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Abstract: Currently, researchers are working to contribute to the emerging fields of cloud computing,
edge computing, and distributed systems. The major area of interest is to examine and understand
their performance. The major globally leading companies, such as Google, Amazon, ONLIVE, Giaki,
and eBay, are truly concerned about the impact of energy consumption. These cloud computing
companies use huge data centers, consisting of virtual computers that are positioned worldwide
and necessitate exceptionally high-power costs to preserve. The increased requirement for energy
consumption in IT firms has posed many challenges for cloud computing companies pertinent to
power expenses. Energy utilization is reliant upon numerous aspects, for example, the service
level agreement, techniques for choosing the virtual machine, the applied optimization strategies
and policies, and kinds of workload. The present paper tries to provide an answer to challenges
related to energy-saving through the assistance of both dynamic voltage and frequency scaling
techniques for gaming data centers. Also, to evaluate both the dynamic voltage and frequency scaling
techniques compared to non-power-aware and static threshold detection techniques. The findings
will facilitate service suppliers in how to encounter the quality of service and experience limitations
by fulfilling the service level agreements. For this purpose, the CloudSim platform is applied for
the application of a situation in which game traces are employed as a workload for analyzing the
procedure. The findings evidenced that an assortment of good quality techniques can benefit gaming
servers to conserve energy expenditures and sustain the best quality of service for consumers located
universally. The originality of this research presents a prospect to examine which procedure performs
good (for example, dynamic, static, or non-power aware). The findings validate that less energy
is utilized by applying a dynamic voltage and frequency method along with fewer service level
agreement violations, and better quality of service and experience, in contrast with static threshold
consolidation or non-power aware technique.

Keywords: cloud computing; distributed systems; data centers; virtual machines; energy saving

1. Introduction

This Virtualization techniques distribute the physical server into many remote and
single-performance computer system environments by implementing a layer like a hyper-
visor or virtual machine manager on hardware or operating systems. In the implemented
performance environment, every single-performance computer, such as a virtual machine,
runs freely, combined with an operating system and other relevant applications devoid
of mutual interference. The virtualization method was not trendy before due to some
challenges, such as separate hardware resources, memory, and inadequate network [1–3].

Virtualization has emerged with advancements in technology, such as enhancements
in hardware, cloud computing, IT networks, etc. [4,5]. The research community and
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practitioners started to work on the effective operation of virtualization when more users’
demands and use of cloud data centers for performing their tasks with other applications
increased [6,7]. Issues were raised, such as overloaded and idle servers; if one server fails
to operate, then all virtual machines will be affected, protection of virtual machines and
hardware failure, etc. These issues were resolved with the beginning of virtual machine
migration initiated from process migration [8]. The greater part of cloud computing
operations is encouraged by virtual machine migration, such as server consolidation,
hardware maintenance, energy, and flow management [9–11].

Numerous cloud computing models have been developed in which control and man-
agement of computing resources are provided. This helps businesses and clients use
resources according to their design needs [12–14]. As an alternative to acquiring increased
amounts in obtaining information technology infrastructure and dealing with hardware
and software maintenance and updates, companies can outsource their computational
requirements to the cloud. Large-size data centers have developed that consist of thousands
of processing nodes and expend massive volumes of electric power. According to the latest
survey, information technology impacts 25% of the total cost of managing and using data
centers [15,16].

Energy consumption is overwhelming not only due to idle computing resources but
also because of the ineffective management of these computational hardware and software
resources. Servers commonly operate up to 50% complete capacity ahead of additional
costs on over-provision and total cost of acquisition [17]. Energy management can be used
to leverage resources through virtualization techniques and technology [18,19]. It permits
cloud providers to generate many virtual machine occurrences on a separate physical
server to enhance the efficient management and utilization of computational resources.
This will increase the return on investment.

Amiri et al. [20] recommended an SDN (Software Defined Network) model for choos-
ing DC (Data Centers) for novel gaming sessions. They used a hierarchy-based model
for transport/response delay with bandwidth status by using the Lagrange algorithm
and logarithmic techniques. Similarly, they used a new approach to reduce end-to-end
latency in a cloud-based gaming data center environment [21]. Cai et al. [22] conducted a
comprehensive survey on cloud gaming by involving various facets such as the platform
used for cloud gaming, various optimization techniques, and commercial services for cloud
gaming. Further, they explored the experience factor for gamers and energy utilization with
network metrics. Chen et al. [23] proposed an approach for describing energy usage for
virtual machines using measurement attributes such as performance, execution time, power
(utilization and effectiveness), and energy usage. Therefore, to reduce the cost related to
the cloud and to improve energy saving needed appropriate optimization techniques to
enhance the user gamer experience.

GreenCloud architecture aims to reduce data center power consumption while guaran-
teeing performance from the users’ perspective. GreenCloud architecture enables compre-
hensive online monitoring, live virtual machine migration, and VM placement optimization.
For experimentation, the CloudSim framework is used. CloudSim is a free and open-source
framework based on Java language used for cloud computing infrastructure and services
simulations. Similarly, this framework is utilized to model and simulate a cloud computing
setting to perform tests and produce results. Further, it maintains various functionalities
such as the generation of cloud-based entities, relations among entities, processing events,
jobs and tasks queue, and implementation of broker policies [24,25].

The major contribution of the proposed research will be as follows:

• To investigate how resource optimization can be performed in gaming data centers
• Utilizing real-time gaming workload
• To measure service quality during online gaming data by utilizing its two features, i.e.,

energy consumption and SLA (Service Level Agreement)
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• To test and implement DVFS (Dynamic Voltage and Frequency Scaling), non-power
aware, and static threshold virtual machine consolidation techniques for improving
service quality.

The remainder of the paper is organized as follows: Section 2 explains the literature
review, followed by Section 3.1, which presents challenges related to the migration of a
single virtual machine; Section 3.2 addresses the challenges related to the migration of the
dynamic virtual machine; Section 4 discusses system methodology; Section 5 describes
performance analysis and discussion while Section 6 represents conclusions and future
work close the article.

2. Literature Review

Nathuji and Schwan [26] did initial work on the application of power management
in virtualized data centers by proposing an architecture called a data center resource
management system by splitting it into two categories: local policies and global policies.
Then, [27] worked on virtualized heterogeneous environment power management and
proposed the problem of sequential optimization by addressing it through the concept of
limited lookahead control. This research work aims to increase resource providers’ profits
by reducing power consumption. Similarly, [28] researched the issue of scheduling for
multi-tier web applications related to virtualizing heterogeneous systems to decrease power
consumption by maintaining performance. Further, [29] recommended a method on the
issue of efficient allocation of power in virtual machines over the complete environment
of a virtualized heterogeneous computing system. [30] worked on and used continuous
optimization to solve the difficulty of power-aware dynamic placement of applications
in interaction with a virtualize heterogeneous environment. [31] have worked on the
allocation of available power budgets among servers related to virtualized server farms in
heterogeneous environments to decrease the mean response time. Furthermore, they used
the proposed model to detect optimal power allocation.

Jung et al. [32] analyzed the issue of dynamic consolidation of virtual machines
running on multi-tier web applications while using live migration. However, the proposed
method is only implemented on individual web application setups and cannot be used as
a service system for multitenant infrastructure. Similarly, [33] worked on the same issue
of capacity planning and resource allocation by proposing three controllers: the longest,
shorter, and shortest time scales. Every controller operates at various time scales.

Kumar et al. [34] developed a method for dynamic virtual machine consolidation based
on estimation stability. Further, they mentioned that the resource demands of application
estimation are performed by utilizing the time-varying probability density function. They
stated that the values can be achieved by utilizing offline profiling of applications and
calibration; however, offline profiling is impractical for infrastructure as a service system.
Likewise, [35] researched a similar issue of dynamic consolidation of virtual machine-
running applications using machine learning algorithms to optimize the combined energy
consumption. However, this method was applied for high-performance computing and is
not appropriate for various workloads.

Arshad et al. [36] proposed an algorithm based on energy proficiency heuristics by uti-
lizing virtual machine consolidation to reduce greater usage of energy consumption in the
cloud data server environment. They build up a model for virtual machines relocation from
one physical host to the other with an aim to lower energy consumption. Moura et al. [37]
used the internal value fuzzy logic approach to overcome the problems of resources us-
ing vagueness and inaccuracies to save energy with the lowest performance deprivation.
They increased energy effectiveness by 2.3% in cloud computing simulation environments.
Similarly, Shaw et al. look at the application of reinforcement machine learning to address
the virtual machine consolidation issue related to the dissemination of virtual machines
throughout the cloud data centers to enhance the management of resources. They enhance
energy efficiency by 25% and lower service violations by 63%. Liu et al. [38] proposed
a method to overcome the problem of virtual machine consolidation to optimize energy
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utilization. They presented a new algorithm to choose the optimal solution for energy
usage optimization by accomplishing an average conservation of 42% energy. Further,
Gharehpasha et al. [39] presented an approach to combine both Sine and Cosine algorithms
with the salp swarm algorithm for the best possible virtual machine placement. Also,
their research work aims to decrease energy utilization in cloud data centers environment
with SLA reduction. Hussain et al. [40] developed a schedule-based algorithm to decrease
energy usage in the heterogenous virtual machine cloud environment. After all, Katal
et al. [41] conducted a thorough survey on energy efficiency in a cloud computing data
center environment. They discussed various methods to lower the power usage in data
centers with hardware component level for decreasing the usage by components.

As a variation to the above literature findings, we propose that the central research
field consists of single servers and exclusive tasks. Though, presently, huge cloud comput-
ing platforms such as Gaikai and Amazon EC2 come up with servers that are spending
versatile applications which are further disseminated universally. Conversely, there is an
examination disparity in gaming, particularly for multi-player scale games with consumers
located remotely. In contrast to this, less evidence has been found regarding energy saving
in the context of large data in single-objective applications. The notion of virtualization
is employed by researchers using a local regression and robust migration algorithm. The
findings propose that latency and service quality can be attained in huge data servers
with this virtualization technique. Still, adjustment is a prerequisite between the quality of
service and experience [42]. Table 1 shows the comparison among different optimization
techniques with an applied method, category, and problem resolution.

Table 1. Different Optimization Techniques.

Method Categories Technique Resolves

Data Centre Resource
Management [26,27] Local and Global Policies Virtualization

Sequential optimization by
addressing it through the

concept of limited lookahead
control

Scheduling for multi-tier web
applications [28]

Virtualizing heterogeneous
systems Virtualization

Decreases power
consumption by maintaining
performance for multi-web

applications

Power-aware dynamic
placement of applications [30] Dynamic Virtualization Continuous Optimization

Power-aware dynamic
placement of applications in
interaction with a virtualized
heterogeneous environment

Dynamic virtual machine
consolidation [34]

Dynamic VM consolidation
based on estimation stability

Resource demands by
utilizing the time-varying

probability density function

Resolves resource
optimization for small

applications

Dynamic Voltage and
Frequency (DVFS)—Proposed Single and Multi-server DVFS, based on workload

Saves power and resolves
resource optimization issues

based on workload for servers
placed locally and globally

3. Challenges

The main challenges are explored in two domains such as (1) migration to a single
virtual machine and (2) migration to a dynamic virtual machine.

3.1. Migration of a Single Virtual Machine

Virtual machines offer benefits to the system consumption, workload, and flexibility
of the data center. However, challenges remain, such as waste of resources, network conges-
tion, and consolidation, which will cause server hardware failures. Single virtual machine
migration is used by researchers to define a data center with particular properties [43,44].
Similarly, [45] worked to increase the server average utilization and experiments on the
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historical data to predict the future servers’ demands, as well as migrating the virtual
machine in conditions of future needs.

Unstable length and long latency are the key challenges of migrating virtual machines
in wide-area networks. Therefore, [46] get significantly responsive in wide area network mi-
gration by proposing a three-phase solution. Most importantly, virtual machine migration
is widely utilized to conserve power using the consolidation of idle desktop virtual [47].
Moreover, researchers have developed algorithms with the objective of decreasing power
mode transition latency [48].

3.2. Migration of a Dynamic Virtual Machine

Virtual machine migration (VMM) is the movement of some or all parts of virtual
machine data from one place to a different place, with live migration having no interruption
of the provided services. VMM is organized in two ways: live migration and non-live
migration. In non-live migration, the virtual machine is suspended earlier migration and
conditional on whether the virtual machine needs to remain the running services later
migration or not. If it is suspended, then the states will be moved into the target site.

In the case of migration, all the connections are restored after virtual machine continu-
ation because no open network connection is preserved, as shown in Figure 1.
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Live migration is the movement of a virtual machine operating on one physical host
to a different host devoid of interrupting the usual operations or triggering any stoppage
or other undesirable causes for the end user, as shown in Figure 2.
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In live migration, data migration memory and network connection continuity are two
problems. However, a few challenges are associated with the migration of dynamic virtual
machines, such as the consideration of multiple hosts and multiple virtual machines [49].
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Other challenges include memory data migration, storage data migration, and network
connection connectivity [42].

4. System Methodology

The overall system methodology is shown in Figure 3, which consists of the software
layer of the system, which is tied up with local as well as global management modules. Local
managers represent individual nodes as a component of the VMM. The main purpose of this
is to continuously monitor all the nodes contributing to the CPU utilization and then adjust
all resources that are needed for a virtual machine, and finally to decide about the node’s
migration timing and place related to a virtual machine, as shown in point 4 of Figure 3.
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Figure 3. Overall System Methodology. 1 defines the user type as a global user and each node
communicates to the global manager through its local manager represented by 2. Each node is
divided into the number of VMs represented as 5 that are managed by their local manager for
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assignments shown in 3.

• The global manager represents a master node to gather information from all local
managers to preserve the total layout of the consumption of related resources, as
shown in point 2 of Figure 3.

• The global manager provided instructions for the optimization of virtual machine
positioning, as shown in point 3 of Figure 3.

• The main function of VMMs is to resize and migrate the virtual machines and shift the
power modes of the nodes, as presented in point 5 of Figure 3.

5. Performance Analysis and Discussion

Some tests have been conducted on CloudSim simulation settings to determine differ-
ent characterizations of resource optimization. All these tests were executed on the same
datasets by applying “Eclipse Luna and Java IDE Developers. 283 MB; 144,793 DOWN-
LOADS”. Different optimization techniques have been used, namely dynamic voltage and
frequency techniques, non-power awareness, and static virtualization techniques. These
tests have been designed and carried out on a data set from World of WarCraft that is a mas-
sively multiplayer online games (MMOs) game that is multi-location multi-environment.
Test environments consist of multiple avatars over 3.5 years collected from an online cloud
environment. This helps to test the limits of resource optimization for cloud environments
for different features, such as energy optimization. service level agreement, service level
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agreement violations, virtualization, host timing, etc. Virtualization techniques will be used
for the management of load for virtual machines (VMs) that are over or underloaded in the
system, and relocation of these will be performed based on techniques such as minimum
migration time (MMT), maximum correlation (MC), and minimum utilization (MU).

DVFS, non-power aware (NPA), and static threshold virtualization technique (STVM)
techniques will be compared in the same environment. For STVM techniques, defined
resources are used in terms of random-access memory (RAM), bandwidth, storage, and
input-output file size, whereas in dynamic technique, resources are allocated based on
central processing unit voltage and frequency fluctuations.

Different evaluation metrics will be used to gauge the performance of the proposed
system. Initially, the tests are divided into different techniques for example DVFS, NPA, and
STVM. The reason for dividing them into sub-techniques is to see how the proposed system
will behave under different conditions. Test environment and workload are standard
for all methods. All these proposed methods will be measured against certain defined
parameters such as energy consumption, VM selection time, VM relocation time, host
selection meantime, and service level agreement violations. These matrices will help to
determine which technique will perform better under static and dynamic workloads in the
proposed test environment. The comparison method will also help to determine which
technique performs better for energy saving and resource optimization for small and large
servers placed globally.

A test has been carried out to distinguish how dynamic frequency scaling will behave
with non-power-aware techniques for the same workload. The results in Figure 4 are
plotted using the reality check method. The results show that the non-power-aware
method consumes more power compared to the dynamic voltage and frequency methods.
DVFS shows a linear trend for energy consumption and less consumption of power. The
DVFS method results in increased profits and minimum SLAs per host compared to the
NPA technique. However, using NPA with the same host numbers and fixed millions
of instructions per second (MIPS) consumes more energy in the setup, emitting higher
CO2 emissions.
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A similar test is further extended, and the static threshold virtualization technique
(STVM) has been added to determine the energy consumption. In these experimental
results, as shown in Figure 5, three virtualization techniques were used to relocate the
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virtual machines for overloaded and underloaded hosts. This relocation of virtual machines
is done using minimum migration time (MMT), minimum correlation (MC), and maximum
utilization (MU) in a static threshold environment.
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In STVM, higher, and lesser threshold boundaries are specified for any test envi-
ronment. In the static threshold technique, MC has less energy consumption compared
to the MU or MMT method. When compared with the dynamic voltage and frequency
techniques, the results are different. Static threshold behaves better for small workloads
as upper and lower limits are definable for required parameters. In comparison to the
dynamic workload environment, DVFS again proves to have less service level agreement
violation (SLAV) and maintains higher SLAs, resulting in a better quality of service and
better user experience compared to the NPA method. It can also be concluded that STVM
virtual machine relocation methods are supported with smaller workloads, which verifies
the theoretical concept.

All three techniques are used to compare the execution times for three techniques for
different levels of hosts with the same configuration setup in Figure 6. Virtual machine
selection, relocation, and host selection time remained similar for DVFS and NPA.
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MC has the highest VM selection time in a static environment, and MC takes more
time for VM relocation when compared with other techniques. In a static environment, all
three techniques have similar host selection meantime because of defined threshold limits
as compared to a dynamic environment. The results also support the theoretical concept
that no relocation of VMs is done for DVFS, and resource optimization is done using central
processing unit (CPU) voltage and frequency methods.

If a proper virtualization technique is selected, downtime in the network can be
reduced for overloaded and underloaded environments. The results in Figure 7 show that
in the STVM method, MC has the lowest number of virtual machines that are migrated,
whereas maximum utilization has the highest number of migrations. NPA and DVFS do
not carry any VM migrations, which second the theoretical concept of dynamic voltage and
frequency scaling and non-power aware techniques.
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Service level agreement and service level agreement degradation were administered
for all three techniques. DVFS has a minimum service level degradation when compared to
the rest of the techniques. NPA has the highest number of SLAV. If better service quality
is required, fewer SLAV methods need to be selected. The MMT technique needs to be
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selected for a better user experience, as this has a minimum number of SLAVs and SLAs
for the static threshold environment, as shown in Figure 8.
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Figure 8. Analysis of the Service Level Agreement Violation.

In dynamic environments, DVFS has less energy consumption associated with NPA
methods. In a static environment, MMT has the highest number of host shutdowns, as VMs
are selected and relocated for loaded hosts to save resources and energy. MMT, therefore,
also has less mean and standard deviation time in a static environment compared to other
virtual machine relocation techniques.

Therefore, the overall detailed analysis of the proposed system is shown in Figure 9.
So, depending on whether the test environment is dynamic or static, resource optimization,
service quality, and better user experience can be achieved if proper methods are selected
for loaded hosts in a cloud environment. Proper selection of optimization techniques
will help in energy and resource optimization for large-scale servers that are placed and
operating globally.
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6. Conclusions

Different simulation experiments are designed using the CloudSim simulation envi-
ronment to test resource optimization in cloud gaming servers. These experiments suggest
different resource optimization techniques for large and small servers. Gaming datasets are
versatile in nature and consist of different audio, video, avatars, locations, etc. The data
versatility helps to challenge resource optimization in terms of energy consumption, execu-
tion time, virtual machine relocation, and service level agreement violations for different
user levels.

From the results, it is evident that different resource optimization techniques are
required to be selected for under-and overloaded hosts depending on servers and user
data type. If the data that is being processed has defined limits, then the static threshold
technique will be used with another virtualization discussed above. In terms of a dynamic
environment with multiple users and a large pool of resources, dynamic resource optimiza-
tion behaves better. Therefore, for large servers, DVFS saves more energy, has fewer service
level agreement violations, and results in a better quality of service and experience.

In the future, this work will be enhanced to explore new energy-saving techniques and
compared them with the current methods. This work will also be extended to other domains
of computing for example Internet of Things (IoT), Big Data, and Artificial Intelligence (AI).
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