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Two-Hop Connectivity to the Roadside in a VANET
Under the Random Connection Model

Alexander P. Kartun-Giles, Member, IEEE, Konstantinos Koufos, Xiao Lu, Member, IEEE, and Dusit Niyato,
Fellow, IEEE

Abstract—In this paper, we compute the expected number of
vehicles with at least one two-hop path to a fixed roadside unit
(RSU) in a multi-hop, one-dimensional vehicular ad hoc network
(VANET) where other cars can act as relays. The pairwise
channels experience Rayleigh fading in the random connection
model, and so exist, with probability function of the mutual
distance between the cars, or between the cars and the RSU. We
derive exact equivalents for the expected number of cars with a
two-hop connection to the RSU when the car density ρ tends to
zero and infinity, and determine its behaviour using an infinite
oscillating power series in ρ, which is accurate for all regimes.
We also corroborate those findings to a realistic situation, using
snapshots of actual traffic data. Finally, a normal approximation
is discussed for the probability mass function of the number of
cars with a two-hop connection to the RSU.

Index Terms—Vehicular networks, end-to-end connectivity,
random connection model, stochastic geometry, mobility traces.

I. INTRODUCTION

The requirement for wireless communication technologies
that sustain reliable connectivity between vehicles in smart
motorways will become essential. A key element of the road
infrastructure will be the roadside unit (RSU) with mounted
sensors and wireless connectivity. The RSU will receive a
variety of messages from vehicles not necessarily connected
to each other, fuse the combined information and broadcast
it to the vehicles [1]. In this scenario, it is important that the
broadcast reaches as many vehicles as possible. A practical
solution to achieve this objective is to combine both Vehicle-
to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) commu-
nication, establishing connections between the vehicles and the
RSU in a multi-hop fashion. 3GPP Release 16 has introduced
in the 5G NR the sidelink air interface to support, among other
use cases, the range extension for transportation safety [2]. It
is therefore a natural step to start with the simplest case of
multi-hop connectivity to the RSU with k = 2 hops.

Motivated by this emerging scenario, the objective of this
article is to develop our understanding of the RSU multi-hop
communication range, i.e., how many vehicles are within k
hops of the RSU, as a function of the traffic density ρ cars
per unit length of road. In this case, we adopt a protocol-and-
interference-free approach, where the vehicles are modeled as
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Fig. 1. A snapshot of an infrastructure-based VANET model with multi-hop
connectivity. Green cars have single-hop connections to the RSU, blue cars
are two-hop neighbours and gray cars are more than two hops away from the
RSU. Every car is represented by a vertex in the graph model and an edge
between two vertices exists if the two cars are connected to each other.

the vertices of a one-dimensional (1D) soft random geometric
graph (RGG) [3]. The reason is that we aim to identify the
fundamental limits of multi-hop communication in VANETs,
in particular, the simplest case, two-hop connectivity, between
the vehicles and the RSU. We study the number of cars within
k = 2 hops to a single, fixed RSU, denoted as N2, in a random
geometric vehicular network built on a quasi-1D line, i.e., a
multi-lane motorway provided that the connection range is
much larger than the road width, which is the case for the
nominal range values of C-V2X and DSRC/ITS-G5.

The main technical contribution of our work is an expression
for the scaling of E[N2] with density

E[N2] ' 2ρ

√
log
(
ρ
√
π/2

)
, (1)

as ρ → ∞. This is actually a counter-intuitive result, as one
might have surmised that the quantity E[N2] would grow
proportionally to ρ2. We also derive an exact expression
for E[N2], given by Eq. (7) and we compare these analytic
predictions to snapshots of real motorway traffic, showing how
variations in the underlying stationary Poisson Point Process
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(PPP) model of the cars does not affect the results, and observe
a normal approximation property for N2.

Two recent major works deal with the random connection
model in the V2V and V2I settings [4], [5]. Ng et al.
in [4] present analytic formulas for the probability of two-hop
connectivity, which gives the probability that all vehicles in a
VANET are within two hops, given that the vehicles connect
pairwise with probability p. This is developed for the general
case of an arbitrary number of hops to the roadside by Zhang
et al. in [5]. The study in [6] calculates the probability that a
node in a 1D PPP has a two-hop path to the RSU. However,
the distribution of the number of nodes with a two-hop path
is not treated therein, neither asymptotic equivalents for ultra-
dense and sparse networks are derived, as we will do in this
paper. In references [7] and [8] the location of a node is fixed
and the distribution of the number of k-hop paths to the RSU
is computed. This is different than the number of nodes in
the graph with a k-hop path to the RSU, which is treated
in the present paper for k = 2. Note that a node may have
several two-hop paths to the RSU, e.g., more than one relay
to the RSU in the case of two-hop paths. Finally, it is worth
mentioning that the connectivity analysis and the results of
this paper are applicable for each road segment (or line) of
two-dimensional road network models such as the Poisson and
Manhattan line processes [9], [10]. The only conditions is that
the distribution of vehicles along each line must follow the
1D homogeneous PPP and the connection function must be a
stretched exponential, as we will shortly discuss.

In the rest of this paper, we set up the VANET deployment
model and the random connection model in Section II. In
Section III, we state the main results of this paper. In Section
IV, we corroborate our scaling laws with experimental evi-
dence provided from synthetic motorway traffic data. Finally,
conclusions and future steps are discussed in Section V.

II. SYSTEM MODEL

We consider a random connection model, which is an RGG
GH(X ) built on a stationary, homogeneous PPP X with flat
intensity ρ > 0 on an interval V ⊂ R centered at the origin.
The nodes (or vertices) of the graph represent vehicles. In
addition, we add a vertex at the location u ∈ R representing
the RSU. See Fig. 1. The edges of the graph represent wireless
communication links (known in physics as soft connectivity
[12]) with the connection function H(r) modeling “Rayleigh
fading” for any V2V or V2I communication link at distance
r. The selection of Rayleigh fading is relevant to our system
model; Channel measurements have indicated that the nar-
rowband small scale fading in V2V communication resembles
Rayleigh for link distances larger than 50 m [11].

The connection function H(r) = P(x ↔ y) ∈ [0, 1] gives
the probability that two nodes x, y ∈ R at distance r = |x−y|
in the graph are connected by an edge, resembling the long-
term proportion of time that a Rayleigh fading channel at
distance separation r is in coverage [17]. It is a stretched
exponential of the link distance r and has been widely used
to study connectivity in soft RGGs [3], [12]

H(r)=e−βr
η

, β>0, (2)

where the parameter β depends on the signal-to-noise (SNR)
decoding threshold at the receiver and the exponential form
captures the fact that in Rayleigh channels the distribution
of the received signal power within a symbol’s duration is
exponential.

In the next section, we will take β = 1 for brevity, and we
will focus on the case with η=2, which is associated with free
space wireless propagation path. Our analysis stays the same
for other values of β>0, while the assumption for η = 2 will
allow us to express multi-dimensional integrals in a closed-
form and obtain important performance insights for multi-hop
connectivity. It is also noted that to have a reliable two-hop
path to the RSU, the values of the connection function for
both hops (V2V and V2I) must be higher than or equal to a
threshold. From this perspective, a decode-and-forward relay
is essentially assumed here.

Mecke formula: We close this section with the statement of
the Mecke formula, which will be used throughout the paper.
It is an extension of Campbell’s formula to sum over tuples
of a point process. Often, and throughout this paper, we sum
indicator functions over tuples of nodes of a point process,
and evaluate the typical value of the sum over all graphs. We
refer the reader to [3, Lemma 2.3] for the following lemma.

Lemma II.1 (Mecke Formula). Let n ≥ 1. For any measur-
able real-valued function g defined on the vertex set V of a
graph G, the following relation holds:

E

[ ∑
X1∈X

g(X1)

]
= ρ

∫
V

E [g (x1)] dx1 (3)

where X is a PPP with intensity ρ > 0 on V .

III. RESULTS

This section presents the main technical results of our work.
We start by introducing the preliminaries and then address the
problem of determining the statistics of the number of vehicles
on the road with a two-hop path connection to the RSU.

A. Preliminaries

In what follows, we let

N1(x, u) =
∑
z∈X

1 (x→ z → u) (4)

denote the number of distinct two-hop paths between vertices
at x and u in V , and 1(·) being the indicator function. The
following lemma is used throughout this article.

Lemma III.1. The number N1(x, u) of two-hop paths between
two given vertices x, u ∈ V has a Poisson distribution.

Proof. A proof of this result can be found in [8, Section 2] by
computing the moments of N1(x, u) using the Mecke formula
and non-flat partitions.

Next, we compute the mean number of two-hop paths which
join two vertices of the graph, starting with the case of a finite
interval of width |V | < ∞, which will later become the real
line R.
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Proposition III.1. When we consider a domain of finite
volume |V |, the probability of existence of at least one two-hop
path between x, u ∈ V is given by

P(x→ u) = 1− exp

(
−ρ

2

√
π

2
e−(x−u)

2/2×(
erf

(
|V | − (x− u)√

2

)
+ erf

(
|V |+ x− u√

2

)))
, (5)

where erf (x)=(2/
√
π)
∫ x
0
e−t

2

dt is the error function.

Proof. The mean of N1(x, u) is given by the Campbell’s
theorem for point processes as follows

E [N1(x, u)] = ρ

∫
V

E [1 (x→ z → u)] dz

= ρ

∫
V

H(x, z)H(z, u)dz

= ρ

∫ |V |/2
−|V |/2

e−(x−z)
2−(z−u)2dz

Then, use the void probability of the Poisson distribution

P(x�� u) = 1− e−E[N1(x,u)]. (6)

to obtain Eq. (5).

Proposition III.2 below, which treats the infinite length case
V = R, can be obtained either from Proposition III.1 by letting
|V | → ∞ in Eq. (5), or from Lemma III.1.

Proposition III.2. The probability of existence of at least one
two-hop path between x and u in R is given by

P(x�� u) = 1− exp

(
−ρ
√
π

2
e−(x−u)

2/2

)
.

Proof. Here, we have

E[N1(x, u)] = ρ

∫ ∞
−∞

E [1 (x→ z → u)] dz

= ρ

∫ ∞
−∞

e−(x−z)
2−(z−u)2dz

= ρ

√
π

2
e−(x−u)

2/2,

and again use the void probability of the Poisson distribution.

It is worth noting that for small distances |x− u|, the two
vertices can also have a single-hop connection.

B. Main result

Next, we assume that the RSU is located at u and apply
Proposition III.2 to analyze the mean number of vertices with
two-hop connectivity to the RSU.

Theorem III.1. Let N2 be the number of vertices with two-hop
connectivity to the RSU in a specific realisation of GH(X ).
The mean number of vertices with at least one two-hop path
to the RSU is given by

E[N2] = ρ
√

2π

∞∑
k=1

(−1)k−1
(
ρ
√
π/2

)k
k!
√
k

. (7)

In addition, we have the exact equivalents

E[N2] ' 2ρ

√
2 ln ρ+ 2 ln

√
π/2 (8)

as ρ→∞, and
E[N2] ' πρ2 (9)

as ρ→ 0.

Proof. We represent the number N2 as the sum

N2 =
∑
x∈X

1 (x�� u) . (10)

Next, we find via Lemma II.1 and Proposition III.2, that the
expected value of this number is

E[N2] = E

[∑
x∈X

1 (x�� u)

]

= ρ

∫ ∞
−∞

E [1 (x�� u)] dx

= ρ

∫ ∞
−∞

P(x�� u)dx

= ρ

∫ ∞
−∞

(
1− exp

(
− ρ
√
π/2e−x

2/2
))

dx.

Let us define α = ρ
√
π/2 and

f(α) =

∫ ∞
−∞

(
1− exp

(
− αe−x

2/2
))

dx.

The integral in the expression of f(α) above can be ex-
panded in a Taylor series about ρ = 0 and integrated term by
term to obtain the infinite oscillating sum

f(α) = −
∫ ∞
−∞

∞∑
k=1

(−α)k

k!
e−kx

2/2dx, (11)

and by swapping the order of the summation and the integra-
tion, and then integrating one time, we obtain Eq. (7).

Next, we derive the asymptotic expressions. By doing a
change of variable first v = x/

√
2 logα and then by splitting

the integral, we have

f (α) =
√

2 logα

∫ ∞
−∞

(
1− exp

(
−α1−v2

))
dv

= 2
√

2 logα

∫ 1

0

(
1− exp

(
−α1−v2

))
dv+

2
√

2 logα

∫ ∞
1

(
1− exp

(
−α1−v2

))
dv. (12)

Using the bound

0 ≤ 1− e−α
1−v2

≤ eα1−v2 , (13)

which is valid as 0 ≤ α1−v2 ≤ 1 when v ≥ 1 and α ≥ 1, the
second integral in Eq. (12) can be bounded via

0 ≤
∫ ∞
1

(
1− e−α

1−v2 )
dv ≤ αe

∫ ∞
1

α−v
2

dv

≤ αe
∫ ∞
1

ve−v
2 logαdv =

e

2 logα
. (14)
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Hence, as α → ∞ the second integral in Eq. (12) goes
to zero. Furthermore, by the limit limα→∞ α1−v2 = ∞, v ∈
[0, 1), and dominated convergence, the first integral in Eq. (12)
satisfies

lim
α→∞

∫ 1

0

(
1− e−α

1−v2
)

dv = 1. (15)

We can therefore conclude that f(α) ' 2
√

2 logα asα →
∞. The equivalent expression as α tends to zero follows by
truncation of Eq. (7) at the first term.

For completeness, we also state the generalization of the
Theorem III.1 for arbitrary β > 0 without proof.

Proposition III.3. The mean number of vertices with at least
one two-hop connection to the RSU is

E[N2] = ρ

√
2π

β

∞∑
k=1

(−1)k−1

(
ρ
√
π/ (2β)

)k
k!
√
k

. (16)

In addition, we have the following exact asymptotics

E [N2] ' 2ρ

√
(2/β) ln ρ+ (2/β) ln

√
π/ (2β), (17)

as ρ→∞, and as ρ→ 0

E [N2] ' πρ2/β. (18)

Theorem III.1 is validated against simulations in Fig. 2. We
see that the asymptotic expressions remain very accurate also
for realistic values of ρ, while the approximation for ρ→ 0 is
accurate only for very sparse networks. In Fig. 3 we observe
that even for relatively low densities, a Gaussian distribution
approximates well the probability mass function (PMF) of N2,
i.e., after rescaling

P

(
N2 − E[N2]√

Var[N2]
≤ x

)
' Φ(x), x ∈ R, (19)

as ρ→∞, with Φ the cumulative distribution function of the
standard normal distribution. Observing normal approximation
is common in the case of independent trials. Here, the events
“a node x has a two-hop path to the RSU”, for each x ∈ X , are
dependent, nevertheless, the dependency is sufficiently short
range to lead to a Gaussian distribution in the dense limit. A
proof for the Gaussian convergence is not a triviality and is
left for future work.

IV. VALIDATION WITH SYNTHETIC TRACES

Next, we assess the sensitivity of our model against the
Poisson assumption for the distribution of vehicles along
a motorway. Using synthetic mobility traces [13]–[16], we
simulate the distribution of the number of vehicles with at least
one two-hop link to the RSU, and compare this distribution
(also referred to as the empirical distribution) to a Gaussian
with mean equal to the parameter calculated in Eq. (7).
Overall, the spatial distribution of vehicles, at a snapshot of
time, along a motorway, is not exactly Poisson. Therefore, it
is important we quantify the sensitivity of the mean calculated
in Eq. (7) to small perturbations to the deployment model.

Fig. 2. The mean number of vehicles with a two-hop path connection to
the RSU calculated using Eq. (7) is compared against 20 000 Monte Carlo
simulation runs over a line segment X ⊂ [−10, 10] with the connection
function H(r) = exp(−r2). The simulated variance is depicted too.

Fig. 3. Counts of nodes with two-hop connectivity to the RSU for various
densities ρ of cars and illustration of the Gaussian distribution fit using
Eq. (19). The mean of the Gaussian is calculated from Eq. (7) and the
simulated variance is used to generate the dashed red lines. See the caption
of Fig. 2 for the rest of the parameter settings.

Thanks to [13], [14], 1200 consecutive snapshots of road
traffic along a 10-km three-lane motorway are publicly avail-
able. The associated data files contain the horizontal location
and occupied lane for all the vehicles over the snapshots.
The time granularity is set to one second, hence, during the
simulation time, there are slight variations in the intensity of
vehicles, see the solid line in the inset of Fig. 4.

We first generate the empirical distribution of headway
distances for each snapshot. To do that we project all vehicles
onto a single line, which does not introduce much error,
because the communication range is expected to be much
larger than the width of the road. In each simulation run, we
use inversion sampling of the empirical CDF to cover a line
segment of 10 km with vehicles. The set of vehicles is denoted
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Fig. 4. The empirical PMF (blue bars), of the number of vehicles with a two-
hop connection to the RSU averaged over 1200 snapshots. For each snapshot
we generated 100 independent spatial configurations of vehicles by sampling
its empirical CDF of inter-vehicle distances. Two values for the parameter β
are considered: β = 5 × 10−5 and β = 10−5. The simulated mean values
for the number of vehicles with a two-hop path to the RSU is 39.51 and
100.60, respectively. The estimated intensity of vehicles ρ̂ for each snapshot is
depicted in the inset (solid line). The mean intensity of vehicles averaged over
all considered snapshots is equal to ρ̂ = 0.0585m−1, see the dashed line in
the inset. After substituting ρ̂ = 0.0585 into Eq. (7), we obtain the following
values for the expected number of vehicles with a two-hop connection to the
RSU: 39.12 vehicles for β=5×10−5 and 99.60 vehicles for β=10−5. The
red dashed line corresponds to the Gaussian approximation for the distribution
of N2 using a mean equal to E[N2] calculated from Eq. (7) and variance
obtained by the simulations.

by Y , and the origin, where the RSU is located, is taken in
the middle of the road segment. For each vehicle y ∈Y , we
generate a random number distributed uniformly in [0, 1]. After
comparing it with the value of the connection function e−βr

2

,
where r is the distance between the vehicle and the RSU, we
can identify the set of vehicles Y1, which have a single-hop
connection to the RSU. Then, we search over the vehicles
y∈Y\Y1 and separate those with a single-hop connection to
at least one of the vehicles in Y1. They become the elements
of the set Y2, which consists of the vehicles with a two-hop
path to the RSU. To complete the set Y2, we need to add
to it the elements of the set Y1 which also have a two-hop
connection to the RSU.

Both histograms in Fig. 4 illustrate that Eq. (7) yields a very
good estimate of the simulated mean number of vehicles with
a two-hop path to the RSU. Also, the quality of the Gaussian
fit for the distribution of the number of two-hop neighbors to
the RSU, discussed in Eq. (19), is good even though the actual
deployment of vehicles does not follow a PPP and the density
of vehicles varies with time.

V. CONCLUSIONS

Motivated by V2I communications in a VANET topology,
we investigate the notion of k-hop connectivity to a fixed
RSU, specifically, in the random connection model on a 1D
PPP with connection function H(r) = exp(−βr2), and with
k = 2. We calculate the typical number of cars with a two-hop
path connection to the RSU, denoted by E[N2]. This is then

expanded in a power series to provide an infinite oscillating
series expression for E[N2], which, truncated to the first term,
shows that the two-hop connectivity grows quadratically with
traffic density, when the traffic is low. On the other hand, we
have shown that E[N2] = O(ρ

√
log ρ) as ρ → ∞, which

indicates that the number of two-hop neighbors increases very
slowly with the density when the traffic is high. Finally, we
carry out simulations confirming that the typical number of
vehicles in the two-hop range of an RSU is an accurate
representation of an interference-free network of moving cars,
at a random instance of time, and further, that a Gaussian
central limit theorem is also present. We have also identified
the following non-trivial problem as promising direction for
future work: Calculate the distribution of the number of k-hop
paths between a node at x and the RSU, which will enable
us to compute the expected number of vehicles E[Nk] with a
k-hop path to the RSU.
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