation value. To solve the problem,
the new softmax activation transform and smoothing are
applied to the loss function. So the change in error back
propagation will not be too drastic, avoiding the occurrence
of the large amplitude and artifacts. The image quality is
better improved with clear details.

(3)The style iteration mechanism and magnification
method based on super-resolution reconstruction network
are proposed. To resolve the low resolution of the output
image produced by traditional texture synthesis GAN, the
style iteration mechanism is given, which the previous output
image is used as the next input. So the final output image with
style-enhanced is produced. In addition, the super-resolution
reconstruction network is used for magnification to achieve
the high-resolution requirements.

The rest of the paper is organized as follows. Section II re-
views related work. The main Section III presents the scheme
of the multi-stage tile image generation algorithm, and the
core model proposed by main accomplishments. Section IV
presents the results of a comprehensive experimental study,
and Section V concludes the paper.

II. RELATED WORKS
In this section, we describe the works related to GAN, style
transfer, and super-resolution reconstruction network. The
GAN network is used for the generation of tile texture in
this paper, the style transfer is used for the generation of
diverse tile image styles, and the image super-resolution
reconstruction network is used for the magnification of the
final image with high-precision.

A. GENERATIVE ADVERSARIAL NETWORK
Goodfellow creatively proposed a generative adversarial net-
work(GAN) [9] that provides a new method for generating
new images. Recently, more scholars delved into GAN and
improved them them to generate relevant new images based
on various datasets. For example, in the generation of texture
images, Karras et al. [11] proposed ProGAN. The key idea
is to grow both the generator and discriminator progres-
sively. Starting from a low resolution, they add new layers
that model increasingly fine details as training progresses,
to generate higher-resolution texture images. They further
proposed StyleGAN [12]. By adding the Ada-IN module to
the generator, the intensity of the image features at different
scales is directly controlled by adjusting the image "style" of
each convolutional layer through the input latent vector. In
addition, a certain amount of noise was introduced to simu-
late the random changes in hair textures and other features.
The experimental results demonstrated that it can effectively
reduce feature entanglement. Animesh and Oliver proposed
MSG-GAN [13]. By allowing the flow of gradients from the
discriminator to the generator at multiple scales, convergence
during model training will be accelerated. In addition, there
were also many distinctive networks about GAN, such as
DCGAN [14], pix2pix [15], CycleGAN [16] etc.
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B. STYLE TRANSFER

The deep-learning-based style transfer method enables style
transformation of the original texture image. Gatys and Ecker
discovered that deep neural networks can extract both the
underlying and high-level semantic information of an image,
and introduced this technique to the field of style transfer.
They pioneered a style transfer model based on VGG net-
works [17]. Content loss and gram loss are calculated by
the pre-trained VGG network to minimize the difference
between the content features and style features of the gen-
erated image and the input image. When network training
converges, the final stylized image is obtained. Based on
[10], Johnson proposed a faster style transfer algorithm [18].
The encoder-decoder image transformation structure is added
into the basic style migration network, so as to accelerate
the convergence speed of the generated images, and at the
same time, achieve better style transfer results. Zhou et al.
[19] made further improvements. They introduced a style
transfer network into GAN, and improved the overall loss
function based on the style transfer loss term. The final
trained network can achieve super-resolution of images while
incorporating texture image style information for various
types of content images.

C. SUPER-RESOLUTION RECONSTRUCTION
NETWORK

Although traditional interpolation-based algorithm [20], [21]
can achieve magnification of an image, it still lacks high
quality and clarity. The super-resolution reconstruction tech-
niques provide a better solution to this problem.

Li et al. proposed an image super-resolution reconstruc-
tion network [22]. The whole network is divided into two

modules, feature extraction and reconstruction. The feature
extraction module mainly consists of convolutional layers
and multi-scale residual blocks, to realize the extraction of
multi-scale feature information from the original image. The
reconstruction module is mainly composed of convolutional
layers and pixel shuffle layers, where pixel shuffle arranges
multiple images with similar features in a specific order
to generate a feature map with a higher resolution. By
combining various structures of feature map in a specific
arrangement, the image can be scaled up to different scales
(x2x3x4).

III. MULTI-STAGE GENERATION OF TILE IMAGES
BASED ON GENERATIVE ADVERSARIAL NETWORK
A. ALGORITHM SCHEME

We propose a multi-stage tile image generation algorithm
based on generative adversarial network. To be more de-
tailed, we propose three independent networks, where the
output of the previous network is used as the input for the
next. First, we present MSA-GAN for generating grayscale
texture image blocks. We add multi-scale attention shortcut
connections to StyleGAN, to generate more controllable
grayscale texture images. Then we present SWAG texture
synthesis GAN for generating tile style images. Based on
texture synthesis GAN, we perform softmax transform on the
stylization loss activation values to be smoother. As a result,
the generated tile images have better style transfer effect.
Next, we divide the style image into many small image blocks
with self-similar structure, and generate larger image blocks
by super-resolution reconstruction network. And finally, we
can get a large-size tile image with better precision. The
whole process is shown in Figure 1.
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FIGURE 1. The flowchart of multi-stage generation of tile images based on generative adversarial network.
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B. IMAGE BLOCK GENERATION BASED ON
MULTI-SCALE ATTENTION STYLE-GAN

In this section, we introduce a multi-scale attention mech-
anism. We add multi-scale attention shortcut connections
based on StyleGAN. By allowing the flow of self-adaptive
gradients from the discriminator to the generator from multi-
scale shortcut connections, the generator can be iteratively
updated to learn texture features at different scales. Thus,
more texture-detailed and high-quality images can be gen-
erated by the final generator. Meanwhile, we attempt to
interpolate between different input vectors to generate more
progressive texture image blocks. The effectiveness of this
method was verified experimentally.

Network Architecture. Our generator and discriminator
take StyleGAN [12] as the basic structure. In our generator,
note A0 = R4∗4∗12 as the initial feature map, which consists
of a set of constants, and Ai as the feature map of middle
layer. Let gi be a generator module, consisting of several up-
sampling layers, convolutional layers, and AdaIN [23] layers.
It converts the feature map Ai into an output feature map
Ai+1. The input vector v is transformed into an intermediate
latent space through a series of linear transformations, and
then fed to all AdaIN layers of the generator, which is used
to control multi-scale texture of the generated image. The full
generator can be defined as a sequence of compositions of the
progressive generator module g0 ∼ gi, and converts A0 into
an output grayscale texture image block.

In our discriminator, note Dj as the feature map of the
middle layer. The discriminator module dj consists of several
convolution and down-sampling layers, and converts the fea-
ture map Dj into the output feature map Dj+1. The texture
image block is sequentially passed through the progressive
discriminator module d0 ∼ dj , and output is the form of a
probability value, to judge authenticity of the image.

We propose multi-scale attention weights. We add multi-
scale attention shortcut connections, corresponding to the

same-size feature map from the generator to the discrimi-
nator. As shown in Figure 2 with dotted lines, the feature
map Ai is input to the 1x1 convolution module oi, and
transformed into a grayscale image Oi. Then Oi and feature
map Dj are channel-wise concatenated, and input to the
discriminator module dj to generate Dj+1:

Dj+1 = dj(concatchannel[Dj , wi ∗ oi(Ai)]). (1)

Note that the generator module gi and discriminator module
dj each have a total number of k(0 < i, j < k), and satisfies
j = k − i. For all shortcut connections, the feature map Oi

needs to be multiplied by the attention weight wi on top of
itself. If wi is larger, the corresponding shortcut connection
has a more significant and positive effect on the generator
during network training.

In the process of backward propagation, gradients can flow
by all multi-scale shortcut connections from the intermediate
layers of the discriminator to the intermediate layers of the
generator. Thus our network can learn texture features at
different scales quicker.

Improvement of loss function. We introduce the attention
weights wi in the loss function of the network as follows,
which allows the generator to selectively learn texture fea-
tures at different scales:

min
G

max
D

L(G,D) = Ex∼pr
+ Ez∼pz

, (2)

Ex∼pr = Ex∼pr(x)[logD(x,w1, . . . , wk)], (3)
Ez∼pz = Ez∼pz(z)[log(1−D(G(z)), w1, . . . , wk)], (4)

where wi has an initial value of α, and is updated along
with the training process. The subsequent experiments in this
paper α take the value of 2.5 in all cases. During the training
process, all network parameters and attention weights wi

are updated by Adam optimizer, with learning rate 2e-4 and
parameter β1 = 0.5, β2 = 0.9.
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FIGURE 2. Architecture of multi-scale attention StyleGAN.
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Then, to prevent an excessive gap between different at-
tention weights, which causes image quality degradation, we
add a regular term to the loss function:

wi =
wi

α
, (5)

wi =
log(wi +max

i
wi)∑

i

log(wi +max
i

wi)
, (6)

wi =
wi

max
i

wi
∗ α. (7)

All attention weights wi are updated in regularization for
every few batches, thus further excessive gap is reduced.

1) Comparative Study
To verify the effectiveness of our network, a set of compar-
ison experiments are conducted. The Section IV.A dataset is
fed into MSG-StyleGAN and our network(MSA-StyleGAN)
for training. Among them, MSG-StyleGAN [13] keeps the
attention weights at 1(wi = 1) all the time, and the attention
weights of our network can be updated and obtained through
network training.

From Figure 3, compared with the original StyleGAN and
MSG-StyleGAN, the texture generated by our network is
richer with more details. And in Figure 4, (a) and (b) depict
the change of loss value during network training. Our net-
work has significantly smaller oscillation amplitude, further
reflecting the faster training convergence and network stabil-
ity. (c) and (d) depict the changes in the attention weights.
It can be seen that the attention weights of our network
remain stable during training, which further demonstrates
that our network has more significant attention to the texture
information of larger-scale images.

StyleGAN(Original) MSG-StyleGAN   MSA-StyleGAN(Ours)

FIGURE 3. Random generated samples for comparison between different
network.

2) Input Vector Interpolation Experiments
A pair of input vectors vimage1, vimage2 for two gray-scale
texture images with large differences are interpolated:

v∗∗ = coef ∗ vimage1 + (1− coef) ∗ vimage2, (8)

and a new vector v∗∗ is obtained and inputted into the
generator to obtain a series of progressive image blocks.
Figure 5 demonstrates that the generated texture images are
gradient.
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FIGURE 5. Interpolation of the input vector to obtain a series of gradient
texture images.

C. IMAGE STYLIZATION BASED ON IMPROVED
TEXTURE SYNTHESIS GAN

In the traditional style transfer network, although the subject
texture features of the input image are well preserved owing
to the introduction of residual blocks [24], the stylization
quality is significantly reduced [25], with a single tone
and artifacts. In this section, we improve texture synthesis
GAN(TS-GAN) [19] using activation smoothing. Experi-
ments prove that it has a better style enhancement effect.
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FIGURE 6. Architecture of improved TS-GAN.
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(g) (h)
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network layer
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network layer
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FIGURE 7. Experimental results of the improved TS-GAN, compared with the original network. (a) Activation tracks from original network. (b) Activation tracks from
improved network. (c) Input grayscale texture image block. (d) Training style image. (e) Output image from original network. (f) Output image from Improved
network. (g) Second iteration output image from original network (h) Second iteration output image from improved network.

Network Architecture. The structure of the network fol-
lows the original TS-GAN [19]. There is a down-sampler,
a residual module, and an up-sampler in the generator, for
converting the input grayscale texture image into a stylized
image. The down-sampler is composed of 3 convolution
layers, two of which use stride-2 convolutions that reduce
the spatial dimensions of the input. The residual module
is composed of 6 residual blocks, which can realize the
enhancement of texture features [19]. The up-sampler is
composed of 4 transposed convolution layers, where the
first three layers use stride-2 transposed convolutions, thus
ensuring that the final output image is twice as long and wider
as the input image.

There is also a GAN discriminator and a VGG discrimi-
nator. The GAN discriminator adopts PatchGAN as its basic
structure to determine whether the generated image is con-
sistent with the original style image. The VGG discriminator
adopts a pre-trained VGG19 [17] to evaluate the authenticity
of stylistic features by calculating the perceptual loss of the
gram matrix [10].

Training process. The network is trained based on a
specific style exemplar image. During each training iteration,
we randomly crop a 2k × 2k target block T from the style
exemplar as the ground truth, and a k×k source block t∗ from
T , which is input to the generator to generate the style image
T ′. The difference between T ′ and T is calculated using the
loss function:

L = Ladv + λ1Lcontent + λ2Lstyle, (9)

where Ladv is the adversarial loss of GAN, Lcontent is the
content loss, Lstyle is the perceptual loss [10]. λ1, λ2 are the
hyperparameters, where the specific values are determined by
the style image size and its style information. Then, the net-

work parameters are updated based on the Adam optimizer,
with learning rate 2e-4 and parameter β1 = 0.5, β2 = 0.9.
For maximum utilization of the available data we choose not
to set aside a validation or a test set. The loss function of the
network in the training process is as follows.

Stylization With Activation smoothinG(SWAG). Owing
to the introduction of residual blocks, bumps and jittering
of activation values (the coefficients of the successive fea-
ture maps output from network middle layers) occur, which
affects the image stylization process. Considering that the
softmax transform can suppress large activation values, and
can map activation values with different scales to the 0-1
range, the distance calculation becomes more accurate and
smooth [25]. We introduce the softmax activation transform
into the calculation of the loss item. Thus, the probability of
jitter is effectively mitigated during network training, and the
image stylization process becomes more stable.

The whole calculation process is described as follows. We
perform a global softmax transform on the target block T
and the output image T ′ to obtain σ(T ) and σ(T ′). Then we
calculate the L2 distance for each pixel softmax activation
value, and take the average value as the final Lcontent:

σ(Ti,j) =
eTi,j∑

m,n e
Tm,n

, (10)

Lcontent =
1

2mn

∑
i,j

(σ(Ti,j)− σ(T ′
i,j))

2, (11)

where σ denotes the global softmax transform of the image
T . Additionally, there is no residual block in the feature
extraction VGG19 network, so the softmax transform is not
considered to be incorporated into the process of calculating
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the loss term Lstyle:

Lstyle =
∑
h

1

4N2
GhM

2
Gh

∑
i,j

(Gh
i,j(T )−Gh

i,j(T
′))2, (12)

where Gh
i,j(T ) denotes the feature map of T output through

the h − th layer of VGG19 discriminator, and N2
Gh ,M2

Gh

denote the number of channels of feature map T , and the total
number of pixel points per channel, respectively.

1) Comparative Study
To verify the effect of the improved TS-GAN, a set of
experiments for comparison conducted. A gray-scale tile
image block with high contrast is selected, and input into the
original network and the improved TS-GAN, respectively.
Five random image positions are selected and tracked the
corresponding activation values across the network layers,
using nearest-neighbor interpolation. And the output style
images are also recorded.

As shown in Figure 7, the activation values of the improved
network are smoother, with no bumps or jitter. The generated
images are more colorful, and do not show any artifacts
(compared with (g), there are less meshed and lined artifacts
marked by red boxes in (h)), which is more obvious from the
second iteration output style images.

D. IMAGE SUPER-RESOLUTION MAGNIFICATION
In this section, we first enlarge the image using the style-
iteration mechanism. And limited by the GPU computing
speed, we then use the super-resolution reconstruction net-
work to further enlarge the image to meet large-size and
high-precision requirements. The image super-resolution re-
construction network mainly learns and memorizes the super-
resolution and continuity features, and does not blur and lose
image details after magnification, which is unique different
from traditional interpolation.

1) Style-iteration Mechanism
Based on the network described in Section III.C, we propose
the style-iteration mechanism to generate larger images. The
original grayscale texture image block is denoted by I0, and
the style image output in one iteration is I1. Next, input I1
into the same network again to obtain the second iteration
output style image I2. By repeating t− 1 times according to
the same operation steps, we can obtain the final style image
It.

Figures 7, 10 and 11 demonstrate that as the number of
iterations increases, the image becomes enlarged and the
texture and style features are further enhanced.

2) Magnification Algorithm for Tile Images Based on
Super-resolution Reconstruction Network
We further propose a complementary algorithm for image
enlargement, based on a super-resolution reconstruction net-
work [22]. The generated style image is cropped into many
small image blocks with self-similar structure, and each small

image block is amplified by the super-resolution reconstruc-
tion network, and these enlarged small image blocks are
stitched together to finally obtain a large-size tile image with
high-precision.

Image block cropping. Denote the tile style image gen-
erated by III.D.1 as It, and divide it into a number of equal-
sized, non-overlapping tile image blocks It(k).

Image block magnification. All image blocks It(k) are
input into the pre-trained super-resolution reconstruction net-
work RN, to generate I∗t(k) as follows:

I∗t(k) = RN(It(k), sz), (13)

where sz is the amplification ratio, which is supported by 2,3
and 4, in the current pre-trained network.

Image block stitching. Arrange and stitch I∗t(k), according
to the order of It(k), to form the final large tiled image I∗.

IV. EXPERIMENTS
A. DATASET PRODUCTION
Establishment of grayscale texture image dataset. We first
select 48 large tile images, with image size greater than
4096px × 4096px. For each large tile image, a number of
256px × 256px image blocks are randomly cropped. Sub-
sequently, those with higher complexity blocks are selected
for grayscale processing. The final selected grayscale image
blocks, with the number around 2500, will constitute the
dataset for the training of MSA-StyleGAN.

Establishment of style samplars. In this paper, we also
select 15 images with higher resolution and more prominent
styles. They are partly derived from natural texture pictures
and partly from oil and watercolor paintings suitable for
tile production. All of them will be fed into the improved
TS-GAN network for training. Figure 8 and Figure 9 show
some of the grayscale texture image blocks and style sample
images.

FIGURE 8. Grayscale Texture Sample Images for MSA-StyleGAN.

FIGURE 9. Style Exemplars for SWAG texture synthesis GAN.

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3218636

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



B. EXPERIMENTAL ENVIRONMENT

We use the following experimental environment for testing:
an Intel Core I7-7800X server with 6 cores at 3.5GHz, 64G of
RAM, and 2 RTX2080TI-11GB graphics cards. The training
and most of the image generation process are carried out in
the GPU environment, while CPU environment is only re-
quired for testing and the generation of higher-resolution tile
images. This is because at this time, a large amount of GPU
resource is employed due to the presence of intermediate
layer higher-resolution feature maps, which far exceeds the
established memory of the GPU.

C. EXPERIMENTAL RESULTS

In order to verify the quality and effectiveness of the tile
images generated by our method, this paper conducts a series
of experiments based on the existing tile dataset and the
experimental environment. First, all of the grayscale texture
blocks and style exemplars are fed into the corresponding
network for training, and the tile images are randomly gen-
erated based on trained network. As shown in Figure 10,11,
(b) is a grayscale image block randomly generated by MSA-
GAN, and (a) is the style exemplar with a corresponding pre-
trained TS-GAN. (c)(4096px × 4096px) is the intermediate
generated tile image, which is further amplified to obtain
the final result (d)(8192px×8192px). The experiment proves
that the texture features and style features are continuously

(a) (b)

(c) (d)

(e)

(f)

(g)

FIGURE 10. Generated sample image. (a)Original style image. (b)Input grayscale tile texture block(256px×256px). (c)Intermediate tile image generation
results(4096px×4096px). (d)Output tile image(8192px×8192px). (e)(f)(g)Image blocks after zooming in on some areas of (d).

(a) (b)

(c) (d)

(e)

(f)

(g)

FIGURE 11. Generated sample image. (a)Original style image. (b)Input grayscale tile texture block(256px×256px). (c)Intermediate tile image generation
results(4096px×4096px). (d)Output tile image(8192px×8192px). (e)(f)(g)Image blocks after zooming in on some areas of (d).
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enhanced in the process of image super-resolution. Three
areas of (d) are randomly selected with richer texture features
for enlargement, to obtain (e)(f)(g), and it is easy to see that
these image blocks are clearer without obvious blurring.

Qualitative Validation. A series of grayscale texture im-
ages and style exemplar are input into different networks, and
the differences are compared through the network output re-
sults. For the basic style transfer algorithm [10] and DCGAN
[14], the generated tile images retain most of the grayscale
texture image block information, but lack the presentation
of style features, and the images are not natural enough.
As an example, in the last row of the generated images in
Figure 12, the blue patches are embedded in the darker areas
of the input grayscale block, which increases the overall
sense of violation. For images generated by MGANs [26],
although the images are colorful, the main texture features

of the images are still missing. For example, in the last
three rows in Figure 12, the generated image no longer has
distinct texture features compared to the input texture block,
and is more susceptible to interference from the oil painting
style. The images generated by original TS-GAN [19] are
relatively monochromatic in tone and exhibit artifacts. Our
method preserves texture regions better compared to TS-
GAN, and has stronger color differences with background
regions, especially verified in the third row in Figure 12.
In conclusion, our method generates images that highlight
strong image style features and produces a more intuitive
visual effect than other algorithms.

This paper also evaluates the subjective quality of the
images generated by the different methods through a set of
questionnaires [27]. All methods and models use the same
training tile images, and for each method to be compared,

Grayscale 
Image 
Block

Style 
Exemplar

Style Transfer[10] DCGAN [15] MGANs [26]
Non-Stationary 

Texture Synthesis 
Network [11]

Ours

FIGURE 12. Comparison of experimental results between the traditional and the recent style transfer methods.
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5 images are randomly generated to form the respective
image set. Then 50 people are randomly invited to score
the respective image quality evaluation factors of each the
image set, with the average value taken as the final result. The
image quality evaluation factors are image diversity, degree
of retention of major texture features, style transfer effect,
image size, and image quality. All features are rated in the
range of 0 to 5, with a rating range falling in the interval [0,
1.5] corresponding to a low degree of evaluation factors, (1.5,
3] medium, and (3, 5] high.

The results of the questionnaires are summarized in Table
1. The images generated by the image-editing based method
[4], [6] have fewer missing parts of the image, in other
words, the missing parts of the image are edited based on
a large number of a priori and known features. Although
the texture features are better preserved, it is not as good as
our method in terms of image diversity, and still needs to be
improved in terms of generated image size and quality. In
the methods based on AutoEncoder and GAN [8], [12], [14],
[28], although the output images have more obvious texture
features and the image diversity increases with the change of
the input vector, these methods cannot generate tile images
with specified styles as our method. In the methods based
on style transfer [10], [19], [26],although the output image
diversity can be increased by changing the input style image,
it is far inferior to our method in terms of image size and
image quality, and the texture features are severely distorted.
In comparison, the images generated by our method are better
evaluated for all the subjective quality features.

Quantitative Validation. Four metrics, namely, maximum
image resolution, average image generation time, inception
score (IS), and blind/referenceless image spatial quality eval-
uator (BRISQUE), are introduced for further quantitative
comparison. The inception score [29] is used to evaluate
the diversity and authenticity of the images generated by
the network, and the more varied and distinct the generated
images are, the higher the score is. The blind/referenceless
image spatial quality evaluator [30] is a no-reference spatial
domain image quality assessment metric that scores lower if
the generated image is smooth and less noisy.

The experimental results are summarized in Table 2. Al-
though our method is slightly higher than other networks and
algorithms in terms of average image generation time, the
maximum image resolution is greatly increased. In terms of
IS, our method is significantly higher than the methods based
on image editing, AutoEncoder, and GAN, which proves that
the introduction of image stylization operations can increase
the diversity of the generated images. Additionally, our
method is superior to the rest of style transfer algorithms in
IS, which further proves that our method can generate more
diverse and natural-looking tile images. As for BRISQUE,
the accuracy of our method is lower than [4], [6] and other
style transfer methods [10], [19], [26], but slightly higher
than [8], [12], [14], [28], and the image quality needs to be
further improved.

In conclusion, the above experiments prove that our
method is not only capable of controlling the main texture
of the output tile image, but also able to achieve image

TABLE 1. Comparison of the image quality evaluation factors to different networks/algorithms.

Category Algorithm/
Network

Generate image
diversity

Degree of
retention of major

texture features

Style transfer
effect

Generated
image size

Image
qualityafter
superscaling

Image editing pixel-cnn [4] Medium High —— Low Low
DIP [6] Medium High —— Low Medium

AutoEncoder/GAN

UNet [8] High Medium —— Medium Low
Style-GAN [12] High Medium —— Medium Low
DC-GAN [14] High Medium Low Medium Low

GAN-Sketching [26] High High —— Medium Low

Style Transfer
Style Transfer [10] High Low Low Low Low

MGANs [28] High Low Low Low Low
Texture Synthesis [19] High Low Medium Medium Medium

Ours High High High High High

TABLE 2. Comparison of the quantitative metrics among different networks/algorithms.

Category Algorithm/Network Maximum image resolution(px×px) Average image generation time(s) IS BRISQUE256 1024 4096 16384

Image editing pixel-cnn [4] 512×512 0.85 —— —— —— 2.34±0.09 29.83
DIP [6] 512×512 0.73 —— —— —— 2.32±0.10 30.11

AutoEncoder/GAN

UNet [8] 1024×1024 0.54 2.16 —— —— 2.25±0.11 24.79
Style-GAN [12] 1024×1024 0.49 1.72 —— —— 2.28±0.13 25.63
DC-GAN [14] 1024×1024 0.22 1.08 —— —— 2.22±0.09 23.27

GAN-Sketching [28] 1024×1024 0.13 1.69 —— —— 1.92±0.12 33.71

Style Transfer
Style Transfer [10] 512×512 150.13 —— —— —— 2.98±0.11 42.21

MGANs [26] 512×512 122.06 —— —— —— 3.12±0.13 31.99
Texture Synthesis [19] 4096×4096 0.67 2.46 34.7 —— 3.09±0.12 31.63

Ours 16384×16384 1.15 2.98 34.94 47.72 3.45±0.23 29.54
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stylization and super-resolution. It can be applied to practical
designs, and provides a good reference for designers to
design customized tiles.

V. CONCLUSION
In this paper, we have proposed a multi-stage tile genera-
tion algorithm based on generative adversarial network, and
designed the corresponding networks to cleverly divide tile
generation into three stages: image block generation, image
stylization, and image super-resolution and magnification, to
realize the generation of high-quality tile image styles. The
relevant experiments further demonstrate that our method can
not only ensure the generation of high-quality tile images in
a relatively short period of time, but also consider human
interaction factors to a certain extent, to maintain a certain
degree of controllability in the main texture and style content
of the generated tile images, which is in line with people’s
psychological expectations.

There is still room for further improvement in our method.
On the one hand, the speed and efficiency of the model can
be further improved to meet the real-time interaction with the
designer. On the other hand, the controllability of texture and
style can still be further enhanced. For example, semantic
information can be added to our network, so in the process
of tile images generation, designers can freely choose the
image style and carve out the main texture structure of the
image. Finally, in the future research, we hope to improve the
versatility of our method and extend it to other deep learning
network architectures [31], [32], [33].
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GAN Generative Adversarial Network
VGG Visual Geometry Group Convlutional Network
VGG19 Visual Geometry Group with 19 Network Layers
AdaIN Adaptive Instance Normalization

ProGAN Progressive Growing of Generative Adversarial
Network

StyleGAN A Style-Based Generator Architecture for
Generative Adversarial Network

MSA Multi-Scale Attention

MSA-GAN Multi-Scale Attention Generative Adversarial
Network

MSA-StyleGAN StyleGAN with Multi-Scale Attention
SWAG Stylization With Activation smoothinG
TS-GAN Texture Synthesis Generative Adversarial Network

SWAG-TS-GAN Stylization With Activation smoothinG Texture
Synthesis Generative Adversarial Network
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