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Abstract

We introduce a 1 C 1-dimensional temperature-dependent model such that the
classical ballistic deposition model is recovered as its zero-temperature limit. Its
1-temperature version, which we refer to as the 0-Ballistic Deposition (0-BD)
model, is a randomly evolving interface which, surprisingly enough, does not be-
long to either the Edwards–Wilkinson (EW) or the Kardar–Parisi–Zhang (KPZ)
universality class. We show that 0-BD has a scaling limit, a new stochastic pro-
cess that we call Brownian Castle (BC) which, although it is “free”, is distinct
from EW and, like any other renormalisation fixed point, is scale-invariant, in
this case under the 1 W 1 W 2 scaling (as opposed to 1 W 2 W 3 for KPZ and 1 W 2 W 4
for EW). In the present article, we not only derive its finite-dimensional distri-
butions, but also provide a “global” construction of the Brownian Castle which
has the advantage of highlighting the fact that it admits backward characteris-
tics given by the (backward) Brownian Web (see [16, 37]). Among others, this
characterisation enables us to establish fine pathwise properties of BC and to re-
late these to special points of the Web. We prove that the Brownian Castle is a
(strong) Markov and Feller process on a suitable space of càdlàg functions and
determine its long-time behaviour. Finally, we give a glimpse to its universality
by proving the convergence of 0-BD to BC in a rather strong sense. © 2022
The Authors. Communications on Pure and Applied Mathematics published by
Wiley Periodicals LLC.
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1 Introduction
The starting point for the investigation presented in this article is the one-dimen-

sional Ballistic Deposition (BD) model [15] and the longstanding open question
concerning its large-scale behaviour. Ballistic Deposition (whose precise defini-
tion will be given below) is an example of random interface in .1C1/-dimensions,
i.e., a map hWRC � A ! R, A being a subset of R, whose evolution is driven
by a stochastic forcing. In this context, two universal behaviours, so-called uni-
versality classes, have generally been considered the Kardar–Parisi–Zhang (KPZ)
class, to which BD is presumed to belong [2, 29], and the Edwards–Wilkinson
(EW) class. Originally introduced in [23], the first is conjectured to capture the
large-scale fluctuations of all those models exhibiting some smoothing mechanism,
slope-dependent growth speed, and short-range randomness. The “strong KPZ uni-
versality conjecture” states that for height functions h in this loosely defined class,
the limit as � ! 0 of �1h.�=�3; �=�2/ � C=�2, where C is a model-dependent
constant, exists (meaning in particular that the scaling exponents of the KPZ class
are 1 W 2 W 3), and is given by hKPZ, a universal (model-independent) stochastic
process referred to as the “KPZ fixed point” (see [28] for the recent construction
of this process as the scaling limit of TASEP). If an interface model satisfies these
features but does not display any slope dependence, then it is conjectured to belong
to the EW universality class [11], whose scaling exponents are 1 W 2 W 4 and whose
universal fluctuations are Gaussian, given by the solutions hEW to the (additive)
stochastic heat equation

(1.1) @thEW D 1

2
@2xhEW C �;

with � denoting space-time white noise1.
That said, there is a paradigmatic model in the KPZ universality class which

plays a distinguished role. This model is a singular stochastic PDE, the KPZ equa-
tion, which can be formally written as

(1.2) @th D 1

2
@2xhC

1

4
.@xh/

2 C �:

(The proof that it does indeed converge to the KPZ fixed point under the KPZ
scaling was recently given in [30,38].) The importance of (1.2) lies in the fact that
its solution is expected to be universal itself in view of the so-called “weak KPZ
universality conjecture” [4, 20] which, loosely speaking, can be stated as follows.
Consider any (suitably parametrised) continuous one-parameter family " 7! h" of
interface growth models with the following properties:

1The choice of constants 1=2 and 1 appearing in (1.1) is no loss of generality as it can be enforced
by a simple fixed rescaling.
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- the model h0 belongs to the EW universality class,
- for " > 0, the model h" belongs to the KPZ universality class.

Then it is expected that there exists a choice of constants C" such that

(1.3) lim
"!0 "

1=2h"."
�2t; "�1x/ � C" D h;

with h solving (1.2).
One can turn this conjecture on its head and take a result of the form (1.3) as

suggestive evidence that the models h" are indeed in the KPZ universality class for
fixed ". What we originally intended to do with the Ballistic Deposition model was
exactly this: introduce a one-parameter family of interface models to which BD
belongs and prove a limit of the type (1.3).

FIGURE 1.1. Example of two ballistic deposition update events. The
two arrows indicate the locations of the two clocks that ring and the
right picture shows the evolution of the left picture after these two update
events.

The BD model is a Markov process h taking values inZZ and informally defined
as follows. Take a family of i.i.d. exponential clocks (with rate 1) indexed by x 2 Z
and, whenever the clock located at x rings, the value of h.x/ is updated according
to the rule

(1.4) h.x/ 7! maxfh.x � 1/; h.x/C 1; h.x C 1/g :
This update rule is usually interpreted as a “brick” falling down at site x and then
either sticking to the topmost existing brick at sites x�1 or xC1, or coming to rest
on top of the existing brick at site x. See Figure 1.1 for an example illustrating two
steps of this dynamic. The result of a typical medium-scale simulation is shown
in Figure 1.2 (shades of colour indicate the time at which a given brick fell down),
suggesting that x 7! h.x/ is locally Brownian.

A natural one-parameter family containing ballistic deposition is given by in-
terpreting the maximum appearing in (1.4) as a “zero-temperature” limit and, for
� � 0, to consider instead the update rule

(1.5) h.x/ 7! y 2 fh.x � 1/; h.x/C 1; h.x C 1/g; P .y D y/ / e�y :

As � ! 1, this does indeed reduce to (1.4), while � D 0 corresponds to a
natural uniform reference measure for ballistic deposition. It is then legitimate to



4 G. CANNIZZARO AND M. HAIRER

FIGURE 1.2. Medium-scale simulation of the ballistic deposition pro-
cess.

ask whether (1.3) holds if we take for h" the process just described with a suitable
choice of � D �."/.

FIGURE 1.3. Large-scale simulation of � D 0 ballistic deposition.

Surprisingly, this is not the case. The reason however is not that ballistic depo-
sition isn’t in the KPZ universality class, but that its � D 0 version (which we will
refer to as 0-Ballistic Deposition model) does not belong to the Edwards-Wilkinson
universality class. Indeed, Figure 1.3 shows what a typical large-scale simulation
of this process looks like. Here, whenever we make a move of the type h.x/ 7! y

as in (1.5), we interpret this as a new coloured brick being placed at .x; y/. Note
that in this way it may happen that bricks are placed underneath existing bricks, or
even at the same location as an existing brick. We ignore this, so that the interface
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h isn’t necessarily given precisely by the top of the picture, but by a line of bricks
with same colour. (The difference between the two is quite small and the described
procedure produces pictures that are more aesthetically pleasing.)

It is clear from the picture that its large-scale behaviour is not Brownian; in fact,
the interface h does not even appear to be continuous! The aim of this article is
to describe the scaling limit of this process, which we denote by hBC and call the
“Brownian Castle” in view of the turrets and crannies apparent in the simulation.

1.1 The 0-Ballistic Deposition and its scaling limit
In order to understand how to characterise the Brownian Castle, it is convenient

to take a step back and examine more closely the 0-Ballistic Deposition model. In
view of (1.5), the dynamics of 0-BD is driven by three independent Poisson point
processes �L, �R, and �� onR�Z, whose intensity is �=2 for �R and �L, and �
for ��, � being such that for every k 2 Z, �.dt; k/ is the Lebesgue measure onR.2

Each event of �L, �R and �� is responsible of one of the three possible updates
h0-bd.x/ 7! y of the height function, namely �L yields y D h0-bd.x C 1/, �R

yields y D h0-bd.x � 1/, and �� yields y D h0-bd.x/C 1. Given a realisation of

x

y w

0

t

Z

FIGURE 1.4. Graphical representation of 0-Ballistic Deposition. The
red lines represent the coalescing paths �#;1

.t;y/
and �#;1

.t;w/
.

these processes, we can graphically represent them as in Figure 1.4; i.e., events of
�L and �R are drawn as left/right pointing arrows, while for those of �� are drawn
as dots on R � Z.

Assuming that the configuration of 0-BD at time 0 is h0 2 ZZ, it is easy to see
that for any ´ D .t; y/ 2 RC � Z, the value h0-bd.´/ can be obtained by going
backwards following the arrows along the unique path �#´ starting at ´ and ending
at a point in f0g�Z, say .0; x/ (the red line in Figure 1.4), and adding to h0.x/ the
number of dots that are met along the way (in Figure 1.4, h0-bd.t; y/ D h0.x/C4).

In order to obtain order 1 large-scale fluctuations for h0-bd, we clearly need to
rescale space and time diffusively to ensure convergence of the random walks �#´
2This is actually a slightly different model from that described in (1.5) where the three processes
have the same intensity. The present choice is so that as many constants as possible take the value 1
in the limit, but other (symmetric) choices yield the same limit modulo a simple rescaling.
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x1 x2 x3 x4 x5

B1.0/ B3.0/

`1

`2

FIGURE 1.5. Example of construction of the 5-point distribution of the
Brownian Castle.

to Brownian motions. The size of the fluctuations should equally be scaled in
a diffusive relation with time in order to have a limit for the fluctuations of the
Poisson processes obtained by “counting the number of dots”. In other words, the
scaling exponents governing the large-scale fluctuations should indeed be 1 W 1 W 2.

The previous considerations immediately enable us to deduce the finite-dimen-
sional distributions of the scaling limit of 0-BD and consequently lead to the fol-
lowing definition of the Brownian Castle.

DEFINITION 1.1. Given h0 2 D.R;R/3, we define the Brownian Castle (BC)
starting from h0 as the process hbc W RC � R! R with finite-dimensional distri-
butions at space-time points f.ti ; xi /gi�k with ti > 0 given as follows. Consider
k coalescing Brownian motions Bi , running backwards in time and such that each
Bi is defined on �0; ti � with terminal value Bi .ti / D xi . For each edge e of the
resulting rooted forest, consider independent Gaussian random variables �e with
variance equal to the length `e of the time interval corresponding to e. We then
set hbc.ti ; xi / D h0.Bi .0// CP

e2Ei �e, where Ei denotes the set of edges that
are traversed when joining the i th leaf to the root of the corresponding coalescence
tree. See Figure 2.1 for a graphical description.

The existence of such a process hbc is guaranteed by Kolmogorov’s extension
theorem. One goal of the present article is to provide a finer description of the
Brownian Castle which allows us to deduce some of its pathwise properties and to
show that 0-BD converges to it in a topology that is significantly stronger than just
convergence of k-point distributions.

1.2 The Brownian Castle: a global construction and main results
As Definition 1.1 and the above discussion suggest, any global construction of

the Brownian Castle must comprise two components. On the one hand, since we

3Here D.R;R/ denotes all càdlàg functions from R to R.
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want to define it at all points simultaneously, we need a family of backward coa-
lescing trajectories starting from every space-time point and each distributed as a
Brownian motion. On the other, we need a stochastic process indexed by the points
on these trajectories whose increment between, say, ´1; ´2 2 R2, is a Gaussian
random variable with variance given by their ancestral distance, i.e., by the time it
takes for the trajectories started from ´1 and ´2 to meet.

The first of these components is the (backward) Brownian Web which was orig-
inally constructed in [37] and further studied in [16]. In the present context, it turns
out to be more convenient to work with the characterisation provided by [8]. The
latter has the advantage of highlighting the tree structure of the Web which in turn
determines the distribution of the increments of the Gaussian process indexed by
it.

We start our analysis by constructing a random couple �bc
defD .�

#
bw; Bbc/ (and

an appropriate Polish space in which it lives), whose first component �#bw D .T #
bw;

�#bw; d
#
bw;M

#
bw/ is the Brownian Web Tree of [8]. The terms in �bc can heuristically

be described as follows:

- .T #
bw;�#bw; d

#
bw/ is a pointed R-tree (see Definition 2.1) which should be

thought of as the set of “placeholders” for the points in the trajectories, and
whose elements are morally of the form .s; �

#
´ /, where �#´ is a backward

path in the Brownian Web W from ´ D .t; x/ 2 R2 (there can be more
than 1!), and s < t is a time, in which the distance d#bw is the ancestral
distance given by

(1.6) d
#
bw

�
.t; �#´ /; .s; �

#
´0/
� defD .t C s/ � 2�#t;s

�
�#´ ; �

#
´0

�
;

where the coalescence time �#t;s is given by �#t;s.�
#
´ ; �

#
´0/

defD supfr < t^s W
�
#
´ .r/ D �

#
´0.r/g,

- M#
bw is the evaluation map which associates to the abstract placeholder

in T #
bw the actual space-time point in R2 to which it corresponds, i.e.,

M
#
bwW .s; �#´ / 7! .s; �

#
´ .s//,

- Bbc is the branching map, which corresponds to the Gaussian process in-
dexed by T #

bw and such that

E
��
Bbc.t; �

#
´ / � Bbc.s; �

#
´0/
�2� D d

#
bw

�
.t; �#´ /; .s; �

#
´0/
�
:

With such a couple at hand, we would like to define the Brownian Castle starting
at h0 by setting

(1.7) hbc.´/
defD h0.�

#
´ .0//C Bbc.t; �

#
´ / � Bbc.0; �

#
´ / for all ´ 2 RC �R.

The above definition implicitly relies on the fact that we are assigning to every
point ´ 2 R2 a point in T #

bw (and consequently a path �#´ 2 W ), but, as it turns
out (see [8, theorem 3.26]), in the Brownian Web Tree there are “special points”
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from which more than one path originates. Since anyway this number is finite
(at most 3), we can always pick the rightmost trajectory and ensure well-posedness
of (1.7) (see the definition of the tree map in Section 2.2 that makes this assignment
rigorous).

The special points of the Brownian Web Tree are particularly relevant for the
Brownian Castle because they are the points at which the discontinuities generating
the turrets and crannies in Figure 1.2 can be located. Thanks to (1.7), we will not
only be able to detect these points but also track the space-time behaviour of the
(dense) set of discontinuities of hBC (see Section 4.1).

In the following theorem, we loosely state some of the main results concerning
the Brownian Castle which can be obtained by virtue of the construction above.

THEOREM 1.2. The Brownian Castle in Definition 1.1 admits a version hbc such
that for all h0 2 D.R;R/, t 7! hbc.t; �/ is a right-continuous map with values in
D.R;R/ endowed with the Skorokhod topology dSk in (1.15), which is continuous
except for a countable subset of RC, but admits no version which is càdlàg in both
space and time.

hbc is a time-homogeneousD.R;R/-valued Markov process, satisfying both the
strong Markov and the Feller properties, which is invariant under the 1 W 1 W 2
scaling; i.e., if hibc with i 2 f1; 2g are two instances of the Brownian Castle with
possibly different initial conditions at time 0, then, for all � > 0, one has the
equality in law

(1.8) h1bc.t; x/
lawD ��1h2bc.�

2t; �x/; t � 0; x 2 R;
(viewed as an equality between space-time processes) provided that (1.8) holds as
an equality between spatial processes at time t D 0.

Moreover, when quotiented by vertical translations, hbc.t; �/ converges in law,
as t ! 1, to a stationary process whose increments are Cauchy but which is
singular with respect to the Cauchy process.

A more precise formulation of this theorem, together with its proof, is split in
the various statements contained in Section 4.

Remark 1.3. When we say that “a process h admits a version having property
P ”, we mean that there exists a standard probability space � endowed with a
collection of random variables h.´/ such that for any finite collection f´1; : : : ; ´kg,
the laws of .h.´i //i�k and .h.´i //i�k coincide and furthermore h�1.P / � � is
measurable and of full measure.

Remark 1.4. In [25, 26], the authors considered the Ballistic deposition process
with initial condition given by a very steep slope. This also naturally leads to an
object with scaling exponents as in (1.8) and related to coalescing random walks. It
does however appear to be different since the coalescence happens forward in time
and the Brownian web doesn’t seem to appear naturally. The vertical/transverse
fluctuations also appear to be different from ours despite the scaling exponents
being the same.
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The second task of the present article is to show that the 0-Ballistic Deposition
model indeed converges to it. Thanks to the heuristics presented above, in order
to expect any meaningful limit, we need to recentre and rescale the 0-BD height
function h0-bd according to the 1 W 1 W 2 scaling, so we set

(1.9) h�0-bd.t; x/
defD �

�
h0-bd

�
t

�2
;
x

�

�
� t

�2

�
; for all ´ 2 RC �R.

Now, given the way in which Definition 1.1 was derived, convergence of h�0-bd to
hbc in the sense of finite-dimensional distributions should not come as a surprise
since it is an almost immediate consequence of Donsker’s invariance principle.
That said, we aim at investigating a stronger form of convergence which relates 0-
BD and BC as space-time processes. The major obstacle here is that Theorem 1.2
explicitly asserts that the Brownian Castle hbc does not live in any “reasonable”
space which is Polish and in which point evaluation is a measurable operation, so
that a priori it is not even clear in what sense such a convergence should be stated. It
is at this point that our construction, summarised by the expression in (1.7), comes
once more into play.

As we have seen above, the version of the Brownian Castle hbc given in (1.7)
is fully determined by the couple �bc

defD .�
#
bw; Bbc/, which in turn was inspired

by the graphical representation of the 0-Ballistic Deposition model illustrated in
Figure 1.4. For any realisation of the Poisson random measures �L, �R, and ��

suitably rescaled and (for the latter) compensated, it is possible to build ��0-bd
defD

.�
#
�
; N�/, in which �#

�

defD .T #
�
;�#
�
; d

#
�
;M

#
�
/ is the Discrete Web Tree of [8, defini-

tion 4.1] and encodes the family of coalescing backward random walks �#;� natu-
rally associated to the random measures �L and �R, while N� is the compensated
Poisson point process indexed by T #

�
and induced by �� (the precise construction

of ��0-bd can be found in Section 5.1). Given any initial condition h�0 2 D.R;R/,
we now set, analogously to (1.7),
(1.10)

h�0-bd.´/
defD h�0

�
�
#;�
´ .0/

�CN�
�
t; �

#;�
´

� �N��0; �#;�´ �
for all ´ 2 RC �R,

where, for ´ D .t; x/, ´ D .t; �bx=�c/ 2 RC � .�Z/. Notice that h�0-bd is a càdlàg
(in both space and time) version of h�0-bd started from h�0, in the sense that all of their
k-point (in space-time) marginals coincide. Thanks to the previous construction,
we are able to state the following theorem whose proof can be found at the end of
Section 5.

THEOREM 1.5. Let fh�0g� ; h0 � D.R;R/ be such that dSk.h
�
0; h0/ ! 0. Then,

for every sequence �n ! 0 there exists a version of h�n0-bd and hbc for which, almost
surely, there exists a countable set of times D such that for every T 2 RC nD
(1.11) lim

n!1 dSk
�
h�n0-bd.T; �/; hbc.T; �/

� D 0:
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Here, h�0-bd starts from h�0 and is defined in (1.10), while hbc is the Brownian Castle
started from h0.

This theorem also provides information concerning the nature and evolution of
the discontinuities of the Brownian Castle. Indeed, for (1.11) to hold, it cannot be
the case that many small discontinuities of 0-BD add up and ultimately create a
large discontinuity for BC. Instead, the statement shows that the major discontinu-
ities of the former converge to those of the latter.

To see this phenomenon and prove Theorem 1.5, the main ingredient is the con-
vergence of ��0-bd to �bc (and that of the dual of the Discrete Web Tree to the dual of
the Brownian Web Tree as stated in [8, theorem 4.5]). The topology in which such
a convergence holds (see Section 2) is chosen in such a way that the convergence of
the evaluation maps morally provides a control over the sup norm distance between
discrete and continuous backward trajectories and is therefore similar in spirit to
that in, e.g., [16], while that of the trees guarantees that couples of distinct discrete
and continuous paths which are close also coalesce approximately at the same time.
This is a crucial point (which moreover distinguishes our work from the previous
ones) since it is at the basis of the convergence ofN� to Bbc and ultimately ensures
that of h�0-bd to hbc.

Remark 1.6. One technical problem that arises (and this explains the presence of
the countable set of times D in the statement of Theorem 1.5) is the presence of
exceptional points of type .3; 0/ in the Brownian web, which correspond to the
merging of discontinuities for the Brownian Castle. The merging of two disconti-
nuities is not a continuous operation in any of the standard càdlàg topologies (the
process t 7! Ct given by Ct D 1�0;�t/ for t < 0 and Ct D 0 for t � 0 is right-
continuous at the origin but does not admit a left limit) and, as already pointed out
above, we were unable to find an alternative topology which makes them continu-
ous, all the while preserving the measurability of the point evaluation maps.

1.3 The BC universality class and further remarks
Over the last two decades, the KPZ (and EW) universality class has been at

the heart of an intense mathematical interest because of the challenges it poses
and the numerous physical systems which abide by its laws (see [31] for a review
and [1, 28, 30, 35, 38] among many other recent results). This article and the re-
sults stated herein establish the existence of a new universality class, which we
will refer to as the BC universality class, by characterising a novel scale-invariant
stochastic process, the Brownian Castle, which encodes the fluctuations of models
in this class and arises as the scaling limit of a microscopic random system, the
0-Ballistic Deposition model. It is natural to wonder what are the features a model
should exhibit in order to belong to it. Given the analysis of the Brownian Castle
outlined above, it is reasonable to expect that any interface model which displays
both horizontal and vertical fluctuations but no smoothing is an element of the BC
universality class. The first type of fluctuations is responsible for the (coalescing)
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Brownian characteristics in the limit, while the second determines the Brownian
motion indexed by them. A model which possesses these features and is somewhat
paradigmatic for the class is the random transport equation given by

(1.12) @th D � @xhC �;

where � and � are two space-time stationary random fields, the first being respon-
sible for the horizontal/lateral fluctuations and the second for the vertical ones. We
conjecture that, provided the noises are sufficiently mixing so that some form of
functional central limit theorem applies, under the 1 W 1 W 2 scaling the solution
of (1.12) converges (in a weak sense) to the Brownian Castle. We conclude this in-
troduction by pointing out some aspects of the construction of the Brownian Castle
and the description of the 0-Ballistic Deposition model, commenting on their rela-
tion with the existing literature.

The importance of the Brownian Web lies in its connection with many inter-
esting physical and biological systems (population genetics models, drainage net-
works, random walks in random environment, . . . ). and a thorough account on the
advances of the research behind it can be found in [34]. One of the most notable
generalisations of the Brownian Web is the Brownian Net [35] (and the stochastic
flows therein [33]), which arises as the scaling limit of a collection of coalescing
random walks that in addition have a small probability to branch. It is then natural
to wonder if a construction similar to that carried out here is still possible start-
ing from the Brownian Net, and what the corresponding “Castle” would be in this
context. We believe that such considerations allow us to build crossover processes
connecting the BC and EW universality classes, namely such that their small-scale
statistics are BC, while their large-scale fluctuations are EW.

From the perspective of discrete interacting systems, let us also mention that
the graphical representation of the 0-Ballistic Deposition is in itself not new. A
picture analogous to Figure 1.4, can be found in [18], where the authors introduce
the so-called noisy voter model. The latter can be obtained by the usual voter
model (see [27] for the definition), whose graphical representation is the same as
that in Figure 1.4 but without �, by adding spontaneous flipping, illustrated by the
realisation of ��. Let us remark that not only the meaning but also the limiting
procedure involving �� is different in the two cases. In the present setting the
intensity of �� is fixed, while it is sent to 0 at a suitable rate in [17].

1.4 Outline of the paper
In Section 2, we recall the main definitions related to R-trees and the topology

and construction of the Brownian Web Tree �#bw given in [8].
In Section 3, we build the couple �bc. We introduce, for �; � 2 .0; 1/, the

space T�;�bsp (and its “directed” subset D�;�bsp ) in which the couple �bc lives, and
define the metric that makes it Polish (Section 3.1). We then provide conditions
under which a stochastic process X indexed by a spatial tree � admits a Hölder-
continuous modification, construct both Gaussian and Poisson processes indexed
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by a generic spatial tree, and prove that the map � 7! Law.�; X/ is continuous
(Sections 3.2 and 3.3). Finally, combining this with the results of Section 2 we
construct the law of �bc on D�;�bsp in Section 3.4.

Section 4 is devoted to the Brownian Castle and its periodic counterpart, and
contains the proof of Theorem 1.2. In Section 4.1, we first define the version
formally given in (1.7) and determine its continuity properties (among which the
finite p-variation for p > 1), then we study the location and structure of its dis-
continuities and analyse their relation with the special points of the Brownian Web.
Afterwards, in Section 4.2, we prove the Markov, strong Markov, and Feller and
strong Feller properties (the latter holds only in the periodic case) and study its
long-time behaviour. In Section 4.3, we derive the distributional properties of the
Brownian Castle (scale invariance and multipoint distributions) and show that al-
though its invariant measure has increments that are Cauchy distributed and has
finite p-variation for any p > 1, it is singular with respect to the law of the Cauchy
process.

In Section 5, we turn our attention to the 0-Ballistic Deposition model. At first,
we associate the triplet ��0-bd to it and show that the latter converges to �bc (Sec-
tions 5.1 and 5.2) and then (Section 5.3), we prove Theorem 1.5. Finally, the
appendix collects a number of relatively straightforward technical results.

Notations
We will denote by j � je the usual Euclidean norm on Rd , d � 1, and adopt the

shorthand notations jxj defD jxje and kxk defD jxje for x 2 R and R2, respectively.
Let .T ; d / be a metric space. We define the Hausdorff distance dH between two
nonempty subsets A; B of T as

(1.13) dH .A;B/
defD inff"WA" � B and B" � Ag

where A" is the "-fattening of A, i.e., A" D fz 2 T W 9w 2 A s.t. d.z;w/ < "g.
Let .T ; d;�/ be a pointed metric space, i.e., .T ; d / is as above and � 2 T ,

and let M WT ! Rd be a map. For r > 0 and � 2 .0; 1/, we define the sup-norm
and �-Hölder norm of M restricted to a ball of radius r as

kMk.r/1 defD sup
z2Bd .�;r�

jM.z/je; kMk.r/� defD sup
z;w2Bd .�;r�
d.z;w/�1

jM.z/ �M.w/je
d.z;w/�

:

where Bd .�; r� � T is the closed ball of radius r centred at �, and, for � > 0, the
modulus of continuity as

(1.14) !.r/.M; �/
defD sup

z;w2Bd .�;r�
d.z;w/��

jM.z/ �M.w/je:
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In case T is compact, in all the quantities above, the suprema are taken over the
whole space T and the dependence on r of the notation will be suppressed. More-
over, we say that a function M is (locally) little �-Hölder continuous if for all
r > 0, lim�!0 ���!.r/.M; �/ D 0.

Let I � R be an interval and .X ; d / be a complete separable metric space. We
denote the space of càdlàg functions on I with values in X as D.I;X / and, for
f 2 D.I;X /, the set of discontinuities of f by Disc.f /. We will need two dif-
ferent metrics on D.I;X /, corresponding to the so-called J1 (or Skorokhod) and
M1 topologies. For the first, let�.I / be the space of strictly increasing continuous
homeomorphisms on I such that

.�/
defD sup

t2I
j�.t/ � t j _ sup

s;t2I
s<t

����log
�
�.t/ � �.s/
t � s

����� <1:

Then, for � 2 �.I / and f; g 2 D.I;X / we set

d I� .f; g/
defD 1 _ sup

s2I
d.f .s/; g.�.s///;

so that the Skorokhod metric is given by

dSk.f; g/
defD inf

�2�.I/
.�/ _ d I� .f; g/;

dSk.f; g/
defD inf

�2�
.�/ _

Z 1

0

e�t d ��t;t�
�

.f; g/ dt;
(1.15)

where in the first case I is assumed to be bounded. For the M1 metric instead, we
restrict to the case of X D RC

defD �0;1/. Given f 2 D.I;RC/, denote by �f
its completed graph, i.e., the graph of f to which all the vertical segments joining
the points of discontinuity are added, and order it by saying that .x1; t1/ � .x2; t2/
if either t1 < t2 or t1 D t2 and jf .t�1 / � x1j � jf .t�1 / � x2j. Let Pf be the set
of all parametric representations of �f , which is the set of all nondecreasing (with
respect to the order on �f ) functions �f W I ! �f . Then, if I is bounded, we set

yd c
M1.f; g/

defD 1 _ inf
�f ;�g

k�f � �gk

and d c
M1.f; g/ to be the topologically equivalent metric with respect to which

D.I;RC/ is complete (see [39, sec. 8] for more details). If instead I D ��1;1/,
we define

(1.16) dM1.f; g/
defD
Z 1

0

e�t
�
1 ^ d c

M1.f
.t/; g.t//

�
dt

where f .t/ is the restriction of f to ��1; t �.
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For p > 0, we say that a function f WR ! X , .X ; d / being a metric space,
has finite p-variation if for every bounded interval I � R

(1.17) kf kp-var;I
defD
 

sup
tk2DI

d.f .tk/; f .tk�1//p
!1=p

<1

where DI ranges over all finite partitions of I .
The Wasserstein distance of two probability measures �; � on a complete sepa-

rable metric space .T ; d / is defined as

(1.18) W .�; �/
defD inf

g2�.�;�/
E �d.X; Y /�

where �.�; �/ denotes the set of couplings of� and �, the expectation is taken with
respect to g and X; Y are two T -valued random variables distributed according to
� and � respectively.

Finally, we will write a . b if there exists a constant C > 0 such that a � Cb

and a � b if a . b and b . a.

2 The Brownian Web Tree and Its Topology
In this section, we provide the basic definitions and notations on (directed) R-

trees and outline the construction and main properties of the (Double) Brownian
Web Tree derived in [8].

2.1 Directed R-trees in a nutshell
We begin by recalling the notion ofR-tree (see [10, def. 2.1]), degree of a point,

segment, ray, and end.

DEFINITION 2.1. A metric space .T ; d / is an R-tree if for every z1; z2 2 T :
(1) there is a unique isometric map fz1;z2 W �0; d.z1; z2/� ! T such that

fz1;z2.0/ D z1 and fz1;z2.d.z1; z2// D z2;
(2) for every continuous injective map qW �0; 1�! T such that q.0/ D z1 and

q.1/ D z2, one has

q.�0; 1�/ D fz1;z2.�0; d.z1; z2/�/:

A pointed R-tree is a triple .T ;�; d / such that .T ; d / is an R-tree and � 2 T .

Given z 2 T , the number of connected components of T n fzg is the degree of
z, deg.z/ in short. A point of degree 1 is an endpoint, of degree 2 an edge point,
and if the degree is 3 or higher, a branch point.

DEFINITION 2.2. Let .T ; d / be an R-tree and, for any z1; z2 2 T , fz1;z2 the
isometric map in Definition 2.1. We call the range of fz1;z2 a segment joining z1
and z2 and denote it by Jz1; z2K. For z 2 T , a linear subset of T (i.e., a subset
of T isometric to an interval) having z as an endpoint is said to be a T -ray from
z if it is maximal for inclusion among the set of linear subsets of T having z as
an endpoint. The ends of T are the equivalence classes of T -rays with respect to



THE BROWNIAN CASTLE 15

the equivalence relation according to which different T -rays are equivalent if their
intersection is again a T -ray. An end is closed if it is an endpoint of T and open
otherwise and, for � an open end, we indicate by Jz; �i the unique T -ray from z
representing �. � is said to be an open end with (un-)bounded rays if for every
z 2 T , the map �z W Jz; �i ! RC given by

(2.1) �z.w/ D d.z;w/; w 2 Jz; �i;
is (un-)bounded. Note that if .T ; d / is complete (as it will always be in our set-
ting), then every open end is unbounded.

Throughout the article, we will work with (subsets of) the space of spatial R-
trees, consisting of R-trees embedded into R2 via a map, called the evaluation
map.

DEFINITION 2.3. Let � 2 .0; 1/ and consider the quadruplet � D .T ;�; d;M/

where

- .T ;�; d / is a complete and locally compact pointed R-tree,
- M , the evaluation map, is a locally little �-Hölder-continuous proper4

map from T to R2. For any point z 2 T , we define the projections
Mt .z/; Mx.z/ 2 R as M.z/ D .Mt .z/;Mx.z// 2 R2.

The space of pointed �-spatial R-trees T�sp is the set of equivalence classes of
quadruplets as above with respect to the equivalence relation that identifies � and
�0 if there exists a bijective isometry ' W T ! T 0 such that '.�/ D �0 and
M 0 � ' �M , in short (with a slight abuse of notation) '.�/ D �0.

Elements � D .T ;�; d;M/ 2 T�sp are further said to be directed, and their
space denoted by D�sp, if the evaluation map M satisfies

(1) (Monotonicity in time) for every z0; z1 2 T and s 2 �0; 1� one has

(2.2) Mt .zs/ D
�
Mt .z0/ � s d.z0; z1/

� _ �Mt .z1/ � .1 � s/ d.z0; z1/
�

where zs is the unique element of Jz0; z1K with d.z0; zs/ D s d.z0; z1/,
(2) (Monotonicity in space) for every s < t , interval I D .a; b/ and any

four elements z0; z0; z1; z1 such that Mt .z0/ D Mt .z0/ D t , Mt .z1/ D
Mt .z1/ D s, Mx.z0/ < Mx.z0/, and M.Jz0; z1K/[M.Jz0; z1K/ � �s; t � �
.a; b/, we have

(2.3) Mx.zr/ �Mx.zr/

for every r 2 �0; 1�,
(3) There exists an isometry ��WRC ! T such that ��.0/ D � and

(2.4) Mt .��.s// DMt .�/ � s for all s �Mt .�/:
4Namely such that lim"!0 supz2K supd.z;z0/�" kM.z/ �M.z0/k=d.z; z0/� D 0 for every compact
K and the preimage of every compact set is compact.
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FIGURE 2.1. Examples of (the image under M of) spatial R-trees. The
first two are directed, while the remaining two are not. The third fails to
be monotone in space, while the fourth fails to be monotone in time. In
the first two trees, points where M fails to be injective are drawn in red.

The space of those trees that are directed with the exception that, in (1), (2.2)
holds with ^ instead of _, and in (3) the isometry �� such that ��.0/ D � and
Mt .��.s// D s �Mt .�/ for s � Mt .�/ will be denoted instead by bD�sp (and we
still call them ‘directed’).

Remark 2.4. Let T defD R=Z be the torus of size 1 endowed with the usual periodic
metric d.x; y/ D infk2Z jx�yCkj. WhenM isR�T -valued, we will say that �
is periodic and denote the space of periodic (directed) pointed �-spatial R-trees by
T�sp;per (or D�sp;per). As in [8, def. 2.20], we point out that (2) makes sense also in
this case provided we restrict to intervals .a; b/ that do not wrap around the torus.

In order to introduce a metric on T�sp (and D�sp), recall that a correspondence C
between two metric spaces .T ; d /, .T 0; d 0/ is a subset of T � T 0 such that for
all z 2 T there exists at least one z0 2 T 0 for which .z; z0/ 2 C and vice versa. Its
distortion is given by

dis C
defD supfjd.z;w/ � d 0.z0;w0/j W .z; z0/; .w;w0/ 2 C g :

Let � D .T ;�; d;M/ and �0 D .T 0;�0; d 0;M 0/ 2 T�sp be such that both T and
T 0 are compact, and C be a correspondence between them. We set

�
c;C
sp .�; �0/ defD 1

2
dis C C sup

.z;z0/2C

kM.z/ �M 0.z0/k

C sup
n2N

2n� sup
.z;z0/;.w;w0/2C

d.z;w/;d 0.z0;w0/2An

�z;wM � �z0;w0M 0(2.5)

where An
defD .2�n; 2�.n�1/� for n 2 N, and �z;wM

defD M.z/�M.w/. In the above,
we adopt the convention that if there exists no pair of couples .z; z0/; .w;w0/ 2 C
such that d.z;w/ 2 An, then the increment of M is removed and the supremum is
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taken among all z0;w0 such that d 0.z0;w0/ 2 An and vice versa5 We can now define

(2.6) �c
sp.�; �

0/ defD �
c
sp.�; �

0/C dM1.b� ; b� 0/

where
- the first term is

(2.7) �
c
sp.�; �

0/ defD inf
C W .�;�0/2C

�
c;C
sp .�; �0/;

- the map b� is the properness map, which is 0 for r < 0, while for r � 0 is
defined as

(2.8) b� .r/
defD sup

z WM.z/2�r

d.�; z/;

for �r
defD ��r; r�2 � R2 and �r D �

per
r

defD ��r; r� � T , in the periodic
case,

- dM1
is the metric on the space of càdlàg functions given in (1.16).

FIGURE 2.2. Proper-
ness

Let us point out that by [8, lemma 2.9], the properness
map is nondecreasing and càdlàg so that the second sum-
mand in (2.6) is meaningful. An illustration of the notion
of properness and the reason for the presence of the sec-
ond term in (2.7) is shown in Figure 2.2, which illustrates
a sequence �n of directed R-trees with the ‘broken’ re-
gion being of height n and the blue dot denoting the dis-
tinguished point �. This sequence converges in the metric
�

c
sp to a limit which only keeps the left branch, while it

is not Cauchy in the metric �c
sp since b�n.r/ is of order n

for some r of order 1.
Since the elements of T�sp are locally compact, by [8,

theorem 2.6(a)] we can generalise the definition of �c
sp to the noncompact case.

For �; �0 2 T�sp, we set

�sp.�; �
0/ defD

Z C1

0

e�r
�
1 ^�c

sp.�
.r/; �0 .r//

�
dr C dM1.b� ; b� 0/

DW �sp.�; �
0/C dM1.b� ; b� 0/:

(2.9)

where, for r > 0,

(2.10) �.r/
defD .T .r/;�; d;M/;

with T .r/ defD Bd .�; r� being the closed ball of radius r in T .

PROPOSITION 2.5. For any � 2 .0; 1�,
(i) the space .T�sp; �sp/ is a complete, separable metric space;

5If instead we adopted the more natural convention sup¿ D 0, then the triangle inequality might
fail, e.g., when comparing a generic spatial tree to the trivial tree made of only one point.
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(ii) a subset A D f�a D .Ta;�a; da;Ma/ W a 2 Ag, A being an index set,
of T�sp is relatively compact if and only if for every r > 0 and " > 0 there
exist
(a) a finite integer N.r I "/ such that

(2.11) sup
a

Nda.T
.r/
a ; "/ � N.r I "/

where Nda.T
.r/
a ; "/ is the cardinality of the minimal "-net (i.e., a

minimal set of points S such that every other point is within distance
at most " from an element in S ) in T .r/

a with respect to the metric da,
(b) a finite constant C D C.r/ > 0 and � D �.r; "/ > 0 such that

(2.12) sup
a2A

kMak.r/1 � C and sup
a2A

���!.r/.Ma; �/ < ";

(c) a finite constant C 0 D C 0.r/ > 0 such that

(2.13) sup
a
b�a.r/ � C 0;

(iii) D�sp is closed in T�sp.

PROOF. The first two points were shown in [8, theorem 2.14 and prop. 2.17],
while the last is a consequence of [8, prop. 2.23, point 1]. □

An important feature satisfied by any directed tree � D .T ;�; d;M/ 2 D�sp
and shown in [8, prop. 2.23, point 2] is that T possesses a unique open end �
with unbounded rays (see Definition 2.2) such that for every z 2 T and every
w 2 Jz; �i, one has

(2.14) Mt .w/ DMt .z/ � d.z;w/ :
This leads us to introduce the following radial map, which allows us to move along
rays in the R-tree.

DEFINITION 2.6. Let � 2 .0; 1�, � D .T ;�; d;M/ 2 D�sp, and � the open end
with unbounded rays such that (2.14) holds. The radial map %WT � R ! T
associated to � is uniquely defined by postulating that

(2.15) %.z; s/ 2 Jz; �i; Mt .%.z; s// D s ^Mt .z/ :

If instead � 2 yD�sp, the radial map y% is defined in the same way but with _ instead
of ^.

2.2 The tree map
In this subsection, we introduce a map, the tree map, which serves as an inverse

of the evaluation map. Since the evaluation map is not necessarily bijective, we
need to determine a way to assign to a point in R2, one in the tree so that certain
continuities properties can be deduced from those of the evaluation map. We begin
with the following definition.
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DEFINITION 2.7. Let � 2 .0; 1/, � D .T ;�; d;M/ 2 D�sp and % be the radial map
associated to � given as in Definition 2.6. For ´ D .t; x/ 2 R2, we say that z is a
rightmost point for ´ if Mt .z/ D t and

(2.16) Mx.%.z; s// D supfMx.%.w; s// W Mt .w/ D t and Mx.w/ � xg;
for all s < t . Leftmost points are defined as in (2.16) but replacing sup with inf and
Mx.w/ � x withMx.w/ � x. If there is a unique rightmost (resp., leftmost) point
we will denote it by zr (resp., zl).

Remark 2.8. For � 2 bD�sp, a point is said to be a rightmost (or leftmost) point
if (2.16) holds for all s > t .

For ´ 2 R2 and an arbitrary directed tree, rightmost and leftmost points are not
necessarily uniquely defined. As we will see below, for elements in the measurable
subset of D�sp given in [8, def. 2.29], this is indeed the case.

DEFINITION 2.9. Let � 2 .0; 1/. We say that � D .T ;�; d;M/ 2 D�sp satisfies
the tree condition if

(t) for all z1; z2 2 T , if M.z1/ DM.z2/ D .t; x/ and there exists " > 0 such
that M.%.z1; s// DM.%.z2; s// for all s 2 �t � "; t �, then z1 D z2.

We denote by D�sp.t/, the subset of D�sp whose elements satisfy (t).

Remark 2.10. In Figure 2.1, the first example does satisfy the tree condition despite
the lack of injectivity of M , while the second one does not.

LEMMA 2.11. Let � 2 .0; 1/ and � D .T ;�; d;M/ 2 D�sp.t/. Then, for all
´ 2 R2 there exist unique leftmost and rightmost points.

PROOF. Since leftmost and rightmost points are exchanged underMx 7! �Mx ,
we only need to consider rightmost points. Let ´ D .t; x/ 2 R2, � be the unique
open end such that (2.14) holds and % be �’s radial map given in (2.15). Note first
that we can assume without loss of generality that ´ 2 M.T / since the rightmost
points for ´ equal those of ´ D .t; x/, where x D supfy � x W .t; y/ 2 M.T /g.
Since M is proper, it is closed and therefore ´ 2M.T /.

Let fsngn � R be a sequence such that sn " t and An
defD f%.w; sn/ W w 2

M�1.´/g. An is finite since M�1.´/ is totally disconnected, thanks to (2.14), and
is compact by properness of the evaluation map. In particular, this implies that
also the number of paths connecting points in An with those in AnC1 is finite.
We inductively construct a sequence fwngn 2 M�1.´/ as follows. Let w1 be
one of the points for which Mx.%.w1; s// � Mx.%.w; s// for all s 2 �s0; s1� and
w 2 M�1.´/. Assume we picked wn. If Mx.%.wn; s// � Mx.%.w; s// for all
s 2 �sn; snC1� and all w 2 M�1.´/, then set wnC1

defD wn. Otherwise choose
any wnC1 so that Mx.%.wnC1; s// coincides with the right-hand side of (2.16)
for all s 2 �sn; snC1�. Notice that in the first case d.wn;wnC1/ D 0. In the
other instead, there exists s 2 �sn; snC1� such thatMx.%.wn; s/ < Mx.%.wnC1; s/
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hence by monotonicity in space Mx.%.wn; s/ � Mx.%.wnC1; s/ for any s � s.
Moreover, for s 2 �sn�1; sn�, Mx.%.wn; s// � Mx.%.wnC1; s// by construction,
and thereforeMx.%.wn; s// DMx.%.wnC1; s// for s 2 �sn�1; sn�. (t) then implies
that %.wn; sn/ D %.wnC1; sn/ and we conclude that d.wn;wnC1/ � 2.t � sn/.
Hence, the sequence fwngn is Cauchy and converges to a unique limit z 2M�1.´/.
Since, for any n, d.wn�1; z/ � 2.t � sn/ we necessarily have %.z; s/ D %.wn; s/
for all s 2 �sn�1; sn�, which implies that z is a rightmost point. Now, if there
existed another one, say z, then by definition, %.z; �/ � %.z; �/ on any subinterval
I � .�1; t /; therefore, by (t), d.z; z/ D 0. □

Thanks to the above lemma, we are ready for the following definition.

DEFINITION 2.12. Let � 2 .0; 1/ and D�sp.t/ (resp., bD�sp.t/) be the subset of D�sp
(resp., D�sp.t/) whose elements satisfy (t). For � 2 D�sp.t/, we define the tree map
T associated to � as

(2.17) T.´/
defD zr for all ´ 2M.T /

where zr is the unique rightmost point (see Definition 2.7).

Remark 2.13. In the previous definition we could have analogously picked the
leftmost point. The choice above was made so that, under suitable assumptions on
the evaluation map (see Proposition 2.14), the tree map is càdlàg.

The following proposition determines the continuity properties of the tree map.

PROPOSITION 2.14. Let � 2 .0; 1/ and � 2 D�sp.t/. Then, for every t 2 R,
x 7! T.t; x/ is càdlàg.

Before proving the previous, we state and show the following lemma which
contains more precise information regarding the roles of leftmost and rightmost
point in the continuity properties of the tree map.

LEMMA 2.15. Let � 2 .0; 1/ and � 2 D�sp.t/. Let ´ D .t; x/ 2 R2 \M.T / and
assume there exists a sequence f´n D .t; xn/gn � R2 \M.T / converging to it.

(1) If xn # x, then limn T.´n/ D T.´/,
(2) If xn " x, then limn T.´n/ exists and coincides with zl.

PROOF. Let � D .T ;�; d;M/ 2 D�sp. We will prove only (1) since the
other can be shown similarly. Let ´ and f´ngn be as in the statement. Since M
is proper and continuous, the sequence fznr defD T.´n/gn converges along subse-
quences and any limit point is necessarily in M�1.´/. But now, monotonicity in
space and (2.14) imply that

d.z; znr / D d.z; zr/ _ d.zr; z
n
r /I

hence, by uniqueness of zr, the result follows. □
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PROOF OF PROPOSITION 2.14. Let � D .T ;�; d;M/ 2 D�sp and recall that by
definitionM is both proper and continuous. Assume first that ´ D .t; x/ �M.T /.
Then, there exists " > 0 such that ftg � �x � "; x C "� \M.T / D ¿. Hence, all
w 2 ftg � �x � "; x C "� have the same rightmost point so that T is constant there.

If ´ D .t; x/ 2M.T / and, for some " > 0, ftg� .x; xC"/\M.T / D ¿, then
T is constantly equal to T.´/ on ftg� �x; xC"/ and therefore it is continuous from
the right. If ´ D .t; x/ 2M.T / and, for some " > 0, ftg�.x�"; x/\M.T / D ¿,
since by property (3) of directed trees M�1.ftg � �x � " � 2; x � "�/ ¤ ¿ and
M�1.ftg � �x � " � 2; x � "�/ is closed, there exists

´
defD supfw 2 ftg � �x � " � 2; x � "�/ \M.T /g:

But then, T is constantly equal to T.´/ on ftg � .x � "; x/ which implies that
limy"x T.t; y/ exists.

The case of ´ being an accumulation point in ftg � �x � 1; xC 1�\M.T / was
covered in Lemma 2.15, so that the proof is concluded. □

Remark 2.16. Notice that in view of the proof of Proposition 2.14 and Lemma 2.15,
for � D .T ;�; d;M/ 2 D�sp, T is continuous only at those points ´ such that the
cardinality of M�1.´/ is less than or equal to 1.

2.3 The (double) Brownian Web Tree
As pointed out in the introduction, a major role in the definition of the Brownian

Castle is played by the Brownian Web and, in particular, its characterisation as a
directed spatial R-tree. In this subsection, we recall the main statements in [8],
where such a characterisation was derived, focusing on those results which are
instrumental to the present paper. We begin with the following theorem (see [8,
theorem 3.8 and remark 3.9]), which establishes the existence of the Brownian
Web Tree and uniquely identifies its law in D�sp.

THEOREM 2.17. Let � < 1
2

. There exists a D�sp-valued random variable �#bw D
.T #

bw;�#bw; d
#
bw;M

#
bw/ with radial map %#, whose law is uniquely characterised by

the following properties:

(1) for any deterministic point w D .s; y/ 2 R2 there exists almost surely a
unique point w 2 T #

bw such that M#
bw.w/ D w;

(2) for any deterministic n 2 N and w1 D .s1; y1/; : : : ; wn D .sn; yn/ 2 R2,
the joint distribution of .M#

bw;x.%
#.wi ; �///iD1;:::;n, where w1; : : : ;wn are

the points determined in (1) is that of n coalescing backward Brownian
motions starting at w1; : : : ; wn;

(3) for any deterministic countable dense set D such that 0 2 D , let w be the
point determined in (1) associated to w 2 D and Q�# that associated to 0.
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Define z�#1.D/ D . �T #1.D/; Q�#; d#; QM #;D1 / as�T #
1.D/

defD f%#.w; t / W w D .s; y/ 2 D ; t � sg�M #;D
1 .%#.w; t // defD Mbw.%

#.w; t //
(2.18)

and d# to be the ancestral metric in (1.6). Let �T #.D/ be the completion of�T #1.D/ under d#, �M #;D be the unique little �-Hölder-continuous exten-

sion of �M #;D1 and z�#.D/ defD . �T #.D/;�#; d#; �M #;D /. Then, z�#.D/ lawD
�
#
bw.

The same statement holds upon taking the periodic version of all objects and spaces
above and replacing the properties .1/–.3/ with .1/per, .2/per, and .3/per obtained
from the former by adding the word “periodic” before any instance of “Brownian
motion”.

Thanks to the previous result, we can define the (periodic) Brownian Web Tree.

DEFINITION 2.18. Let � < 1
2

. We define backward Brownian Web Tree and pe-

riodic backward Brownian Web Tree, the D�sp and D�sp;per random variables �#bw D
.T #

bw;�#bw; d
#
bw;M

#
bw/ and �per;#

bw D .T
per;#

bw ;�per;#
bw ; d

per;#
bw ;M

per;#
bw / whose distribu-

tions are uniquely characterised by properties .1/–.3/ and .1/per, .2/per. and .3/per
in Theorem 2.17.

The following proposition states some important quantitative and qualitative
properties of both the Brownian Web Tree and its periodic counterpart.

PROPOSITION 2.19. Let � < 1
2

and �#bw be the Brownian Web Tree given as in
Definition 2.18. Then, almost surely, for any fixed � > 3

2
and all r > 0 there exists

a constant c D c.r/ > 0 depending only on r such that for all " > 0

(2.19) N
d
#
bw
.T #; .r/

bw ; "/ � c"��

where N
d
#
bw
.T #; .r/; "/ is defined as in (2.11). Moreover, almost surely M#

bw is

surjective and (t) holds for �#bw.
All the properties above remain true in the periodic case.

PROOF. See [8, prop. 3.2 and theorem 3.8]. □

A key aspect of the Brownian Web Tree is that it comes naturally associated with
a dual, which consists of a spatial R-tree whose rays, when embedded into R2, are
distributed as a family of coalescing forward Brownian motions. In the following
theorem and the subsequent definition (see [8, theorem 3.1, remark 3.18, and def.
3.19]), we introduce the (periodic) Double Brownian Web Tree, a random couple
of directed R-trees made of the Brownian Web Tree and its dual, and clarify the
relation between the two.
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THEOREM 2.20. Let � < 1=2. There exists a D�sp � bD�sp-valued random variable

�
#"
bw

defD .�
#
bw; �

"
bw/, �

�
bw D .T �

bw;��
bw; d

�
bw;M

�
bw/, � 2 f#;"g, whose law is uniquely

characterised by the following properties:

(i) Both ��"bw
defD .T "

bw;�"bw; d
"
bw;�M"

bw/ and �#bw are distributed as the back-
ward Brownian Web Tree in Definition 2.18.

(ii) Almost surely, for any z# 2 T #
bw and z" 2 T "

bw, the paths M#
bw.%

#.z#; �//
and M"

bw.%
".z"; �// do not cross, where %# (resp., %") is the radial map of

�
#
bw (resp., �"bw).

Moreover, almost surely �#"bw 2 D�sp.t/ � bD�sp.t/ and �"bw is determined by �#bw and

vice versa, meaning that the conditional law of �"bw given �#bw is almost surely given
by a Dirac mass.

The above statement remains true in the periodic setting upon replacing every
object and space with their periodic counterpart.

DEFINITION 2.21. Let � < 1
2

. We define the double Brownian Web Tree and
double periodic Brownian Web Tree as the D�sp � bD�sp and D�sp;per � bD�sp;per-valued

random variables �#"bw
defD .�

#
bw; �

"
bw/ and �per;#"

bw
defD .�

per;#
bw ; �

per;"
bw / given by The-

orem 2.20. We will refer to �"bw and �per;"
bw as the forward (or dual) and forward

periodic, Brownian Web Trees.
We denote their laws by�#"

bw.d.�
#��"// and�per;#"

bw .d.�#��"//, with marginals
�
#
bw.d�/, �

"
bw.d�/ and �per;#

bw .d�/, �per;"
bw .d�/, respectively.

As we will see in the next section, the continuity properties of the Brownian
Castle are crucially connected to the cardinality and the degree of points of the
inverse maps .M �

bw/
�1 and .M per;�

bw /�1, for � 2 f";#g. Based on these two features,
it is possible to classify all points ofR2 orR�T as was shown in [8, theorem 3.26],
and we now summarise this classification.

DEFINITION 2.22. Let �#"bw D .�
#
bw; �

"
bw/ be the double Brownian Web Tree. For

� 2 f";#g, the type of a point ´ 2 R2 for � �
bw is .i; j / 2 N2, where

i D
j.M �

bw/
�1.´/jX

iD1
.deg.z�i / � 1/ and j D j.M �

bw/
�1.´/j:

Above, fz�i W i 2 f1; : : : ; j.M �
bw/

�1.´/jgg D .M
�
bw/

�1.´/. We define S#i;j (resp.,

S
"
i;j ) as the subset of R2 containing all points of type .i; j / for the forward (resp.,

backward) Brownian Web Tree. For the periodic Brownian Web

�
per;#"
bw D .�

per;"
bw ; �

per;#
bw /;
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the definition is the same as above and the set of all of points inR�T of type .i; j /
for the backward (resp., forward) periodic Brownian Web Tree, will be denoted by
S

per;#
i;j (resp., Sper;"

i;j ).

THEOREM 2.23. For the backward and backward periodic Brownian Web Trees
�
#
bw and �#;per

bw , almost surely, every ´ 2 R2 (resp.,R�T ) is of one of the following
types, all of which occur: .0; 1/; .1; 1/; .2; 1/; .0; 2/; .1; 2/, and .0; 3/. Moreover,
almost surely, S#0;1 has full Lebesgue measure, S#2;1 and S#0;3 are countable and
dense and for every t 2 R

- S#0;1 \ ftg �R has full Lebesgue measure in ftg �R,

- S#1;1\ftg�R and S#0;2\ftg�R are both countable and dense in ftg�R,

- S#2;1 \ ftg � R, S#1;2 \ ftg � R and S#0;3 \ ftg � R have each cardinality
at most 1.

At last, for every deterministic t , S#2;1\ftg�R, S#1;2\ftg�R and S#0;3\ftg�R
are almost surely empty.

Moreover, S#
.i;j /

D S
"
.i 0;j 0/

for .i; j /=.i 0; j 0/ D .0; 1/=.0; 1/, .1; 1/=.0:2/,
.2; 1/=.0; 3/, .0; 2/=.1; 1/, .1; 2/=.1; 2/, and .0:3/=.0; 3/, and the same holds in
the periodic case.

PROOF. The first part of the statement corresponds to [8, theorem 3.26], while
the last is a consequence of [8, prop. 3.24]. □

3 Branching Spatial Trees and the Brownian Castle Measure
As mentioned in the introduction, the Brownian castle is not just given by an

R-tree T realised on R2 by a map M , but furthermore comes with a stochastic
process X indexed by T , whose distribution depends on the metric structure of
T . (In our case, we want X to be a Brownian motion indexed by T .) How to do
it in such a way that X admits a (Hölder) continuous modification is the topic of
the second section, but first we want to introduce the space in which such an object
lives.

3.1 Branching spatial R-trees
The space of branching spatial R-trees corresponds to spatial R-trees endowed

with an additional (Hölder) continuous map, from the tree to R, which, for us, will
encode a realisation of a suitable stochastic process. The term branching is chosen
because this extra map (read, process) should be thought of as branching at the
points in which the branches of the tree coalesce.

DEFINITION 3.1. Let �; � 2 .0; 1/. The space of .�; �/-branching spatial pointed
R-trees T�;�bsp is the set of couples � D .�; X/ with � 2 T�sp, and X WT ! R is

a locally little �-Hölder-continuous map. In T�;�bsp two couples � D .�; X/; �0 D
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.�0; X 0/ are indistinguishable if there exists a bijective isometry ' W T ! T 0 such
that '.�/ D �0, M 0 � ' �M and X 0 � ' � X , in short ' � � D �0.

If furthermore � 2 D�sp, we say that � D .�; X/ is a directed .�; �/-branching

spatial R-tree and denote the subset of T�;�bsp containing such R-trees by D�;�bsp .

Similar to what done in Section 2.1, we endow the space T�;�bsp with the metric

�bsp.�; �
0/ defD

Z C1

0

e�r
�
1 ^�c

bsp.�
.r/; �0.r//

�
dr C dM1.b� ; b� 0/

DW �bsp.�; �
0/C dM1.b� ; b� 0/:

(3.1)

for �; �0 2 T�;�bsp . Above, given r > 0, �.r/, �0 .r/ are defined as in (2.10) and

�
c
bsp.�

.r/; �0 .r// defD inf
C W.�;�0/2C

�
c;C
bsp .�

.r/; �0 .r//;

the infimum being taken over all correspondences C � T .r/ � T 0.r/ such that
.�;�0/ 2 C , and for such a correspondence C

�
c;C
bsp .�

.r/; �0 .r// defD �
c;C
sp .�.r/; �0 .r//C sup

.z;z0/2C

jX.z/ �X 0.z0/j

C sup
n2N

2n� sup
.z;z0/;.w;w0/2C

d.z;w/;d 0.z0;w0/2An

j�z;wX � �z0;w0X 0j:(3.2)

The following lemma determines the metric properties ofD�;�bsp and gives a com-
pactness criterion for its subsets. The proof, as well as the statement, are com-
pletely analogous to those for T�sp given in [8, theorem 2.14 and proposition 2.17],
so we refer the reader to the aforementioned reference for further details.

LEMMA 3.2. For �; � 2 .0; 1/, .T�;�bsp ; �bsp/ is a complete separable metric space

andD�;�bsp is closed in it. Moreover, a subset A of T�;�bsp is relatively compact if and
only if

(1) the projection of A onto T�sp is relatively compact, and
(2) for every r > 0 and " > 0 there exist constants K D K.r/ > 0 and

� D �.r; "/ > 0 such that

(3.3) sup
�2A

kX�k.r/1 � K and sup
�2A

���!.r/.X�; �/ < ":

The following lemma will be needed in some of the proofs below. It gives a way
to estimate the distance between a branching spatial R-tree and one of its subset,
provided the Hausdorff distance (see (1.13)) between the metric spaces is known.

LEMMA 3.3. Let �; � 2 .0; 1/, � D .T ;�; d;M;X/ 2 T�;�bsp and assume T is
compact. Let � > 0, T � T be such that � 2 T and the Hausdorff distance
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between T and T is bounded above by �, and define x� D .T;�; d;M�T;X�T /.
Then

(3.4) �
c
bsp.�; x�/ . .2�/��!.M; 2�/C .2�/��!.X; 2�/

PROOF. The proof follows the very same steps of [8, lemma 2.12]. □

3.2 Stochastic processes on trees
We want to understand how to realise the branching map X as a Hölder-contin-

uous real-valued stochastic process indexed by a pointed locally compact complete
R-tree .T ; d;�/, whose covariance structure is suitably related to the metric d . In
this section, we will mostly consider the case of a fixed (but generic) R-tree, and
provide conditions for the processX to admit a �-Hölder-continuous modification,
for some � 2 .0; 1/. We will always view the law of the process X on a given T ,
.T ;�; d;M/ 2 T�sp, as a probability measure on the space branching spatial R-

trees T�;�bsp .
A function ' W RC ! RC is said to be a Young function if it is convex, in-

creasing, and such that limt!1 '.t/ D C1 and '.0/ D 0. From now on, fix a
standard probability space .�;A ;P /. Given p � 0 and a Young function ', the
Orlicz space on � associated to ' is the set L' of random variables ZW� ! R

such that

(3.5) kZk' defD inffc > 0 W E�'.jZj=c/� � 1g <1:
Notice that if Z is a positive random variable such that kZkL' � C for some
Young function ' and some finite C > 0, then Markov’s inequality yields

(3.6) P .Z > u/ � 1='.u=C/ 8u > 0:
The following proposition shows that if ' is of exponential type '.x/ D ex

q � 1
and Nd .T ; "/ grows at most polynomially as "! 0, then we obtain a modulus of
continuity of order d jlog d j1=q .

PROPOSITION 3.4. Let q � 1 and 'q.x/
defD ex

q � 1. Let .T ;�; d / be a pointed
complete proper metric space and fX.z/ W z 2 T g a stochastic process indexed
by T . Assume there are � 2 .0; 1�, � > 0, and, for every r > 0, there exists a
constant c > 0 such that

(3.7) Nd .T
.r/; "/ � c"�� for all " 2 .0; 1/

and

(3.8) kX.z/ �X.z0/k'q � c d.z; z0/� for all z; z0 2 T .r/,

where T .r/ is defined as in (2.10). Then, X admits a continuous version such that
for every r > 0, there exists a random variable K D K.!; r/ such that

jX.z/ �X.z0/j � K d.z; z0/� jlog d.z; z0/j1=q for all z; z0 2 T .r/.

Furthermore, one has the bound P .K � u/ � C1 exp.�C2uq/ for some constants
Ci > 0 depending only r , �, c, and � .
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PROOF. We closely follow the argument and notations of [36, sec. 1.2]. We
also note that, since d � is again a metric, it suffices to consider the case � D 1,
so we do this now. Set "n D 2�n and Nn D Nd .T ; "n/. Noting that in our case
d.�n.z/; �nC1.z// � 2"n, (3.6) yields

P .jX.�n.z// �X.�nC1.z//j � un1=q"n/ . exp.�cuqn/
for some constant c > 0. Note furthermore that in our case NnNn�1 . 22�n by
assumption. Proceeding similarly to [36, sec. 1.2], we consider the event �u on
which jX.�n.z// �X.�nC1.z//j � un1=q"n for every n � 0, so that

P .�cu/ .
X
n�0

22�n exp.�cuqn/ . exp.�cuq/:

Furthermore, on �u, one has

jX.z/ �X.z0/j �
X
n�n0

jX.�n.z// �X.�nC1.z//j

C
X
n>n0

jX.�n.z0// �X.�nC1.z0//j

C jX.�n0.z// �X.�n0C1.z0//j
� 4u

X
n�n0

n1=q"n � ud.z; z0/jlog d.z; z0/j1=q;

where n0 is such that "n0C1 � d.z; z0/ � "n0 . The claim then follows at once. □

Condition (3.7) on the size of the "-nets will always be met by the R-trees
we will consider, that this is the case for the Brownian Web Tree is stated in
Proposition 2.19. Therefore, we introduce a subset of the space of directed spa-
tial trees whose elements satisfy it locally uniformly. Let � 2 .0; 1/, � > 0 and
let cWRC ! RC be an increasing function. We define zE�.c; �/, zE.�/, and zE�,
respectively, as

zE�.c; �/ defD f� D .T ;�; d;M/ 2 T�sp W 8r; " > 0; Nd .T
.r/; "/ � c.r/"��g;

zE�.�/ defD
[
c

zE�.c; �/ and zE� defD
[
�

zE�.�/:(3.9)

and E�.c; �/
defD zE�.c; �/\D�sp and E�.�/; E� accordingly. From [7, prop. 7.4.12],

it is not difficult to verify that for every given c and � as above zE�.c; �/ is closed
in T�sp, and consequently zE�.�/ and zE� are measurable with respect to the Borel
� -algebra induced by the metric �sp (and so are E�.�/ and E�).

In the next proposition we show how (3.8) can be used to prove tightness for the
laws, on the space of branching spatial R-trees, of a family of stochastic processes
indexed by different spatial R-trees that uniformly belong to zE�.c; �/, for some �
and c.
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PROPOSITION 3.5. Let q � 1, � 2 .0; 1/ and let K � zE�.c; �/ for some c; � > 0
be relatively compact. For every � D .T ;�; d;M/ 2 K, let X� be a stochastic
process indexed by T and denote by Q� the law of .�; X� /. Assume that there
exists � 2 .0; 1/ such that for all " > 0 and r > 0, there are constants c1 D
c1."/ > 0 and c� D c�.r/ > 0 such that

(3.10) inf
�2K

Q�

�jX� .�/j � c1� � 1 � "
and

(3.11) kX� .z/ �X� .w/k'q � c�d.z;w/� for all z;w 2 T .r/ and � 2 K.

Then, the family of probability measures fQ�g�2K is tight in T�;�bsp for any � < �.

PROOF. By Lemma 3.2, we only need to focus on the maps X� and, more
specifically, on their restriction to the r-neighbourhoods of �. Since fX� .�/g�2K is
tight by (3.10), it remains to argue that for every " > 0

(3.12) lim
�!0

sup
�2K

Q�

�
��� sup

d.z;w/��
jX� .z/ �X� .w/j > "

�
D 0:

This in turn is immediate from Proposition 3.4 and our assumption. □

Our main example is that of a Brownian motion indexed by a pointedR-tree. Let
.T ;�; d / be a pointed locally compact complete R-tree, and let fB.z/ W z 2 T g
be the centred Gaussian process such that B.�/ defD 0 and such that

(3.13) E�.B.z/ � B.z0//2� D d.z; z0/;

for all z; z0 2 T . We call B the Brownian motion on T .

Remark 3.6. The existence of a Gaussian process whose covariance matrix is as
above is guaranteed by the fact that any R-tree .T ; d / is of strictly negative type,
see [21, cor. 7.2].

Remark 3.7. If � D .T ; d;�;M/ 2 zE�, then it follows from Proposition 3.4 that,

for B a Brownian motion on T , one has .�; B/ 2 T�;�bsp almost surely, for every

� < �Gau
defD 1=2. We will denote by QGau

�
its law on T�;�bsp .

In the study of 0-Ballistic Deposition, we will also consider Poisson processes
indexed by an R-tree. The Poisson process is clearly not continuous so, in order to
fit it in our framework, we introduce a smoothened version of it. First, recall that
for any locally compact complete R-tree T , the skeleton of T , T o, is defined as
the subset of T obtained by removing all its endpoints, i.e.,

(3.14) T o defD
[
z2T

J�; zJ:
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For any T as above, there exists a unique � -finite measure ` D `T , called the
length measure such that `.T nT o/ D 0 and

(3.15) `
�
Jz; z0K

� D d.z; z0/;

for all z; z0 2 T .

Remark 3.8. One important property of the Brownian motion B is that, given any
four points zi , one has

E
�
.B.z1/ � B.z2//.B.z3/ � B.z4//

� D `
�
Jz1; z2K \ Jz3; z4K

�
;

where the equality follows immediately by polarisation and the tree structure of
T . In particular, increments of B are independent on any two disjoint subtrees of
T .

Let � 2 .0; 1/, � D .T ;�; d;M/ 2 D�sp a directed tree and � the open end for
which (2.14) holds. For  > 0, let � be the Poisson random measure on T with
intensity ` and, for a > 0, let  a be a smooth nonnegative real-valued function
on R, compactly supported in �0; a� and such that

R
R
 a.x/dx D 1. We define the

smoothened Poisson random measure on T as

(3.16) �a .w/
defD
Z

Jw;�i
 a.d.w;xz//� .dxz/; w 2 T :

In other words, we are smoothening the Poisson random measure � by fattening
its points along the rays from the endpoints to the open end � so that the value at
a given point w depends only on Poisson points in Jw;w.a/K, where w.a/ is the
unique point on the ray Jw; �i such that d.w;w.a// D a.

DEFINITION 3.9. Let � 2 .0; 1/ and � D .T ;�; d;M/ 2 D�sp with length mea-
sure `. Let  > 0 and � be the Poisson random measure on T with intensity
measure `. For a > 0, let  a be a smooth nonnegative real-valued function on
R, compactly supported in �0; a�, and such that

R
R
 a.x/dx D 1. We define the

rescaled compensated smoothened (RCS in short) Poisson process on T as

(3.17) N a
 .z/

defD 1p


Z
J�;zK

�
�a .w/ � 

�
`.dw/ for z 2 T ,

where �a is the smoothened Poisson random measure given in (3.16).

In case the R-tree has (locally) finitely many endpoints and  and a are fixed, it
is easy to see that the smoothened Poisson process defined above is Lipschitz. That
said, we want to obtain more quantitative information about its regularity and how
the latter relates to the parameters  and a, in order to be able to identify a regime
in which a family of RCS Poisson processes on a given tree converges weakly.

In the following lemma (and the rest of the paper), for � D .T ;�; d;M/ 2 E�
and X a stochastic process indexed by T , which admits a �-Hölder-continuous
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modification, we will denote by Q� .dX/ the law of .�; X/ in the space of .�; �/-
directed branching spatial R-trees and by M .D

�;�
bsp / the space of probability mea-

sures on D�;�bsp endowed with the topology of weak convergence.

LEMMA 3.10. Let � 2 .0; 1/, � D .T ;�; d;M/ 2 E�, N a
 be as in Definition 3.9

and set �Poi
defD 1

2p
. If a D �p for some p > 1, then for any � < �Poi, .�; N a

 / 2
D
�;�
bsp almost surely. Furthermore, denoting its law by Q

Poi
�

, these are tight over
 � 1.

PROOF. Thanks to Propositions 3.4 and 3.5, it suffices to show that there exists
a constant C depending only on r such that

(3.18) kN a
 .z/ �N a

 .w/k'1 � Cd.z;w/
1
2p ;

for all z;w 2 T .r/, which in turn is essentially a consequence of Lemma A.1 in
the Appendix. Indeed, if the points z;w belong to the same ray, then the increment
N
 a
 .z/ � N a

 .w/ coincides in distribution with that of P a .d.z;w// in (A.1), so
that (3.18) follows from (A.2).

If z and w lie on different branches, let z� be the unique point for which Jz; �i \
Jw; �i D Jz�; �i. Then, the triangle inequality for Orlicz norms yields

kN a
 .z/ �N a

 .w/k'1 � kN a
 .z/ �N a

 .z�/k'1 C kN a
 .z�/ �N a

 .w/k'1 ;
and the required bound follows from (3.18). □

3.3 Probability measures on the space of branching spatial trees
The results in the previous section identify suitable conditions on a spatialR-tree

� D .T ;�; d;M/ and the distribution of the increments of a stochastic process X
indexed by T , under which the couple .�; X/ is (almost surely) a branching spatial
R-tree. We now want to let � vary and understand the behaviour of the map � 7!
Q� D Law.�; X/. Since in the rest of the paper we will only deal with directed R-
trees, we will directly work with these, even though some of our statements remain
true for general spatial R-trees. We now write Q;p

�
D Law.�; X/ for X D N a

 as
in (3.17) with the choice a D �p, and QGau

�
for X D B as in (3.13). We then

have the following continuity property.

PROPOSITION 3.11. Let � 2 .0; 1/, c; � > 0, and Q� D QGau
�

, respectively
Q� D Q;p

�
, for some  > 0 and p > 1. Then, the map

(3.19) E�.c; �/ 3 � 7! Q� 2 M .D
�;�
bsp /

is continuous, provided that � < �Gau D 1
2

, respectively, � < �Poi as in Lemma 3.10.

In view of Lemma 3.10, Proposition 3.5, and the Central Limit Theorem, it is
clear that, for a fixed tree �, Q;p

�
converges weakly to QGau

�
as  " 1, for any
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fixed p. In the next statement, we show that such a convergence is locally uniform
in �.

PROPOSITION 3.12. Let � 2 .0; 1/, p > 1, and c; � > 0. Then, for any � < �Poi,
lim!1 Q;p

�
D QGau

�
in M .D

�;�
bsp /, uniformly over compact subsets of E�.c; �/.

The remainder of this subsection is devoted to the proof of the previous two
statements. We will first focus on Proposition 3.11 since some tools from its proof
will be needed in that of Proposition 3.12. Before delving into the details we need
to make some preliminary considerations which apply to both.

Let c; � > 0 be fixed and K be a compact subset of E�.c; �/. Since the constant
C in (3.18) is independent of both  and the specific features of the tree, Propo-
sition 3.5 implies that the families fQ;p

�
W  > 0; � 2 Kg and fQGau

�
W � 2 Kg

are tight in D�;�bsp for any � < �Poi and � < �Gau, respectively, and jointly for
� < �Poi ^ �Gau.

Then, the proof of both Propositions 3.11 and 3.12 boils down to show that if
f�ngn � K is a sequence converging to � with respect to �sp, then there exists a
coupling between .�n; Xn/ and .�; X/ such that �bsp..�n; Xn/; .�; X// converges
to 0 locally uniformly over � 2 K and the Hölder norms of Xn and X . If we denote
by Qn and Q� the laws of .�n; Xn/ and .�; X/, then for the first statement, we
need to pick Qn and Q� to be either Q;p

�n
and Q;p

�
for  > 0 fixed or QGau

�n
and

QGau
�

, while for the second, �n D � for all n, Qn D Qn;p

�
, with n ! 1 and

Q� D QGau
�

.
The problem in the first case is that, since X and Xn are indexed by different

spaces, it is not a priori clear how to build these couplings. In the next subsection,
which represents the core of the proof, we construct one.

Coupling processes on different trees
Fix � 2 .0; 1/ and � > 0, and consider directed trees � D .T ;�; d;M/; �0 D

.T 0;�0; d 0;M 0/ 2 D�sp such that T and T 0 are compact. As a shorthand, we set
� D �

c
sp.�

.r/; �0 .r// and we fix a correspondence C between T .r/ and T 0 .r/ such
that

(3.20) �
c;C
sp .�.r/; �0 .r// � 2�:

We will always assume that our two trees are sufficiently close so that � � �. (We
typically think of the case � � �.) Let then B be the Gaussian process on T
such that (3.13) holds and, for  > 0, let � be the Poisson random measure on
T with intensity ` and N a

 be the RCS Poisson process of Definition 3.9 and
Lemma 3.10.

The aim of this subsection is to first inductively construct subtrees T and T 0 of
T and T 0 respectively that are close to each other and whose distance from the
original trees is easily quantifiable. Simultaneously, we build a bijection 'WT !
T 0 which preserves the length measure and has small distortion. This provides a
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natural coupling between� and a Poisson random measure�0 on T 0 by�0 .A/ D
'�� .A/

defD � .'
�1.A//, and similarly for the white noise underlying B .

To start our inductive construction, we simply set
T0 D f�g; T 00 D f�0g; '.�/ D �0:

Assume now that, for some m 2 N, we are given subtrees Tm�1 and T 0m�1 as well
as a length-preserving measure 'WTm�1 ! T 0m�1. Let then v 2 T n Tm�1 be a
point whose distance from Tm�1 is maximal and denote by bm the projection of v
onto Tm�1. We also set

Cm�1
defD C [ 'm�1 D C [ f.z; '.z// W z 2 Tm�1g;

where we have identified the bijection 'm�1 D '�Tm�1 with the natural cor-
respondence induced by it. If d.v; bm/ � 2.� _ dis C 0

m�1/, we terminate our
construction and set
(3.21a)
T

defD Tm�1; T 0 defD T 0m�1; Z
defD .T;�; d;M�T /; Z0 defD .T 0;�0; d 0;M 0�T 0/:

Otherwise, let v0 2 T 0 be such that .v; v0/ 2 C and b0m its projection onto
T 0m�1. If d.v; bm/ � d 0.v0; b0m/ then we set v0m D v0 and denote by vm 2 Jbm; vK
the unique point such that d.vm; bm/ D d 0.v0m; b0m/. Otherwise, we set vm D v
and define v0m correspondingly. We then set

(3.21b) Tm
defD Tm�1 [ Jbm; vmK; T 0m

defD T 0m�1 [ Jb0m; v
0
mK;

and we extend ' to Jbm; vmK n fbmg to be the unique isometry such that '.vm/ D
v0m. We also write `m D d.bm; vm/ D d 0.b0m; v0m/. The following shows that this
construction terminates after finitely many steps.

LEMMA 3.13. Let N be the minimal number of balls of radius �=8 required to
cover T . Then, the construction described above terminates after at most N steps
and, until it does, one has `m � �=2 so that in particular v0m � T 0m�1.

PROOF. We start by showing the second claim. Assuming the construction has
not terminated yet, we only need to consider the case d 0.v0; b0m/ < d.v; bm/ so
that v0m D v0. Take j < m such that b0m 2 Jb0j ; v

0
j K, then

`m D d 0.v0m; b
0
m/ D

1

2
.d 0.v0m; v

0
j /C d 0.v0m; b

0
j / � d 0.v0j ; b0j //

� 1

2
.d.v; vj /C d.v; bj / � d.vj ; bj // � 3

2
dis C 0

m�1(3.22)

� d.v; bm/ � 3

2
dis C 0

m�1 �
�

2
:

The passage from the first to the second line is a consequence of the fact that
.v; v0m/; .vj ; v0j /; .bj ; b

0
j / 2 Cm�1, and the last bound follows from the fact that

d.v; bm/ � 3
2

dis Cm�1 C �
2

by assumption.
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It remains to note that since `m > �=2, the points vj are all at distance at least
�=2 from each other, so there can only be at most N of them. □

Thanks to Lemma 3.13, we can also define

B 0.z0/ � B 0.b0m/
defD B.'�1m .z0// � B.bm/ for z0 2 Jb0m; v0mK(3.23)

�0�Jb0m; v
0
mK defD '�m� ;(3.24)

and N 0a
 accordingly. In the following lemma, we denote by X and X 0 the pro-

cesses on T and T 0, which correspond to either B and B 0 or to N a
 and N 0a

 .

LEMMA 3.14. In the setting above, letZ; Z0 be as in (3.21a) andX andX 0 be con-
structed inductively via (3.23) or (3.24). If (3.20) holds, then .Z;X/ and .Z0; X 0/
belong to D�;�bsp and

(3.25) �
c;'
bsp..Z;X/; .Z

0; X 0// . .5N �/��!.M; 5N �/CN5N�kXk�C��� :
for any � 2 .0; 1/ sufficiently small, where N is as in Lemma 3.13. Moreover, the
Hausdorff distance between both T and T , and T 0 and T 0, is bounded above by
2.5N �/C �.

PROOF. We will first bound the distortion dis' between T and T 0 by induction
onm. We begin by showing that dis.Cm�1[f.vm; v0m/; .bm; b0m/g/ � 7

2
dis Cm�1.

Assume without loss of generality that d.v; bm/ > d 0.v0; b0m/ and let .w;w0/ 2
Cm�1. By the triangle inequality and the fact that, by construction,

.v; v0m/; .bm; 'm�1.bm// 2 Cm�1;

we have

jd.vm;w/ � d 0.v0m;w0/j � d.v; vm/C dis Cm�1;
jd.bm;w/ � d 0.b0m;w0/j � dis Cm�1 C d 0.'m�1.bm/; b0m/;

where we added and subtracted d.vm;w/ in the first and d 0.'m�1.bm/;w0/ in the
second. Now, as a consequence of (3.22)

d.v; vm/ D d.v; bm/ � d.vm; bm/ D d.v; bm/ � d 0.v0; b0m/ < 3
2

dis Cm�1
while

d 0.'m�1.bm/; b0m/ D d 0.v0m; 'm�1.bm// � d 0.v0m; b0m/
� dis Cm�1 C d.v; bm/ � d.vm; bm/
D dis Cm�1 C d.v; vm/ � 5

2
dis Cm�1

and both hold since, by construction, d.vm; bm/ D d 0.v0m; b0m/. Therefore the
claim dis.Cm�1 [ f.vm; v0m/; .bm; b0m/g/ � 7

2
dis Cm�1, follows at once. Now, for

any z 2 Tm n Tm�1, let zz 2 T be such that .zz; 'm.z// 2 Cm�1. We clearly have

jd.z;w/ � d 0.'m.z/;w0/j � d.z;zz/C dis Cm�1:



34 G. CANNIZZARO AND M. HAIRER

Denote by zb 2 Tm the projection of zz onto Tm. In order to bound d.z;zz/, it suffices
to exploit the fact that if zb 2 Jz; vmK, then d.z;zz/ D d.bm;zz/ � d.bm; z/, while if
zb 2 Tm n Jz; vmK, then d.z;zz/ D d.vm;zz/�d.vm; z/. Let .y; y0/ be either .vm; v0m/
or .bm; b0m/, so that

d.z;zz/ D d.y;zz/ � d.y; z/
� d 0.y0; 'm.z//C dis.Cm�1 [ f.vm; v0m/; .bm; b0m/g/ � d.y; z/
D dis.Cm�1 [ f.vm; v0m/; .bm; b0m/g/ � 7

2
dis Cm�1

where we used that, by construction, d 0.y0; 'm.z// D d.y; z/. Hence, dis'm �
dis Cm � 9

2
dis Cm�1, and since dis C0 D dis C , we conclude that dis'm �

dis Cm � .9
2
/m dis C and therefore dis' � dis.C [ '/ . 5N �.

Concerning the evaluation maps, take z1; z2 2 T and choose w1;w2 2 T such
that .wi ; '.zi // 2 C . One has

(3.26) d.zi ;wi / D jd.zi ;wi / � d 0.'.zi /; '.zi //j � dis.' [ C / . 5N �;

so that

kM.z1/ �M 0.'.z1//k � k�z1;w1
Mk C kM.w1/ �M 0.'.z1//k

� !.M; 5N �/C 2�;
(3.27)

where we used the little Hölder continuity of M and (3.20). For the Hölder part of
the distance instead, let n 2 N and assume further that d.z1; z2/; d.'.z1/; '.z2// 2
An. If there exist no w1; w2 2 T such that .wi ; '.zi // 2 C and also d.w1;w2/ 2
An, then for n 2 N such that 2�n > 5N �, we exploit (3.27) to obtain

k�z1;z2M � �'.z1/;'.z2/M 0k . 2�n�..5N �/��!.M; 5N �//;
while for n such that 2�n � 5N �, by definition of �c

sp (see below (2.5)), we get

k�z1;z2M � �'.z1/;'.z2/M 0k � k�z1;z2Mk C k�'.z1/;'.z2/M 0k
. 2�n�.2n�!.M; 2�n/C �/;

which in turn is bounded by 2�n�..5N �/��!.M; 5N �//. In case instead d.w1;w2/ 2
An, then we simply apply the triangle inequality to write

k�z1;z2M � �'.z1/;'.z2/M 0k
� k�z1;z2M � �w1;w2

Mk C k�w1;w2
M � �'.z1/;'.z2/M 0k

Thanks to the estimate on the distortion of C [ ' and (3.27), the first summand
can be controlled as in the proof of [8, lemma 2.12], while the second is bounded
by 2� thanks to (3.20).

We focus now on the branching maps, for which we proceed once again by
induction on the iteration step m. Notice that for m D 0, there is nothing to prove.
We now assume that for some m < N , there exists K; K 0 > 0 such that
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sup
.z;z0/2'm�1

jX.z/ �X 0.z0/j � K�%(3.28)

kX 0�T 0m�1k% � K 0kXk%(3.29)

for % < �, but arbitrarily close to it. Let .z; z0/ 2 'm n 'm�1 be such that z 2
Jbm; vmK and w be the point in Tm�1 for which .w; b0m/ 2 Cm�1. Then,

jX.z/ �X 0.z0/j D jX.bm/ �X 0.b0m/j � j�bm;wX j C jX.w/ �X 0.b0m/j
� kXk%d.bm;w/% CK�% � .5N%kXk% CK/�%;

where the passage from the first to the second line is a consequence of the Hölder
regularity of X and, (3.28) while in the last inequality we exploited the fact that
both .bm; b0m/ and .w; b0m/ 2 'm and the same bound as in (3.26). Concerning the
Hölder norm of X 0, let z0 2 T 0m nT 0m�1 and w0 2 T 0m�1, then by triangle inequality
we have

j�z0;w0X 0j � j�z0;b0mX 0j C j�b0m;w0X 0j � kXk%.1CK 0/d 0.z0;w0/%

where we used (3.29). Hence, the %-Hölder norm of X 0 on T 0 is bounded above by
N kXk%.

For the second summand in (3.2), let .z; z0/; .w;w0/ 2 ' be such that d.z;w/;
d 0.z0;w0/ 2 An. Then, we have

j�z;wX � �z0;w0X 0j . 2�n%.kXk% C kX 0k%/ . 2�n%N kXk%
as well as

j�z;wX � �z0;w0X 0j . N5N%kXk%�%I
hence, by geometric interpolation, (3.25) follows.

For the last part of the statement, notice that the Hausdorff distance between
T and T is bounded above by 2.� _ dis C 0/ . � C 5N � by the definition of
our halting condition. Concerning the Hausdorff distance between T 0 and T 0, let
z0 2 T 0. Take z 2 T such that .z; z0/ 2 C , w 2 T such that d.z;w/ . �C 5N �,
which exists since dH .T ; T / . � C 5N �, and w0 2 T 0 such that .w;w0/ 2 '.
Then

d 0.z0;w0/ � jd 0.z0;w0/ � d.z;w/j C d.z;w/ . dis.C [ '/C �C 5N �

from which the claim follows at once. □

We are now ready for the proof of Propositions 3.11 and 3.12.

PROOF OF PROPOSITION 3.11. Let f�ngn; � � E�.c; �/ be such that�sp.�n; �/

converges to 0. Let " > 0 be fixed. Since the family fQngn is tight, there exists
K" � D�;�bsp compact such that

(3.30) inf
n2N

Qn.K"/ � 1 � ":
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We want to bound the Wasserstein distance between Qn and Q. By the previous
argument we have

W .Qn;Q� / D inf
g2�.Q�n ;Q�/

Eg
�
�bsp..�n; Xn/; .�; X//

�
� inf
g2�.Q�n ;Q�/

Eg
�
�bsp..�n; Xn/; .�; X//1K"

�C "

� inf
g2�.Q�n ;Q�/

Eg
�
�c

bsp..�
.r/
n ; X .r/n /; .�.r/; X .r///1K"

�C 2";

(3.31)

where in the last passage we used the definition of metric�bsp in (3.1) and chose r
so that e�r < ". We now apply the construction (3.21) with � replaced by �.r/ and
�0 replaced by �.r/n . The triangle inequality then yields

�c
bsp..�

.r/
n ; X .r/n /; .�.r/; X .r/// � �c

bsp..Zn; X
.r/
n /; .Z;X .r///(3.32)

C�c
bsp..�

.r/
n ; X .r/n /; .Zn; X

.r/
n //C�c

bsp..�
.r/; X .r//; .Z;X .r///:(3.33)

Since the summands in (3.33) only depend on one of the two probability measures,
their coupling is irrelevant. By the last point of Lemma 3.14, the Hausdorff distance
of both T .r/

n and T .r/ from T 0 and T is at most of order � C 5N � so that we
can apply Lemma 3.3. If we now choose first � � " small enough, then we can
guarantee that each of the two terms in (3.33) is less than ", provided that n is
sufficiently large (and therefore � sufficiently small). Note here that even though
N depends (badly) on �, it is independent of n.

Finally, upon choosing at most an even smaller � and exploiting the coupling of
the previous section, we can use (3.25) to control (3.32) by ", so that the proof is
concluded. □

PROOF OF PROPOSITION 3.12. In this proof we will write Q

�
for Q;p

�
and

Q� for QGau
�

, and we fix a compact set K � E�.c; �/.

Let " > 0 be fixed. Since the family fQ

�
; Q� W  > 0; � 2 Kg is tight in D�;�bsp

for any � < �Poi, there exists K" � D
�;�
bsp compact such that (3.30) holds with the

infimum taken over � 2 K and  > 0. Then, proceeding as in (3.31) and following
the strategy used to control (3.33) in the previous proof, we see that we can choose
r; � > 0 in such a way that

sup
�2K

W .Q

�
;Q� / � sup

�2K
inf

g2�.Q

�
;Q�/

Eg
�
�c

bsp..Z;X
.r/
 /; .Z;X .r///1K"

�
C 4";

(3.34)

where Z D Z� is again constructed from � as in (3.21). We are left to determine a
coupling under which the first term is small. LetW be a standard Brownian motion
and P a rescaled compensated Poisson process of intensity  on RC, coupled in
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such a way that, with probability at least 1 � ", one has

(3.35) sup
t2�0;L�

jW.t/ � P .t/j � .1C L/�1=5 defD d ;

provided that  is sufficiently small. Here L defD sup�2K `� .T / with `� the length
measure on T is finite by Lemma 3.13 and the existence of such a coupling (with
1=5 replaced by any exponent less than 1=4) is guaranteed by the quantitative form
of Donsker’s invariance principle. Similarly, we have sup�2K #fz 2 T� W deg.z/ D
1g < 1, and we will denote its value by N . For � 2 K, we order the endpoints
and the respective branching points of T according to the procedure of Section 3.3
and recursively define the subtrees Tj , j � N , of T as in (3.21a). For every j �
N , denote by 'j the unique bijective isometry from Jbj ; vj K to �`� .Tj /; `� .Tj /C
d.bj ; vj /� with 'j .bj / D `� .Tj /.

Given any function Y W �0; L� ! R, we then define zY WT ! R to be the unique
function such that zY .�/ D 0 and

(3.36) zY .z/ D Y.'j .z// � Y.'j .bj //C zY .bj / for z 2 Tj n Tj�1.

This then allows us to construct the desired coupling by setting B D �W and N D
zP , as well as N a

 to be the smoothened version of N . It follows from (3.36) that,
setting �j D supz2Tj jB.z/�N .z/j, we have �jC1 � �j C2d on the event (3.35).
We now remark that, for any integer k > 0, we can guarantee that

(3.37) P
�

sup
z2T

jN .z/ �N a
 .z/j � k�

1
2

�
� LN.2/pCk.1�p/;

so that, choosing k sufficiently large so that k.p � 1/ > p and then choosing 
sufficiently large, one has

(3.38) P
�

sup
z2T

jB.z/ �N a
 .z/j > 2Nd C k�

1
2

�
� 2":

The claim now follows at once by combining this with Lemma 3.10. □

3.4 The Brownian Castle measure
In this section, we collect the results obtained so far and show how to define a

measure, which we will refer to as the Brownian Castle measure, on the space of
branching spatial trees which encodes the inner structure of the Brownian Castle.
We begin with the following proposition, which determines the existence and the
continuity properties of the Gaussian process defined via 3.13 on the Brownian
Web Tree of Section 2.3.

PROPOSITION 3.15. Let �#bw and �per;#
bw be the backward and backward periodic

Brownian Web Trees in Definition 2.21. There exist Gaussian processes Bbc and
B

per
bc indexed by T #

bw, T
per;#

bw that satisfy (3.13). Moreover, they admit a version
whose realisations are locally little �-Hölder continuous for any � < 1=2.
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PROOF. The existence part of the statement is due to the fact that T #
bw and

T
per;#

bw are almost surelyR-trees (see Remark 3.6), while, since by Proposition 2.19
�
#
bw and �per;#

bw belong to E� almost surely, the Hölder regularity is a direct conse-
quence of Proposition 3.4. □

The previous proposition represents the last ingredient to define the Brownian
Castle measure. This is given by the law of the couple �bc

defD .�
#
bw; Bbc/ in the

space of directed branching spatial trees.

THEOREM 3.16. Let �#bw and �per;#
bw be the backward and backward periodic Brow-

nian Web Trees in Definition 2.21, and Bbc and Bper
bc be the Gaussian processes

built in Proposition 3.15.
Then, almost surely the couple �bc

defD .�
#
bw; Bbc/ is a directed .�; �/-branching

spatial pointed R-tree according to Definition 3.1, for any �; � < 1=2. We call its
law on D�;�bsp the Brownian Castle measure. The latter can be written as

(3.39) Pbc.d�/
defD
Z

QGau
� .dX/�#

bw.d�/

where QGau
�
.dX/ denotes the law of the Gaussian process Bbc on D�;�bsp . Analo-

gously, for the same range of the parameters �; �, �per
bc

defD .�
per;#
bw ; B

per
bc / almost

surely belongs to D�;�bsp;per, and we define its law on it, P
per
bc .d�/, as in (3.39).

PROOF. That �bc almost surely belongs toD�;�bsp is a direct consequence of The-
orem 2.17 and Propositions 3.15. The needed measurability properties that allow
to define (3.39) follow by Proposition 3.11. □

4 The Brownian Castle
The aim of this section is to rigorously define the “nice” version of the Brownian

Castle (and its periodic version; see Remark 4.1 for its definition) sketched in (1.7),
and prove Theorem 1.2 along with other properties.

Remark 4.1. The periodic Brownian Castle hper
bc is defined similarly to hbc. We re-

quire it to start from a periodic càdlàg function inD.T ;R/ and its finite-dimensional
distributions to be characterised as in Definition 1.1, but ´1; : : : ; ´n 2 .0;C1/�T
and the coalescing backward Brownian motions Bk’s are periodic.

4.1 Pathwise properties of the Brownian Castle
Let �; � < 1

2
, � D .�; X/, for � D .T ;�; d;M/, be a (periodic) .�; �/-

branching directed spatial R-tree according to Definition 3.1 satisfying (t) (see
Definition 2.9), and % be its radial map as in (2.15). We introduce the following
maps

(4.1) hs
�.´/

defD X.T.´//; ´ 2 R2;
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and, for h0 2 D.R;R/ (or in D.T ;R/),

(4.2) hh0� .´/
defD h0.Mx.%.T.´/; 0///C hs.´/ �X.%.T.´/; 0//

for ´ D .t; x/ 2 RC � R (resp., RC � T ). We are now ready for the following
theorem and the consequent definition, which identify the version of the Brownian
Castle we will be using throughout the rest of the paper.

THEOREM 4.2. Let �bc be the D�;�bsp -valued random variable introduced in The-
orem 3.16 and Pbc be its law given by (3.39). Then, for every càdlàg function
h0 2 D.R;R/, the map h

h0
�bc in (4.2) is Pbc-almost surely well-defined and is a

version of the Brownian Castle hbc; i.e., it starts at h0 at time 0 and its finite-
dimensional distributions are as in Definition 1.1. In the periodic setting, the same
statement holds, i.e., for every periodic càdlàg function h0 2 D.T ;R/ h

h0
�

per
bc

is

P
per
bc -almost surely well-defined, starts at h0 at time 0 and has the same finite-

dimensional distributions as hper
bc in Remark 4.1.

PROOF. The proof is a direct consequence of our construction in Sections 2.3
and 3.4 and follows by Proposition 2.19, Lemma 2.11, and Theorems 2.17 and 3.16.

□

DEFINITION 4.3. We define the stationary (periodic) Brownian Castle, hs
bc (resp.,

h
per;s
bc ), as the field hs

�bc
on R2 (resp., hs

�
per
bc

on R � T ) given by (4.1), while, for

h0 2 D.R;R/ (resp., h0 2 D.T ;R/), we define the (periodic) Brownian Castle
starting at h0, hbc (resp., hper

bc ), as the map h
h0
�bc (resp., hh0

�
per
bc

) in (4.2).

Remark 4.4. Since we require the Gaussian process Bbc to start from 0 at �, hs
bc is

not, strictly speaking, stationary but its increments are. As a consequence, writing
zhs

bc for the projection of hs
bc onto a space of functions in which two elements are

identified if they differ by a fixed constant, we see that zhs
bc is truly stationary in

time.

The previous theorem guarantees that thanks to �bc it is possible to provide
a construction of the Brownian Castle which highlights its inner structure. We
will now see how to exploit this construction in order to prove certain continuity
properties that the Brownian Castle hbc and its periodic counterpart hper

bc enjoy.

PROPOSITION 4.5. Pbc-almost surely, for every initial condition h0 2 D.R;R/,
the map t 7! hbc.t; �/ takes values in D.R;R/, and is continuous from above,
i.e., for every t 2 RC lims#t dSk.hbc.s; �/; hbc.t; �// D 0. Moreover, Pbc-almost
surely, for every t 2 RC such that there is no x 2 R for which .t; x/ 2 S

#
.0;3/

,
t 7! hbc.t; �/ is continuous at t , i.e., lims!t dSk.hbc.s; �/; hbc.t; �// D 0. The same
holds in the periodic setting P

per
bc -almost surely.

PROOF. The definition of hbc, together with Proposition 2.14 and the continuity
of Bbc, immediately implies that almost surely for every t 2 R, R 3 x 7! hbc.t; x/

is càdlàg and therefore belongs to D.R;R/.
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In order to prove the second part of the statement, fix t > 0 and let s > t .
By definition of the Skorokhod distance, it suffices to exhibit a �s 2 � such that
.�s/ < " for s sufficiently small and supx2��R;R� jhbc.s; �s.x// � hbc.t; x/j <
" for R big enough. Since hbc.t; �/ 2 D.R;R/ by Proposition 2.14, [5, lemma
1.12.3] implies that there exist �R D x1 < � � � < xn D R such that for all
i D 1; : : : ; n

(4.3) sup
x;y2�xi ;xiC1/

jhbc.t; x/ � hbc.t; y/j < "=2:

We can assume, without loss of generality, that for every x 2 �xi ; xiC1/,
%#.Tbw.t; x/; 0/ coincides. Indeed, if this is not the case, it suffices to add a finite
number of points xi and (4.3) would still hold. Now, for each of the ´i D .xi ; t /,
we consider zil 2 T "

bw, i.e., the leftmost point (see Remark 2.8) in the preimage of
´i for the forward Brownian Web Tree (which, by Theorem 2.20 is deterministi-
cally fixed by �#bw). Now, let � > 0 be small enough so that for s 2 .t; t C �/

M
"
bw;x.%

".z1l ; s// < � � � < M"
bw;x.%

".znl ; s//;

set
�s.xi /

defD M
"
bw;x.%

".zil ; s//
and define �s.x/ for x ¤ xi by linear interpolation. Clearly, .�s/ converges to 0
as s # t , so that we can choose zs sufficiently close to t for which .�s/ < " for
all s 2 .t; zs/. Now, by the noncrossing property (see point (ii) in Theorem 2.20),
y

defD M
#
bw;x.%

#.Tbw.�s.x/; s/; t// 2 �xi ; xiC1/ for s 2 .t; zs/ and x 2 �xi ; xiC1/
and clearly d#bw.Tbw.�s.x/; s/; %

#.Tbw.�s.x//; t// D s � t . Recall that Bbc is

locally �-Hölder-continuous so that upon taking s defD zs ^ .t C "1=�=2/, we obtain

jhbc.s; �s.x// � hbc.t; x/j � jhbc.s; �s.x// � hbc.t; y/j C jhbc.t; y/ � hbc.t; x/j
< jBbc.Tbw.s; �s.x/// � Bbc.Tbw.t; y//j C "

2
< "

for all x 2 ��R;R/ and s � s, and from this the result follows.
It remains to prove the last part of the statement. Let t 2 RC be such that

ftg�R\S#
.0;3/

D ¿ and " > 0. We now consider a finite subset of ft �"1=� g�R,
z�#
��R;R� (which is the image via M#

bw of �R in (B.1)), given by

z�#
��R;R�.t; t � "1=� /

defD fM#
bw;x.%

#.z; t � "1=� // W M#
bw.z/ 2 ftg � ��R;R�g:

(4.4)

Order the elements in the previous set in increasing order, i.e.,

� z�#
��R;R�.t; t � "1=� / D fxi W i D 1; : : : ; N g

and
� x1 defD min z�#

��R;R�.t; t � "1=� /.
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Now, for any xi 2 z�#
��R;R�.t; t � "1=� /, let

yi
defD inffy 2 R W %#.Tbw.t; y/; t � "1=� / D xig; i D 1; : : : ; N;

yNC1
defD supfy 2 R W %#.Tbw.t; y/; t � "1=� / D xN gI

(4.5)

then, since by Theorem 2.20 (ii) forward and backward paths do not cross, we know
that fyig coincides with z�"

�x1;xN �
.t � "1=� ; t / (defined as z�# but with all arrows

reversed). By duality S#
.0;3/

D S
"
.2;1/

, hence f.yi ; t /g \ S".2;1/ D ¿. Therefore,

there exists a time zt 2 .t � "1=� ; t / such that no pair of forward paths started
before t � "1=� and passing through �x1; xN � at time t � "1=� , coalesces at a time
s 2 .zt ; t �. In other words, the cardinality of z�"

�x1;xN �
.t � "1=� ; t / coincides with

that of z�"
�x1;xN �

.t � "1=� ; s/ for any s 2 .zt ; t �.
For i � N , let zi be the unique point in T "

bw such that for all z 2 T "
bw for which

M
"
bw;x.z/ 2 ft�"1=� g� �xi ; xiC1�, %".z; zt / D zi . We define the map �s , s 2 .zt ; t /,

as
�s.xi /

defD M
"
bw;x.zi /;

and for x ¤ xi we extend it by linear interpolation. Clearly, .�s/ converges to 0,
so that we can choose zs > zt sufficiently close to t so that .�s/ < ". Now, notice
that, by construction (and Theorem 2.20 (ii)), for all x 2 ��R;R� and s 2 .zs; t/,
Tbw.t; x/ and Tbw.s; �s.x// must be such that d#.Tbw.t; x/;Tbw.s; �x.x/// <

"1=� which, by the (local) �-Hölder continuity of Bbc, guarantees that

jhbc.t; x/ � hbc.s; �s.x//j D jBbc.Tbw.t; x// � Bbc.Tbw.s; �x.x//j . ";
which concludes the proof in the nonperiodic setting. The periodic case follows
the same steps but, as spatial interval, one can directly take the whole of T instead
of ��R;R�. □

Remark 4.6. By Proposition 2.14, the fact that hbc.t; �/ is càdlàg simply follows
from its description in terms of an element of C�;�bsp . The fact that it is right-
continuous as a function of time, however, uses specific properties of the Brownian
Castle itself and wouldn’t be true for hbc built from an arbitrary element of C�;�bsp .

In the next proposition, we show that it is possible to obtain a finer control over
the fluctuations of the Brownian Castle.

PROPOSITION 4.7. Pbc-almost surely, for every t > 0, hbc.t; �/ has finite p-
variation for every p > 1, locally on any bounded interval of R.

PROOF. Let t; R > 0 and consider hbc.t; �/ restricted to the interval ��R;R�.
At first, we will approximate hbc.t; �/ by piecewise constant functions.

For any n � 0, let z�.t; t � 2�n/ be the set defined according to (4.4) and let
Nn

defD �R.t; 2
�n/ be its cardinality, which we recall satisfies the bound Nn . 2&n



42 G. CANNIZZARO AND M. HAIRER

(for some random proportionality constant independent of n) given in (B.3). We
order the points of z�.t; t � 2�n/ as in the proof of Proposition 4.5, denote them by
x
.n/
1 < � � � < x

.n/
Nn

, and set x.n/0
defD �R and x.n/NnC1

defD R. We define the piecewise
constant function hnbc.t; �/ by

hnbc.t; x/ D hbc.t; x
.n/
i / for x 2 �x.n/i ; x

.n/
iC1/.

We then note that, for any x 2 ��R;R� we have the identity

hbc.t; x/ � h0bc.t; x/ D
X
n�0

�
hnC1bc .t; x/ � hnbc.t; x/

�
so that in particular, for any p � 1,.

(4.6)
hbc.t; �/ � h0bc.t; �/


p-var �

X
n�0

hnC1bc .t; �/ � hnbc.t; �/

p-var;

the p-variation norm k � kp-var being defined as in (1.17). Thanks to the �-Hölder
continuity of Bbc, we then havehnC1bc .t; �/ � hnbc.t; �/


p-var . 2

��nN 1=p
nC1;

since hnC1bc .t; �/ � hnbc.t; �/ is a piecewise constant function with sup-norm over
��R;R� bounded by C2��n (for some random C independent of n) and at most
NnC1 jumps. Inserting this bound into (4.6) and exploiting the bound on NnC1
provided by Lemma B.1, we obtain

khbc.t; �/ � h0bc.t; �/kp-var .
X
n�0

2.&=p��/n;

which is finite for any p > &=�. Since both & and � can be chosen arbitrarily close
to 1=2, the statement follows. □

Combining the (Hölder) continuity of the map Bbc (or of Bper
bc ) with Proposi-

tion 2.14, we conclude that the set of discontinuities of hbc is contained in S#0;2 [
S
#
1;2 [ S#0;3 (see Definition 2.22) or, by duality (see Theorem 2.23), in the image

through M"
bw of the skeleton of the forward Brownian Web T o;"

bw
6 given by (3.14),

and the same holds for hper
bc .

This means that we can identify specific events in the spatio-temporal evolution
of the (periodic) Brownian Castle with special points of the (periodic) Brownian
Web. Let us define the basin of attraction for the shock at ´ D .t; x/ 2 RC �R as

A´
defD f´0 D.t 0; x0/ 2 R2 W t 0 < t and there exists

z0 2 T "
bw s.t. M"

bw.z
0/ D ´0 and M"

bw.%
".z0; t // D ´g

(4.7)

6In [8], it was shown that the skeleton is given by T "
1.D/ (resp., T per;"

1 .D/), D being any countable
dense subset of R2 (resp., T �R), but with the endpoints removed



THE BROWNIAN CASTLE 43

and the age of the shock as

(4.8) a´ D t � supft 0 < t W ft 0g �R \ A´ D ¿g:
and define mutatis mutandis Aper

´ and aper
´ as the basin of attraction of a shock at

´ 2 RC � T and its age, in the periodic setting. In the following proposition, we
show properties of the age of a point ´ and characterise its basin of attraction.

PROPOSITION 4.8.
(1) In both the periodic and nonperiodic case, the set of points with strictly

positive age coincides with the union of points of type .i; j / for j > 1.
(2) In the nonperiodic case, almost surely, for every ´, a´ < 1 and there

exists a unique ´0 D .t 0; x0/ 2 A´ that realises the supremum in (4.8), i.e.,
such that a´ D t � t 0. In the periodic case, for every t 2 R, the previous
holds for all ´ 2 ftg � T except for exactly one value ´per D .t; xper/,
which is such that a´per D1.

(3) In the nonperiodic case, if ´ D .t; x/ is such that a´ > 0, then the unique
´0 D .t 0; x0/ 2 A´ (determined in the previous point) such that a´ D t � t 0
belongs to S"0;3. Moreover, the leftmost and rightmost points at ´, zl; zr 2
.M

#
bw/

�1.´/ are such that zl ¤ zr and

(4.9) VA´ D
[
s<t

.M
#
bw.%

#.zl; s//;M
#
bw.%

#.zr; s///

where VA´ denotes the interior of A´ and A´ is compact.

PROOF. Point (1) is an immediate consequence of Theorem 2.23. Indeed, if ´ is
such that a´ > 0, then there exists a point in .M"

bw/
�1.´/ whose degree is strictly

greater than 1, which implies that j.M#
bw/

�1.´/j � 2 so that ´ belongs to the union
of S#i;j for j > 1. Vice versa, if ´ belongs to one of the S#i;j for j > 1 then, by

duality, it belongs to one of S"i;j for .i; j / D .1; 1/; .2; 1/, or .1; 2/ so that there

exists at least one z0 2 T "
bw such that M"

bw;t .z
0/ < t and M"

bw.�
"
bw.z

0; t // D ´.

Hence a´ � t �M"
bw;t .z

0/ > 0.
For point (2), we first show that if a´ is finite then the point realising the supre-

mum is unique, the proof being the same in the periodic and nonperiodic set-
ting. Assume there exist ´0 D .t 0; x0/; ´00 D .t 0; x00/ 2 A´ realising the supre-
mum in (4.8). Then, by the coalescing property, every point in ft 0g � �x0; x00�
(or ft 0g � .T n �x0; x00�/) belongs to A´. But, according to Theorem 2.23 almost
surely for every s 2 R, S"1;1 \ fsg � R is dense in fsg � R, hence, there is ź 2
S
"
1;1\ft 0g��x0; x00� and z 2 T "

bw such thatM"
bw;t .z/ < t

0 andM"
bw;t .%

".z; t 0// D ź.

But then a´ � t �M"
bw;t .z/ > t � t 0, which is a contradiction.

Since, by [8, prop. 3.23], T "
bw has a unique open end with unbounded rays for

every ´, a´ < 1. This is not true anymore for T
per;"

bw , which has exactly two
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open ends with unbounded rays, but since there exists a unique bi-infinite edge
connecting them (see [8, prop. 3.27]), it follows that for every t there is a unique
xper 2 T such that .t; xper/ has infinite age.

Let us now focus on 3. Let ´ D .t; x/ be such that a´ > 0. From 2., there
exists a unique point ´0 2 R2 and a point z0 2 T "

bw such that M"
bw.z

0/ D ´0 and
M

"
bw.%

".z0; t // D ´, hence ´ 2 S
"
1;1 [ S"2;1 [ S"1;2. Thanks to Theorem 2.23,

the rightmost and leftmost points in .M#
bw/

�1.´/, zr; zl 2 T #
bw must be distinct.

By Theorem 2.20 (ii), forward and backward trajectories cannot cross, therefore
for every s 2 .t 0; t /, M#

bw.%
#.zl; s// < M

"
bw.%

".z0; s// < M
#
bw.%

#.zr; s//. In
particular, the backward paths starting from ´ cannot coalesce before t 0. They
cannot coalesce after t 0 either since, if this were to be the case, then for the same
reasons as above the path in the forward web starting from any point in fsg �
.M

#
bw.%

#.zl; s/;M
#
bw.%

#.zr; s///, s < t 0 would be contained in A´, contradicting
point 2. It follows that the point at which the two backward paths coalesce is ex-
actly ´0, which implies that ´0 2 S#2;1 D S

"
0;3. Moreover the previous argument

also shows that (4.9) holds (with z1 D zr and z2 D zl). □

Remark 4.9. Proposition 4.8 and its proof underline one of the main visible dif-
ferences between the Brownian Castle and its periodic counterpart. Indeed, only
T

per;"
bw possesses a bi-infinite edge �", which implies that hper

bc exhibits a “master
shock” starting back at �1 and running along M per;"

bw .�".�//. Indeed, as we have
seen above, for every s 2 R there exist two backward paths starting in or passing
through M per;"

bw .�".s// that before meeting need to transverse the whole torus. On
the other hand, all the discontinuities of hbc have a finite origin that can be tracked
with the methods shown in Proposition 4.8.

The following proposition collects the most important connections between cer-
tain events we witness on the Brownian Castle and special points in the Web.

PROPOSITION 4.10.
(1) Shocks for hbc and h

per
bc correspond to the trajectories of the forward and

periodic forward Brownian Web trees, respectively; i.e., they are points of
type .1; 1/ or .1; 2/ for �"bw (resp., �per;"

bw ).
(2) If two shocks merge at ´, then ´ is of type .0; 3/ for the backward (periodic)

Brownian Web.

PROOF. The result follows by the fact that, by construction, the paths of back-
ward Brownian Web Tree represent the backward characteristics of the Brownian
Castle, and by duality. □

The previous proposition provides the reason why there is no chance for the
Brownian Castle hbc.s; �/ to admit a limit as s " t for all t 2 RC, in the Sko-
rokhod topology (or any of theM1-, J2-, andM2-topologies on this space; see [39,
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sec. 12]), independently of the specifics of the proof of Proposition 4.5 or our con-
struction. Indeed, the Skorokhod topology allows for discontinuities to evolve con-
tinuously and to merge only if their difference continuously converges to 0. This
is not necessarily the case here. Indeed, if ´ D .t; x/ 2 S"2;1, then there are two
paths in the forward Web that coalesce at ´, i.e., two discontinuities merging there.
According to Proposition 2.14, for s sufficiently close to t , these discontinuities
evolve continuously up to the time at which they merge, but there is no reason for
their difference to vanish. The pointwise limit of hbc.s; �/ as s " t would then
need to encode three different values at the point ´, but the resulting object is not
an element of D.R;R/. Furthermore, according to Theorem 2.23 S"2;1 is a count-
able yet dense subset of R2 so that points at which càdlàg continuity fails are very
common!

In the following proposition, whose proof is based on the above heuristics, we
show that for any choice of initial condition, there is no version of the Brown-
ian Castle hbc (defined by simply specifying its finite-dimensional distributions),
which is càdlàg in time and space.

PROPOSITION 4.11. Given any initial condition h0 2 D.R;R/ and T > 0, the
Brownian Castle starting at h0 does not admit a version in D.�0; T �;D.R;R//.
The same is true for the periodic Brownian Castle.

PROOF. Since a right-continuous function with values in D.R;R/ is uniquely
determined by its values at space-time points with rational coordinates (for exam-
ple), it suffices to show that the exists a (random) time for which hbc admits no
left limit in D.R;R/. For this, it suffices to find a point .t; x/ and three sequences
.tk; x

.i/

k
/k�0 (here i 2 f1; 2; 3g) with tk " t , x.i/k ! x, and limk!1 hbc.tk; x

.i/

k
/ D

Li with all three limits Li different from each other.
Now, notice that, almost surely, one can find two elements x0; x1 2 T "

bw with
M

"
bw.xi / D .xi ; 0/ and x0, x1 in ��1; 1� such that, for the forward Brownian Web

Tree, one has %".x0; T / D %".x1; T /. Writing t D inffs > 0 W %".x0; s/ D
%".x1; s/g and x D M

"
bw.%

".x0; t //, we then necessarily have .t; x/ 2 S
#
0;3 by

duality and, furthermore, the three trajectories emanating from .t; x/ in the back-
wards Brownian Web cannot coalesce before time 0 by the noncrossing property.
Since further, the Gaussian process Bbc is locally Hölder-continuous and, with
high probability, t � c > 0 for some positive constant c, the claim then follows by
taking for .tk; x

.i/

k
/ sequences accumulating at .t; x/ and belonging to these three

trajectories. □

4.2 The Brownian Castle as a Markov process
We are now interested in studying the properties of the (periodic) Brownian Cas-

tle as a random interface evolving in time, i.e., as a stochastic process with values
inD.R;R/ (resp.,D.T ;R/). To do so, we need to introduce a suitable filtration on
the probability space .�;F ;Pbc/ (resp., .�per;Fper;P

per
bc /) on which the Castle
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is defined. 7 From now on, we assume that all sub-� -algebras of F (resp., Fper)
that we consider contain all null events.

We will make use of the following construction. Given a metric space X , we
write X 2c � X 2 for the set of all pairs .x; y/ such that x and y are in the same
path component of X . Given BWX ! R (or into any abelian group), we then
write �BWX 2c ! R for the map given by �B.x; y/ D B.y/ � B.x/.

Let � D .T ;�; d;M;B/ 2 � D D
�;�
bsp (or �per) and, for �1 � s � t < C1,

define Ts;t
defD M�1..s; t � � R/ (or Ts;t

defD M�1..s; t � � T /). Let evals;t be the
map given by

(4.10) evals;t .�/
defD �

�s;t ; �
�
B�Ts;t

��
where �s;t

defD .Ts;t ; d;M�Ts;t /. We use the notations

(4.11) Fs;t
defD �.evals;t /; Ft

defD �.eval�1;t /;
for the � -algebras that they generate. The following property is crucial.

LEMMA 4.12. If the intervals .s; t � and .u; v� are disjoint, then Fs;t and Fu;v are
independent.

PROOF. The fact that Ts;t and Tu;v are independent under the law of the Brow-
nian Web Tree was shown, for example, in [22, prop. 2] (this is for a slightly
different representation of the Brownian web, but the topological space T can be
recovered from it in a measurable way). It remains to note that, conditionally on
Ts;t and Tu;v, the joint law of �

�
B�Ts;t

�
and �

�
B�Tu;v

�
is of product form with

the two factors being Ts;t - and Tu;v-measurable, respectively. This follows imme-
diately from the independence properties of Brownian increments as formulated in
Remark 3.8. □

One almost immediate consequence is that both hbc and h
per
bc are time-homogeneous

strong Markov processes satisfying the Feller property.

PROPOSITION 4.13. The (periodic) Brownian Castle hbc (resp., hper
bc ) is a time-

homogeneous D.R;R/ (resp., D.T ;R/)-valued Markov process on the complete
probability space .�;F ;Pbc/ (resp., .�per;Fper;P

per
bc /), with respect to the fil-

tration fFtgt�0 introduced in (4.11). Moreover, both

fhbc.t; �/gt�0 and fhper
bc .t; �/gt�0

are strong Markov and Feller.

PROOF. The proof works mutatis mutandis for both the periodic and nonperi-
odic case so we will focus on the latter.

We have already shown that Pbc-almost surely for every h0 and t � 0, hbc.t; �/ 2
D.R;R/ (see Proposition 4.5). Moreover, by construction, hbc.t; �/ only depends

7For example, � can be taken to be D�;�
bsp and F the Borel � -algebra induced by the metric in (3.1).
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on eval�1;t .�bc/ so that it is clearly Ft -measurable. Notice that, by definition, for
every 0 � s < t and x 2 R, we can write

hbc.t; x/ D hbc.s;M
#
bw.%

#.Tbw.t; x/; s///

C Bbc.Tbw.t; x// � Bbc.%
#.Tbw.t; x/; s//;

so that hbc.t; �/ is hbc.s; �/_Fs;t -measurable. Since Fs;t and Fs are independent
by Lemma 4.12, the Markov property follows, while the time homogeneity is an
immediate consequence of the stationarity of .T #

bw;M
#
bw; Bbc/.

Stochastic continuity was already shown in Proposition 4.5, so, if we show that
the law of hbc.t; �/ depends continuously (in the topology of weak convergence) on
h0, then the Feller property holds. By the definition of the Skorokhod topology, it
is sufficient to show that, if fhn0gn2N � D.R;R/ is a sequence converging to h0
in D.R;R/, then, for every R > 0, one has supjxj�R jhnbc.t; x/� hbc.t; x/j ! 0 in
probability, where we write hnbc for the Brownian Castle with initial condition hn0 .

Note that

(4.12) sup
jxj�R

jhnbc.t; x/ � hbc.t; x/j � sup
jxj�R

jhn0.y.x// � h0.y.x//j

where y.x/ defD M
#
bw.%

#.Tbw.t; x/; 0//. With probability 1, the set fy.x/ W x 2
��R;R�g is finite and has empty intersection with the set of discontinuities of h0.
Hence, the right-hand side of (4.12) converges to 0 (almost surely and therefore
also in probability) by [12, prop. 3.5.2].

Since the Brownian Castle almost surely admits right-continuous trajectories
and is Feller, the same proof as in [32, theorem III.3.1] guarantees that it is strong
Markov (even though its state space is not locally compact). □

The periodic Brownian Castle h
per
bc is not only Feller, but also strong Feller;

namely, its Markov semigroup maps bounded functions to continuous functions.
It will be convenient to write T �t � D M�1.ftg � T / for the time-t “slice” of a
spatial R-tree.

PROPOSITION 4.14. The periodic Brownian Castle satisfies the strong Feller prop-
erty.

PROOF. Let � 2 Bb.D.T ;R// be bounded by 1, h0 2 D.T ;R/, and t > 0.
We aim to show that, for every " > 0, there exists � > 0 such that whenever
dSk.xh0; h0/ < �
(4.13)

��Ebc
�
�
�
h

per
bc .t; �/

���h0� � Ebc
�
�
�
h

per
bc .t; �/

���xh0��� < ":
Fix " > 0. Let � 2 .0; t/ be sufficiently small and xN big enough so that the
probability of the events

A1
defD �

#f%#.z; �/ W z 2 T
per;#

bw �t �g D #f%#.z; 0/ W z 2 T
per;#

bw �t �g	
A2

defD �
#f%#.z; 0/ W z 2 T

per;#
bw �t �g � xN 	
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is each at least 1 � "
3

. This is certainly possible since as � goes to 0 and xN tends
to 1 the probability of both A1 and A2 goes to 1. On A1 \ A2, let z1; : : : ; zN be
the list of all distinct points of f%#.z; �/ W z 2 T

per;#
bw �t �g (clearly, N � xN ) and set

yi D M
per;#
bw;x .yi / where yi D %#.zi ; 0/. As before, the probability that one of the

yi ’s is a discontinuity point for h0 is 0. Hence, by [12, prop. 3.5.2], for every y" > 0
it is possible to choose � > 0 small enough so that whenever dSk.xh0; h0/ < � then
�i

defD h0.yi / � xh0.yi / satisfies j�i j < y" for all i .
Write simply B instead of Bper;#

bc as a shorthand. Note now that for every x 2 T
there exists i � N such that one can write

(4.14) h
per
bc .t; x/ D h0.yi /C �B.yi ; zi /C �B.zi ;Tbw.t; x//;

and, conditional on T
per;#

bw , the collection of random variables f�B.%#.z; �/; z/ W
z 2 T

per;#
bw �t �g is independent of the collection f�B.yi ; zi /gi�N . Conditional on

T
per;#

bw and restricted toA1\A2, the law of the latter is N .0; � IdN / for someN �
xN . We now choose y" small enough so that kN .0; � IdN / � N .h; � IdN /kTV �
"=3, uniformly over all N � xN and all h 2 RN with jhi j � y".

Writing xhper
bc for the Brownian Castle with initial condition xh0, it immediately

follows from the properties of the total variation distance that we can couple xhper
bc

and h
per
bc in such a way that P .xhper

bc .t; �/ D h
per
bc .t; �// � 1 � ", uniformly over xh0

with dSk.xh0; h0/ < �, and (4.13) follows. □

Remark 4.15. The strong Feller property fails in the nonperiodic case for any state
space containing constant functions. This is because, for any fixed time t > 0, the
Brownian Castle with initial condition 0 is strongly mixing (as a spatially indexed
process) and has average 0. Its covariance with respect to vertical translations thus
implies that the transition probabilities starting from constant initial data are all
mutually singular, which contradicts the strong Feller property.

We now want to study the large-time behaviour of the Brownian Castle and
its periodic counterpart. Notice at first that for any sublinearly growing initial
condition h0, the variance of hbc.t; 0/ grows like t since, by Definition 1.1, hbc.t; 0/

conditioned on T #
bw is Gaussian with variance t and mean given by h0, evaluated

at the point where the backward Brownian motion starting at .t; 0/ hits f0g � R.
On the other hand, it is immediate that the Brownian Castle is equivariant under
the action of R by vertical translations in the sense that one has hh0Cabc D h

h0
bc C a.

As a consequence, writing zD.R;R/ D D.R;R/=R for the quotient space, the
canonical projection of the Brownian Castle onto zD is still a Markov process. We
henceforth write zhbc (resp., zhper

bc ) for this Markov process.
Recall the stationary Brownian Castle hs

bc given in Definition 4.3. As above, we
write zhsbc for its canonical projection to zD and similarly for its periodic version,
which, according to Remark 4.4, are truly stationary. With these notations, we then
have the following result.
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PROPOSITION 4.16. There exists a stopping time � with exponential tails such that,
for t � � , one has zhper

bc .t; �/ D zhper;s
bc .t; �/ independently of the initial condition h0.

PROOF. It suffices to take for � the first time such that all the backward paths
starting from ftg � T coalesce before hitting time 0, namely,

�
defD inf

�
t � 0 W d#bw.z; z

0/ � 2t; 8z; z0 2 T
per;#

bw �t �
	
:

Notice that � coincides in distribution with T ".0/ introduced in [9, sec. 3.1]. (This
is by duality: the noncrossing property guarantees that all backwards trajectories
starting from t coalesce before time 0 precisely when all forward trajectories start-
ing from 0 have coalesced.) It follows immediately from the definitions that, for all
t � � , zhper

bc .t; �/ is independent of h0 and therefore equal to zhper;s
bc .t; �/. Exponential

integrability of � then follows from [9, prop. 3.11(ii)]. □

In the nonperiodic case, one cannot expect such a strong statement of course,
but the following bound still holds.

PROPOSITION 4.17. The bound

Ebc
�
dSk
�zhbc.t; �/; zhs

bc.t; �/
��
.

log tp
t
;

holds independently of the initial condition h0.

PROOF. The definition of dSk implies that if zhbc.t; x/ D zhs
bc.t; x/ for all x with

jxj � R, then dSk.zhbc.t; �/; zhs
bc.t; �// � e�R and that, in any case, dSk is bounded

by 1. It follows that

EdSk
�zhbc.t; �/; zhs

bc.t; �/
� � P .AcR/C e�RP .AR/;

for any R > 0, and any event AR implying that zhbc.t; �/ and zhs
bc.t; �/ agree on

��R;R�. It suffices to take for AR the event that the two backwards trajectories
starting at .t;�R/ coalesce before time 0. Since P .AcR/ . R=

p
t , choosing R D

log t yields the claim. □

4.3 Distributional properties
In this section, we will focus on the distributional properties of the stationary

Brownian Castle, which, as shown in the previous section, describes the long-time
behaviour of hbc (resp., hper

bc ), at least modulo vertical translations. We begin with
the following proposition, which shows that hbc is indeed invariant with respect to
the 1W1W2 scaling; i.e., its scaling exponents are indeed those characterising its own
universality class.

PROPOSITION 4.18. Let hs
bc be the stationary Brownian Castle defined according

to (4.1). Then, for any � > 0,

(4.15) �hs
bc. �=�

2; �=�/
lawD hs

bc. � ; �/:
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PROOF. The claim clearly holds for all finite-dimensional distributions from
the scaling properties of Brownian motion. Since these characterise the law of
hs

bc, (4.15) follows at once. □

Remark 4.19. Note that (4.15) holds without having to quotient by vertical shifts,
while this is necessary to have space-time translation invariance.

Although Definition 1.1 provides a graphic description of the finite-dimensional
distributions of the Brownian Castle, we would like to obtain more explicit formu-
las characterising them. In the next proposition, we begin our analysis by studying
the distribution of the increments at fixed time and as time goes to C1.

PROPOSITION 4.20. Let h0 2 D.R;R/, t > 0, and hbc be the Brownian Castle
with initial condition h0. Then, as jx � yj converges to 0

(4.16)
hbc.t; x/ � hbc.t; y/

x � y
law�! Cauchy.0; 2/;

where, for a 2 R and  > 0, Cauchy.a; / denotes a Cauchy random variable
with location parameter a and scale parameter  . Moreover, for any x; y 2 R,

(4.17) hbc.t; x/ � hbc.t; y/
law�! Cauchy.0; 2jx � yj/

as t " C1. In particular, for any x; y 2 R the stationary Brownian Castle hs
bc

satisfies hs
bc.t; x/ � hs

bc.t; y/
lawD Cauchy.0; 2jx � yj/ for any t � 0.

PROOF. The claim for hs
bc is clearly true since from its definition we have

hs
bc.t; x/ � hs

bc.t; y/
lawD N .0; 2�y�x/;

where �r is the law of the first hitting time of r for a standard Brownian mo-
tion starting at 0. Now, �r

lawD Levy.0; r2/ and Cauchy.t/ lawD N .Levy.0; t2=2//,
which implies the result. (4.17) follows from Proposition 4.17, while (4.16) can be
reduced to (4.17) by Proposition 4.18. □

We now turn our attention to the n-point distribution for n � 3. Given that
x1; : : : ; xn 2 R, we aim at deriving an expression for the characteristic function of
.Hbc.x1/; : : : ;Hbc.xn//, where we use the shorthand Hbc D hs

bc.0; �/. By the defi-
nition of Hbc (and Definition 1.1), once the full ancestral structure of n independent
coalescing (backward) Brownian motions starting from x1; : : : ; xn respectively, is
known, the conditional joint distribution of .Hbc.x1/; : : : ;Hbc.xn// (modulo ver-
tical shifts) is Gaussian and therefore easily accessible. In order to get our hands
on the aforementioned ancestral structure, we will proceed inductively using the
strong Markov property of a finite family of coalescing Brownian motions. This
will be possible if we are able to simultaneously keep track of the first time at
which any two Brownian motions meet, which are the Brownian motions meeting
and the position of all of them at that time.
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Let x1 < � � � < xn and let .yi /i�n be independent standard Brownian motions
starting at xi . Denote byZ D .�; �;�n�1/ theRC� �n�1��Rn�1-valued random
variable in which � , � and �n�1 are defined by

�
defD inf ft > 0 W 9 � 2 �n � 1� such that y�.t/ D y�C1.t/g;

�n�1 defD .y1.�/; : : : ; y��1.�/; y�C1.�/; : : : ; yn.�//;
(4.18)

where � is implicitly defined as the (almost surely unique) value appearing in the
definition of � . The random variableZ admits a density with respect to the product
of the one-dimensional Lebesgue measure on RC, the counting measure on �n� 1�
and the .n � 1/-dimensional Lebesgue measure, as the following variant of the
Karlin–McGregor formula [24] shows.

LEMMA 4.21. Let Z be the RC � �n� 1��Rn�1-valued random variable defined
in (4.18). Then, with the usual abuse of notation,

(4.19) Px
�
� 2 dt; � D j;�n�1 2 dy

� D detM j
t .x; y/dy dt

where the n � n matrix M j is defined by

(4.20) M
j
t .x; y/i;k

defD

8�<�:
pt .yk � xi / for k < j ,
p0t .yj � xi / for k D j ,
pt .yk�1 � xi / for k > j ,

p is the heat kernel, and p0 its spatial derivative.

PROOF. This is an immediate corollary of Theorem C.1, combined with the
Karlin–McGregor formula. □

In the following proposition, we derive a recursive formula for the characteristic
function of the n-point distribution of Hbc.

PROPOSITION 4.22. Let Hbc be as above. For n 2 N, � D .�1; : : : ; �n/; x D
.x1; : : : ; xn/ 2 Rn such that

P
j �j D 0 and x1 < � � � < xn, and let Fn.�; x/

be the characteristic function of .Hbc.x1/; : : : ;Hbc.xn// evaluated at �. Then, Fn
satisfies the recursion

Fn.�; x/ D
n�1X
jD1

Z
RC

Z
y1<���<yn�1

e�
1
2
j�j2tFn�1.cj�; y/ detM j

t .x; y/dy dt
(4.21)

where the n � n matrix M j was given in (4.20) and cj� 2 Rn�1 is the vector
defined by

.cj�/l
defD

8�<�:
�l ; l < j;

�j C �jC1; l D j;

�lC1; l > j:
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PROOF. Fix x1 < � � � < xn and consider the stochastic process .yi ; Bij /ni;jD1
where the yi are coalescing Brownian motions with initial conditions yi .0/ D xi
and the Bij are given by

(4.22) dBij .t/ D 1yi¤yj .dWi .t/ � dWj .t//; Bij .0/ D 0;

theWi being i.i.d. standard Wiener processes independent of the yi ’s. This process
is strong Markov since so is the family of yi ’s (see [37]). Furthermore, since the
yi ’s all coalesce at some time, the limit Bij .1/ D limt!1Bij .t/ is well-defined
and, by construction, one has

.Hbc.xi / � Hbc.xj //
n
i;jD1

lawD .Bij .1//ni;jD1:
We now combine the strong Markov property with the fact that B , as defined by
(4.22), depends on its initial condition in an affine way with unit slope. This implies
that, writing zHbc for a copy of Hbc that is independent of the process .y; B/ and �
for any stopping time, one has the identity in law�

Bij .1/
�
i;j

lawD �
Bij .�/C zHbc.yi .�// � zHbc.yj .�//

�
i;j
:

Write now .Ft / for the filtration generated by the yi and the Wi and � for the first
time at which any two of the y’s coalesce. Using furthermore the shorthand Hbc.x/

for .Hbc.x1/; : : : ;Hbc.xn// we have

Fn.�; x/ D E
�
E�eih�;Hbc.x/i j jF� �

� D E
h
eih�;zHbc.y.�//i� 1

2
j�j2�

i
D
n�1X
lD1

Z 1

0

Z
y1<���<yn�1

e�
j�j2

2
tE
�
eih�;Hbc.y/i�Px.� 2 dt; � D l;�n�1 2 dy/

D
n�1X
lD1

Z 1

0

Z
y1<���<yn�1

e�
j�j2

2
tE
�
eihcl�;Hbc.y/i� detM j

t .x; y/dy dt

where Px denotes the measure appearing in Lemma 4.21. The required iden-
tity (4.21) follows at once. □

Thanks to the results in Sections 4.1 and 4.2, and Proposition 4.20, we know
that Hbc has increments which are stationary and distributed according to a Cauchy
random variable with parameter given by their lengths, and admits a version whose
trajectories are càdlàg and have (locally) finite p-variation for any p > 1 (see
Proposition 4.7). If moreover we knew that the increments were independent, we
could conclude that Hbc is nothing but a Cauchy process.

The lack of independence is already evident in Proposition 4.22 by formula
(4.21); therefore the k-point distributions of Hbc with k > 2 are different from
those of the Cauchy process. In the next proposition, we actually show more,
namely, that the law of Hbc is a genuinely new measure on D.R;R/ since it is
singular with respect to that of the Cauchy process.
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PROPOSITION 4.23. Let Hbc be as above and C be the standard Cauchy process on
RC. Then, when restricted to �0; 1�, the laws of Hbc and C are mutually singular.

PROOF. We want to exhibit an almost sure property that distinguishes the laws
of Hbc and C on D.�0; 1�;R/. Let 1 � x0 > � � � > xm � 1

2
, ' W Rm ! R be a

bounded function, and f�ngn an increasing sequence in �1;1/ such that �nC1 �
4�n for all n 2 N. For n � 1, define the functional �n W D.�0; 1�;R/! R by

�n.h/
defD 1

n

nX
kD1

'.Ik.h// where .Ik.h//i
defD �k.h.xi=�k/ � h.x0=�k//

for h 2 D.�0; 1�;R/. By scaling invariance and the independence properties of
the Cauchy process, fIk.C/gk is i.i.d. while, by Proposition 4.18, fIk.Hbc/gk is
a sequence of identically distributed (but not independent!) random variables.
Since furthermore ' is bounded, the classical strong law of large numbers holds
for f'.Ik.C//gk , which implies that almost surely

(4.23) lim
n!1�n.C/ D E��1.C/�:

We claim that, provided that we choose a sequence f�ngn that increases sufficiently
fast, (4.23) holds also for Hbc. Before proving the claim, notice that, assuming it
holds, we are done. Indeed, it suffices to take m � 2, and determine a function
' such that E��1.C/� ¤ Ebc��1.Hbc/�. Such a function clearly exists since by
Proposition 4.22 C and Hbc have different n-point distributions for n � 3.

We now turn to the proof of the claim. We will construct two sequences f yJkgk
and fJkgk of Rm-valued random variables such that

yJ1 D J1; fJkgk2N lawD fIk.Hbc/gk2N ;
and the sequence yJk is i.i.d. Arguing as for the Cauchy process, (4.23) holds for
f'. yJk/gk; hence the claim follows if we can build f yJkgk and fJkgk in such a way
that, almost surely, yJk D Jk for all but finitely many values of k.

Let fWk;i W k 2 N; i 2 f0; : : : ; mgg be a collection of i.i.d. standard Wiener
processes and ´k;i D .0; xk;i / be points with xk;i D xi=�k . We use them in two
different ways. First, we apply the construction given at the start of Section 2.3 to
each of the groups f.Wk;i ; ´k;i /gi�m separately, which yields a collection f�k D
.Tk;�k; dk;Mk/gk2N of directed spatial R-trees with each �k representing coa-
lescing Brownian motions starting from f´k;igi�m and Mk.�k/ D ´0;k . We then
apply the construction to the whole collection at once, taken in lexicographical or-
der, so to obtain one “big” spatial R-tree � D .T ; d;�;M/. Let yzk;i 2 Tk and
zk;i 2 T be the unique points such that Mk.yz k;i / D ´k;i and M.zk;i / D ´k;i ,
respectively. Write furthermore

�k D supft < 0 W %.zk;0; t / D %.zk�1;m; t /g:
Since both f�kgk and � are built via the same Brownian motions, we clearly have
Mk.%.yzk;i ; t // D M.%.zk;i ; t // for all i � m and all t 2 ��k; 0�. Denote by
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ST � T the subspace given by
ST D f%.zk;i ; t / W t 2 ��k; 0�; i � m; k 2 Zg;

and similarly for STk � Tk , so that there is a canonical bijection �WSk2N STk !ST .
We now turn to the branching maps. Fix independent Brownian motions Bk on

each of the Tk and write zBWSk2N STk ! R for the map that restricts to Bk on
each Tk . We then construct a Brownian motion B on T such that we have the
following:

� Writing xB for the restriction of B to ST , one has � xB.z; z0/ D � zB.�z; �z0/.
� Conditionally on theW ’s, all the increments B.z/�B.z0/ are independent

of all the Bk’s for any z; z0 2 T n ST .
The independence properties of Brownian motion mentioned in Remark 3.7 guar-
antee that such a construction is possible and uniquely determines the law of B ,
conditional on the Wk;i ’s and the Bk’s. We claim that setting

Jk;i D �k
�
B.zk;i / � B.zk;0/

�
; yJk;i D �k

�
Bk.yzk;i / � Bk.yzk;0/

�
;

the sequences f yJkgk and fJkgk satisfy all the desired properties mentioned above.
Clearly the yJk are independent, and they are identically distributed by Brownian

scaling. The fact that the Jk;i are distributed like Ik.Hbc/ is also immediate from
the construction, so it remains to show that yJk D Jk for all but finitely many values
of k. Writing

y�k D supft < 0 W %.yzk;0; t / D %.yzk;m; t /g;
we have that yJk D Jk as soon as jy�kj � j�kj. For k > 0,

j�kj lawD
� xm

�k�1
� x0

�k

�2
Levy.1/ � .4�k�1/�2 Levy.1/;

jy�kj lawD
�x0 � xm

�k

�2
Levy.1/ � ��2k Levy.1/;

where we use the fact that �k � 4�k�1 in the first inequality. If we choose 0 <
ck < Ck <1 such that

P .Levy.1/ < ck/ � k�2; P .Levy.1/ > Ck/ � k�2;
we can conclude that P .jy�kj � j�kj/ � 2k�2 provided that we choose the �k’s in
such a way that ck�2k � 16Ck�

2
k�1. Hence, by Borel-Cantelli we have yJk D Jk

for all but finitely many k’s and the proof is concluded. □

5 Convergence of 0-Ballistic Deposition
In this last section, we show that the 0-Ballistic Deposition model does indeed

converge to the Brownian Castle. In order to prove Theorem 1.5, we will begin
by associating to 0-BD a branching spatial R-tree and prove that, when suitably
rescaled, the law of the latter converges to Pbc defined in (3.39).



THE BROWNIAN CASTLE 55

5.1 The Double Discrete Web Tree
We begin our analysis by recalling the construction and the results obtained

in [8, sec. 4], concerning the spatial tree representation of a family of coalescing
backward random walks and its dual.

Let � 2 .0; 1� and .�;A ;P�/ be a standard probability space supporting four
Poisson random measures, �L , �R , y�L , and y�R . The first two, �L and �R , live

on S#
�

defD R � �Z, are independent and have both intensity �, where, for every
k 2 �Z, �.dt; fkg/ is a copy of the Lebesgue measure on R and throughout the
section

(5.1)  D .�/
defD 1

2�2
:

The others live on S"
�

defD R � �.ZC 1=2/, and are obtained from the first two by

setting, for every measurable A � S"
�

(5.2) y�L .A/ defD �R .A � �=2/ and y�R .A/ defD �L .AC �=2/:

Here, A� �=2
defD f´� .0; �=2/ W ´ 2 Ag.

Representing the previous Poisson processes via arrows as in Figure 1.4, it
is not hard to define two families of coalescing random walks f�#;�g

´2S#
�

and

f�";�g
´2S"

�

, the first running backward in time and the second, forward, in such a
way they never cross (see [8, sec. 4.1] and in particular figure 1 therein). Thanks
to these, we can state the following definition, which is taken from [8, def. 4.1].

DEFINITION 5.1. Let � 2 .0; 1�,  as in (5.1), �L and�R be two independent Pois-

son random measures on S#
�

of intensity �, y�L and y�R be given as in (5.2), and

f�#;�´ g
´2S#

�

and f�";�ý gý2S"
�

be the families of coalescing random walks introduced

above. We define the Double Discrete Web Tree as the couple �#"
�

defD .�
#
�
; �
"
�
/, in

which

- �#
�

defD .T #
�
;�#
�
; d

#
�
;M

#
�
/ is given by setting T #

�
D S

#
�

, �#
�
D .0; 0/, M#

�
the canonical inclusion, and

(5.3) d
#
�
.´; x́/ D t C t 0 � 2 supfs � t ^ t 0 W �#;�´ .s/ D �

#;�
x́ .s/g:

- �"
�

defD .T "
�
;�"
�
; d

"
�
;M

"
�
/ is built similarly, but with �"

�
D .0; �=2/ and the

supremum in (5.3) replaced by inffs � t _ t 0 W �";�´ .s/ D �
";�
x́ .s/g.

As was pointed out in [8], the Discrete Web Tree and its dual are not spatial
trees since the random walks �#;� , �";� are not continuous. To overcome the
issue, in [8, sec. 4.1], a suitable modification z�#"

�
of �#"

�
was introduced, called

the Interpolated Double Discrete Tree (see [8, def. 4.2]). Simply speaking, the
latter was obtained by keeping the same pointed R-trees .T �

�
;��

�
; d

�

�
/, � 2 f";#g,
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as those of the Double Discrete Tree and defining new evaluation maps �M#
�

and�M"
�

by interpolating the discontinuities of M#
�

and M"
�

in such a way that the
properties (1), (2), and (3) of Definition 2.3 were kept and continuity was restored.

The following result is a consequence of propositions 4.3 and 4.4, and theorem
4.5 in [8].

THEOREM 5.2. For any � 2 .0; 1/ and � 2 .0; 1=2/, the Interpolated Double
Discrete Web Tree z�#"

�
introduced above almost surely belongs to D�sp � bD�sp and

satisfies (t) of Definition 2.9.
Let �#"

�
be the law of z�#"

�
on D�sp � bD�sp, with marginals �#

�
and �"

�
. Then, �#

�

is tight in E�.�/ (see (3.9)) for any � > 3
2

and, as � # 0, �#"
�

converges to the law

of the Double Web Tree �#"
bw of Definition 5.1 weakly on D�sp � bD�sp.

Finally, almost surely, for � 2 f";#g
(5.4) sup

z2T �

�

 �M �

�.z/ �M �

�.z/
 � �

where M �

�
are the evaluation maps of the double Discrete Web Tree in Defini-

tion 5.1.

5.2 The 0-BD measure and convergence to BC measure
We are now ready to introduce the missing ingredient in the construction of

the 0-BD tree, namely the Poisson random measure responsible for increasing the
height function by 1.

Let � 2 .0; 1�,  as in (5.1), �L and �R as in the previous section, and �� be a

Poisson random measure on S#
�

of intensity 2� and independent of both �L and
�R .

For a typical realisation of �L and �R , consider the Discrete Web Tree �# D
.T #
�
;�� ; d#� ;M#

�
/ in Definition 5.1. Let � be the measure on T #

�
induced by ��

via

(5.5) � .A/
defD �� .M

#
�
.A//

for anyA Borel subset of T #
�

. Notice thatM#
�

is bijective on S#
�

so that� is well-
defined and, since �� is independent over disjoint sets, � is distributed according

to a Poisson random measure on T #
�

of intensity 2`, ` being the length measure

on T #
�

(see (3.15).

DEFINITION 5.3. Let � 2 .0; 1/,  as in (5.1), �L , �R , and �� be three indepen-
dent Poisson random measures on S� of respective intensities �, �, and 2�.
We define the 0-BD Tree as the couple ��0-bd

defD .�
#
�
; N / in which �#

�
is as in

Definition 5.1 while N is the rescaled compensated Poisson process given by

(5.6) N .z/
defD �

�
� .J�; zK/ � 2d#� .z;�/

�
:
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and � is the measure given in (5.5).

As before, the 0-BD tree also fails to be a branching spatial tree since neither
the evaluation nor the branching map are continuous. The remedy here was already
presented in Section 3.2, where we introduced the smoothened RC Poisson process.

Remark 5.4. We can view the triple .�L ; �
R
 ; �

�
 / as an element of the space of

locally finite integer-valued measures endowed with the topology of vague conver-
gence. All functions of ��0-bd mentioned later on are Borel measurable with respect
to this.

DEFINITION 5.5. In the setting of Definition 5.3 and for p > 2 and a D .2/�p,
we define the smoothened 0-BD Tree as the couple z��0-bd

defD .z�#
�
; N a

 / in which z�#
�

is the Interpolated Discrete Web Tree of Section 5.1 while N a
 is the RCS Pois-

son process of Definition 3.9 associated to the Poisson random measure � given
in (5.5).

PROPOSITION 5.6. For any � 2 .0; 1� and �; � 2 .0; 1/ the smoothened 0-BD Tree
z��0-bd D .z�#

�
; N a

 / in Definition 5.5 is almost surely a directed .�; �/-branching

spatial pointed R-tree. Its law P�
0-bd on D�;�bsp , which we call the 0-BD measure,

can be written as

(5.7) P�
0-bd.d�/

defD
Z

Q
Poi
�

.d�/�#
�
.d�/

where �#
�

denotes the law of z�#
�

in Theorem 5.2 on D�sp and Q
Poi
�

that of the RCS

Poisson process N a
 on D�;�bsp .

Moreover, almost surely (5.4) holds, and for every r > 0 there exists a constant
C D C.r/ > 0 such that for all � small enough and k > p=.p � 2/,

(5.8) P�

�
sup

z2.T #
�
/.r/

jN a
 .z/ �N .z/j > k�

�
� C�;

where N is the branching map of z��0-bd in Definition 5.3.

PROOF. The first part of the statement is a direct consequence of the fact that
almost surely z�#

�
2 E� since T #

�
is almost surely locally finite, so that Lemma 3.10

applies, while the measurability conditions required to make sense of (5.7) are
implied by Proposition 3.11. Moreover, (5.4) follows by Theorem 5.2 so that we
are left to show (5.8).

Let us recall the definition of the event E�R given in [8, prop. 4.4] (see also
equation (3.4) in proposition 3.2 in the same reference). For r � 1 and R > r , let
Q�
R be two squares of side 1 centred at .rC1;�.2RC1//, ´� D .t�; x�/ be two

points in the interior of Q�
R and f´�

�
g� � Q�

R \ .S�/ be sequences converging to
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´�. We set

E�R
defD
n

sup
0�s��r

j�#;�0 .s/j � R; sup
t�
�
�s��r

j�#;�
´�
�

.s/ � x�� j � R
o

Notice that, as shown in [8, eqs. (4.9) and (3.5)],

(5.9) liminf
‹#0

P�
�
E�R

� � 1 � p
r

R
e�

R2

2r :

Moreover, on E�R, �M#
�
..T #

�
/.r// � ��r;R

defD .��r; r� � ��3R � 1; 3RC 1�/ \ S#
�

.
Now, for any positive integer k, supz jN a

 .z/�N .z/j > k.2/�1=2 only if there

exists z 2 .T #
�
/.r/ and a neighbourhood of z of size a D .2/�p which contains

more than k � -points. By the definition of � in (5.5), this implies that there

must exist i D 0; : : : ; d2ra�1e such that the rectangle .�tiC1; ti ��R/\��r;R, ti
defD

r � 2ia, contains at least k �� -points. These considerations together with (5.9)
lead to the bound

P
�

sup
z2.T #

�
/.r/

jN a
 .z/ �N .z/j > k�

1
2

�
.

p
r

R
e�

R2

2r C 2r��2p.4�2p�3R/k :

Therefore, taking R D ��1, choosing k sufficiently large so that k > p=.p � 2/,
and then � sufficiently small, (5.8) follows at once. □

We are now ready to show that the law of smoothened 0-BD tree converges to
the Brownian Castle measure Pbc of Theorem 3.16.

THEOREM 5.7. Let � 2 .0; 1=2/ and, for � 2 .0; 1� and p > 1, a D .2/�p
and P�

0-bd be the law of the smoothened 0-BD tree given in (5.7). Then, as � # 0,
P�
0-bd converges to Pbc weakly on D�;�bsp , for any � < �Poi D 1

2p
.

PROOF. Since D�;�bsp is a metric space, it suffices to show convergence when
testing against any Lipschitz-continuous bounded function F ; see, e.g., [6, re-
mark 8.3.1]. By (3.39) and (5.7), we see that j R F.�/.P�

0-bd � Pbc/.d�/j �
I1 C I2 with

I1
defD
���� Z Z F.�/

�
Q

Poi
�

.d�/ �QGau
� .d�/

�
�
#
�
.d�/

����
I2

defD
���� Z � Z

F.�/QGau
� .d�/

��
�
#
�
.d�/ ��#

bw.d�/
�����:

Since�#
�

converges by Theorem 5.2, for every " > 0 we can find a compact subset

K" � D�sp with sup�>0�
#
�
.K"/ � 1 � ". Hence,

I1 �
���� Z
K"

Z
F.�/

�
Q

Poi
�

.d�/ �QGau
� .d�/

�
�
#
�
.d�/

����C 2kF k1"
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� sup
�2K"

���� Z F.�/
�
Q

Poi
�

.d�/ �QGau
� .d�/

�����C 2kF k1":

As � ! 0 the first term converges to 0 by Proposition 3.12 and, since the left-
hand side is independent of ", we conclude that I1 ! 0. Finally, Proposition 3.11
and the Lipschitz continuity of F imply that the map � 7! R

F.�/QGau
�
.d�/ is

continuous so that I2 ! 0 by Theorem 5.2. □

5.3 The 0-BD model converges to the Brownian Castle
In order to establish the convergence of the 0-Ballistic Deposition model to the

Brownian Castle, let � > 0 and ��0-bd the 0-BD Tree given in Definition 5.3. Let
h�0 2 D.R;R/ and, as in (4.2), set

(5.10) h�0-bd.´/
defD h�0

�
M

#
�;x
.%
#
�
.T�.´/; 0//

�CN .T�.´// �N .%#� .T�.´/; 0//
for all ´ 2 RC � R, where T� is the tree map associated to �#

�
of Definition 2.12.

Even though ��0-bd is not a directed branching spatial tree, (5.10) still makes sense
and provides a version (say, inD.RC;D.R;R//) of the rescaled and centred 0-BD
in the sense that its k-point distributions agree with those of h�0-bd in (1.9). Before
proving Theorem 1.5, let us state the following lemma which will be needed in the
proof.

LEMMA 5.8. Let �#bw be the backward Brownian Web Tree of Definition 2.18 and
A � R be a fixed subset of measure 0. Then, with probability 1�

M
#
bw;x.%

#.z; 0//WM#
bw;t .z/ > 0

	 \ A D ¿:

PROOF. It suffices to note that, by Theorem 2.17, �#bw
lawD z�#.Q2/ and that, for

a Brownian motion B , one has P .Bt 2 A/ D 0 for any fixed t > 0. □

PROOF OF THEOREM 1.5. By Theorem 5.7 and Skorokhod’s representation the-
orem, there exists a probability space supporting the random variables ��n0-bd, z��n0-bd,
z�"
�n

, �bc, and �"bw in such a way that the following properties hold.

(1) The random variables z��n0-bd, ��n0-bd and z�"
�n

are related by the constructions
in Section 5.1 and Definitions 5.3 and 5.5.

(2) Similarly, the random variables �bc and �"bw are related by the construction
of Definition 2.21.

(3) One has z��n0-bd ! �bc and z�"
�n

! �
"
bw almost surely in D�;�bsp and D�sp,

respectively, for all � 2 .0; 1=2/ and � < �Poi.
We consider this choice of random variables fixed from now on and, in order to

shorten notations, we will henceforth replace �n by � with the understanding that
we only consider values of � belonging to the fixed sequence.

We now define the countable set D � R appearing in the statement of the
theorem as the set of times t 2 RC for which there is x 2 R with .t; x/ 2 S#

.0;3/
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(see Definition 2.22). Our goal is then to exhibit a set of full measure such that, for
every T � D, everyR > 0 and every " > 0, there exists � > 0 and � 2 �.��R;R�/
for which .�/ _ d ��R;R�

�
.hbc.T; �/; h�0-bd.T; �// < ". The proof will be divided

into four steps, but before delving into the details we will need some preliminary
considerations.

We henceforth consider a sample of the random variables mentioned above as
given, and we fix some arbitrary T � D and R; " > 0. Since the sets f�bc; �

�
0-bdg�

and fz�"bw;
z�"
�
g� are compact, point (3) of Proposition 2.5 and (5.4) imply that if we

choose r > 2 sup� bz�#
�

.2.R _ T // _ bz�"
�

.2.R _ T // then, for all � and � 2 f#;"g,

.M
�

�/
�1.fT g � ��R;R�/ � T

�; .r/

�
:

whereM �

�
are the evaluation maps in Definition 5.1 (for the noninterpolated trees).

Invoking once more Proposition 2.5, we also know that the constant Cr > 0 given
by

Cr
defD sup

�kM �
bwk.r/� ; k �M �

�k.r/� ; kBbck.r/� ; kN a
 k.r/� W � 2 .0; 1�	 _ 1

is finite.

Step 1. As a first step in our analysis, we want to determine a set of distinct points
y1 < � � � < yNC1 for which the modulus of continuity of hbc on fT g � �yi ; yiC1/
can be easily controlled.

Let 0 < �1 < " be sufficiently small and z�#
��R;R�.T; T ��1/ be defined accord-

ing to (4.4). We order its elements in increasing order, i.e., z�#
��R;R�.T; T � �1/ D

fx1; : : : ; xN g with x1
defD min z�#

��R;R�.T; T ��1/ and let fyi W i D 1; : : : ; N C1g
be as in (4.5). Since T � S#

.0;3/
D S

"
.2;1/

, arguing as in the proof of Proposition 4.5,
there exists tc 2 .T � �1; T / such that no pair of forward paths starting before
T ��1 and passing through fT ��1g� �x1; xN � coalesces at a time s 2 .tc; T �. For
each i D 1; : : : ; N , let xCi ; x

�
i be the points in .M"

bw/
�1.T � �1; xi / from which

the rightmost and leftmost forward paths from .T � �1; xi / depart and such that
M

"
bw.%

".x�i ; T // D yi and M"
bw.%

".xCi ; T // D yiC1. Notice that these coincide
with the rightmost and leftmost point from .T; xi / defined in Remark 2.8 unless
.T; xi / 2 S".0;3/.
Step 2. As a second step, we would like to determine a sufficiently small � and
points y�1 < � � � < y�NC1 which play the same role as the yi ’s, but for h�0-bd, and
are close to them.

Let � < 1
2
�1 and M � 1 the number of endpoints of T ";.r/;�

bw , which is finite
by points (2) and (3) of Lemma D.1. Let �2 > 0 be such that

(5.11) 12Cr�
�
2 < minfjyi � yiC1jW i D 1; : : : N g ^ jT � tcj

10M
:
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Thanks to the fact that �bsp.�bc; z��0-bd/_�sp.z�"� ; �"bc/! 0 and Lemma D.1, there

exists � D �.�2/ > 0 and correspondences C # between T #;.r/
bw and T #;.r/

�
, and

C " between T ";.r/;�
bw and T ";.r/;�

�
(see (D.3) below), such that

(5.12) �
c;C#

bsp

�
�
.r/
bc ; z��;.r/0-bd

� _�c;C"

sp
�
�
";.r/;�
bw ; z�";.r/;�

�

�
< �2:

Let us define the subtrees T "bw and T "
�

according to (D.5) and the corresponding

spatial trees Z"
bw and zZ"

�
as in (D.6).

For 1 � i � N and � 2 fC;�g, define w�
i

defD %".x�i ; T � �1 C � C �2/.
Applying Lemma D.2, it follows from (D.9) that Jw�

i ; %
".w�

i ; T /K � T
"

bw and, by
the definition of T "bw, T "

�
and of the path correspondence C "

p of (D.7), there exists

w
�;�
i 2 T "

�
such that .w�

i ;w
�;�
i / 2 C "

p . In the following lemma, we determine the
y�i ’s and complete the second step of the proof.

LEMMA 5.9. For �2 as in (5.11), the set

Y�
defD fM"

�
.%
"
�
.w

�;�
i ; T // W 1 � i � N; � 2 fC;�gg

contains exactly N C 1 points y�1 < � � � < y�NC1 which satisfy jy�iC1 � y�i j �
1
3

minifjyi�y1C1jg. Moreover, there exists no point z� 2 T "
�

such thatM"
�;t
.z�/ <

T � �1 � 5M�2 and, for some i , y�i < M
#
�;x
.%
"
�
.z� ; T // < y

�
iC1.

PROOF. In order to verify that Y� has at most N C 1 points, it suffices to show
that, for all i 2 f1; : : : ; N � 1g, the rays starting at wC;�

i and w�;�
iC1 coalesce before

time T . By Lemma D.2, the distance between wC;�
i and w�;�

iC1 is bounded by

d
"
�
.wC;�
i ;w�;�

iC1/ � d"bw.w
C
i ;w

�
iC1/C 4M�2

� 2.tc � .T � �1 C �C �2/C 2M�2/

so that if xs is the first time at which %"
�
.wC;�
i ;xs/ D %

"
�
.w�;�
iC1;xs/, then, by (5.11),

xs D T � �1 C �C �2 C 1
2
d
"
�

�
wC;�
i ;w�;�

iC1
� � tc C .4M C 1/�2 < T:

Hence, the cardinality of Y� is not bigger thanNC1, and we can order its elements
as y�1 � � � � � y�NC1. To show that the inequalities are strict, notice that, again by
Lemma D.2 and (5.4), we have��yi � y�i �� D��M"

bw.%
".w�

i ; T // �M"
�;x
.%
"
�
.w�;�
i ; T //

��
d � ��M"

bw.%
".w�

i ; T // � �M"
�;x
.%
"
�
.w�;�
i ; T //

��
C �� �M"

�;x
.%
"
�
.w�;�
i ; T //j �M"

�;x
.%
"
�
.w�;�
i ; T //

��
. Cr�

�
2 C � � 1

6
min
i
fjyi � yiC1jg:

(5.13)
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The lower bound on jy�i � y�iC1j follows at once.
For the second part of the statement, we argue by contradiction and assume

z� 2 T "
�

is such that

M
"
�;t
.z�/ < T � �1 � 5M�2 and y�i < M

#
�;x
.%
"
�
.z� ; T // < y

�
iC1:

Note that Iz�
defD J%"

�
.z� ; T � �1 C �/; %

"
�
.z� ; T /K � T

"
�

since all the points in the

segment are at distance at least �C5M�2 from z� and, by (D.9),R�C5M�2.T
";.r/
�

/ �
T
"
�

. Hence, there exists w 2 T "bw such that for all s 2 �T � �1 C �; T �,

.%".w; s/; %"
�
.z� ; s// 2 C "

p :

Now, w 2 T "bw and the latter is contained in T ";.r/;�
bw by (D.9); therefore there

must be a point xw 2 T ";.r/
bw such thatM"

bw;t .xw/ � T ��1 and %".xw; T ��1C�/ D
w. Since, by construction, all the rays in T "

bw starting before T � �1 must coalesce
before time tc and the tree is directed, w must be such that eitherM"

bw;x.%
".w; T �

�1 C �C �2// �M"
bw;x.w

C
i / or M"

bw;x.%
".w; T � �1 C �C �2// �M"

bw;x.w
�
i /.

Assume the first (the other case is analogous); then, by the coalescing property, for
all s � tc, %".w; s/ D %".wC

i ; s/, which means that .%".wC
i ; s/; %

"
�
.z� ; s// 2 C "

p .
Therefore,

d
"
�
.%
"
�
.zi� ; T � tc/;%"� .wC;�

i ; T � tc//
D jd"

�
.%
"
�
.z� ; T � tc/; %"� .wC;�

i ; T � tc//
� d".%".wC

i ; T � tc/; %".wC
i ; T � tc//j

< 4M�2 � T � tc:
However, the segment Iz� cannot intersect either

q
w�;�
i ; %

"
�
.w�;�
i ; T /

y
or

q
wC;�
i ; %

"
�
.wC;�
i ; T /

y
;

since otherwise M#
�;x
.%
"
�
.z� ; T // D y�i or y�iC1. This implies that

d
"
�
.%
"
�
.zi� ; T � tc/; %"� .wC;�

i ; T � tc// > T � tc;
which is a contradiction thus completing the proof. □

Before proceeding, let us introduce, for all i D 1; : : : ; N , the following trape-
zoidal regions �i and ��i in R2

�i
defD

[
s2�T��1C�C�2;T �

�
M

"
bw;x

�
%".w�

i ; s/;M
"
bw;x.%

".wC
i ; s//

�
�

��i
defD

[
s2�T��1C�C�2;T �

�
M

"
�;x

�
%
"
�
.w�;�
i ; s/;M

"
�;x
.%
"
�
.wC;�
i ; s//

�
�:

(5.14)
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By Lemma 5.9 and the noncrossing property of forward and backward trajectories
(see Theorem 2.20(ii) and the construction of the double Discrete Web Tree in
Definition 5.1), every couple of points z1; z2 2 Tbw.�i / and z�1; z

�
2 2 T�.�

�
i /

satisfies d#bw.z1; z2/ � 2�1 and d#
�
.z�1; z

�
2/ � 2.�1 C 5M�2/. Indeed, if there

existed points z�1; z
�
2 2 T�.�

�
i /, for which d#

�
.z�1; z

�
2/ > 2.�1 C 5M�2/, then the

paths M#
�
.%
#
�
.z�i ; �// would coalesce before T � �1 � 5M�2. This in turn would

imply the existence of a forward path starting before T ��1�5M�2 at a position x
lying in between the two trajectories, which, because of the noncrossing property,
at time T would be located strictly between y�i and y�iC1, thus contradicting the
above lemma.

Step 3. In this third step, we want to show that for every i we can find a cou-
ple .zi ; zi

�
/ 2 C # such that zi

�
2 T�.�

�
i / and %#.zi ;xs/ 2 T.�i / for some a xs

sufficiently close to T .
Let i 2 f1; : : : ; N g and zi

�
2 T #

�
be such that M#

�
.zi
�
/ D .T; x/ and x 2

.y�i C 6Cr�
�
2 ; y

�
iC1 � 6Cr��2/, which exists thanks to Lemma 5.9 if we choose �2

as in (5.11). Clearly, zi
�
2 T�.�

�
i /.

Let zi 2 T #
bw be such that .zi ; zi

�
/ 2 C #. If M#

bw;t .z
i / > T , since

d
#
bw.z

i ; %#.zi ; T // D ��M#
bw;t .z

i / �M#
�;t

�
zi�
��� < �2

(the last inequality being a consequence of (5.12)), we have��M#
bw;x.z

i / �M#
bw;x.%

#.zi ; T //
�� � Cr��2 :

Hence��M#
bw;x.%

#.zi ; T / � yi
�� � ��y�i �M#

�;x
.zi�/

�� � ��M#
�;x
.zi�/ �M#

bw;x.z
i /
��

� jM#
bw;x.z

i / �M#
bw;x.%

#.zi ; T //j
� ��y�i �M#

�;x
.z�/

�� � �2 � kMk.r/� ��2 > 0

where the last passage holds thanks to our choice of �2 in (5.11), and the same
result can be shown upon replacing yiC1 to yi . If instead M#

bw;t .z
i / � T , by the

Hölder continuity of M"
bw,

sup
s2�T��2;T �

��M"
bw.%

".w�
i ; s// � yi

�� _ ��M"
bw.%

".wC
i ; s// � yiC1

�� � Cr��2 :
so that we can argue as above and show��M#

bw;x.z/ �M"
bw.%

".w�
i ; t //j ^ jM#

bw;x.z/ �M"
bw.%

".wC
i ; t //

�� > 0:
As a consequence of the coalescing property and the previous bounds, for all

points w 2 Tbw.�i / and w� 2 T�.�
�
i / we have

(5.15) d
#
bw.w; z

i / � �2 C 2�1; d
#
�
.w� ; z

i
�/ � 2.�1 C 5M�2/:
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Step 4. We can now exploit what we obtained so far, go back to the height functions
hbc and h�0-bd, and complete the proof. First, let � W R ! R be the continuous
function such that �.yi / D y�i for all i , interpolating linearly between these points,
and �0.x/ D 1 for x 62 �y1; yNC1�. In particular, one has �.x/ 2 �y�i ; y

�
iC1/ if

x 2 �yi ; yiC1/. Note that as a consequence of (5.13), we can choose �1 and �
sufficiently small so that .�/ � ".

Let x 2 �yi ; yiC1/. Then,

jhbc.T; x/ � h�0-bd.T; �.x//j(5.16)

� ��h0�M#
bw;x.%

#.zi ; 0//
� � h

#;�
0

�
M

#
�;x
.%
#
�
.zi� ; 0//

���
C jBbc.T.T; x// �N .T�.T; �.x///j
C jBbc.%

#.zi ; 0// �N .%#� .zi� ; 0//j;
where we chose �1 and �2 sufficiently small so that T � �1 � 5M�2 > 0 and
consequently, by (5.15), %#.T.T; x/; 0/ D %#.zi ; 0/ and %#

�
.T�.T; �.x//; 0/ D

%
#
�
.zi
�
; 0/. For the second term in (5.16) we exploit the Hölder continuity of Bbc

and N a
 , (5.8), (5.15), and (5.12), which give

jBbc.T.T; x// �N .T�.T; �.x///j
� jBbc.T.T; x// � Bbc.z

i /j C jBbc.z
i / �N a

 .z
i
�/j

C jN a
 .z

i
�/ �N a

 .T�.T; �.x///j
C jN a

 .T�.T; �.x/// �N .T�.T; �.x///j
. .�2 C 2�1/

� C �2 C .�1 C 5M�2/
� C �:

(5.17)

For the last term in (5.16), arguing as in the proof of [8, lemma 2.28] (replacing
M1 and M2 by B and N a

 in the statement) and using (5.8), we have��Bbc
�
%#.zi ; 0/

� �N�%#� .zi� ; 0/���
� ��Bbc

�
%#.zi ; 0/

� �N a


�
%
#
�
.zi� ; 0/

���
C ��N a

 .%
#
�
.zi� ; 0// �N .%#� .zi� ; 0//

�� . Cr��2 C �:

(5.18)

It remains to treat the initial condition. To do so, we make use of (5.12), [8, lemma
2.28] and (5.4), which give��M#

bw;x.%
#.zi ; 0// �M#

�;x

�
%
#
�
.zi� ; 0/

���
� ��M#

bw;x.%
#.zi ; 0// � �M#

�;x

�
%
#
�
.zi� ; 0/

���
C �� �M#

�;x

�
%
#
�
.zi� ; 0/

� �M#
�;x
.%
#
�

�
zi� ; 0/

��� . Cr��2 C �:

(5.19)

Now, by Lemma 5.8, with probability 1 we have�
M

#
bw;x.%

#.z; 0//WM#
bw;t .z/ > 0

	 \ Disc.h0/ D ¿:
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In particular, for all i , M#
bw;x.%

#.zi ; 0// is a continuity point of h0 and by assump-
tion dSk.h

�
0; h0/! 0.

By choosing �1, �2, and � sufficiently small, we can guarantee on the one hand
that each of (5.17) and (5.18) is smaller than "=3, while on the other that the dis-
tance between M#

bw;x.%
#.zi ; 0// and M#

�;x
.%
#
�
.zi
�
; 0// is arbitrarily small. This, to-

gether with the fact that by assumption dSk.h
�
0; h0/! 0 and thatM#

bw;x.%
#.zi ; 0//

is a continuity point for h0, implies that also the third term in (5.16) can be made
smaller than "=3. We conclude that .�/ _ d ��R;R�

�
.hbc.T; �/; h�0-bd.T; �// < " as

required to complete the proof. □

Appendix A The Smoothened Poisson Process
In this appendix, we derive bounds on the Orlicz norm of the increment of a

smoothened version of the Poisson process. Let a > 0 and  a be a smooth non-
negative function supported in ��a; 0� or �0; a� such that

R
 a.x/dx D 1. For

� > 0 let �� be a Poisson random measure on RC with intensity measure �`,
where ` is the Lebesgue measure on RC, and define the rescaled compensated
smoothened Poisson process P a

�
and the rescaled compensated Poisson process

P�, respectively, by

(A.1) P a� D 1p
�

�Z t

0

 a � ��.s/ds � �t
�
; P�.t/

defD 1p
�

�
��.�0; t �/ � �t

�
:

Then, the following lemma holds.

LEMMA A.1. In the setting above, letP a
�

be the rescaled compensated smoothened
Poisson process on �0; T � defined in (A.1). Let p > 1 and assume a�p D 1.
Then, there exists a positive constant C depending only on T such that for every
0 � s < t � T , we have

(A.2) kP a� .t/ � P a� .s/k'1 � C.t � s/
1
2p

where the norm appearing on the left hand side is the Orlicz norm defined in (3.5)
with '1.x/

defD ex � 1.

PROOF. We prove the result for  a supported in ��a; 0�. Also, writing P.t/ D
P1.t/, we have EeP.t/=c D exp.t.e1=c � 1 � 1=c//, so that

(A.3) kP.t/k'1 . 1C
p
t :

Fix 0 � s < t � T and consider first the case t � s � a. Notice that we have

P a� .t/ � P a� .s/ D
1p
�

�Z
R

. a.t � u/ �  a.s � u//��.�0; u�/du � �.t � s/
�

� P�.t C a/ � P�.s/C
p
�a

lawD 1p
�
P
�
�.aC t � s/�Cp

�a:
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It follows from (A.3) and the triangle inequality that

kP a� .t/�P a� .s/k'1 .
p
t � s C aC 1p

�
C
p
�a .

p
t � sC 1p

�
. .t � s/ 1

2p :

For t � s < a, we bound the increment of P a
�

by

P a� .t/ � P a� .s/ D
1p
�

�Z t

s

Z uCa

u

 a.u � r/��.dr/du � �.t � s/
�

� 1p
�

�
1

a

Z t

s

��.�u; uC a�/du � �.t � s/
�

lawD t � sp
�a
P.�a/:

Since �a � 1, it follows that in this case kP a
�
.t/ � P a

�
.s/k'1 . t�sp

�a
. .t � s/ 1

2p

as claimed. □

Appendix B Cardinality of the Coalescing Point Set
of the Brownian Web

The aim of this appendix is to derive a uniform bound on the cardinality of the
coalescing point set of the Brownian Web Tree �#bw of Theorem 2.17. Let R; " > 0
and t 2 R, and set

�R.t; t � "/ defD �
%#.z; t � "/WM#

bw.z/ 2 �t;1/ � ��R;R�
	
;(B.1)

�R.t; "/
defD #�R.t; t � "/;(B.2)

where, for a set A, #A denotes its cardinality. Then, the following lemma holds.

LEMMA B.1. Almost surely, for any & > 1=2 and all r; R > 0 there exists a
constant C D C.r;R/ such that

(B.3) �R.t; "/ � C"�&
for all t 2 ��r; r� and " 2 .0; 1�

PROOF. Notice first that, by a simple duality argument, �R.t; "/ is equidis-
tributed with y�.t; t C "I �R;R/ of [16, def. 2.1]. According to [19, lemma C.2],
for anyR; t; ", �R.t; "/ is a negatively correlated point process with intensity mea-
sure 2Rp

t
�, where � is the Lebesgue measure on R. In particular, [19, lemma C.5]

implies that, for any p > 1

(B.4) E��R.t; "/
p� .p

�
2Rp
"

�p
;

where the hidden constant depends only on p. Moreover, the random variables
�R.t; "/ are monotone in the following sense, for any R; t; " we have

(B.5) �R.t; "/ � �R0.t 0; "0/
for all R0 � R, t 0 2 .t � "; t � and "0 2 .0; " � .t � t 0/�.



THE BROWNIAN CASTLE 67

Let R; r > 0, for k D 0; : : : ; 2dre2m set tk;m
defD �r C k2�m and consider the

event

Em
defD f8k D 0; : : : ; 2dre2m; n 2 N; �R.tk;m; 2

�n/ � 2mC1R2n&g:
By Markov’s inequality and (B.4), we have

P .Ecm/ �
2dre2mX
kD0

X
n

P .�R.tk;m; 2
�n/

� 2mC1R2n& / .p dre2m.1�p/
X
n

2�np.&�1=2/;

which, for & > 1=2, is finite and Or.2m.1�p//. Therefore, upon choosing p > 1

and applying Borel-Cantelli and (B.5), the statement follows at once. □

Appendix C Exit Law of Brownian Motion from the Weyl Chamber
For n � 2, we define the Weyl chamber Wn as

Wn D fx 2 Rn W x1 < � � � < xng:
Let .Bxt /t�0 be a standard n-dimensional Brownian motion and, given a suffi-
ciently regular domain W � Rn, let �W D infft > 0 W Bxt 2 @W g and

PWt .x; y/dy
defD P .�W > t;Bxt 2 dy/; x; y 2 W:

We then have the following result.

THEOREM C.1. Let .Bxt /t�0 with x 2 Wn be as above and let � D �Wn
. Then,

P
�
� 2 dt; Bx� 2 dy

� D @nyP
Wn

t .x; y/ �Wn
.dy/ dt defD �x.dt; dy/;

where @ny is the derivative in the inward normal direction at y 2 @Wn and �Wn
is

the surface measure on @Wn.

PROOF. For smooth cones, the claim was shown for example in [3, theorem 1.3],
so it remains to perform an approximation argument. Choose a sequence of smooth
cones W ."/

n such that, for every " > 0, one has W ."/
n � Wn and furthermore

W
."/
n \ C c" D Wn \ C c" , where C" denotes those “corner” configurations where at

least two distinct pairs of points are at distance less than " from each other. Writing

�" D �
W

."/
n

, it follows immediately from these two properties that PW
."/
n

t .x; y/ �
P
Wn

t .x; y/ for all t � 0 and x; y 2 W ."/
n , so that in particular, [3, theorem 1.3]

implies

�."/x .dt; dy/ defD P
�
�" 2 dt; Bx�" 2 dy

� D @nyP
W

."/
n

t .x; y/ �Wn
.dy/dt

� �x.dt; dy/;
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for all y 2 @Wn\C c" . Here, we also used the fact that PW
."/
n

t and PWn

t both vanish
on @Wn \ C c" . We also note that �x is a probability measure, as can be seen by
combining the divergence theorem (on the space-time domain RC �Wn) with the
fact that PWn

t solves the heat equation on Wn with Dirichlet boundary conditions
and initial condition �x .

On the other hand, writing �."/x for the (positive) measure such that

P
�
� 2 dt; Bx� 2 dy

� D �."/x .dt; dy \ C c" /C �."/x .dt; dy/;

one has the bound

c"
defD �."/x .RC � @Wn/ � P .y�" � �/; y�" D infft W Bxt 2 C"g:

Since � < 1 almost surely and Brownian motion does not hit subspaces of codi-
mension 2, we have lim"!0 c" D 0. For any two measurable sets I � RC and
A � @Wn such that A \ C� D ¿ for some � > 0, we then have

P
�
� 2 I; Bx� 2 A

� � �."/x .I; A \ C c" /C c" � �x.I; A/C c";

for all " � �, so that

(C.1) P
�
� 2 dt; Bx� 2 dy

� � �x.dt; dy/C y�.dt; dy/;
where y� is supported on RC �T">0 C". As before, one must have y� D 0 since
Brownian motion does not hit subspaces of codimension 2, so that the desired iden-
tity follows from the fact that both �x and the left-hand side of (C.1) are probability
measures. □

Appendix D Trimming and Path Correspondence
In this appendix we introduce some further tools in the context of spatial trees,

which play a major role in the proof of Theorem 1.5. Let .T ;�; d / be a pointed
locally compact complete R-tree and fix � > 0. We define the �-trimming of T as

(D.1) R�.T /
defD fz 2 T W 9 w 2 T such that z 2 J�;wK and d.z;w/ � �g [ f�g:

(The explicit inclusion of � is only there to guarantee that R�.T / is nonempty if
T is of diameter less than �.) R�.T / is clearly closed in T and furthermore,
it is a locally finite R-tree. With a slight abuse of notation, we denote again by
R� the trimming of a spatial R-tree, i.e., the map R�WT�sp ! T�sp defined on � D
.T ;�; d;M/ 2 T�sp as R�.�/ D .R�.T /;�; d;M/. In the following lemma we
summarise additional properties of the trimming map.

LEMMA D.1. Let � 2 .0; 1/. For all � > 0, R� is continuous on T�sp. Moreover,
if f.Ta;�a; da/ga2A, A being an index set, is a family of compact pointed R-trees
then

(1) the Hausdorff distance between R�.Ta/ and Ta is bounded above by �;
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(2) the number of endpoints of R�.Ta/ is bounded above by

.c�/�1`a.Rc�.Ta// <1
for any c 2 .0; 1/,

(3) the family is relatively compact if and only if supa2A `a.R�.Ta// <1 for
all � > 0.

PROOF. The continuity of the trimming map is an easy consequence of the defi-
nition of the metric�sp in (2.9), [13, lemma 2.6(ii)] and [8, lemma 2.18]. Points 1.,
2. and 3. were respectively shown in [13, lemma 2.6(iv)], the proof of [14, lemma
2.7], and [14, lemma 2.6]. □

Let � 2 .0; 1/ and �1; �2 2 bD�sp (see Definition 2.3) be such that

(D.2) M1;t .�1/ D 0 DM2;t .�2/:
For j D 1; 2, denote by %j the radial map of �j . For r; � > 0, set

(D.3) T .r/; �
j

defD R�
�
T .r/
j [ J�j ; %j .�j ; r C �/K

�
and �.r/; �j

defD .T .r/; �
j ;�j ; dj ;Mj /. Assume there exists a correspondence C be-

tween �.r/; �1 and �.r/; �2 for which

(D.4) �c;C
sp
�
�
.r/; �
1 ; �

.r/; �
2

�
< ";

for some " > 0. Let N be the number of endpoints of �.r/; �1 , which is finite
by Lemma D.1 points (2) and (3). We now number the endpoints of T .r/; �

1 and

denote them by fzv1i W i D 0; : : : ; N�g, where zv10 defD v10 D �1. Let v20
defD �2

and for every i D 1; : : : ; N�, let zv2i 2 T .r/; �
2 be such that .zv1i ; zv2i / 2 C . If

M1;t .zv1i / � M2;t .zv2i /, set v1i
defD zv1i and v2i

defD %2.zv2i ;M1;t .v
1
i //; otherwise set

v2i
defD zv2i and v1i

defD %1.zv1i ;M2;t .v
2
i //.

Setting �.r/j D %j .�j ; r/, we define the subtree Tj � T .r/; �
j by

(D.5) Tj
defD

[
i�N�

q
v
j
i ;�.r/j

y
:

We also write Zj for the corresponding spatial tree

(D.6) Zj
defD .Tj ;�j ; dj ;Mj /:

Finally, we define the path correspondence between T1 and T2 by

(D.7) Cp
defD

N�[
iD0

��
%1.v

1
i ; t /; %2.v

2
i ; t /

�WM1;t .v
1
i / � t � r

	
:
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LEMMA D.2. Let � 2 .0; 1/ and �1; �2 2 bD�sp, r; �; " > 0 be such that (D.2)
and (D.4) hold. Then,

(D.8) dis Cp C sup
.z1;z2/2Cp

kM1.z1/ �M2.z2/k . 4N�"C kM1k.r/� "�:

Moreover, the Hausdorff distance between T1 and T .r/; �
1 is bounded above by ",

while that between T2 and T .r/; �
2 is bounded by 5N�" and the following inclusions

hold:

(D.9) R�C"
�
T .r/
1

� � T1 � T .r/; �
1 ; R�C5N�"

�
T .r/
2

� � T2 � T .r/; �
2 :

PROOF. The statement follows by applying iteratively [8, lemma 2.28]. Indeed,
for m � N�, let zCm defD C [ Cm�1, where Cm�1 is defined as the right-hand side
of (D.7) but the union runs from 0 tom�1 (so that in particular CN�

D Cp). Then,
for allm, zCm D C zCm�1 , the right-hand side being defined according to [8, equation

(2.29)]. Hence, we immediately see that dis Cp � dis zCN�
. 4N�" and the bound

on the evaluation map can be similarly shown.
For the last part of the statement, notice that the Hausdorff distance between

T1 and T .r/;�
1 is bounded by " by construction, while, arguing as in the proof of

Lemma 3.14, it is immediate to show that the Hausdorff distance between T2 and
T .r/;�
2 is controlled by 4N�"C". These bounds, together with the definition of the

trimming map, guarantee that, for any a > 0, all the endpoints of R�C".T .r/
1 / and

R�C5N�"Ca.T
.r/
2 / must belong to T1 and T2, respectively, which in turn implies

R�C"Ca
�
T .r/
1

� � T1; R�C5N�"Ca
�
T .r/
2

� � T2:

By letting a! 0 using Lemma D.1 point 1., the conclusion follows. □
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