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2 Rényi Institute, Reáltanoda utca 13-15, 1053 Budapest, Hungary

E-mail: masdbl@warwick.ac.uk and sewell.benedict@renyi.hu

Received 21 March 2022, revised 18 September 2022
Accepted for publication 13 October 2022
Published 18 November 2022

Abstract
In (2017 Nonlinearity 30 2667–86) Slipantschuk, Bandtlow and Just gave con-
crete examples of Anosov diffeomorphisms of T2 for which their resonances
could be completely described. Their approach was based on composition oper-
ators acting on analytic anisotropic Hilbert spaces. In this note we present a
construction of alternative anisotropic Hilbert spaces which helps to simplify
parts of their analysis and gives scope for constructing further examples.
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1. Introduction

In the study of chaotic diffeomorphisms, a natural class of examples are Anosov diffeomor-
phisms. In fact, it is the principle of the Cohen–Gallavotti chaotic hypothesis that chaotic
behaviour can be understood through the dynamics of Anosov systems [6].

The study of Anosov dynamics is advanced by understanding various dynamical quanti-
ties, including the resonances. Given a map T, its resonances comprise a sequence (finite or
converging to zero) of distinct complex numbers (ρn)∞n=1, which give all possible exponential
decay rates for the correlation function
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∫
f ◦ Tmg dμ−

∫
f dμ

∫
g dμ, m � 0,

for all (sufficiently smooth) observables f and g, and where μ is the SRB measure (see, e.g.,
[22] for an account of the SRB measure, and [3, theorem 7.11] for a precise statement).

Until recently, the only examples for which these resonances are completely known were
given by linear hyperbolic diffeomorphisms (which represent all hyperbolic diffeomorphisms
of tori up to isotopy [12]). These examples, including the Arnol’d cat map B0 : T2 → T

2 of [2],

B0 :
(a

b

)
�→
(

2 1
1 1

)(a
b

)
mod 1,

have only the trivial resonances (0 and 1). On the other hand, Adam in [1] showed that generic
small perturbations of these linear diffeomorphisms yield at least one non-trivial resonance. In
the context of pseudo-Anosov surface homeomorphisms a description for resonances of linear
pseudo-Anosov maps was recently given in [14]. However, of particular interest to us are the
very interesting examples given in the striking work [20] of Slipantshuk, Bandtlow and Just.
More explicitly, they provide a family of Anosov diffeomorphisms, (Bλ), perturbing B0 above,
for which the resonances (ρn)n (with respect to real analytic functions f and g) are infinite and
explicitly known:

{ρn}∞n=1 ⊂ {0, 1} ∪ {λn,λn : n ∈ N};

where λ is an arbitrary complex parameter with |λ| < 1.5 The resonances of an Anosov map
T are calculated as the eigenvalues of its composition operator, CT : f �→ f ◦ T, or its adjoint,
the transfer operator, acting quasi-compactly on a suitable Banach space. In particular, we can
rewrite the correlation function as

∫
Cm

T ( f )g dμ−
∫

f dμ
∫

g dμ for m � 0 and then deduce
that, for any ε > 0, there exist polynomials {pn}N

n=1 such that

∫
f ◦ Tmg dμ−

∫
f dμ

∫
g dμ =

N∑
n=1

pn(m)ρm
n +O(εm), m � 0

(where the degree of pn is determined by the multiplicity of ρn). The ambient spaces, known
as anisotropic spaces, have to be tailored to the diffeomorphism T and their construction is
non-trivial. (A description of the myriad anisotropic spaces seen in the literature are given an
overview in [9] and a more thorough account in the survey [4].)

In this article, inspired by [20], we give a new account of the resonances of Bλ and other
related examples. In particular, rather than using the spaces in [20] (which are, in turn, based
on [13]) we introduce a new family of anisotropic Hilbert spaces using what we call a degree
function. The main advantage of this construction is that it allows us to simplify the techni-
cal analysis substantially. Moreover, this approach also allows us to prove new results on the
resonances in greater generality, which we illustrate by two other families, Tλ and Tλ ◦ Tμ in
sections 2 and 3, respectively, where throughout this note, λ and μ will denote complex param-
eters with |λ|, |μ| < 1. The results on the former family appear to be new. The resonances of
the latter family are studied empirically in an appendix of [20], but we will give a rigorous
proof.

5 This inclusion will be an equality for generic choices of f and g, i.e., on the complement of countably many
codimension one hyperplanes.
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We recall that a diffeomorphism T : T2 → T2 is Anosov if there exists a continuous
dT-invariant splitting of the tangent space T∗T2 = Es ⊕ Eu such that there exists C > 0 and
0 < λ < 1 such that ‖DT n|Es‖ � Cλn and ‖DT−n|Eu‖ � Cλn, for all n � 0. Although the
examples in this note are all Anosov, the proofs of the results are self-contained and do not
depend on general properties of Anosov diffeomorphisms.

1.1. Contents of this note

In sections 2–4, respectively, we follow the general strategy of [20] for three different families
of Anosov maps Bλ, Tλ and Tλ ◦ Tμ:

(a) For each family, we exhibit a family of anisotropic Hilbert spaces, and show that these can
be chosen to contain any pair of functions analytic on a neighbourhood of the torus.

(b) We also show that the composition operator acts compactly on these spaces (so that its
spectrum gives the resonances of the map).

(c) Finally, we calculate the spectrum of this operator using a convenient, block-triangular
matrix form.

These results appear in the thesis of the second author [18].

2. The resonances of Bλ

The family of Anosov diffeomorphisms Bλ (for |λ| < 1) studied in [20] are given by so-called
two-dimensional Blaschke products, originally introduced in more generality by [17], where
some ergodic properties were established (see also [16]). More explicitly, considering

T
2 = T× T ⊂ C× C, where T := {z ∈ C : |z| = 1},

we have the following definition.

Definition 2.1. [Bλ] Let Bλ : T2 → T2 be given by

Bλ : (z,w) �→
((

z + λ

1 + λz

)
zw,

(
z + λ

1 + λz

)
w

)
.

This family of maps analytically perturbs the standard Arnol’d cat map, represented on T
2

by B0 : (z,w) �→ (z2w, zw).
The maps Bλ are Anosov and area-preserving for all λ satisfying |λ| < 1 [18, 20]. In

particular, the resonances are well-defined and the SRB measure is just the unit area measure.
We will reprove the following result on the resonances of Bλ. This is the main result of [20],

and we provide a new, simplified perspective.

Theorem 2.2 (Slipantschuk, Bandtlow and Just). Given λ with |λ| < 1, there exists
an area preserving Anosov diffeomorphism for which the resonances with respect to analytic
functions f , g : T2 → R take the form

{0, 1} ∪ {λm, λm : m ∈ N}.

Moreover, each non-zero value is simple, up to coincidences in value6, and is otherwise
semi-simple (i.e., the algebraic and geometric multiplicities coincide) of multiplicity two.

6 By this, we mean under the assumption that the λn and λn are all distinct.
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Figure 1. The spectrum of CBλ , for λ = 0.99 e37iπ/50.

The proof is based on the construction of a (non-canonical) Hilbert space, Ha, consisting of
distributions on the torus, on which the composition operator CBλ

: f �→ f ◦ Bλ acts compactly
and has the spectrum described in the theorem (figure 1). We now describe the construction of
the new Hilbert spaces Ha we will use in the next section.

2.1. The Hilbert space Ha

All the Hilbert spaces discussed in this note are constructed using the following basic method.
Consider a complex Hilbert space H which has as an orthogonal7 basis the collection of
monomials {em,n}(m,n)∈Z2 given by

em,n : (z,w) �→ zmwn.

Denoting 〈·, ·〉 and ‖ · ‖ for the inner product and norm on H respectively, we have〈 ∑
(m,n)∈Z2

bm,nem,n,
∑

(m,n)∈Z2

cm,nem,n

〉
=
∑

(m,n)∈Z2

bm,ncm,n ‖em,n‖2

and ∥∥∥∥∥∥
∑

(m,n)∈Z2

bm,nem,n

∥∥∥∥∥∥
2

=
∑

(m,n)∈Z2

|bm,n|2‖em,n‖2.

7 But not necessarily orthonormal.
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We define H to comprise those series with finite ‖ · ‖ norm:

H =

⎧⎨
⎩ ∑

(m,n)∈Z2

bm,nem,n

∣∣∣∣∣∣ bm,n ∈ C,
∑

(m,n)∈Z2

|bm,n|2‖em,n‖2 < ∞

⎫⎬
⎭.

In particular, H is completely characterised by the values ‖em,n‖ which we call the weights.

Remark 2.3. For any a > 0, classical examples of such spaces include the Sobolev space
of a-times weakly differentiable functions [21, p 42], which can be defined by ‖em,n‖ =(
|m|+ |n|+ 1

)a
. Unfortunately, these spaces do not suffice for our purposes.

To obtain the required properties for the composition operator acting on the Hilbert space
H, we need to define the weights in an anisotropic manner. In particular, taking limits along
rays based at the origin, these weights decay to zero in some directions and diverge to infinity
in others, and it is this behaviour which characterises the anisotropic nature of the space.

Remark 2.4. In [20], after [13], the authors base these weights on the eigenvectors of the
map B0: i.e., for a > 0,

‖em,n‖ = exp

(
−a

∣∣∣∣∣
√

5 + 1
2

m + n

∣∣∣∣∣+ a

∣∣∣∣∣1 −
√

5
2

m + n

∣∣∣∣∣
)
. (1)

These are a particular instance of the anisotropic spaces introduced in greater generality by
Faure and Roy in [13] and also used by Adam [1]. The two essential properties of such Hilbert
spaces are that the composition operator CBλ

acts compactly on them, and that a > 0 can be
chosen so that the space contains any given pair of functions analytic on a neighbourhood of
the torus.

Assuming it acts compactly, the computation of the spectrum of the composition operator
acting on H above is to some extent independent of the specific weights used. We therefore
present simple alternative weightings, yielding new families of anisotropic Hilbert spaces.
These spaces will be particularly simple for Bλ; although we will need a small adjustment
when we consider Tλ in the next section.

The definition of the spaces Ha, appropriate to Bλ, make use of the degree function deg1,
which we now give.

Definition 2.5 (deg1, ‖ · ‖a, Ha). Let deg1 : Z2 → Z be given by

deg1(m, n) := sign(mn)
(
|m|+ |n|

)
,

where

sign(k) =

{
1, if k � 0;

−1, if k < 0.

We define, for a > 0,

‖em,n‖a := e−a deg(m,n).

As described above, we let Ha be the space of series in em,n with finite ‖ · ‖a norm:∥∥∥∥∥∥
∑

(m,n)∈Z2

bm,nem,n

∥∥∥∥∥∥
2

a

:=
∑

(m,n)∈Z2

|bm,n|2e−2a deg1(m,n).
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Figure 2. The level sets of deg1 : Z2 → Z. Here, Dn denotes deg1
−1(n).

Figure 2 shows some level sets of deg1.
The benefits of using Ha over the original family of anisotropic spaces defined by [1] can be

summarized as follows. The proofs for compactness of the composition operatorsC : Ha →Ha

and the inclusion of analytic functions in Ha appear simpler and more direct. Secondly, the
construction permits more flexibility. (For example, it works also for the families Bλ,K in the
final section). Finally, there is a clearer link between the structure of the space and the simple
(block-triangular) form for the matrix of the operator.

The following result shows that any pair of analytic functions on a neighbourhood of the
torus will be contained in some Ha, allowing us to equate the resonances of Bλ with the
spectrum described in theorem 2.2.

Proposition 2.6. Let a > 0 and suppose that f is an analytic function on a neighbourhood
of the poly-annulus

Pa :=
{

(z,w) ∈ C
2
∣∣ e−a � |z| � ea, e−a � |w| � ea

}
.

Then f ∈ Ha. In particular, every function analytic on a neighbourhood of T2 is contained
in Ha for all sufficiently small a.

Proof. Fix a and let f ∈ Ha. By construction, the Laurent series for f converges absolutely
on Pa. In particular, writing this expansion as

f (z,w) =
∑

(m,n)∈Z2

bm,nzmwn, (2)
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we have, by definition of ‖ · ‖a,

‖ f ‖2
a =

∑
(m,n)∈Z2

|bm,n|2 e−2a deg1(m,n) �
∑

(m,n)∈Z2

|bm,n|2 e2a(|m|+|n|),

which we want to show is finite. Note that∑
m,n

|bm,n|ea(|m|+|n|) �
∑
m,n

|bm,n|
(
ea(m+n) + ea(m−n) + ea(n−m) + e−a(m+n)

)
is finite, since (2) converges absolutely for all (z,w) ∈ Pa: i.e., the sums∑

m,n

|bm,n|ea(m+n),
∑
m,n

|bm,n|ea(m−n),

∑
m,n

|bm,n|ea(n−m),
∑
m,n

|bm,n|e−a(m+n)

are each finite, since (e±a, e±a) ∈ Pa. In particular, the left hand side is square-summable, and
hence f ∈ Ha as required. �

2.2. CBλ
is Hilbert–Schmidt

Since the composition operators can be understood through their action on the basis functions
we need us estimate the corresponding Taylor series coefficients that appear.

2.2.1. Estimates on Taylor coefficients. The following definition will be used throughout.

Definition 2.7. [αm,k] For all m ∈ N0, the following expansion converges uniformly on every
disk of radius less than |λ|−1:(

z + λ

1 + λz

)m

=
∞∑

k=0

αm,kzk. (3)

The complex coefficients αm,k can be formulated explicitly using the Cauchy integral for-
mula or Newton’s identity. In particular, we have αm,0 = λm for all m ∈ N0, and α0,k = 0 for
all k ∈ N.

Using symmetry, one also obtains a related Taylor expansion about ∞ for m � −1:(
z + λ

1 + λz

)m

=

(
z−1 + λ

1 + λz−1

)−m

=

∞∑
k=0

α−m,kz−k. (4)

For simplicity, we adopt the notation that α−m,k = αm,k for all m and k.
As observed in [20] the proof of compactness of CBλ

reduces to estimating sums of the form

∞∑
k=0

|αm,k|2e−2ak

for each m ∈ Z, and for a > 0 fixed. In lemma 2.3 of [20] this was derived using the Cauchy
integral formula.

We now present an alternative estimate, which has the advantages of being direct, simple
and explicit.
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Lemma 2.8. For all λ and a > 0,

Ma,λ := max
|z|=e−2a

∣∣∣∣ z + λ

1 + λz

∣∣∣∣ < 1. (5)

Moreover, Ma,λ satisfies, for all m ∈ Z,

∞∑
k=0

|αm,k|2e−2ak � M|m|
a,λ.

Proof. Since |αm,k| = |α−m,k|, it suffices to assume m � 0. Since

1
2π

∫
T1

zk− j |dz| :=
1

2π

∫ 2π

0
ei(k− j)θdθ =

{
1, if k = j;

0, if k �= j;

we have the following, exchanging sums and integral:

∞∑
k=0

|αm,k|2e−2ak =
1

2π

∞∑
k=0

∞∑
j=0

αm,kαm, je
−2ak
∫
T1

zkz− j |dz|

=
1

2π

∞∑
k=0

∞∑
j=0

αm,kαm, j

∫
T1

(ze−2a)kz− j |dz|

=
1

2π

∫
T1

∞∑
k=0

αm,k(ze−2a)k
∞∑
j=0

αm, jz
− j |dz|

=
1

2π

∫
T1

(
ze−2a + λ

1 + λe−2az

)m(
z + λ

1 + λz

)−m

|dz|,

and a uniform estimate on this integral gives

∞∑
k=0

|αm,k|2e−2ak � max
|z|=1

∣∣∣∣ ze−2a + λ

1 + λe−2az

∣∣∣∣m
∣∣∣∣ z + λ

1 + λz

∣∣∣∣︸ ︷︷ ︸
=1

−m

= max
|ze2a|=1

∣∣∣∣ z + λ

1 + λz

∣∣∣∣m = Mm
a,λ,

which proves [5].
Finally, elementary calculus shows that

Ma,λ =
|λ|+ e−2a

1 + e−2a|λ| ,

leading to Ma,λ < 1. �
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2.2.2. Application to CBλ
. The previous lemma suffices to prove the following property for

the composition operator CBλ
. This property immediately implies compactness [7, p 267], and

is more convenient to prove.

Definition 2.9 (Hilbert–Schmidt, ‖ · ‖HS). The Hilbert–Schmidt norm of an operator
C : H→H acting on a separable Hilbert space H, for any orthogonal basis {ei}i∈I of H, is
given by

‖C‖2
HS =

∑
i∈I

(
‖C(ei)‖
‖ei‖

)2

.

We say that C is Hilbert–Schmidt if it has finite Hilbert–Schmidt norm. Note that the norm is
independent of the choice of basis [7, p 267].

We now show that CBλ
has this property.

Proposition 2.10. For all a > 0, CBλ
: Ha →Ha is Hilbert–Schmidt.

The proof of this proposition uses the following simple lemma.

Lemma 2.11. For all (m, n) ∈ Z2, whenever n �= 0,

deg1(m + sign(n), n) � deg1(m, n) + 1. (6)

Similarly, deg1(m, sign(m) + n) � deg1(m, n) + 1 whenever m �= 0.

Although the lemma is quite intuitive (see figure 2) we give an analytic proof for
completeness.

Proof. We only prove the first inequality, since the second follows by symmetry. We prove
it in three cases:

Case 1: mn � 0. Then (m + sign(n))n = mn + |n| � 0 and thus

deg1(m + sign(n), n) = |m + sign(n)|︸ ︷︷ ︸
|m|+1

+ |n| = |m|+ |n|+ 1

= deg1(m, n) + 1.

Case 2: mn < 0 and |m| > 1. Then mn + |n| < 0 and thus
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deg1(m + sign(n), n) = −

⎛
⎜⎝|m + sign(n)|︸ ︷︷ ︸

|m|−1

+ |n|

⎞
⎟⎠

= 1 − |m| − |n|

= deg1(m, n) + 1.

Case 3: mn < 0 and |m| = 1. The two hypotheses give mn + |n| = 0 and thus deg1(m +
sign(n), n) � 0, whereas mn < 0 implies that deg1(m, n) � −1, completing the proof. �

We now return to the proof of proposition 2.10.

Proof of proposition 2.10. Fixλ and a > 0, and consider CBλ
(em,n). The Taylor expansions

of [3, 4] give

em,n(Bλ(z,w)) =

(
z + λ

1 + λz

)m+n

zmwm+n

=

⎧⎪⎨
⎪⎩

∞∑
k=0

αm+n,kzm+σkwm+n, if m + n �= 0;

zmwm+n, if m + n = 0;

where we denote σ = sign(m + n). That is,

CBλ
(em,n) =

⎧⎪⎨
⎪⎩

∞∑
k=0

αm+n,k em+σk,m+n, if m + n �= 0;

em,m+n = em,0, if m + n = 0.

(7)

Consider the case that m + n �= 0. To estimate(
‖CBλ

(em,n)‖a

‖em,n‖a

)2

=

∞∑
k=0

|αm+n,k|2
(
‖em+σk,m+n‖a

‖em,n‖a

)2

, (8)

we first bound

‖em+σk,m+n‖a

‖em,n‖a
= exp

[
−a
(
deg1(m + σk, m + n) − deg1(m, n)

)]
, (9)

for each k ∈ N0. To this end, we apply lemma 2.11 in two different ways. Firstly, since
m + n �= 0, applying the lemma k times gives

deg1(m + σk, m + n) = deg1(m + σk, m + n) � deg1(m, m + n) + k.

Secondly, applying the lemma |m| times to the right hand side gives

deg1(m, m + n) = deg1

(
m, |m|sign(m) + n

)
� deg1(m, n) + |m|

(if m = 0, the inequality is trivial). That is,

deg1(m + σk, m + n) � deg1(m, n) + |m|+ k. (10)
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Thus, by [7],

‖em+σk,m+n‖a

‖em,n‖a
� e−a(|m|+k).

We can now bound [6] using lemma 2.8:(
‖CBλ

(em,n)‖a

‖em,n‖a

)2

=

∞∑
k=0

|αm+n,k|2
(
‖em+σk,m+n‖a

‖em,n‖a

)2

� e−2a|m|
∞∑

k=0

|αm+n,k|2 e−2ak

� e−2a|m|M|m+n|
a,λ

� e−δ(|m|+|n|), (11)

where δ = min(− 1
2 log Ma,λ, a) > 0. Moreover [9], trivially extends to the case of

m + n = 0, which is sufficient to finish the proof:

‖CBλ
‖2

HS =
∑

(m,n)∈Z2

(
‖CBλ

em,n‖a

‖em,n‖a

)2

�
∑

(m,n)∈Z2

e−δ(|m|+|n|) < ∞.

�

2.3. The spectrum of CBλ

As mentioned above, the calculation of the eigenvalues of CBλ
will be independent of the

weights ‖em,n‖a. We first give a useful definition and lemma.

2.3.1. Block-triangular form for compact operators. Thinking of CBλ
as a bi-infinite matrix,

we present the following definition, which generalises the notion of a block-triangular matrix,
i.e., a matrix of the form⎛

⎜⎜⎜⎜⎜⎝
A1 0 0 . . . 0
∗ A2 0 . . . 0
∗ ∗ A3 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . An

⎞
⎟⎟⎟⎟⎟⎠,

where the Ak are square matrices.
This generality, although it is not required for the family (Bλ), is convenient for when we

later consider the family (Tλ) in section 3, and is particularly so when we extend the analysis
to (Tλ ◦ Tμ) in section 4.

Definition 2.12 (Block-triangular form). We say that a linear operator C, acting on a
Hilbert space H with orthogonal basis B = {ei}i∈I , has a block-triangular form (with respect
to B) if one has

H =
⊕
k∈Z

Dk

120



Nonlinearity 36 (2023) 110 M Pollicott and B Sewell

such that, for each k ∈ Z,

• Dk has a basis consisting of a finite (non-empty) subset of B, and
• C(Dk) ⊂

⊕∞
j=kD j.

We now state the following result which reduces eigenvalue computations of block-
triangular operators to those of their finite-dimensional blocks.

Lemma 2.13. Suppose C and Dk are as in definition 2.12, and suppose further that C is
compact. Then its non-zero eigenvalues are precisely the union of the eigenvalues for each
finite rank operator Ck (k ∈ Z):

Ck = ΠDk ◦ C ◦ΠDk ,

where ΠD denotes orthogonal projection onto the subspace D.
Moreover, if a given non-zero eigenvalue of C is an eigenvalue of only one Ck, then its

algebraic and geometric multiplicities for these two operators coincide.

This result is quite straightforward. For more details see [11, XI.9.5], or the appendix of
[18] for the easier, more specific case of Hilbert–Schmidt operators. To apply this result, each
of the composition operators in this note will be block-triangular with respect to (em,n)m,n, with
the subspaces Dk given by

Dk = Span{em,n|deg1(m, n) = k}. (12)

Since deg1(m, n) = k =⇒ |m|+ |n| = k, each Dk is finite dimensional, and lemma 2.13 applies
to any Hilbert–Schmidt operator that increases deg1, in the following sense.

Definition 2.14 (Increase). IfH is a Hilbert space which has (em,n)(m,n)∈Z2 as an orthogonal
basis, we say the endomorphismC : H→H increases deg1 if, for each (m, n) ∈ Z2, C(em,n) lies
in the closure of

Span{em′,n′ |deg1(m′, n′) � deg1(m, n)},

i.e., C(Dk) ⊂
⊕∞

j=k D j for each k ∈ Z, where the D j are given in [10].

2.3.2. Application to the spectrum of CBλ
. We apply the above machinery to obtain the fol-

lowing useful result, completing the proof of theorem 2.2.

Lemma 2.15. For all a > 0, CBλ
: Ha →Ha has spectrum

{0, 1} ∪ {λk, λk|k ∈ N}

where each non-zero eigenvalue has algebraic and geometric multiplicity equal to the fre-
quency with which it appears in the above (in particular, they are all semi-simple).

Proof. The proof of this result is a straightforward application of lemma 2.13, recalling some
details from the proof of Proposition 2.10. We first show that CBλ

increases deg1. Considering
the expansion of CBλ

(em,n) we have that either
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• m + n �= 0, and CBλ
(em,n) lies in the span of {em+σk,m+n|k ∈ N0} for σ = sign(mn); or

• (m, n) = (m,−m), and CBλ
(em,−m) = em,0.

Recalling [8], in the first case we have

deg1(m + σk, m + n) � deg1(m, n) + |m|+ k � deg1(m, n), (13)

and in the second case we have, from the definition,

deg1(m, 0) = deg1(m,−m) + 3|m| � deg1(m, n). (14)

Together, these show that CBλ
increases deg1, so lemma 2.13 applies.

Using the notation of that lemma, for each j ∈ Z, the map

(
CBλ

)
j
= ΠD j ◦ CBλ

◦ΠD j ,

can be obtained by eliminating all terms in the expansion for which the index of the basis (i.e.,
em+σk,m+n) obtains a higher value of deg1 than (m, n). In view of (13) and (14), the only term
that can remain in the m + n �= 0 case is the one corresponding to k = 0, which remains only
if m = 0, and similarly in the m + n = 0 case, the single term survives only if m = 0.

Indeed, setting m = 0, the zeroth term of CBλ
(e0,n) is a multiple of e0,n. More explicitly,

(
CBλ

)
|n|e0,n = αn,0 e0,n =

{
λne0,n, if n � 0;

λne0,n, if n < 0.

In other words, for k < 0,
(
CBλ

)
k

is the zero map, and for k � 0, it is the diagonal operator

(
CBλ

)
k
(em,n) =

⎧⎪⎪⎨
⎪⎪⎩
λkem,n, (m, n) = (0, k);

λkem,n, (m, n) = (0,−k);

0, otherwise.

Therefore, if k > 0,
(
CBλ

)
k

contributes two non-zero eigenvalues, λk and λk, and
(
CBλ

)
0

contributes the eigenvalue 1.
Finally, since |λ| < 1, these eigenvalues are distinct, except when λk = λk, i.e., when λk

is real. In any case, since they both appear as entries of the diagonal operator
(
CBλ

)
k
, these

eigenvalues remain semi-simple. �

This completes the proof of theorem 2.2.

3. The spectrum of CTλ

In this section, we consider a family of Anosov maps which give richer, more varied resonances.
This time, they will be perturbations of the orientation-reversing square root of the cat map,
T0 : T2 → T

2: given by T0 : (z,w) = (zw, z).
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Figure 3. A plot of the spectrum of CTλ , for λ = 0.8 e31iπ/50.

Definition 3.1. For λ with |λ| < 1 consider Tλ : T2 → T2 defined by

Tλ : (z,w) �→
((

z + λ

1 + λz

)
w, z

)
.

In this section it is necessary to use a slightly more complicated family of Hilbert spaces,
Ha,φ, than in the previous section which is based on a generalisation of deg1.

The main result of this section is the following, which gives resonances for Tλ.

Theorem 3.2. For each λ with |λ| < 1 there exists a Hilbert space Ha,φ of distributions on
T2, such that the composition operator CTλ : Ha,φ →Ha,φ given by Cλ : f �→ f ◦ Tλ is compact
and has spectrum as follows: for λ1 a square root of λ,

{0, 1} ∪ {ωmλ1λ
n|m, n ∈ N0, m + n � 1, ω = ±1}. (15)

All non-zero eigenvalues have algebraic multiplicities as given in lemma 3.7.
Moreover, all non-zero eigenvalues are semi-simple.

This is illustrated in figure 3 with λ = 0.8 e31iπ/50.

3.1. The Hilbert space Ha,φ

The space Ha,φ is defined analogously to Ha. The weights here, ‖em,n‖a,φ, depend on the
following simple generalisation, degφ, of deg1.
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Definition 3.3 (degφ, ‖ · ‖a,φ, Ha,φ). For φ > 1, let

degφ(m, n) := deg1(m,φ−sign(m,n)n) =

{
|m|+ φ−1|n| if mn � 0;

−|m| − φ |n| if mn < 0.

For a > 0, we write

‖em,n‖a,φ := e−a degφ(m,n).

As before, this norm extends to arbitrary linear combinations of the em,n:∥∥∥∥∥∑
m,n

bm,nem,n

∥∥∥∥∥
2

a,φ

=
∑
m,n

|bm,n|2e−2a degφ(m,n).

The following result shows that, as for Ha, the Hilbert space Ha,φ can be chosen to contain
analytic functions on a neighbourhood of the torus.

Proposition 3.4. For a > 0 and φ > 1, suppose that f is an analytic function on a neigh-
bourhood of the poly-annulus

Pa,φ := {(z,w) ∈ C
2 | e−a � |z| � ea, e−aφ � |w| � eaφ}.

Then f ∈ Ha,φ. In particular, every function analytic on a neighbourhood of T2 is contained
in Ha,φ, for all (a,φ) such that aφ is sufficiently small.

Proof. The proof is very similar to that of proposition 2.6. Fix a, φ and f as above. By
construction, the expansion

f (z,w) =
∑

(m,n)∈Z2

bm,n zmwn (16)

converges absolutely for all (z,w) ∈ Pa,φ. Also, one has the following bound from the definition
of ‖ f ‖a,φ, using that −degφ(m, n) � |m|+ φ|n|:

‖ f ‖2
a,φ :=

∑
(m,n)∈Z2

|bm,n|2 e−2a degφ(m,n) �
∑

(m,n)∈Z2

|bm,n|2 e2a(|m|+φ|n|). (17)

Considering the right hand side, one bounds a related sum∑
(m,n)∈Z2)

|bm,n| ea(|m|+φ|n|) �
∑

(m,n)∈Z2)

|bm,n|ea(m+φn) +
∑

(m,n)∈Z2)

|bm,n|ea(m−φn)

+
∑

(m,n)∈Z2)

|bm,n|ea(−m−φn) +
∑

(m,n)∈Z2)

|bm,n|ea(−m+φn),

each of which is convergentby the absolute convergenceof [14] for all (z,w) ∈ {(e±a, e±aφ)} ⊂
Pa,φ. In particular, the sum on the left is square-summable, i.e., the sum on the right hand side
of [15] is finite. Thus, f ∈ Ha,φ as required. �
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3.2. CTλ is Hilbert–Schmidt

To begin the proof of theorem 3.2 we now give the following compactness result. Note that,
fixing a and λ, its hypothesis is satisfied for all φ sufficiently close to 1.

Proposition 3.5. Given λ with |λ| < 1, a > 0 and φ > 1, if

2a(φ− 1) < − log Ma,λ,

the composition operator CTλ : Ha,φ →Ha,φ is Hilbert–Schmidt.

The proof of this proposition is similar to that of proposition 2.10.

Proof. Formally expanding

em,n(Tλ(z,w)) = wm

(
z + λ

1 + λz

)m

zn

gives the following, for σ = sign(m):

CTλ(em,n) =

⎧⎪⎨
⎪⎩

∞∑
k=0

αm,k en+σk,m, m �= 0;

en,m, m = 0.

(18)

In particular, for m �= 0,(
‖CTλ(em,n)‖a,φ

‖em,n‖a,φ

)2

=
∞∑

k=0

|αm,k|2
(
‖en+σk,m‖a,φ

‖em,n‖a,φ

)2

=

∞∑
k=0

|αm,k|2e2a(degφ(m,n)−degφ(n+σk,m))

= e2a(degφ(m,n)−degφ(n,m))
∞∑

k=0

|αm,k|2e2a(degφ(n,m)−degφ(n+σk,m)).

Considering first the prefactor, we find that

I(m, n) := degφ(m, n) − degφ(n, m) =

{
φ−1(φ− 1)

(
|m| − |n|

)
, if mn � 0;

(φ− 1)
(
|m| − |n|

)
, if mn < 0.

Also, as in the proof of lemma 2.11, considering three cases for degφ(n + σ, m) −
degφ(n, m), we find that

degφ(n + σ, m) − degφ(n, m) =

⎧⎪⎨
⎪⎩

2|n|+ φ−1 + φ− 1, if mn < 0 and |m| = 1;

1, otherwise.

� 1.
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Therefore by induction, degφ(n + σk, m) − degφ(n, m) � k for all k ∈ N. Thus, for all
(m, n) ∈

(
Z\{0}

)
× Z (applying lemma 2.8),(
‖CTλ(em,n)‖a,φ

‖em,n‖a,φ

)2

� e2aI(m,n)
∞∑

k=0

|αm,k|2e−2ak.

� e2aI(m,n)M|m|
a,λ

=

⎧⎪⎨
⎪⎩

e2aφ−1(φ−1)(|m|−|n|)M|m|
a,λ, if mn � 0;

e2a(φ−1)(|m|−|n|)M|m|
a,λ, if mn < 0.

Considering the exponents on the right hand side, if

2a(φ− 1) = 2a max
(
φ− 1,φ−1(φ− 1)

)
< − log(Ma,λ),

then δ := min
(
2aφ−1(φ− 1), 2a(1− φ) − log(Ma,λ)

)
is positive and satisfies(

‖CTλ(em,n)‖a,φ

‖em,n‖a,φ

)2

� e−δ(|m|+|n|)

whenever m �= 0. This inequality also applies in the m = 0 case:(
‖CTλ(e0,n)‖a,φ

‖e0,n‖a,φ

)2

=

(
‖en,0‖a,φ

‖e0,n‖a,φ

)2

= e−2aI(0,n) � e−2aφ−1(φ−1)|n| � e−δ|n|.

Thus,

‖CTλ‖2
HS =

∑
(m,n)∈Z2

(
‖CTλ(em,n)‖a,φ

‖em,n‖a,φ

)2

�
∑

(m,n)∈Z2

e−δ(|m|+|n|) < ∞,

i.e., CTλ is Hilbert–Schmidt, as required. �

Remark 3.6. In fact, a(φ− 1) being small is necessary for CTλ on Ha,φ to be bounded,
let alone compact: for example, let m > 0, n < 0. Then, considering the first term of the
expansion [16] gives

‖CTλ(em,n)‖a,φ

‖em,n‖a,φ
� |λ|m ‖en,m‖a,φ

‖em,n‖a,φ
= |λ|meaI(m,n) = |λ|mea(φ−1)(m+n).

Thus, if −log|λ| < a(φ− 1), the right hand side can be made arbitrarily large.

3.3. The spectrum of CTλ

The following concludes the proof of theorem 3.2.

Lemma 3.7. For λ, a and φ as in proposition 3.4, the spectrum of CTλ : Ha,φ →Ha,φ is as
follows, where λ1 is a square root of λ:

{0, 1} ∪
{
ωλm

1 λ
n
1|ω = ±1, (m, n) ∈ N

2
0\{(0, 0)}

}
.
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Each non-zero eigenvalue is semi-simple. Up to coincidences in value, the eigenvaluesωλk
1,

ωλk
1 have multiplicity

N(k,ω) =

⎧⎪⎪⎨
⎪⎪⎩
⌊

k
2

⌋
+ 1, if ω = 1;⌊

k + 1
2

⌋
, if ω = −1;

and all other non-zero eigenvalues are simple.

Proof. The proof of this result is analogous to the proof of proposition 2.10. Recalling that
αm,0 = λm for m ∈ N, the expansion for CTλ(em,n) reads

CTλ(em,n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λm‖en,m +

∞∑
k=1

αm,k en+k,m, if m > 0;

λ|m|en,m, if m = 0;

λ|m|en,m +

∞∑
k=1

αm,k en−k,m, if m < 0.

By lemma 2.11, for any m �= 0 and k ∈ N,

deg1(m, n) = deg1(n, m) < deg1(n + sign(m)k, m).

Since the first equality applies for m = 0 also, this shows that CTλ increases deg1, and that
the corresponding

(
CTλ

)
k
(em,n) is obtained by eliminating the sums above: that is,

(
CTλ

)
k
= ΠDk ◦ CTλ ◦ΠDk : em,n �→

⎧⎪⎪⎨
⎪⎪⎩
λmen,m, if m � 0, deg1(m, n) = k;

λ|m|en,m, if m < 0, deg1(m, n) = k;

0, otherwise;

where Dk :=Span{em,n|deg1(m, n) = k} is as before. Thus, pairing up em,n and en,m for m �= n,
one has the following block-diagonal matrix representation of

(
CTλ

)
k
, depending on k:

(
CTλ

)
k
∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 ), k = 0;

(k−2)/2⊕
n=0

(
0 λn

λk−n 0

)
⊕
(

0 λn

λk−n 0

)
⊕
(
λk/2
)
⊕
(
λk/2
)

, k ∈ 2N;

(k−1)/2⊕
n=1

(
0 λn

λk−n 0

)
⊕
(

0 λn

λk−n 0

)
, k ∈ 2N− 1;

k−1⊕
n=1

(
0 λn

λk−n 0

)
, k < 0.

Applying lemma 2.13 and counting multiplicities, the non-zero eigenvalues of CTλ and
their multiplicities are precisely those given in the statement of the lemma. In particular,
each non-zero eigenvalue is semi-simple, since the

(
CTλ

)
k

are diagonalisable and do not share
eigenvalues when λ is non-zero. �
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Figure 4. The spectrum of CTλ◦Tμ , for λ = 0.9 eiπ/4, μ = 0.65 e6iπ/5.

4. The spectrum of CTλ◦Tμ

Now that we have established the machinery for Tλ, the following result for Tλ ◦ Tμ (with
|λ|, |μ| < 1) will be very easy to prove. Again, we note that this family of examples appears in
an appendix of [20], where their resonances are announced and numerically studied. We now
provide a rigorous argument (figure 4).

Theorem 4.1. For λ, μ with |λ|, |μ| < 1 and Ha,φ defined as above, if a > 0 and φ > 1
satisfy

2a(φ− 1) < − log
(
max(Ma,λ, Ma,μ)

)
, (19)

then CTλ◦Tμ = CTμ ◦ CTλ acts compactly on Ha,φ and has spectrum

{0, 1} ∪
{
λmμn, λmμn, λmμn, λmμn|(m, n) ∈ N

2
0\{(0, 0)}

}
.

Moreover, all non-zero eigenvalues are simple, up to coincidences in value.

4.1. CTλ◦Tμ is trace-class

To begin the proof of theorem 4.1 one has the following, simple corollary of proposition 3.5.
We first recall [7, p 267] that being trace-class is a stronger property than being

Hilbert–Schmidt, and that an operator is trace-class if and only if it is the composition of
two Hilbert–Schmidt operators.
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Lemma 4.2. For λ, μ, a,φ as in theorem 4.1 the operator CTλ◦Tμ : Ha,φ →Ha,φ is
trace-class.

Remark 4.3. Since Bλ = T0 ◦ Tλ for all λ, this shows that CBλ
is trace-class as an operator

on Ha,φ.

Proof. By the hypothesis [17] proposition 3.5 applies twice to show that CTλ and CTμ are each
Hilbert–Schmidt on Ha,φ. Thus CTλ◦Tμ = CTμ ◦ CTλ is the composition of two Hilbert–Schmidt
operators, hence trace-class. �

4.2. The spectrum of CTλ ◦ CTμ

The calculation of the spectrum likewise follows simply from that of the previous section.
This uses the following lemma, which naturally extends the corresponding intuitive result for
block-triangular matrices in finite dimensions:

⎛
⎜⎜⎜⎜⎜⎝

A1 0 0 . . . 0
∗ A2 0 . . . 0
∗ ∗ A3 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . An

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

B1 0 0 . . . 0
∗ B2 0 . . . 0
∗ ∗ B3 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . Bn

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

A1B1 0 0 . . . 0
∗ A2B2 0 . . . 0
∗ ∗ A3B3 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . AnBn

⎞
⎟⎟⎟⎟⎟⎠,

where Ak and Bk are square matrices of the same size for each k.
The proof of the lemma, like that of lemma 2.13, is a simple extension of the finite case and

we omit it (see [18]).

Lemma 4.4. Let H be a Hilbert space such that {em,n}(m,n)∈Z2 is an orthogonal basis, and
let C1, C2 : H→H increase deg1. Then C1 ◦ C2 increases deg1 and satisfies, for each k,

(C1 ◦ C2)k = (C1)k ◦ (C2)k. (20)

We now apply this lemma to give the resonances of Tλ ◦ Tμ.

Lemma 4.5. For each λ, μ, the spectrum of CTλ◦Tμ is given by

{0, 1} ∪
{
λmμn, λmμn, λmμn, λmμn|(m, n) ∈ N

2
0\{(0, 0)}

}
. (21)

Moreover, each non-zero eigenvalue has algebraic multiplicity equal to the frequency with
which it appears in [18] .
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Proof. Applying lemmas 4.4 and 2.3 reduces the proof to a consideration of the eigenvalues
of
(
CTλ◦Tμ

)
k
=
(
CTλ

)
k
◦
(
CTμ

)
k
. We recall from the proof of lemma 3.7 that, for k = deg1(m, n),

(
CTμ

)
k
(em,n) = ΠDk ◦ CTμ(em,n) =

{
μmen,m, if m � 0;

μ|m|en,m, if m < 0.

Thus, for k = deg1(m, n) = deg1(n, m),

(
CTλ◦Tμ

)
k
(em,n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μmλnem,n, if m � 0, n � 0;

μ|m|λnem,n, if m < 0, n � 0;

μmλ|n|em,n, if m � 0, n < 0;

μ|m|λ|n|em,n, if m < 0, n < 0.

That is, each
(
CTλ◦Tμ

)
k

is diagonal. Since the prefactor of em,n is unique (up to coincidences
in value), this shows that the spectrum is given by

{0, 1} ∪
{
λmμn, λmμμn, λmμμn, λmμn|(m, n) ∈ N

2
0\{(0, 0)}

}
,

and that the non-zero eigenvalues are simple, up to coincidences in value (e.g. if λ, μ and μ/λ
are non-zero and have arguments which are irrational multiples of π). �

This completes the proof of theorem 4.1.

5. Final comments

1. The methods of section 2 naturally extend to the following families of diffeomorphisms
Bλ,K : T2 → T

2 indexed by K ∈ N and λ with |λ| < 1:

Bλ,K : (z,w) �→
((

z + λ

1 + λz

)K2+1

wK ,

(
z + λ

1 + λz

)K

w

)
,

which can be considered, for each K, as a perturbation of the hyperbolic linear automorphism
given by (on T2 or R2/Z2 respectively)

B0,K : (z,w) �→
(

zK2
zwK , zKw

)
or

(
x
y

)
�→
(

K2 K
K 1

)(
x
y

)
mod 1.

However, since the resonances of Bλ,K equal those of BλK , these families contribute nothing
new to the variety of spectra presented here.

2. In section 3 one could again extend the analysis to related families of examples: i.e., for
K ∈ N and |λ| < 1, consider

Tλ,K : (z,w) �→
((

z + λ

1 + λz

)K

w, z

)
,
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perturbing, for each K, the hyperbolic linear automorphism

T0,K : (z,w) �→ (zKw, z) ⇐⇒
(

x
y

)
�→
(

K 1
1 0

)(
x
y

)
,

the orientation-reversing square root of B0,K. However again, we would find that that the
spectrum of Tλ,K equals that of TλK , so these families contribute nothing extra in variety.

3. The block-triangularity of the composition maps presented here is central, since it is
implicitly exploited in the construction of our spaces. Thus, this method may be difficult to
generalise to many more examples, in higher dimensions, or in more generality.

4. To see why we introduced Ha,φ in section 3, we exhibit the following negative result,
which shows that CTλ does not act compactly on either Ha or the anisotropic space used in
[20], for any non-zero λ. I.e., some symmetry-breaking is necessary.

Proposition 5.1. Suppose that H is a Hilbert space which has {em,n}m,n as an orthogonal
basis, and satisfies, for all (m, n) ∈ Z2,

‖em,n‖ = ‖en,m‖.

Then, CTλ is not compact on H, for any λ �= 0.

Proof. Fix m ∈ N and λ. Then, recalling [16], we have

CTλ(em,n) = λmen,m +

∞∑
k=1

αm,ken+k,m,

and thus, by orthogonality,

‖CTλ(em,n)‖2 � |λ|2m‖em,n‖2. (22)

If CTλ is compact, it maps the sequence (em,n/‖em,n‖)∞n=1, which weakly converges to zero,
onto one which converges to zero in H. But this contradicts [19], so it is not compact. �
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