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Abstract

Predicting the future trajectory of objects in video is a critical task within

computer vision with numerous application domains. For example, reliable

anticipation of pedestrian trajectory is imperative for the operation of intelligent

vehicles and can significantly enhance the functionality of advanced driver

assistance systems. Trajectory forecasting can also enable more accurate

tracking of objects in video, particularly if the objects are not always visible,

such as during occlusion or entering a blind spot in a non-overlapping multi-

camera network. However, due to the considerable human labour required

to manually annotate data amenable to trajectory forecasting, the scale and

variety of existing datasets used to study the problem is limited.

In this thesis, we propose a set of strategies for pedestrian trajectory

forecasting. We address the lack of training data by introducing a scalable

machine annotation scheme that enables models to be trained using a large

Single-Camera Trajectory Forecasting (SCTF) dataset without human annota-

tion. Using newly collected datasets annotated using our proposed methods,

we develop two models for SCTF. The first model, Dynamic Trajectory Pre-

dictor (DTP), forecasts pedestrian trajectory from on board a moving vehicle

up to one second into the future. DTP is trained using both human and

machine-annotated data and anticipates dynamic motion that linear models do

not capture. Our second model, Spatio-Temporal Encoder-Decoder (STED),

predicts full object bounding boxes in addition to trajectory. STED combines

visual and temporal features to model both object-motion and ego-motion.

In addition to our SCTF contributions, we also introduce a new task:

Multi-Camera Trajectory Forecasting (MCTF), where the future trajectory of

an object is predicted in a network of cameras. Prior works consider forecasting
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trajectories in a single camera view. Our work is the first to consider the

challenging scenario of forecasting across multiple non-overlapping camera

views. This has wide applicability in tasks such as re-identification and multi-

target multi-camera tracking. To facilitate research in this new area, we collect

a unique dataset of multi-camera pedestrian trajectories from a network of 15

synchronized cameras. We also develop a semi-automated annotation method

to accurately label this large dataset containing 600 hours of video footage. We

introduce an MCTF framework that simultaneously uses all estimated relative

object locations from several camera viewpoints and predicts the object’s future

location in all possible camera viewpoints. Our framework follows a Which-

When-Where approach that predicts in which camera(s) the objects appear and

when and where within the camera views they appear. Experimental results

demonstrate the effectiveness of our MCTF model, which outperforms existing

SCTF approaches adapted to the MCTF framework.
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Chapter 1

Introduction

Much work in computer vision and robotics has focused on building perception

systems that make sense of the world. These systems range from understanding

the environment through classifying images, tracking objects, segmenting scenes,

and many others. Substantial progress has been made in the perception task,

opening new opportunities surrounding how to use these perceptions effectively.

Significant challenges remain in the step of transforming perceptions into useful,

actionable information. Among these is the challenge of vision-based forecasting:

reasoning about the future given the perception information available in the

present.

1.1 Anticipating the Future

The ability to use information to reason about the future is a critical problem

in many intelligent systems, and some define this ability to be one of the main

components of intelligence [5]. The task has been long studied in many contexts,

from weather forecasting [6] to market demand [7], stock market predictions

[8] to patient outcome prediction [9]. Vision-based forecasting, specifically, is a

difficult task for several reasons [10]. Firstly, as many vision-based forecasting

systems rely on information from perception systems such as object detect-

ors, errors in perception may be propagated forward. Secondly, the future is

inherently uncertain and can prove challenging to model effectively. Thirdly,

vision-based forecasting datasets are limited in both size and variety. These

challenges have limited progress in vision-based forecasting; however, research-

ers have devoted more attention to the task after considerable advancements

in vision-based perception.

In this thesis, we explore the area of vision-based forecasting in the context

of video data. Specifically, we explore the nascent area of video-based human

trajectory forecasting. Given a video containing individuals moving through an

environment, human trajectory forecasting is the task of predicting the future
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Figure 1.1: Where will they move next? Humans effortlessly anticipate
the future of objects by relying on prior experiences. How can a machine
accomplish the same task?

location of each individual. A visual representation of trajectory forecasting

from an egocentric (object-level) viewpoint is shown in Figure 1.1. A history of

past observations is used to predict a future trajectory, generally in the order

of seconds. This is a task that humans do effortlessly yet proves challenging

for machines.

1.2 Motivations

Making progress in human trajectory forecasting will unlock new possibilities

in a variety of applications. One of the most promising and widely researched

applications is Autonomous Vehicles (AVs), where the prediction of the intent

of Vulnerable Road Users (VRU) (i.e., pedestrians and cyclists) is a critical

safety feature and one of the key technical challenges that remains unsolved

[11]. The extent to which a vehicle is considered autonomous is classified into 5

levels according to the SAE J3016 standard [12]. At level 0, a vehicle is entirely

operated by a human driver. At level 1, vehicles have some level of driver

assistance, such as cruise control and anti-locking braking systems. Level 2

vehicles are able to drive fully autonomously in some scenarios, such as on

highways, but a human driver must constantly supervise the vehicle and be

able to take over control at any moment. At level 3, a vehicle is able to drive

autonomously in some scenarios, and a human driver still needs to be able

to take control of the vehicle when alerted. However, the human driver does

not need to monitor the vehicle continually and is given notice when manual

takeover is required. Level 4 vehicles do not require any human driver for safe

operation but are limited to a particular geographical area. Level 5 vehicles

are considered fully autonomous and can operate without a human driver in

all environments and in all conditions.
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Human trajectory forecasting systems can be applied in vehicles with

autonomy levels 0 and higher. At automation level 0, a human driver may

be alerted if a potential collision with a VRU is detected by on-board sensors

equipped with trajectory forecasting capabilities [13]. In level 2 vehicles,

systems may use the same system to apply automated braking or steering in

dangerous scenarios [14]. At level 3 and above, on-board sensors and trajectory

forecasting systems can be used for full motion planning and control of the

vehicle [15].

Trajectory forecasting has also been used to improve object tracking [16]

and crowd monitoring [17]. In their recent survey on trajectory forecasting [18],

Rudenko et al. identify five surveillance applications for trajectory forecasting:

person retrieval, perimeter protection, traffic monitoring, crowd management,

and retail analytics. The trajectory forecasting task is relatively easy for

humans to perform well in a variety of situations. Consider the scene in

Figure 1.1. Prior experience informs our predictions about where the people

in this scene are likely to move in the next few seconds. For example, in this

scene, we may look to the surrounding environmental context, the pedestrians’

gait, and known priors about how pedestrians tend to navigate a crowded

street through personal experience. This reasoning occurs quickly and without

significant effort for humans but remains challenging to solve computationally.

Rasouli et al. investigate the interaction between pedestrians and drivers

[19, 20]. The authors find that pedestrians look at the vehicle in over 90% of

all crossing events on unmarked crossings, suggesting that visual attention is a

crucial indicator of crossing intent. The authors also investigate the influence of

the time between consecutive vehicles, known as gap acceptance, on pedestrian

crossing behaviour. Very few pedestrians will cross when the size of the gap

between consecutive vehicles, also known as Time To Collision (TTC), is less

than 3 seconds, while almost all pedestrians will cross when the TTC is 7

seconds or more. These findings are consistent with others [21, 22]. Events

between these TTC values are therefore of most interest, as some pedestrians

will cross whereas others will not.

Let us consider more precisely which features may be useful for trajectory

prediction. Schmidt et al. investigated how well humans could predict whether

a pedestrian will cross the street given footage from a few seconds prior to the

event [21]. Some participants were provided with an original video, while others

were given footage with various parts masked to assess the importance of each

of these features. Examples of these image masks are shown in Figure 1.2. The

authors found that all masks resulted in poorer judgment by the participants,

and full body occlusion leads to considerable performance degradation. The

full body occlusion mask if the worst performing using trajectory information

alone without any additional visual cues. This finding suggests that visual
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Figure 1.2: What information do we need to predict if a pedestrian
wants to cross? (a) Head, (b) lower-body, (c) road, and (d) full occlusion of
visual features leads to confusion for human observers. Figure recreated from
Schmidt et al. [21].

information, in addition to the trajectory, informed the participants of the

pedestrian’s future movements. However, few existing trajectory forecasting

methods consider visual information. The object’s past trajectory and traject-

ories of other nearby objects are often the only inputs to existing trajectory

forecasting models.

Detecting a human’s current location is a prerequisite for real-world ap-

plications of human trajectory forecasting models. The task of pedestrian

detection, that is, identifying the location of all humans in an image, has seen

considerable breakthroughs in the past decade, and state-of-the-art models

are now approaching human-level performance [23]. These breakthroughs are

in part responsible for the opportunity to develop forecasting models that

predict future pedestrian locations given detections obtained from a pedestrian

detector. Pedestrian detection errors will propagate through a forecasting

model, so accurate detection is critical.
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1.3 Challenges

Despite the substantial progress in trajectory forecasting in recent years, several

technical challenges remain. We identify four main challenges as follows:

Lack of large labelled datasets. Although attention to trajectory forecast-

ing has grown, the field suffers from a lack of datasets. Labelling data for

trajectory forecasting is a tedious and labour intensive process. For each frame

in the video, each object must have its current position labelled. Annotating

data in a multi-camera scenario is yet more labour intensive as objects must be

identified in multiple camera views in addition to their position labels. Some

earlier methods used dynamics-based forecasting approaches that do not rely

on data-driven machine learning to address the lack of data. However, break-

throughs in data-driven methods in other computer vision problems prompted

a greater focus on data-driven methods for trajectory forecasting. Data-driven

methods are now the basis for many current state-of-the-art methods, despite

the small size of datasets compared to, for example, video classification [24].

There is a crucial link between the quality and size of the training dataset

and the performance of data-driven models [25]. The availability of large high-

quality datasets has the power to push forward a research area. For example,

the ImageNet dataset played a vital role in the breakthrough of Convolutional

Neural Networks (CNNs) [26] for image classification.

Visual feature extraction. The work of Schmidt et al. [21] demonstrates the

usefulness of visual features, in addition to the past trajectory, when humans

forecast pedestrian trajectories. However, best practices for extracting these

features is an outstanding problem. Common visual feature extraction issues

include occlusion, motion blur, and scale variation. These issues all contribute

to the challenge of visual feature extraction for trajectory forecasting.

Uncertainty in future predictions. Uncertainty is an intrinsic feature

of the trajectory forecasting problem. Humans, in particular, may change

direction suddenly with little prior warning. Furthermore, an object may have

multiple plausible future trajectories, such as upon entering a junction. As

a result, uncertainty in future location grows as we predict further into the

future. Modelling this uncertainty effectively is a challenge for forecasting

systems, particularly as most datasets provide a single ground-truth future for

each trajectory.

Pedestrian interactions. The motion of a pedestrian is influenced by other

pedestrians nearby. This influence is often referred to as social force [27],

whereby nearby pedestrians exert a certain amount of social force on other

pedestrians. This influence ranges from simple rules of collision avoidance to

more nuanced social dynamics. Furthermore, these social rules may change
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in different circumstances, such as large crowds [28]. Modelling pedestrian

interactions has been a focus of trajectory forecasting research but remains

challenging.

1.4 Thesis scope

In this thesis, we present strategies to address the first three challenges dis-

cussed in the previous section.

Lack of large labelled datasets. We propose two new methods for annot-

ating large datasets amenable to trajectory forecasting. As human annotation

is limited by human labour, we propose methods for machine-aided and fully

machine-annotated datasets. The methods do not perform as well as fully

manual data annotation, and are therefore not a replacement human annota-

tion. However, they facilitate the collection of considerably larger datasets,

which supplement smaller, human-annotated datasets.

Visual feature extraction. We propose a method based on optical flow to

extract visual features for trajectory forecasting. We do not use human skeletal

features, such as those extracted using a human pose estimation algorithm like

Openpose [29]. Although considerable progress has been made in the human

pose estimation task, state-of-the-art models are still not completely robust

to challenges such as occlusion, lighting variations, and low resolutions [30].

These challenges are commonplace in trajectory forecasting datasets, which

introduce noise in the pose estimation results and therefore also introduce

noise to the trajectory forecasting process. We find that optical flow is more

robust to these challenges compared to state-of-the-art human pose estimation

algorithms. Throughout, we compare our methods to the work of Yagi et

al. [31], a trajectory forecasting method that uses human pose estimation

features. We find that our method outperforms the methods based on skeletal

features. Following previous trajectory forecasting work [31–33], we predict

up to 2 seconds into the future. We do not consider other methods for visual

feature extraction, such as head pose estimation [34] as these features also

suffer from noise introduced by prediction errors.

Uncertainty in future predictions. We propose a method for modelling

uncertain future predictions in human trajectory forecasting by predicting the

likelihood of a target appearing in a given location, rather than predicting a

single discrete path. We use a multi-camera dataset for this task, and predict

up to 12 seconds into the future. This is longer than the more conventional

1-2 seconds found in single-camera trajectory forecasting works [31–33]. Our

uncertainty predictions enables us to forecasting further into the future, as

growing uncertainty is modelled.
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1.5 Contributions

The contributions of this thesis are as follows:

1. Methods for collecting trajectory forecasting datasets with less

human labelling (Chapter 3)

1.1. Method for generating machine-annotated training data for trajectory

forecasting. We propose a machine-annotation scheme for gathering

training data for trajectory forecasting models in the absence of

human annotators. Our method enables the pre-training of traject-

ory forecasting models on large machine-annotated datasets that

generalizes to human-annotated datasets.

1.2. Machine-aided annotation method for multi-camera trajectory fore-

casting. We propose a machine-aided annotation scheme for gather-

ing training data for trajectory forecasting models in a multi-camera

setting. Our method significantly reduces the manual overhead of

labelling multi-camera forecasting datasets, allowing us to create a

dataset considerably larger than existing alternatives.

1.3. Trajectory forecasting datasets. We collect three trajectory fore-

casting datasets: BDD-10k, Citywalks, and WNMF. The datasets

are collected using our proposed machine-annotation and machine-

aided annotation methods. The datasets are either markedly larger

or more diverse than existing datasets, and each is made publicly

available to the research community.

2. Models for egocentric trajectory forecasting (Chapter 4)

2.1. Dynamic Trajectory Predictor. We propose Dynamic Trajectory Pre-

dictor, a trajectory prediction model trained using vehicle-mounted

cameras. Dynamic Trajectory Predictor is trained using both

machine-annotated and human-annotated data and extracts motion

features from optical flow.

2.2. Spatio-Temporal Encoder-Decoder. We propose Spatio-Temporal

Encoder-Decoder, a trajectory prediction model trained using ego-

centric cameras. Unlike most previous work, Spatio-Temporal

Encoder-Decoder predicts future object scale in addition to tra-

jectory.

3. Models for Multi-Camera Trajectory Forecasting

(Chapter 4)
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3.1. Multi-Camera Trajectory Forecasting We introduce Multi-Camera

Trajectory Forecasting, a new formulation of the trajectory forecast-

ing task where multiple camera views are considered simultaneously.

We introduce the task at three levels of granularity: In which cam-

era will the object appear, when will the object appear, and where

within the identified camera views will the object appear.

3.2. Trajectory Tensors. We propose Trajectory Tensors, a novel data

representation for multi-camera trajectories. Trajectory Tensors

overcome many of the shortcomings of the coordinate trajectory

data representation in multi-camera settings. Trajectory Tensors

enable us to elegantly model an object’s location with respect to

multiple camera views simultaneously.

3.3. Multi-Camera Trajectory Forecasting models. We propose 3 model

architectures for Multi-Camera Trajectory Forecasting that use the

Trajectory Tensor data representation. Each model uses data in 1

or more camera views to predict In which camera, when, and where

the target will appear in other camera views.

1.6 Thesis Outline

This thesis is organised as follows:

• Chapter 2: Literature review

This chapter reviews the history and current state-of-the-art in four key

areas:

– Vision-based forecasting

– Trajectory forecasting

– Pedestrian detection, tracking, and re-identification

– Automating data annotation for machine learning tasks

We also provide an extensive review of the current trajectory forecasting

datasets used by the research community.

• Chapter 3: Optimizing data annotation for trajectory forecast-

ing

In this chapter, we propose methods for collecting trajectory forecasting

datasets at scale through semi-automated data annotation. We propose

methods for both single-camera and multi-camera data annotation and

introduce three datasets collected using our proposed annotation methods.

Our datasets are later used in Chapter 4 and Chapter 5.
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• Chapter 4: Single-camera trajectory forecasting

In this chapter, we introduce two methods for single-camera trajectory

forecasting from an egocentric viewpoint. Our models use the past

trajectory and visual features to predict an object’s future location from

an egocentric perspective. We train and evaluate these models using

the datasets collected in Chapter 3 as well as an existing egocentric

forecasting dataset.

• Chapter 4: Multi-camera trajectory forecasting

In this chapter, we propose a novel formulation of the trajectory fore-

casting task: Multi-Camera Trajectory Forecasting. We introduce three

new problem formulations and present results using several baselines and

adapted state-of-the-art Single-Camera Trajectory Forecasting (SCTF)

models. We also introduce a novel data representation for multi-camera

trajectories and present experimental results on our new dataset in-

troduced in Chapter 3. Our data representation is accompanied by a

prediction model which predicts a multi-camera trajectory.

• Chapter 6: Conclusion and future work

In the final chapter, we summarise the contributions of this thesis. We

then discuss applications of our work and new research directions made

possible by the presented contributions.
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Chapter 2

Literature review

In this chapter, we survey works related to the contributions of this thesis. The

chapter is organised as follows: Section 2.1 presents a taxonomy of tasks and

methods for vision-based forecasting and summarises key works in the area.

Section 2.2 gives an in-depth overview of the trajectory forecasting task. We

review the history and current state-of-the-art solutions for the task and the

prevalent datasets used in the area. Section 2.3 summaries three related areas

relevant to our work: Pedestrian detection, tracking, and Re-Identification

(Re-ID). Finally, Section 2.4 surveys developments in methods that reduce the

need for manual data annotation in machine learning.

2.1 Vision-Based Forecasting

Traditionally, computer vision methods have focused on extracting information

from images and videos in the present moment. Perception tasks such as image

classification, activity recognition, pose estimation, semantic segmentation,

and others are concerned with the present or past, i.e., gaining insight that

will tell us what is happening or what has happened. Vision-based forecasting,

in contrast, seeks to predict what will happen next. Tasks in this nascent area

have seen comparatively less attention than their perception task counterparts,

which are often prerequisites for practical vision-based forecasting applications.

However, considerable breakthroughs in perception have prompted researchers

to ask questions about how to use this data to build systems with more

comprehensive scene understanding.

Computer vision tasks can be broken down into different levels of abstraction.

For example, the task of semantic segmentation operates at a low level of

abstraction by labelling each pixel’s class in an image. Image classification, in

contrast, operates at a higher level of abstraction where the task is to identify

the category to which an image belongs. In this section, we organise vision-

based forecasting according to 5 different categories, from the lowest level of
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Figure 2.1: Vision-based forecasting taxonomy. We group vision-based
forecasting tasks into 5 categories. Less abstract tasks, such as pixel or semantic
forecasting, are generally feasible only for short time horizons, whereas more
abstract tasks enable longer-term forecasting.

abstraction (pixel) to the highest (event) as shown in Figure 2.1. Examples of

each of these sub-problems is shown in Figure 2.2. In this section, we survey

key work in each sub-field of this incipient research area.

2.1.1 Pixel Level

At the lowest level of abstraction, pixel-level forecasting involves directly

predicting future pixel values in video. Typically, a model is given a sequence

of video frames to predict future video frames. The predicted frames are then

in turn used for other downstream tasks such as predicting future actions

[35], detecting anomalies [36], or predicting future optical flow [37]. As video

data which does not need to be labelled for pixel forecasting is easy to obtain,

pixel forecasting models are also trained on large datasets as a method of

self-supervised [38] representation learning. The goal is to learn a generalisable

feature representation that will boost performance on tasks where limited

training data is available.

Due to the high level of uncertainty in predicting individual pixel values,

methods typically predict short time horizons. However, Wichers et al. [39]

propose a model to predict up to 20 seconds into the future by jointly training

an encoder to extract frame feature embeddings, an embedding predictor to

forecast future frame embeddings, and a decoder to generate future video

frames given the predicted embedding and the last observed video frame. As a

dataset with a static background is used, the model also learns to distinguish

between foreground and background pixels as a by-product.
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Figure 2.2: Vision-based forecasting. Examples of each of the 5 sub-tasks
in our vision-based forecasting taxonomy.

Pixel-level forecasting has also been used for video anomaly detection. Here,

the goal is to identify sections of video that deviate from a set of “normal”

video sequences. Liu et al. [36] use a Convolutional Neural Network (CNN)

to predict future video frames and use the difference between the predicted

ground-truth frame to compute a frame-wise anomaly score. It is expected

that frames with a large prediction error are anomalous. Yao et al. [40] adopt

a similar approach but compute anomaly score maps for each frame, enabling

the precise location of the suspected anomaly to be identified.

2.1.2 Semantic Level

Semantic segmentation is a fine-grained perception task where an object class

(e.g. vehicle, building, person) label is assigned to each pixel in an image. This

perception task has seen much attention [41], and was first extended to the

forecasting domain in 2016 by Luc et al. [42]. The authors introduce segmenta-

tion forecasting as the task of predicting future frame segmentation in a video

sequence given current and past video frames. The authors predict semantic

segmentations of future video frames on the Cityscapes [43] autonomous driving

dataset, showing that predicting segmentation masks yields better performance

than directly predicting Red, Green, Blue (RGB) frames (i.e. using one of the

methods introduced in the previous subsection) and then segmenting these.

However, due to the fine-grained nature of semantic segmentation, prediction

performance falls considerably for predictions over 0.5 seconds. This result

highlights the importance of selecting the correct level of abstraction for the

task’s difficulty, which is closely related to the prediction time horizon. Simil-

arly, Terwilliger et al. [44] use optical flow features for semantic forecasting and

can produce more accurate forecasts up to 0.5 seconds into the future. Luc et

al. [45] extend their earlier semantic forecasting work to instance segmentation
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forecasting, in which each object instance is individually predicted. This more

challenging problem involves assigning both pixel and object identifiers to each

pixel in future video frames. For example, rather than labelling all pixels

belonging to the “car” object class with the “car” label, each unique object is

given a unique label, e.g., “car-1”, “car-2”, ... etc.

The fine-grained nature of segmentation forecasting makes long term pre-

dictions of over 0.5 seconds very challenging to learn. The pedestrian object

class, in particular, is extremely challenging for long term prediction due to

highly dynamic motion and deformable parts. In some applications, such as

object tracking [46] and collision avoidance [31], such fine-grained prediction is

not essential. For these applications, forecasting at the keypoint, trajectory,

or event level rather than full segmentation may be sufficient and are better

suited to longer-term predictions.

2.1.3 Keypoint Level

Keypoint forecasting models predict the locations of a set of keypoints for

an object, commonly human joint keypoints. Typically, human joints are

represented by several keypoints representing the location of the feet, knees,

hips, shoulders, elbows, hands, neck, and face [30]. In some datasets, more

detailed keypoints are given that may include facial features or individual fingers

and toes [47]. Methods for human pose estimation generally either detect the

person first, then detect the keypoints (top-down) or detect keypoints first and

then group them into a person detection (bottom-up) [30, 47]. Predicting the

future locations of humans based on their joints has several applications, such

as self-driving vehicles [48] and for anticipating human actions [49]. Models

may be either action-specific or action-agnostic. Action-specific models require

the label of the action being performed, whereas action-agnostic models do

not. Action-specific models are either trained separately for different actions

or jointly and then use the provided action label as an additional input to

the model [50]. Action-agnostic models are generally more useful for real-

world applications as action labels are often unavailable at inference time.

However, action-agnostic models are more challenging to generalise than their

action-specific counterparts [50].

The previously mentioned keypoint forecasting algorithms generally forecast

local movements only, i.e., the pose is predicted but not the future trajectory.

This limitation is addressed by Mangalam et al. [48] who propose an RNN-

based approach to predict pose and trajectory jointly. The authors propose

a two-stream prediction model, where global motion (i.e., the individual’s

trajectory) and local motion (i.e., the relative location of keypoints in relation

to each other) are predicted separately and then merged. This approach
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avoids issues resulting from the difference in keypoint displacement magnitude

resulting from global movements (large displacements) and local movements

(small displacements).

2.1.4 Trajectory Level

Trajectory forecasting is the task of predicting the future trajectory of an object

in a sequence of video frames. The centre point of an object is represented

x and y values in a coordinate space, and models predict the future location

given a sequence of past locations. As the central theme of this thesis, we cover

trajectory forecasting in detail in Section 2.2.

2.1.5 Event Level

At the highest level of abstraction, event-based forecasting involves predicting

the occurrence of a future event. The range of possible applications of event-

based forecasting is huge, from predicting traffic accidents [51] to patient

outcomes in medical diagnosis [9]. The time horizon of event-based forecasting

is hugely varied, on the order of seconds [52], years [53] or even decades [9].

Of the works in event-based forecasting, human activity prediction is one of

the tasks to see the most attention. Human activity prediction is the problem

of anticipating human actions such as waving or jumping in video with limited

information. There are two definitions commonly used in the activity prediction

literature: (1) Classify an action as early in the sequence as possible before the

action has begun. (2) Classify an action as early in the sequence as possible

after the action has begun. Figure 2.3 depicts these two definitions graphically.

Note the similarity but subtle distinction between these two definitions. The

two are often used interchangeably in activity prediction literature. One reason

for this is that the precise starting point of an action is ambiguous, so the

difference between classifying an action before it begins and shortly after the

beginning is minimal.

Using definition 1 of human activity prediction, Vondrick et al. [54] predict

future visual representations (features) and then use the predicted representa-

tions to anticipate future human actions. Learning to predict representations

can be done in a self-supervised (discussed further in Section 2.4.2) manner

using video data, assuming a model for generating a visual representation is

available. The authors use AlexNet [26] to extract a visual representation for

each frame and then predict representations of future frames using a CNN.

The predicted future representation is then assigned an action label using an

action classification model.

Jain et al. [52] anticipate 5 actions of a human driver: straight, left turn,

right turn, left lane change, and right lane change using data from Global
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Positioning System (GPS), vehicle dynamics, and a driver-facing camera.

Features for each modality are computed separately using a Long Short-Term

Memory (LSTM) [55] network and then fused using a fully connected layer.

The future action is labelled at each timestep. The model is trained with a

novel exponentially increasing loss function that helps to prevent overfitting.

The exponential loss assigns a lower weight to loss values for frames early on

in a video clip and higher weights to later video frames. Intuitively, actions

are easier to predict closer to their occurrence, so mistakes made in later video

frames are penalised more heavily. Therefore, during training, frames early in

the video clips do not impact the model weight updates as much as the later

frames.

Suzuki et al. [51] extend the exponential loss introduced by Jain et al.

by modifying the loss as model training progresses. At the beginning of the

training, the loss is equivalent to the exponential loss. As training progresses,

the loss is modified such that it gives higher weights to earlier frames. This

approach is inspired by the curriculum learning paradigm for machine learning,

which demonstrates that the order in which examples are presented to a

machine learning algorithm can significantly impact the final performance of

the model. In their seminal paper, Bengio et al. [56] propose the idea of

guiding the training process inspired by how humans learn. Easier examples

are presented before more challenging examples to keep the learning process

in an optimum state in which training examples are neither too easy nor too

difficult. Similarly, by increasing the influence of earlier frames as training

progresses, easier examples can be learnt first (close to the event) before moving

to more challenging examples. This method is used to forecast traffic accidents

with a new traffic incident dataset, introduced with the results. The choice of

how much to adapt the loss function at each training epoch is essential, and

finding an optimal value is non-trivial. To consistently find reasonable values

for the loss, the loss reaches its peak at the average time at which actions were

Figure 2.3: Action prediction definitions. Consider an action that begins
at time s. Action prediction is sometimes referred to as the problem of
anticipating the action before it occurs, such as at time a (Definition 1) or as
early as possible during the action, such as at time b (Definition 2). Although
the time t is labelled by human annotators, the precise start time of an action
can be difficult to define precisely.
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anticipated of the previous epoch on the validation set. This scheme results in

an adaptive loss function that is modified based on current model performance.

Aliakbarian et al. [57], propose a model to detect actions as soon as possible

in a clip, rather than to forecast future actions that have not yet occurred.

Therefore, standard action recognition datasets [58–60] are used for evaluation.

They introduce a new loss consisting of two terms. The first penalises false

negatives uniformly through the clip. The second penalises false positives with

a linearly increasing magnitude over time. Similarly to the exponential loss,

the rationale behind this decision is that the ground-truth action label may be

ambiguous early in a video clip. However, the exponential loss results in early

frames getting small loss values, and thus predictions are not made early in

the clip. The introduced loss encodes this idea while encouraging the mode to

make predictions early by penalising false negatives consistently throughout

the clip. The loss introduced performs better than the exponential loss on

the benchmark datasets for earlier frames, with similar performance for later

frames.

In this thesis, we introduce models that forecast at the trajectory level of

abstraction in Chapter 4 and both trajectory and event level in Chapter 5.

2.2 Trajectory Forecasting

Trajectory forecasting is the task of predicting a future sequence of locations

for an object given its current and past location information.

Problem formulation. Formally, we define an object location at a particular

timestep t as Lt, comprised of a coordinate (x, y)t in the image space. The

coordinates do not include the vertical (z) axis and are generally assumed to

occupy the ground plane. The goal of a trajectory forecasting model is to

predict a sequence of locations Lt+1:m for a given object, where m is the number

of future timesteps to predict. Generally, models predict a single sequence

of locations Lt+1:m for each object. However, an increasing number of works

consider the multi-modal trajectory problem, where methods predict multiple

possible future trajectories to model the uncertainty in future trajectory.

Most existing trajectory forecasting works predict future trajectories in

the image coordinate space. This is a convenient way to collect datasets, as

human annotators need only label locations in the dataset video. However,

image space predictions have several disadvantages. Image-space predictions

are susceptible to distortion from the camera lens and viewpoint. This is

mitigated by using cameras with rectilinear lenses and shooting footage from

a directly overhead view, such as from a drone. For datasets with a moving

camera with both egomotion and object motion, the two motion sources are

not considered separately, and must therefore be modelled jointly. Ego motion
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is often modelled using a distinct camera motion estimation algorithm [31] or

using optical flow [61]. A few datasets, such as the crowd dataset [62], are

suitable for trajectory forecasting in the world coordinate space. However, such

datasets are uncommon as collection requires accurate camera calibration. The

Crowd dataset uses depth sensors to project locations from the image space to

the world space. In this thesis, we predict trajectories in the image coordinate

space.

The features used for trajectory forecasting include the past and current

object locations Lt−n:t but are not limited to locations alone. For example,

methods commonly also use the locations of other nearby objects, visual

information from the scene, and structural constraints to make better-informed

predictions.

Evaluation metrics. The two most common metrics for evaluating trajectory

forecasting models are the Average Displacement Error (ADE) and Final

Displacement Error (FDE), which are defined for a predicted trajectory L̂t+1:m

as follows:

ADE =

∑m
t ||L̂t − Lt||2

m
, (2.1)

FDE = ||L̂m − Lm||2, (2.2)

where ||a, b||2 is the Euclidean (`2) distance between two locations a and

b. As uncertainty in future location grows with time, FDE is expected to be

greater than ADE. In addition to ADE and FDE, the Mean Squared Error

(MSE) is also sometimes used, computed by taking the square of the differences

between the predicted and ground truth trajectories for all timesteps, then

taking the mean:

MSE =

∑m
t (L̂t − Lt)

2

m
, (2.3)

The MSE more heavily penalizes large errors than the ADE.

Multi-modal trajectory forecasting models are typically evaluated by the

best-of-k ADE and best-of-k FDE metrics. These metrics alongside standard

ADE and FDE metrics are shown in Figure 2.4. Best-of-k ADE and best-of-k

FDE are formally defined as follows:

best-of -k ADE = min(

∑m
t ||L̂i

t, Lt||2
m

) | i = 1, 2, ..., k, (2.4)

best-of -k FDE = min(||L̂i
m, Lm||2) | i = 1, 2, ..., k, (2.5)

Where k is the number of generated future trajectories. These metrics

17



Figure 2.4: Trajectory forecasting metrics. Four widely adopted trajectory
forecasting metrics. Ground truth trajectories are shown in green, predicted
trajectories in blue, and discarded predictions in grey. In the best-of-k setting,
a model predicts several trajectories and only the best prediction is selected.

overcome the problem of penalising plausible but incorrect trajectories by

taking only the trajectory closest to the ground truth out of k predictions and

have become standard multi-modal metrics.

Application domains. The ability to accurately predict the future location

of a moving object spans many application domains. For example, trajectory

forecasting models are used in Advanced Driver Assistance Systems (ADASs),

which are now commonplace in modern vehicles [65]. An ADAS can prevent

collisions with other road users by combining methods for detecting the current

location of other road users and then predicting their future location. If a

high collision likelihood is detected, the system then alerts the human driver

or even applies automatic braking and steering [65]. Such systems also pave

the way towards fully autonomous vehicles that do not require a human driver.

Human trajectory forecasting has also been used to predict potential hazards

at construction sites for enhanced worker safety [66], robotic navigation [67],

to predict the movements of players in sports [68], and to assist in object

tracking, particularly through occlusion [69, 70]. Although humans are the

most common class of objects to predict, trajectory forecasting methods are

also applied to other objects such as ships [71], animals [72], and road vehicles

[73].

Camera viewpoints. We categorise trajectory forecasting methods into the

broad categories of Bird’s Eye-View (BEV) approaches, egocentric approaches,

and multi-camera surveillance approaches. Trajectory forecasting from a
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Figure 2.5: Example human trajectory forecasting viewpoints. Given
a past trajectory (solid line), the goal of trajectory forecasting is to predict
a future trajectory (dashed line). Shown are the Stanford Drone dataset [63]
(upper left), the Joint Attention in Autonomous Driving (JAAD) dataset [64]
(upper right), the Warwick-NTU Multi-Camera Forecasting dataset (lower left)
and the Citywalks dataset (lower right). The Warwick-NTU Multi-Camera
Forecasting and Citywalks datasets will be introduced in Chapter 3.

BEV uses a fixed overhead camera. From an egocentric viewpoint, trajectory

forecasting uses an object-level viewpoint. Multi-camera surveillance methods

use multiple cameras mounted in a typical Closed-Circuit Television (CCTV)

setting. Examples of these viewpoints from four trajectory forecasting datasets

are shown in Figure 2.5, where we further divide egocentric-view forecasting

into vehicle and pedestrian view, both of which are studied in the literature.

Each viewpoint has its own unique set of advantages and disadvantages.

In this section, we review the history and current state-of-the-art in BEV,

egocentric, and multi-camera trajectory forecasting. We then review the most

widely-used trajectory forecasting datasets currently available.

2.2.1 Bird’s Eye-View Forecasting

BEV trajectory forecasting methods have seen considerable attention from the

research community in recent years. Using a BEV is practical for modelling

crowd motion patterns and interactions with the environment. Furthermore, a

BEV does not suffer from challenges relating to scale and perspective, as the

area captured by the camera is assumed to be a flat plane. This camera view

allows researchers to focus on feature extraction and trajectory modelling in a
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straightforward setting.

Early Works. Early works on trajectory forecasting started with hand-

crafted models based on Newton’s Laws of Motion. For example, Constant

Velocity (CV) and Constant Acceleration (CA) models are commonly used to

extrapolate past object locations into the future. These motion models are

often used with a Bayesian filter, such as a Kalman filter [74], which recursively

updates location priors to filter measurement noise. For example, Elnagar

[75] predicts the trajectory of moving objects using a CA assumption with

a Kalman filter. Pellegrini et al. [76] use a CV motion assumption but also

consider the interactions between multiple objects. The path of each object

is updated if a collision is likely to occur. This idea is based on the social

force model [27], which describes pedestrian motion in crowds in terms of their

internal motivations and interactions with other pedestrians.

Data-Driven Approaches. Data-driven trajectory forecasting approaches

have dominated the literature since larger datasets, and better models have

been developed. Today, data-driven approaches consistently outperform hand-

crafted approaches due to the ease of extracting prior knowledge from datasets.

For example, humans prefer to walk on pavements rather than the road [77].

This knowledge can be easy for a data-driven model to learn directly from a

dataset of labelled trajectories; however, encoding this information by hand

would involve generating a detailed environment map.

Alahi et al. introduced the pioneering Social-LSTM [32] trajectory fore-

casting model in 2016. Social-LSTM extracts features from trajectories using

a recurrent model. The authors introduce social pooling, which pools together

the hidden states of nearby pedestrians. Social pooling enables the model to

learn social dynamics, such as collision avoidance, directly from data rather

than manually engineering this constraint. The learned approach outperforms

a CV model with Kalman filtering, and a social force-based model [78], paving

the way for more data-driven approaches.

Many data-driven works have followed Social-LSTM, introducing new ideas

to address different challenges. For example, the social pooling layer pools

hidden states of nearby pedestrians but does not model the interactions of

the entire scene. Choi et al. [79] instead model interactions globally for all

pedestrians as well as environmental constraints by dividing the entire scene

into discrete grid cells and extracting spatio-temporal features in each grid cell.

Environmental constraints are also considered the Deep Context Map model

proposed by Gilitschenski et al. [80] where a dedicated context encoder extracts

features relevant to the specific scene. Sadeghian et al. [81] propose CAR-Net,

which uses a combination of CNN and LSTM layers with a visual attention

module. Unlike many existing works, CAR-Net simultaneously predicts both
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vehicle and pedestrian trajectories. CAR-Net is trained using the `2 distance

between ground truth and predicted trajectories. This loss function may overly

penalise sensible but incorrect predictions and will be discussed later in this

subsection.

Most of the works discussed so far rely on variations of Recurrent Neural

Network (RNN) models for feature extraction, which are well-suited to time

series prediction problems. However, alternative deep learning layers such

as CNNs, originally created for image data, are also sometimes applied to

time series problems [82]. Yi et al. [83] propose Behaviour-CNN, a trajectory

forecasting model based on convolutional rather than recurrent layers. Given a

3-dimensional volume encoding past object locations, Behaviour-CNN predicts

the future trajectory of an object using convolutional layers. Experimental

results show that Behaviour-CNN accurately predicts target exit locations in a

scene with multiple exits, and the location predictions also reduce the number

of fragmented tracks when used as a prior for an object tracking algorithm.

Minoura et al. [17] reformulate the trajectory forecasting problem for large

crowds, a task they call crowd density forecasting. Rather than predicting

a trajectory for each object in the scene, crowd density forecasting involves

anticipating how a crowded scene will unfold by predicting the relative person

density in each part of the scene. The authors propose a model that outper-

forms existing trajectory forecasting methods designed to predict individual

trajectories when applied to a crowd dataset.

Multi-Modal Approaches. The distribution of future trajectories is often

termed multi-modal, meaning the that distribution of future trajectories has

multiple modes. For example, as a pedestrian approaches an intersection, they

may have the option of turning left or right. Multiple modes may seem equally

likely; however, single-future models such as those discussed above predict a

single trajectory. Multiple possible futures can be problematic when using

a loss function based on a single future such as `2 distance, which heavily

penalises reasonable but incorrect forecasts, e.g., turning right rather than

left at an intersection. Rather than predicting a single trajectory, a growing

body of works generate multiple possible trajectories, commonly referred to as

multi-modal trajectory forecasting.

Rather than using the `2 loss, several works use an adversarial loss to

train models capable of generating multiple possible future paths using a

Generative Adversarial Network (GAN) [33, 84] or a Variational Auto-Encoder

(VAE) [73, 85]. In this setting, one network predicts future trajectories (the

generator), and a second network differentiates between real and predicted

trajectories (the discriminator). The better job the discriminator does at

differentiating trajectories, the higher the value of the adversarial loss. This

training schedule encourages models to generate multiple plausible trajectories
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rather than minimising the `2 distance between predicted and ground-truth

trajectories.

Many approaches predict one timestep at a time using an auto-regressive

prediction approach. This strategy leads to the accumulation of errors as

trajectories are predicted further into the future. Mangalam et al. [85] attempt

to address this issue by first predicting several potential trajectory endpoints

and then generating a possible path to reach these endpoints. This approach

is motivated by the idea that humans have target locations (goals) that they

wish to reach and then plan a path to reach that location. The approach

improves prediction performance in a multi-modal setting, particularly for later

timesteps.

Despite widespread usage, the best-of-k metrics used for multi-modal

trajectory forecasting evaluation introduced in equations 2.4 and 2.5 have come

under some criticism. Schöller et al. [86] show that a simple constant velocity

model outperforms several state-of-the-art multi-modal trajectory forecasting

models when evaluated under best-of-k metrics. Furthermore, predicting several

implausible trajectories will not be penalised, providing at least one of the k

generated trajectories is close to the ground truth. Evaluation is challenging as

typically only a single ground truth trajectory exists despite multiple plausible

futures, and the best-of-k metrics remain the standard. However, Liang et al.

avoid this issue by generating a simulated dataset where each trajectory has

multiple futures [87]. The proposed dataset overcomes the problems associated

with a single future per trajectory at the cost of using simulated rather than

real-world data.

2.2.2 Egocentric-View Forecasting

Compared to BEV forecasting, egocentric trajectory forecasting has seen

comparatively less attention by the research community. This is partly due to

the lack of standard benchmark datasets and additional challenges relating to

modelling egomotion and changes in perspective. Similarly to BEV forecasting,

earlier methods used hand-crafted approaches, whereas most more recent works

take a data-driven approach.

Hand-Crafted Approaches. Attention to egocentric-view forecasting began

with vehicle-mounted cameras. Given the absence of large pedestrian trajectory

datasets, previous works have modelled the dynamic motion of pedestrians

using Linear Dynamic System (LDS) that combine the assumptions of CV

or CA with a filtering algorithm such as the Kalman filter [88]. To model

non-linear, dynamic motion, a Switching Linear Dynamic System (SLDS) uses

a discrete Markov chain to select between multiple LDS at each timestep based

on past observations. However, the SLDS is limited to reacting to pedestrian
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motion rather than anticipating a change in dynamics. To address this issue,

existing works [89, 90] focus on additional cues such as pedestrian head pose,

motion state, and road scene context or use a non-linear filtering algorithm

such as the unscented Kalman filter [91].

Data-Driven Approaches. Similarly to the trends in BEV forecasting,

an increasing number of more recent works take a data-driven approach to

egocentric forecasting. Yagi et al. [31] introduce one of the first data-driven

approaches for egocentric forecasting. The authors propose a model combining

features from the pedestrian’s pose, estimated ego-motion, and past location

information. Their model outperforms the CV baseline and the Social-LSTM

[32] model adapted for egocentric forecasting. However, the model relies on

pose estimation features. Obtaining accurate pedestrian pose estimation is

sometimes impractical and not always guaranteed to be accurate, especially

in low-resolution or low-lighting scenarios. Bhattacharyya et al. [92], use an

LSTM to predict the future location of pedestrian bounding boxes from a

vehicle-mounted camera by first estimating future vehicle ego-motion and then

using these estimates with observed bounding boxes to forecast the location

of future bounding boxes. Experimental results show that predicting vehicle

ego-motion improves the accuracy of pedestrian bounding box predictions. Yao

et al. [61] use a Gated Recurrent Unit (GRU) encoder-decoder model to predict

future bounding boxes of other vehicles using a vehicle-mounted camera. Their

proposed approach uses past vehicle bounding boxes, optical flow, and future

ego-motion as inputs to the model.

Yao et al. [93] use egocentric trajectory forecasting to detect traffic anomalies

from a vehicle-mounted camera. The authors compared predicted object

bounding boxes with observed bounding boxes, hypothesising that a large

deviation between these may indicate a traffic anomaly, such as a traffic

accident. Park et al. [94] consider trajectory forecasting from an egocentric

viewpoint but instead predict the trajectory of the individual wearing the

camera rather than other objects in the scene. We consider this task distinct

from egocentric trajectory forecasting, where the trajectories of other targets

in the scene are predicted.

The lack of available training data limits all data-driven approaches. We

review datasets currently available for both BEV and egocentric trajectory

forecasting in Section 2.2.4.

2.2.3 Multi-Camera Trajectory Forecasting

The trajectory forecasting methods discussed above all consider targets as

viewed from a single-camera view. However, there is a growing number of

computer vision systems applied in multi-camera settings, such as intelligent
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CCTV systems that actively monitor an area of interest using several cameras

[95]. Alahi et al. [62] predict the origin and destination of pedestrians using

a dense multi-camera setup. The authors use cameras with BEV and depth

sensors to map tracks to the world coordinate space. This approach makes it

easy to apply existing trajectory forecasting methods using the trajectories in

the world coordinate space; however, dense camera setups with depth sensors

are not standard in real-world multi-camera systems. To the best of our

knowledge, no other works explore trajectory forecasting in a multi-camera

setting.

2.2.4 Trajectory Forecasting Datasets

Many datasets have been created for trajectory forecasting, each focusing

on different aspects of the problem. This thesis presents three trajectory

forecasting datasets created to address gaps in previous publicly available

trajectory forecasting datasets. To contextualise our new datasets, we review

the most widely used existing trajectory forecasting datasets below. A full list

of datasets is shown in Table 2.1. Our newly-created datasets shown below

the dashed line will be introduced in Chapter 3. Sample frames from selected

datasets suitable for trajectory forecasting are shown in Figure 2.6.

BEV Datasets. Datasets with an overhead or Bird’s Eye-View (BEV) per-

spective are the most common and widely used in the trajectory forecasting

literature. Using an overhead view makes datasets highly suitable for modelling

social and environmental factors. The footage is usually either captured from

directly overhead (nadir-view) using a drone or from the perspective of a

surveillance camera. For this review, we consider both nadir and surveillance

footage as BEV footage. We summarise key datasets below:

• UCY [96]. One of the first benchmark datasets to see wide adoption,

UCY contains two scenes filmed from a nadir viewpoint. One scene

contains high pedestrian density, whereas the other is more sparse.

• ETH [76]. ETH followed UCY with two more scenes for trajectory

forecasting. The two datasets are often used together in BEV forecasting

research.

• Town center [97]. The town centre dataset consists of 5 minutes of footage

shot from a surveillance view in a town centre. The dataset contains full

object bounding boxes.

• VIRAT [98]. The VIRAT dataset was created originally for the detection

and classification of human actions from a surveillance viewpoint. How-

ever, due to the large size ( 29 hours of footage) and trajectory labels,

VIRAT is also used for trajectory forecasting.
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Table 2.1: Trajectory forecasting datasets. Note that some of the listed
datasets are originally created for other tasks, such as tracking and Re-ID, but
are also suitable for trajectory forecasting. Our new datasets introduced in this
thesis are tabulated below the dashed line. A scene is video which captures a
distinct location.

Dataset Year Viewpoint
Object
type

Scenes
Duration
(hours)

Publicly
available

UCY [96] 2007 Nadir Pedestrian 3 0.28 3

ETH [76] 2009 Nadir Pedestrian 2 0.42 3

Town
center [97]

2011 Surveillance Pedestrian 1 0.08 7

VIRAT [98] 2011 Surveillance Pedestrian 16 29 3

KITTI [99] 2012 Vehicle
Pedestrian
& vehicle

50 6 3

Crowd [62] 2014
Multi-camera
surveillance

Pedestrian 132 ? 3

Daimler [88] 2013 Vehicle Pedestrian 68 0.21 3

Grand
central [100]

2015 Surveillance Pedestrian 1 0.55 7

Duke-MTMC [101] 2016
Multi-camera
surveillance

Pedestrian 8 14 7

MOT-16 [46] 2016
Egocentric

& surveillance
Pedestrian
& vehicle

14 0.13 3

SDD [63] 2016 Nadir
Pedestrian
& vehicle

8 5 3

EgoMotion [94] 2016 Egocentric Pedestrian 26 9.1 7

JAAD [64] 2017 Vehicle Pedestrian 346 1 3

FPL [31] 2018 Egocentric Pedestrian 88 4.5 7

Cityflow [102] 2019
Multi-camera
surveillance

Vehicle 40 3.3 3

MOT-20 [103] 2020 Surveillance Pedestrian 8 0.14 3

nuScenes [104] 2020 Vehicle
Pedestrian
& vehicle

1000 333 3

Forking
paths [87]

2020
Surveillance

& Nadir
Pedestrian 4 3.2 3

BDD-10K [1]
(uses videos from [105])

2019 Vehicle Pedestrian 10,000 111 3

Citywalks [2] 2020 Egocentric Pedestrian 358 2 3

WNMF [3] 2020

Multi-camera
surveillance Pedestrian 15 600 3
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Figure 2.6: Selection of datasets suitable for trajectory forecasting.
Datasets shown are Stanford Drone [63], Town Centre [97], MOT-16 [46],
UCY [96], Citywalks [2], WNMF [3], JAAD [64], Forking Paths [87], City-
flow [102], KITTI [99], MOT-20 [103], and NuScenes [104].

• Grand Central [100]. The Grand Central dataset contains around 30

minutes of footage from a surveillance camera in Grand Central Station,

New York. The footage contains high pedestrian density with fully

annotated object trajectories. While initially released publically, the

dataset is no longer available at the time of writing.

• Stanford Drone Dataset (SDD) [63]. The Stanford Drone Dataset, re-

leased in 2016, features footage shot from drones in 8 different scenes.

The dataset is similar to ETH and UCY but on a larger scale and has

been widely used as a BEV trajectory forecasting benchmark dataset

since its release.

• MOT-20 [103]. MOT-20 is the latest version of the multi-object tracking

challenge datasets, following MOT-16. MOT-20 features 8 sequences of 3
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crowded scenes from a surveillance camera view.

• Forking paths [87]. Forking paths is a simulated dataset for multi-modal

trajectory forecasting. Human annotators control agents in a synthetic

world such that one past trajectory is associated with several future

trajectories. The synthetic scenes are derived from scenes in the VIRAT

[98] dataset.

Egocentric Datasets. Few public datasets exist for object-level view traject-

ory forecasting. Many existing works use either in-house datasets or object

tracking datasets which are re-purposed for egocentric forecasting. We identify

the following existing datasets suitable for egocentric trajectory forecasting:

• MOT-16 [46]. Originally created for Multi-Object Tracking (MOT),

MOT-16 contains annotated pedestrian bounding boxes from both ego-

centric and BEV cameras. The dataset contains 14 video sequences, of

which 11 are from an egocentric perspective.

• EgoMotion [94]. Park et al. gather the EgoMotion dataset for future

localisation. This task involves predicting the future trajectory of the

person wearing the camera rather than the other objects in the scene.

We consider this task distinct from egocentric trajectory forecasting, in

which models predict the trajectory of other objects in the scene.

• FPL [31]. The FPL dataset contains 4.5 hours of footage recorded from

a chest-mounted camera in a variety of environments. Although highly

suitable for egocentric trajectory forecasting, the original video footage

is not available to download due to privacy restrictions.

There are also several public datasets consisting of data from vehicle-

mounted cameras:

• KITTI [99]. The KITTI dataset is one of the most widely-used datasets

for autonomous driving research. Similarly to MOT-16 [46], KITTI was

initially created for object tracking but can also be suitable for trajectory

forecasting. Bounding box annotation for both vehicles and pedestrians

are provided for around 6 hours of footage.

• Daimler [88]. The Daimler dataset was one of the first widely-used pub-

lically available for trajectory forecasting from a vehicle-mounted camera.

The dataset contains 55 clips depicting four classes of pedestrian move-

ment: Crossing, stopping (at the curbside), starting (to walk laterally)

and bending in (crossing at a diagonal).
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• Joint Attention in Autonomous Driving (JAAD) [64]. JAAD was collected

by Rasouli et al. to study how vehicle-pedestrian interactions in diverse

scenarios. The dataset contains 346 short clips, generally depicting a

pedestrian crossing event or other interaction with a driver. Bounding

boxes and tracking annotations are also provided.

• nuScenes [104]. nuScenes is a large and comprehensive autonomous

driving dataset released in 2020 with data from 6 cameras, 5 radar, and

a Light Detection and Ranging (LiDAR) sensor mounted on a vehicle.

The dataset contains 1000 scenes with 3D annotated object bounding

boxes for both other vehicles and pedestrians.

Multi-Camera Datasets. Multi-camera datasets suitable for trajectory

forecasting are limited. Most existing datasets commonly used for trajectory

forecasting, such as those discussed above, consist of a single camera view.

Collecting multi-camera datasets is a considerable challenge, as all cameras need

to be synchronised and trajectories annotated across multiple camera views.

A multi-camera setting means that the same object must be re-identified

in all camera views in addition to object locations. Owing to these data

collection challenges, there are few multi-camera datasets available to the

research community.

We identify three existing multi-camera datasets:

• Duke-MTMC [101]. The Duke-MTMC dataset was collected outdoors on

the Duke University campus. It was initially indented for multi-target

multi-camera tracking of individuals across the eight cameras in the

network. However, complete trajectory information is labelled, making it

also suitable for MCTF. The dataset attracted considerable attention in

the months following its release, as it was one the largest multi-camera

multi-target dataset with synchronised cameras and multi-camera identity

labels. However, the Duke-MTMC dataset was removed in 2019 following

an investigation by the Financial Times newspaper citing privacy concerns

[106].

• SAIVT-SoftBio [107]. The SAIVT-SoftBio dataset was created for per-

son Re-ID. The authors gather footage featuring 152 identities using

an eight-camera setup inside a building. Although the dataset contains

cross-camera trajectory information making it suitable for MCTF, there

is only a single multi-camera trajectory per identity, which makes the

dataset relatively small compared to other trajectories forecasting data-

sets. Furthermore, the building furniture is not consistent across all clips,

which impacts trajectories.
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Figure 2.7: Detection, tracking, and Re-ID. Detection involves locating
each target in a scene using object bounding boxes (left). Tracking involves
assigning unique and consistent identity labels to each target detected in a
video (center). Re-ID involves matching targets of the same identity detected
in different camera views (right).

• Crowd dataset [62]. The Crowd dataset was collected inside a train station

using 132 cameras. Cameras use a BEV and are equipped with depth

sensors to obtain 3D detection information. The 3D detections facilitate

the generation of tracks in the real-world coordinate space, which allows

for multi-camera tracking. Such camera setups are not widespread, as

accurate depth and geometric information are not commonly available.

In this thesis, we collect two new datasets. The entire process from gathering

raw data, cleaning it, annotating it, and exporting it into a machine-readable

format is a time consuming process. Furthermore, comparisons with existing

methods are not available and must be re-implemented for the new dataset.

However, the datasets listed above are all limited in terms of either size, variety,

or annotation.

2.3 Pedestrian Detection, Tracking, and Re-Identification

Detecting the current location of a pedestrian and tracking these locations

across time is an essential prerequisite to forecasting their trajectory. In

this section, we review current state-of-the-art methods for detecting and

tracking pedestrians. We also review current methods for person Re-ID, which

is a crucial component in many pedestrian tracking systems, as appearance

features are used to match pedestrian tracks when trajectory information alone

is insufficient. This is particularly beneficial when tracking across multiple

cameras. An overview of these three tasks is shown in Figure 2.7.
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2.3.1 Pedestrian Detection

Pedestrian detection is a specific instance of the more general problem of object

detection. Given an image, object detection aims to localise a set of object

classes using a rectangle to represent the area it covers. While object detection

involves both localising and classifying the object in question, the problem of

pedestrian detection has only one object class, namely, pedestrians. This area

has been of interest to researchers as it removes the classification component

and can, therefore, focus on the localisation problem entirely. Due to the wide

range of applications from surveillance [108] to robotics [67], many pedestrian

detection datasets have been created, and standard evaluation metrics have

been established to compare algorithms.

The standard metric for assessing pedestrian detection performance is the

Average Precision (AP) at different Intersection-Over-Union (IOU) thresholds.

Given a predicted and a ground truth bounding box annotated manually by

a human expert, the IOU is the area of the intersection of the two bounding

boxes divided by the area of the union of the two boxes. Common practice

dictates that an IOU score greater than some threshold dictates a true positive.

This threshold may range from a forgiving value of 0.5 to a more strict value

of 0.8 [23]. Figure 2.8 shows a visual example of calculating the IOU.

Pedestrian detection can be considered the problem of finding a function to

map the high dimensional image space to a much lower dimension coordinate

space in which each coordinate represents a point on a rectangle in which a

pedestrian is enclosed. Early work in finding this function use established

computer vision features such as Histogram of Oriented Gradients (HOG)

gradients [109]. However, state-of-the-art performance on pedestrian detec-

tion benchmarks has shifted in recent years from using classical computer

vision feature representations such as HOG to representations learned by a

CNN. Rather than creating features with human engineering using domain

knowledge, CNNs use gradient descent to model machine learning problems as

convex optimisation and optimise a loss function to find an effective feature

representation.

Among the most popular datasets in this area are KITTI [99], Caltech-USA

[110], Citypersons [111], and EuroCity Persons [112]. Although substantial

progress has been made, even today’s best performing pedestrian detection

systems are still below human-level performance. In 2018, Zhang et al. [23]

published a review of pedestrian detection progress and comparison with

human-level performance. The authors conclude that methods are rapidly

improving and show no sign of saturation on standard benchmark datasets.

Despite excellent improvements, pedestrian detectors still fall short of human-

level performance. Challenges include fake humans (e.g., statues), vertical
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Figure 2.8: Example pedestrian detection. An example ground-truth
bounding box is shown in red, a predicted bounding box in blue, and the
overlap between the two in purple. A detection is considered successful if the
ratio between the overlapping (purple) area and the union of the two boxes
(blue and yellow) is greater than a certain threshold. This ratio is known as
the Intersection-Over-Union (IOU).

structures, far-away pedestrians, occlusions, low image contrast, blur, and

others. Since the publication of the review, more models bring the state-of-the-

art closer to human-level detection performance [113–115]. If progress continues

at a steady rate, these systems will soon surpass human-level performance on

these benchmarks. This development opens the new problem of how to use

these detections for more comprehensive scene understanding. Note that this

comparison is in a single-frame setting, i.e., individual video frames without

temporal context. Applying a tracking method to a video sequence following

single-frame detection results can correct errors by using temporal information

between video frames. Such tracking methods, therefore, improve performance

further and are discussed in the next section.

2.3.2 Tracking

Tracking is the task of following the trajectory of an object(s) in a video

sequence. Either a single object (Single Object Tracking (SOT)), or multiple

objects (Multi-Object Tracking (MOT)) are tracked. In the SOT setting, the

bounding box of an object is given in the first frame of a video sequence, and

methods aim to track the object through the video. The SOT problem has seen

extensive research. Basic methods used a window around the bounding box of

the target in the previous frame to search for the target’s new location and

select the box with the highest cross-correlation value with the image intensity

values [116]. The Kanade–Lucas–Tomasi (KLT) tracker selects features to

track and then uses optical flow estimation to align features across frames

[117]. Today’s state-of-the-art trackers generally use deep neural networks

for both features extraction and matching [118–120]. Methods designed to

track pedestrians specifically follow the MOT setting, as methods for SOT are

designed for tracking arbitrary objects, rather than pedestrians specifically.
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We will focus our attention on MOT methods in this section.

In the MOT setting, multiple objects of a specific class (commonly pedestri-

ans) are tracked. No prior information is given on the number of objects in the

scene or their initial location, and methods must therefore detect the location of

each object before tracking. Each unique object is assigned an identity number

(or tracking ID) which should remain consistent for the duration of the video.

Models are expected to track an arbitrary number of targets simultaneously.

Methods for MOT typically follow a tracking-by-detection paradigm that relies

heavily on the accuracy of a single-frame pedestrian detection model, such

as those introduced in Section 2.3.1, followed by methods to associate the

detections across video frames. This approach divides tracking into two distinct

stages. The detector is applied to each frame individually in the first stage,

generating temporally independent detection results. In the second stage,

detections are associated across time by assigning a track ID to each bounding

box. The bounding box locations may also be updated during this association

stage, for example, by filtering the locations using a Kalman filter [121].

Reasonable MOT performance can be obtained with high-quality single-

frame detections and simple constant velocity motion assumptions [121]. High-

quality object detections combined with a high video frame rate simplify the

matching process; however, several challenges remain. For example, two tracks

that cross paths may result in an identity switch, where track IDs are switched

between objects. Visual appearance is also often to alleviate this issue [122]. In

this setting, a model extracts visual features associated with each target, such

that the features from the same target across time are more similar than the

features from a different target. The feature extraction and similarity metric

computation are key components of person Re-ID, discussed in the following

subsection.

Constructing more sophisticated methods capable of modelling non-linear

motion can improve tracking performance, particularly in scenarios with occlu-

sion [16]. However, trajectory forecasting for improved tracking is challenging

due to small datasets, which results in forecasting models overfitting the tra-

jectories in the training dataset. One approach proposed to overcome this issue

is to consider the future trajectory as a binary classification problem [69] or

using explicit external memory to avoid memorisation [123]. These methods

alleviate the overfitting issue, but learning to predict non-linear trajectories is

limited by training datasets’ size.

2.3.3 Person Re-identification

Person Re-ID is the task of identifying the same individual in two different

images, often from the perspective of different camera views. Given an image of
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an individual (the probe image), the task is to associate the image with another

of the same individual from a set of gallery images containing several different

identities. The probe and gallery images often exhibit variation in pose, lighting,

occlusion, and scale. These variations make person Re-ID a challenging task.

However, widespread applications for both single and multi-camera tracking

have resulted in many benchmark datasets for person Re-ID [124] along with

better and better solutions. Methods generally consist of two stages. The first

stage involves extracting a visual feature vector from the probe image and each

gallery image. A good feature vector encodes information useful for identifying

individuals, such as personal appearance, clothing, and accessories. The second

stage involves computing a feature distance score between the probe and each

gallery feature vector associated with each image by using a distance metric,

such that images of the same individual have smaller distances than images

of different individuals. The top-n accuracy is given to evaluate performance,

which corresponds to the proportion of data samples where the probe and

gallery images depict the same individual given at most n guesses. For example,

top-1 accuracy means only the image with the smallest distance is considered

a match, whereas top-5 means the Re-ID is considered successful if the target

individual appears in any of the five images with the shortest distance to the

probe image. This metric is used along with others, such as Mean Average

Precision (mAP) [124].

Substantial progress has been made in person Re-ID over recent years. For

example, on the commonly used Market [125] benchmark, rank 1 performance

(i.e. correct Re-ID given 1 guess only) has improved from 47.3% in 2015 [125]

to 98.3% in 2021 [126]. Most work on person Re-ID has focused on image-level

matching, i.e., associating images of the same identity without additional

context. Current state-of-the-art methods [127, 128] exploit this visual cue

without other sources of information. However, image-level similarity matching

is just a single component of a comprehensive Re-ID system. Persons must first

be detected and tracked before matching, usually resulting in multiple frames

per detection, along with associated trajectory data. Incorporating trajectory

information for Re-ID in a multi-camera setting has seen comparatively little

attention, in part due to a lack of publicly available datasets. One notable

exception is the recent work of Wang et al. [129]. The authors demonstrate

that by retroactively utilising trajectory information and visual features, their

approach can attain state-of-the-art Re-ID results on the prevalent Duke-

MCMT benchmark dataset [101]. The Duke-MCMT dataset is no longer

available to the research community [106].

Jain et al. [130] study the impact of scaling multi-camera tracking to

large networks and show that filtering the search space to high traffic areas

can considerably reduce the search space at only a small cost in recall. In
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addition to using the traffic level in each area, trajectory information has

also been used for both Re-ID [129] and multi-camera tracking [131]. Using

trajectories for these tasks can supplement existing appearance-based models

by providing a second source of information for matching objects across camera

views. However, previous works [129–133] reactively use trajectory information,

i.e., the object must have already been observed in multiple camera views.

These methods are therefore only suitable for offline tracking.

2.4 Learning with Less Human Labelling

Supervised learning has been a prominent paradigm requiring accurate annota-

tion of datasets, commonly completed manually through painstaking human

effort. Due to the massive quantities of data necessary to train state-of-the-art

machine learning models effectively, several alternative means of supervision

have been proposed. Pre-training neural network models on the large Imagenet

dataset [134], before fine-tuning on a target dataset, has become the de-facto

standard in settings where annotated data is limited. Alternative means of

building large annotated datasets for pre-training i.e. transfer learning, such

as mining social media websites [135] have also been proposed. This section

reviews advancements in two methods used for reducing the burden of hu-

man labour in data annotation related to our contributions: machined-aided

annotation and self-supervised learning.

2.4.1 Machine-Aided Data Annotation

To ease the manual effort required in manual data annotation, several methods

have been proposed that use an algorithm to partially label the data in part

and then use a human in the loop to correct the annotations. For example,

object detection and tracking algorithms are trained using ground-truth object

bounding boxes drawn around objects of interest, which are time-consuming

to obtain by manually drawing a large number of boxes. ViTBAT [136] is a

tool for labelling several object bounding boxes which combines tracking and

classification labelling and allows the annotator to label several objects with

the same class label simultaneously. Bounding boxes are interpolated between

video frames, reducing the total number of bounding boxes the annotator

needs to draw. ViTBAT also allows single object coordinates rather than

boxes to be labelled and interpolated between frames, which can be used for

quicker annotation of trajectory forecasting datasets. The tool assumes that the

transformation between two bounding boxes or coordinates is linear between

frames. Therefore, frames must be annotated with sufficiently small temporal

windows, as frames annotated too sparsely will contain errors when the linear

34



motion assumption does not hold. ViTBAT reduces but does not eliminate the

human labour required to annotate an object tracking or trajectory forecasting

dataset.

The goal of human action recognition is to assign a human action label

to each video automatically. Kinetics [24] is a large dataset for human action

recognition, where each video has an associated class of human action (e.g.,

running, brushing teeth). Kinetics contains over 300k videos depicting humans

performing some action and a label of the action being performed. The dataset

consists of trimmed videos; i.e., the videos are short 10-second clips centred

around the action being performed. To aid in the trimming of the videos, the

authors train a CNN to classify images of human actions. The image classifier

is then used to obtain a confidence score for each frame in the video, and a

10-second trimmed video is extracted from the section surrounding the most

confident video frame. Human annotators then verify that the video is trimmed

correctly, rather than trimming the video manually, which considerably reduces

the annotation time.

Semantic segmentation is the task of assigning each pixel in an image to an

object class. Annotating data for semantic segmentation is notoriously time-

intensive and can take up to 90 minutes per 2040× 1016 image [43], even with

expert annotators. Due to this, several methods have been proposed to ease the

annotation procedure. LabelMe [137] is a tool that enables the annotator to

draw a polygon around an object rather than labelling each pixel individually.

Poly RNN+ [138] uses a CNN and RNN model to estimate the boundaries

of an object from a user-provided bounding box, which the annotator may

then correct. This approach reduces the number of clicks required to segment

an object and, therefore, also an entire image. Lin et al. [139] propose to

annotate images sparsely using a checkerboard pattern rather than labelling

every pixel in the image. Their experiments demonstrate that using just 12% of

the available training data with the Cityscapes semantic segmentation dataset

[43] with the proposed annotation pattern results in a model with performance

98% of a model trained with the entire dataset. Each of the discussed methods

eases the burden on human annotators, thereby enabling data to be collected

quickly and cheaply. However, these methods still use a human annotator in

the loop.

2.4.2 Self-Supervised Learning

Self-supervised learning aims to bypass the data labelling annotation process

entirely by using some signal in the data as the supervision. In self-supervision,

some subset of a dataset is withheld during the training process, and a model

is trained to predict the withheld data. No manual data annotation is required,
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as the labels are present in the data itself. In this way, a model may exploit

large-scale datasets without expensive annotation. However, the problem and

data must be amenable to self-supervised learning, where some property of

the data is withheld in the training process. Consider the problem of image

colourisation. The goal of image colourisation is to predict the colour of each

pixel in an image given a greyscale version of an image, such as a photograph

taken using an old greyscale camera. In order to train a machine learning

model to accomplish this task, we require a greyscale image (input data) and a

corresponding colour image (target). Zhang et al. [140] create a model for this

task by converting existing colour images to greyscale and train a deep neural

network that generalises to greyscale images without corresponding colour

versions. The proposed model is trained entirely using colour images that

have been converted to greyscale, meaning no manual labelling is necessary.

Other works follow the same self-supervision procedure for other tasks. For

example, Ledig et al. create higher-resolution versions of images with image

super-resolution [141], Chung et al. synchronise audio and video for automated

lip-sync error detection [142], and Yu et al. remove unwanted portions of

images using image inpainting [143]. Each work uses self-supervised training

to create effective models without manual labelling of training data.

Some classically supervised tasks, such as image classification, are not as

easily framed in a self-supervised setting. However, numerous works have

shown the advantages of learning data representations using self-supervised

training as a pre-training step to target supervised learning tasks. For example,

Noroozi et al. [144] select 8 patches in an image surrounding a central randomly

selected patch. The authors then randomly jumble the patches and train a

model to recover the original patch structure. The weights from the pre-

trained model are then used rather than a random weight initialisation on

several classic supervised learning tasks such as image classification, object

detection, and semantic segmentation. Initialising with the learned weights

performs considerably better than the same model with randomly initialised

weights. A plethora of other works follow a similar self-supervised representation

learning followed by fine-tuning [145–148], and an extensive comparison of

self-supervised representation learning effectiveness for common computer

vision benchmarks is detailed in the recent survey on self-supervised learning

by Jing et al. [38]. The survey finds that many forms of self-supervised

pre-training improve target supervised learning task performance on various

datasets. However, the effectiveness heavily depends on the choice of self-

supervision and target tasks.

An alternative kind of self-supervision relies on cross-modal relationships

as the supervisory signal. For example, in video, this can involve learning

video-audio correspondence [149], using pixel values to predict optical flow
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[150], or using data collected by one sensor (such as a camera) to predict the

data collected by another sensor (such as a vehicle inertial measurement unit)

[151, 152]. While some methods are used to learn the transformation between

two modalities [150], modality transformation can be very challenging in some

cases. Some methods alternatively learn to distinguish if two data samples of

different modalities are corresponding or not [153], or temporally synchronise

two modalities [149].

Self-supervision avoids the expensive human annotation component of

supervised learning in certain situations and is, therefore, well-suited to address

problems with limited annotated data for which a suitable supervisory signal

can be obtained directly from data. Our proposed machine annotation scheme

introduced in Chapter 3 enables us to leverage the power of self-supervision

for pedestrian trajectory forecasting. To the best of our knowledge, our work

is the first to apply a self-supervised training strategy to pedestrian trajectory

forecasting. Our machine-aided annotation scheme for multi-camera data

also introduced in Chapter 3 uses some similar components as the machine-

annotation scheme. However, a human annotator refines the annotations, so

this method is not considered an instance of self-supervised learning.

2.5 Summary

This chapter presented an overview of existing research related to our con-

tributions in human trajectory forecasting and automating data annotation.

Firstly, we contextualised trajectory forecasting by considering other vision-

based forecasting works. The vision-based forecasting literature is growing

steadily thanks to advancements in vision-based perception models, along with

more extensive and more diverse datasets. We highlight the importance of

predicting the future at the right level of abstraction, paying careful attention

to the predictive time horizon and task when designing vision-based forecasting

systems.

Secondly, we discussed literature on trajectory forecasting. By grouping

works into BEV forecasting and egocentric approaches, we see a notable paucity

of egocentric forecasting approaches and datasets compared to BEV works,

which is the problem we will focus on in Chapter 4. We group works into

both BEV and egocentric trajectory forecasting to hand-crafted and data-

driven approaches, observing a similar trend towards data-driven methods for

both problems. We also review trajectory forecasting approaches amenable to

multiple camera views. This task has generally not been addressed in prior

works, which will be covered in detail in Chapter 5. We summarise existing

trajectory forecasting datasets used in the literature and observe a lack of large,

diverse datasets for trajectory forecasting.
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Thirdly, we review the literature on three perception tasks related to our

contributions: pedestrian detection, tracking, and Re-ID. The three tasks are

required prerequisites to many real-world applications of trajectory forecasting,

and our review reveals substantial progress over recent years. Although not

directly related to our contributions, methods for detection, tracking, and

Re-ID are used throughout this thesis. These methods paved the way for much

of our work, in particular, the data annotation methods proposed in Chapter 3.

Finally, we review literature proposing methods for minimising the human

labelling overhead for training supervised machine learning models. We identify

several works in both machine-aided data annotation and self-supervised learn-

ing, but a lack of works that employ these methods to the trajectory forecasting

task. In Chapter 3, we propose methods for the machine-annotation and

machine-aided annotation of trajectory forecasting datasets.
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Chapter 3

Optimizing Data Annotation

for Trajectory Forecasting

Datasets have a history of driving progress in computer vision. Those sub-

stantially larger or more comprehensive than those preceding them, such as

ImageNet [134], Kinetics [24], and Cityscapes [43] have resulted in models that

push forward the state-of-the-art. However, the trajectory forecasting task

suffers from a paucity of large, publicly available datasets, particularly for

egocentric and multi-camera trajectory forecasting. As discussed in Chapter 2,

much of the existing work on pedestrian trajectory forecasting considers the

problem from a birds-eye view using footage from a fixed overhead camera,

often considering each pedestrian as a single point in space [32, 83, 84]. This

setting is effective for modelling crowd motion patterns and interactions with

the environment. However, by simplifying each pedestrian as a point in space,

salient visual features such as person appearance, pose, posture, and individual

characteristics are not considered. Prior research has shown that these features

are of importance for trajectory prediction in settings such as anticipating if a

pedestrian will cross the road [19, 21]. Furthermore, overhead perspectives are

often not available in practical applications, such as for self-driving vehicles

with vehicle mounted cameras. As a result, trajectory forecasting from an

object-level perspective has been studied in recent years [31, 61, 154, 155].

However, it suffers from a lack of large, high-quality datasets.

This chapter introduces strategies for collecting and labelling datasets

suitable for training and evaluating egocentric trajectory forecasting models

while minimising the manual annotation effort required by a human annotator.

Using our proposed strategies, we generate new annotations from an existing

dataset (BDD-10K) and collect two new datasets (Citywalks and Warwick-NTU

Multi-Camera Forecasting), which will be used throughout this thesis. Each

of our datasets are publicly available to download to facilitate future research

on trajectory forecasting. We propose a machine-annotation scheme for our
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single-camera data annotation with no human in the loop, and a machine-aided

annotation scheme for our multi-camera data annotation which uses a human

in the loop to assure annotation quality.

The rest of this chapter is organised as follows. In Section 3.1, we introduce

our machine-annotation method and our new annotations for an existing data-

set, as well as our new Citywalks dataset for egocentric trajectory forecasting.

Section 3.2 introduces our machined-aided annotation framework for multi-

camera trajectories and our new multi-camera trajectory forecasting dataset,

Warwick-NTU Multi-Camera Forecasting (WNMF). In Section 3.3 we discuss

future research directions made possible by our new datasets and annotation

strategies along with details of other works that have used our datasets. The

chapter is concluded in Section 3.4 with a summary.

3.1 Single-Camera Machine-Annotation Framework

Training trajectory forecasting models in a supervised learning setting requires

dense (per-frame) bounding box annotation of pedestrians, which are time-

consuming to obtain by hand. For this reason, the number and size of datasets

with densely annotated pedestrian bounding boxes is limited. As discussed

in Section 2.2.4, the size of existing datasets is prohibitive for the training of

high-capacity deep learning models which rely on large quantities of data to

learn an effective feature representation. To overcome this issue, we propose

to learn a trajectory forecasting model from unlabeled data by using an

automated pedestrian detection and tracking algorithm to generate bounding

boxes without human labour.

3.1.1 Proposed Method for Machine-Annotation

Given a video sequence as input, our machine-annotation method uses a

pedestrian detection algorithms obtain an estimate of the location Lt for each

pedestrian, and a tracking method then links these estimated locations across

each timestep t for each identity. Given a set of such detections, we adopt

the self-supervision learning paradigm by training our model to predict future

pedestrian locations, Lt+1:m, given only the current and past locations, viz.,

Lt−n:t.

Once frame-wise detections are obtained, detections are associated across

frames using a tracking algorithm. We use the Deepsort [122] tracking-by-

detection algorithm resulting in tracking identifiers associated with series of

detections. The tracking-by-detection algorithm results in some false positives.

To reduce the number of false positives, we apply a track filtering method,

discarding detections with a height fewer than 50 pixels and tracks shorter than
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Figure 3.1: Using human-annotated and machine-annotated training
data. We propose using both human-annotated and machine-annotated data
to train a trajectory forecasting model.

25 frames. In practice, we find these constraints filter detections aggressively,

removing 90% to 97% of initial detections. This strategy filters most false

positives (non-pedestrians mistaken for pedestrians), as many false positives are

less than 50 pixels in height or shorter than 25 frames in length. The number

of tracks removed by this process is shown in more detail in Section 3.1.2.

The result is a machine-annotated dataset, which can be used to supplement

training on a smaller human-labelled dataset as shown in Figure 3.1. The

resulting dataset contains pedestrian locations labelled and tracked over time,

which can be used for trajectory forecasting. The location of a pedestrian in

the early part of a track is used to predict the location of the pedestrian in the

later part of the track.

Automated detectors do not perform on par with human annotators and

make different errors to humans, such as false-positive detections of vertical

structures [156]. Due to this, it is not self-evident that models trained on

machine-annotated data will generalise across datasets and to human-annotated

data. To verify our proposed machine-annotation system, we validate the per-

formance of our proposed trajectory forecasting model and existing approaches

on a human-annotated dataset. These findings are discussed in Chapter 4. In

this chapter, we focus on the data collection process.

3.1.2 Vehicle-Mounted Camera Data Collection

We utilise our machine-annotation method introduced in the previous subsection

to generate new annotations for an existing dataset of vehicle-mounted footage,

where an outward-facing camera is mounted on a vehicle dashboard.

41



Motivation

Interacting with humans in complex urban environments remains a challenging

problem for Autonomous Vehicles (AVs). Unlike highways with well-defined

rules for traffic, urban environments necessitate that vehicles interact with other

road users, such as pedestrians and cyclists, in a more nuanced manner. For

an AV to navigate effectively in such environments, the vehicle must be able to

locate and react to pedestrians in order to avoid collisions. The first component

of such a navigation system, detecting pedestrians, has seen a tremendous

amount of research effort in the past decade [157]. If current trends continue,

performance will soon match and even surpass human-level performance on

standard evaluation benchmarks [156]. The rapid advancements in this area

have led to real-world implementations of ADASs to aid drivers in critical

situations. Such systems can provide warnings or initiate braking if a pedestrian

is detected in front of the vehicle but are less reliable at anticipating potentially

dangerous events before a pedestrian steps into the roadway.

As vehicles move towards greater autonomy, the need for accurate pedestrian

trajectory forecasting grows. ADASs may be designed conservatively with

a human driver in the loop as false negatives can be tolerated. For an AV,

however, the reliable anticipation of pedestrian intent is a critical safety feature

but a complex challenge. Although driven by long-term motion goals such

as reaching a specific destination [158], pedestrian motion is highly dynamic

and may change at a moment’s notice, such as a child running rapidly into

the street. To deal with this uncertainty, human drivers use heuristics such

as pedestrian head pose, gait, and scene dynamics to reason about intent [19].

Without these cues, human drivers find it more challenging to predict if a

pedestrian is about to cross the road [21].

Modern vehicles equipped with sensors such as LiDAR and Radar can

build an accurate representation of the surrounding environment [159]. Both

LiDAR and Radar, however, lack the capability for extracting high-resolution

features and are, thus, commonly supplemented with visible spectrum cam-

eras. Manually annotating features such as pedestrian head pose and body

language cues such as pose and posture from camera data is challenging and

time-consuming, and automated state-of-the-art methods make more errors

than human annotators [30]. Furthermore, pedestrian behaviour varies across

different cultures and driving environments [160]. A model trained to anticip-

ate pedestrian behaviour in California, USA, is unlikely to perform well on

the streets of Mumbai, India. Without a practical method for learning from

unlabelled data, it is likely that large quantities of data must be manually

annotated for deployment in each environment.
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Figure 3.2: Example video frames from BDD-10K. The footage consists
of both day and night drives in the US. As the data is crowd-sourced, there is
some variety in camera placement.

BDD-10K

BDD-100K [105] is a large-scale dataset consisting of 100,000 videos shot from

front-facing cameras mounted on car dashboards. The videos are crowd-sourced

from over 50,000 rides around densely populated environment in the United

States by 10,000 different drivers. The original dataset release [161] contained

image classification, object detection, lane marking, drivable area, and semantic

segmentation annotations. The latest release in 2020 [105] added Multi-Object

Tracking and Multi-Object Tracking and Segmentation annotations for a subset

of 2,000 and 90 videos, respectively.

The size and diversity of BDD-100K make it an ideal candidate to apply

our machine-annotation method. Our method does not rely on human labour.

However, due to the size of the dataset, we limit our annotations to the first

10,000 videos to reduce the computational requirements. We will henceforth

refer to this subset as BDD-10K. We annotate pedestrian bounding boxes in the

BDD-10K dataset using two popular off-the-shelf object detectors, YOLOv3

[162] and Faster-RCNN [163]. Although the detectors are capable of detecting

a variety of objects, we use the pedestrian class only. Our aim here is to

evaluate the robustness of our proposed machine-annotation system to different

pedestrian detectors, rather than to compare detector performance directly.

Nonetheless, for consistency, we train both detectors on the same dataset

(MS-COCO [164]) and threshold confidence scores at 0.6. Using our proposed

annotation scheme, we find a total of 16,900 valid non-overlapping pedestrian

tracks using YOLOv3 and 13,200 using Faster-RCNN. Figure 3.3 shows typical

pedestrian detection results from BDD-10K, and Figure 3.4 shows examples

of false-positive detections examples that were successfully removed by our

machine-annotation method. Additional information on the dataset is shown

in Table 3.1. Our dataset is available for the research community to download
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1.

Table 3.1: BDD-10K metadata. We apply our machine-annotation method
to the first 10,000 videos of BDD-100K to generate new annotations suitable
for trajectory forecasting. Trajectories are filtered by restricting the minimum
height of a bounding box to 50 pixels and minimum length of a track to 25
frames.

Video clips 10,000

Resolution 1280× 720

Framerate 30hz

Fixed clip length 40 seconds

Time of day Day/Night

Number of trajectories before filtering
(YOLOv3 [162])

160,183

Number of trajectories after filtering
(YOLOv3 [162])

16,908

Number of trajectories before filtering
(Faster-RCNN [165])

456,845

Number of trajectories after filtering
(Faster-RCNN [165])

13,173

3.1.3 Pedestrian-view Data Collection

Using videos from YouTube, we create a new dataset for pedestrian-view

trajectory forecasting using our proposed machine-annotation method.

Motivation

As discussed in Chapter 2, many existing trajectory forecasting methods use a

BEV. Forecasting from this perspective has two main shortcomings. Firstly,

it is challenging to extract visual features from within a target pedestrian’s

bounding box from a BEV. Previous work has shown that visual features are

useful for trajectory forecasting [21, 31]. Secondly, for several applications,

a BEV is not available. For example, several methods have been proposed

for assisting people with visual impairment navigate using wearable cameras

[31, 166, 167]. BEVs are also not available for social robot navigation, where

assistive robots interact with an environment share with humans [67].

Also as discussed in Chapter 2, there are few publicly-available pedestrian-

view trajectory forecasting datasets. The few available datasets are limited in

1https://github.com/olly-styles/Multiple-Object-Forecasting
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Figure 3.3: Example pedestrians in BDD-10K. Each is detected using
our proposed machine-annotation method. False positives (non-pedestrians
mistaken as pedestrians) are uncommon, although some bounding boxes are
not as tight as human-annotated ground truth bounding boxes.

scale and diversity, thereby limiting the assessment of model generalisability.

For example, datasets collected in laboratory conditions such as the Daimler

dataset [88] contain just a few actors, which may have different movement

patterns compared to classes of pedestrian which are not represented in the

dataset, such as children and the elderly. This lack of representation can

introduce algorithmic bias, as models will not be trained or evaluated on

classes underrepresented or entirely absent in the dataset. We aim to address

this limitation by collecting a large and diverse pedestrian-view trajectory

forecasting dataset.

Citywalks

Our newly-constructed Citywalks dataset comprises 358 video sequences con-

taining footage from 21 different cities in 10 European countries.

Data collection. We extract footage from the online video-sharing site

YouTube2. Each original video consists of first-person footage recorded using

an Osmo Pocket camera with a gimbal stabiliser held by a pedestrian walking

2Videos are obtained from https://www.youtube.com/c/poptravelorg
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Figure 3.4: False positive pedestrian detections. False positive detections
include partial detections, crowd sourcing errors, and objects classified as
humans. The three examples shown here were all initially detected by the
pedestrian detection but successfully removed during the filtering stage. The
examples were chosen by hand.

in one of the many environments for between 50 and 100 minutes. Videos are

recorded in a variety of weather conditions, as well as both indoor and outdoor

scenes. Example frames showcasing the variety of the dataset are shown in

Figure 3.6.

Video clip filtering. One of the fundamental challenges of egocentric forecast-

ing is the bounding box motion caused by both ego-motion and object motion.

Sudden ego-motion, such as the camera operator turning around a corner, will

impact future bounding box location more than object motion. We aim for

the Citywalks dataset to be used for modelling both motion sources; however,

large displacements resulting from significant ego-motion may overwhelm the

training process for trajectory forecasting models on Citywalks. To mitigate

the impact of large ego-motions, we filter the dataset by removing high motion

segments by estimating global motion each frame and removing frames above

a manually tuned threshold. Global motion is estimated by extracting dense

optical flow and selecting short video clips from windows with a mean optical

flow magnitude below a threshold. Specifically, we downsample video frames

to 128× 64 pixels for faster computation and extract dense optical flow using

FlowNet2-S [150]. We then select 20-second clips from longer videos using

segments containing frames that do not exceed a mean optical flow magnitude

threshold of 1.5. An example of the clip selection process is shown in Figure 3.5.

This process restricts the distributions of motions in the dataset, which we

find in practise removes large ego-motions.

Annotations. Once clips are selected, pedestrians are detected using an

object detection algorithm. We generate annotations for two object detectors:

YOLOv3 [162] and Mask-RCNN [168]. Both detectors are trained using the
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Figure 3.5: Citywalks clip selection. 20-frame clips are selected from
segments with an average optical flow magnitude (pixel displacement per
frame) below 1.5 for each frame.

MS-COCO [164] dataset and generalise well to Citywalks. For the YOLOv3

annotations, images are downsampled to 416 × 416 pixels before detection

to simulate detection quality under low processing time requirements. We

use a resolution of 1024 × 1024 for detection using Mask-RCNN to obtain

the best detection performance. Note that we do not combine the two sets

(such as in the work of Sanchez-Matilla et al. [169]) of annotations and treat

the two separately. Following the detection phase, pedestrians are tracked

using DeepSORT [122], which uses a Kalman filter and person Re-ID model is

pre-trained on the MARS dataset [170]. We then discard tracks shorter than

3 seconds (90 frames at 30 FPS) as the previous 1 second of bounding box

data is used to predict the next 2 seconds. Our goal is to have high-quality

annotations with minimal false positives, and dropping short tracks reduces

the number of false positives in the annotation set as we observe that erroneous

tracks typically do not last longer than 3 seconds. Each video clip is also

manually annotated with the recording city, time of day, and weather condition.

We consider a clip to be shot at night time if street lights are illuminated, and

in day time otherwise. Evaluating the quality of annotations is challenging,

as the large unlabelled dataset has no ground truth with which to compare.

However, by comparing the statistics in Figure 3.7, we can see some differences

between the two detectors. Mask-RCNN detects more pedestrians and, in

particular, detects more pedestrians smaller in height. This difference is likely

due to the higher resolution of input images to Mask-RCNN compared to

YOLOv3. We will further test the annotation quality in Chapter 4 by training

trajectory forecasting models on Citywalks and then evaluating them using a

human-annotated dataset. Citywalks metadata are shown in Table 3.2. Our
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Figure 3.6: Example frames from the Citywalks dataset. Citywalks is
markedly larger and more diverse than existing datasets.

Figure 3.7: Citywalks annotation statistics. Mask-RCNN detects more
pedestrians than YOLOv3, particularly small-scale pedestrians. However,
unlike Mask-RCNN YOLOv3 runs in real-time.

dataset is available for the research community to download 3.

3.2 Multi-camera machine-aided annotation frame-

work

In this section, we introduce our proposed machine-aided annotation method

for Multi-Camera Trajectory Forecasting (MCTF) data. MCTF is a new task

within trajectory prediction where an object’s future trajectory is predicted

across multiple camera views. For example, as a target leaves the field of

view from one camera, its future trajectory is predicted with respect to other

cameras, such that the object can be re-identified in another camera view. This

3https://github.com/olly-styles/Multiple-Object-Forecasting
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Table 3.2: Citywalks metadata. Our annotation strategy enables us to
collect a large and diverse dataset

Video clips 358

Resolution 1280× 720

Framerate 30hz

Clip length 20 seconds

Unique cities 21

Weather conditions Sun/Rain/Snow/Overcast

Time of day Day/Night

Labelled objects per frame 0 - 17

Unique tracks (YOLOv3) 2201

Unique tracks (Mask-RCNN) 3623

approach is in contrast to traditional SCTF methods and datasets which rely

on a single camera view only. Similarly to our machine-annotation method

for SCTF datasets, we use algorithms for automated detection and tracking

of pedestrians in a scene. This method is extended with additional steps for

annotating tracks across multiple cameras views.

3.2.1 Motivation

Multi-camera systems are widespread today. For example, many buildings are

fitted with CCTV systems for security. Multi-camera systems are also used

in sports analysis [171] and road traffic monitoring [172]. The applications

of a MCTF system are fourfold: (i) Long-term forecasting. This is possible

by removing the constraint of a single camera viewpoint. (ii) Intelligent

camera monitoring. When tracking a particular object-of-interest across a

camera network, a subset of cameras may be monitored intelligently using

the predictions from an MCTF model rather than continually monitoring

all cameras. (iii) Enhanced tracking. Location predictions may be used in

conjunction with a RE-ID model for more robust multi-camera tracking. (iv)

Robustness to camera failure. Predicting an individual’s location in multiple

camera views adds redundancy; i.e., a target may still be identified if one or

more cameras on the network are no longer operational.

We identify three significant challenges when collecting multi-camera data-

sets for trajectory forecasting. (i) Data annotation. Annotating data is a

time-consuming and tedious process. Not only must trajectories in each cam-

era be labelled, but the trajectories must also be associated across camera views.
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The time required to associate trajectories manually increases significantly

as more cameras are added to the camera network. (ii) Privacy limitations.

The data from existing multi-camera networks, such as CCTV systems, are

often subject to privacy restrictions and not accessible for academic research.

(iii) Setup and synchronisation. Operators must temporally synchronise each

camera in a multi-camera dataset to be suitable for trajectory forecasting.

Internet Protocol (IP)-based camera systems can use a time syncing protocol

such as Network Time Protocol (NTP) [173] to synchronize cameras accur-

ately. If using regular (i.e. non-IP-based) video cameras, cameras need to

be synchronised using alternative methods. A human annotator may achieve

frame-level accuracy in overlapping cameras by manually identifying the same

moment in a pair of cameras. Alternatively, audio tracks can be synchronised

to sub-frame-level latency [174], assuming the captured audio is sufficiently

similar.

Due to these challenges associated with MCTF data collection, few public

datasets are available. The complexity of the annotation task makes manual

data annotation infeasible for creating a dataset large enough to train and

evaluate MCTF models. To address this problem, we propose a semi-automated

method that uses existing object detection, tracking, and re-identification

methods to aid the process. The process uses human annotation to assure data

quality but reduces the work required by a considerable amount.

3.2.2 Multi-camera view data collection

Video collection. We collect a new database of 600 hours of video footage

from 15 overhead mounted cameras set up indoors on the Nanyang Technological

University campus. The Internet Protocol (IP)-based cameras are temporally

synchronized and accessible through online monitoring software. Each camera

is placed with a view of either a corridor or a junction. We describe our semi-

automated data labelling method and collected dataset below. The footage

is recorded for 20 days in 20-minute long segments collected evenly during

the daytime. Example frames and the camera network topology is shown in

Figure 3.8.

Implementation details. We use Mask-RCNN [168] pre-trained on the

MS-COCO dataset [164] as our pedestrian detection model, with a detection

confidence threshold of 0.5. We use DeepSORT [122] as our tracking model,

for which the person Re-ID component is pre-trained on the MARS dataset

[170] as with our SCTF machine-annotation method. Our annotation method

produces a large set (approximately 2000) of verified departure-entrance pairs.

A single individual is labelled for each cross-camera trajectory, and interactions

between individuals are limited due to low person density (1.41 individuals
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Figure 3.8: Example frames and camera network topology. We use a
15 camera setup, each of which is synchronized and recording simultaneously.

Figure 3.9: Face blurring examples. We apply a Gaussian blur filter to the
detected face region to preserve the privacy of individuals in the dataset.

per camera per frame on average). A human annotator verifies that each

track consists of bounding boxes judged to have an IOU of ≥0.5 with the

ground truth box. We do not collect identity labels; however, in practice, we

observe that many cross-camera trajectories are unique identities due to the

long data collection period. To keep private the identity of the individuals in

the WNMF database, we use the RetinaFace [175] algorithm to detect faces in

each video frame and then apply a Gaussian blur to the detected region. This

step was completed immediately prior to the data release, after the person

Re-ID stage, so image processing were not impacted. RetinaFace [175] is a

state-of-the-art algorithm for face detection and can identify faces from any

orientation, including partially occluded faces. The algorithm detects the face

region only, so we double the detected region’s size to include the region directly

surrounding the face. Example blurred images are shown in Figure 3.9.

51



3.2.3 Proposed Method for Machine-Aided Annotation

To minimise the need for manual annotation, we propose a semi-automated

method that uses a combination of off-the-shelf models for detection, tracking,

and person RE-ID. These results are then manually verified to ensure that

proposed tracks are accurate and correct cross-camera correspondences for

pedestrians are found. An overview of this annotation method is shown in

Figure 3.10, which consists of the following three steps:

(i) We run pre-trained object detection [168] and tracking [122] models to

locate and track pedestrians in each of the k cameras. The first 20 bounding

boxes of a track form an entrance tracklet, Ei
t = {bit, · · · , bit+20}, where bit is a

the bounding box of object i at timestep t. Similarly, the last 20 frames of a

track form a departure tracklet Di
t = {bit−20, · · · , bit}. We define the camera

numbers of entrance and departure tracklets as cE and cD, respectively. We

also define the first timestep of the entrance and departure tracklets as tE and

tD, respectively. These tracklets represent the moments a pedestrian enters

and exits a scene. 20 frames was chosen as the minimum, as at 5 FPS, this

results in 4 seconds of data which is sufficient to complete the following steps.

(ii) We find cross-camera identity matches between all the departure and

entrance tracklets. We use a person RE-ID model [128] to compute RE-ID

features for each image and store the mean feature vector for the tracklet.

We then compute the visual similarity between the entrance and departure

tracklets that appear in different cameras (i.e. cE 6= cD) by computing the

squared difference in their RE-ID features, (R(Et
c)−R(Dt

c))
2, for all entrance

and departure tracklets found in step (i), where R(x) denotes the RE-ID

feature vector of tracklet x. We use only this distance metric, and leave

experimentation with other metrics, such as cosine distance, to future work.

We retain those with a squared difference below a manually specified threshold,

δ = 0.0015. Through manual inspection of data samples, we find that at

this threshold most true positive matches are retrieved. This threshold is set

deliberately high as we wish to have a high recall of cross-camera matches

to maximise the number of matches for our dataset. We are less concerned

about precision, as false-positives are discarded during step (iii). In addition,

we constrain candidate tracklets within a manually specified time window γ

to cut down the search space of possible matches, i.e., we compare only those

tracklets which satisfy tE − tD < γ. This parameter is specific to the camera

network, as a larger network with non-overlapping cameras that are more

spread apart will need a larger value of γ to give targets time to reach the

view of the next camera. As we set γ = 12 seconds, the matches are generally

from neighbouring cameras in the network. γ was tuned manually, and is

dependent on the distance between cameras in the network. We confirmed this
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Figure 3.10: Annotation method. The proposed method generates the
labeled data required for MCTF with minimal human labor by using automated
methods for detection, tracking, and person RE-ID before a final manual
verification step. See the corresponding steps in Section 3.2.3 for a full list of
parameters.

Table 3.3: WNMF metadata. Our annotation method extract around 2000
multi-camera trajectories from 600 hours of raw footage. Trajectories are
verified manually by a human annotator to confirm that the each cross-camera
match corresponds to the same individual.

Hours of footage 600

Number of cameras 15

Collection period 20 days

Time period 8:30am – 7:30pm

Video Resolution 1920× 1080

Frames Per Second (FPS) 5

Cross-camera matches 13.2K

Cross-camera matches after verification 2.0K

Mean cross-camera RE-IDs per track 2.08

by comparing the camera transitions with respect to the network topology in

Figure 3.11. Our annotation method results in a set of cross-camera transition

pairs P = {(Et, Dt)}.
(iii) Finally, we manually verify whether every match proposed by the

algorithm is a true positive. We do this by comparing entrance and departure

tracklet pairs proposed by the algorithm and confirming if the same individual is

indeed present in both by hand. The manual verification step assures annotation

quality, as false matches and bad detections are discarded. Table 3.3 tabulates

WNMF metadata, showing 11.2K such bad matches were discarded.

As the human annotator only needs to verify the cross-camera matches

rather than finding them from raw videos, the manual overhead is considerably

lower than fully manual data annotation.
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Figure 3.11: Transition frequency between cameras. Nearby cameras,
such as 2 and 4, have a high number of transitions, whereas cameras far apart
have few (often 0) transitions.

3.2.4 Summary

We have collected the WNMF database for MCTF using a new machine-aided

annotation strategy. The WNMF database is available online for the research

community4. We provide tracking data, pre-computed Re-ID features, full

multi-camera trajectories. At the time of writing, we have granted 17 requests

to access the WNMF dataset.

3.3 Discussion

Our proposed machine-annotation framework for SCTF datasets enables the

collection of large-scale datasets with considerably less human labour than a

fully-manual approach. The human annotation step is often a limiting factor

in dataset collection, as obtaining unlabelled data is often available thanks

to online resources. Therefore, our machine-annotation framework means

that the size of future datasets will be limited by the amount of unlabelled

data and computation resources available. However, it remains unknown how

well models trained using machine-annotated data will generalise to human-

annotated datasets. Will models generalise, despite differences in the data

collection process? These questions are explored in Chapter 4, where we train

trajectory forecasting models using our machine-annotated data and evaluate

the performance using human-annotated data.

4https://github.com/olly-styles/Multi-Camera-Trajectory-Forecasting
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Our proposed machine-aided annotation framework for MCTF has facilit-

ated the collection of the WNMF dataset, which, to the best of our knowledge,

is the first multi-camera dataset collected using a standard CCTV setup for

trajectory forecasting. The dataset enables several problems to be studied,

such as how to predict trajectories across multiple camera views, how to model

a targets location when visible in multiple camera views, automatic camera

topology learning, and how to use trajectory information for person Re-ID. Our

machine-aided annotation framework may be used with other multi-camera

networks, enabling new datasets to be collected more rapidly than manual data

annotation. In Chapter 5, we develop a framework for forecasting pedestrian

trajectories in a multi-camera environment using the WNMF dataset.

3.4 Summary

Our proposed single-camera machine annotation strategy enabled us to collect

larger and more diverse datasets for trajectory forecasting than those previously

available to the research community. By using state-of-the-art methods for

pedestrian detection and tracking followed by an automated filtering strategy

to remove false positive object tracks, we created a high-quality dataset without

manual labelling. For our single-camera annotation method, our annotations

have been generated algorithmically; therefore, it is not given that models

trained on our machine-annotated datasets will generalise to human-annotated

data. This issue is explored in the following chapter, where we train models

on our collected datasets and evaluate them using existing human-annotated

datasets.

Our proposed multi-camera machine-aided annotation strategy enabled

the collection of the WNMF dataset. The dataset is the first dedicated to

Multi-Camera Trajectory Forecasting (MCTF), opening new possibilities for

future research in multi-camera environments. After anonymising the dataset

by blurring the faces of individuals in the dataset, we release WNMF to the

research community to further facilitate future research on MCTF. MCTF is a

new problem in the trajectory forecasting literature, and will be explored in

detail using the WNMF dataset in Chapter 5.
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Chapter 4

Egocentric Single-Camera

Trajectory Forecasting

Video-based trajectory forecasting models are often grouped into two categories:

Bird’s Eye-View (BEV) approaches and egocentric approaches. BEV traject-

ory forecasting models use a top-down perspective to predict future object

trajectories using video captured from overhead, such as drone footage. Ego-

centric approaches, in contrast, use video footage captured at an object-level

perspective. Many existing trajectory forecasting works use footage shot from

a BEV, which is effective for modelling interactions between targets and the

surrounding environment. However, extracting visual features from targets,

such as pedestrian gait, is challenging from a BEV perspective. Egocentric

trajectory forecasting video sequences often contain higher-resolution footage of

targets from which visual features can be extracted more easily. Furthermore,

egocentric viewpoints are commonplace for practical robotics applications, such

as autonomous vehicles. An egocentric viewpoint, however, introduces new

challenges, such as changes in object scale and egomotion.

In this chapter, we formally introduce the SCTF task and propose two

models for egocentric SCTF. The first model, Dynamic Trajectory Predictor

(DTP), uses footage captured from on board a moving vehicle to predict

the future trajectory of pedestrians. We test the model on several scenarios,

including many potentially dangerous scenarios where a pedestrian steps out

into the vehicle’s path. We train DTP using a dataset annotated with our

proposed machine-annotation framework introduced in Chapter 3, and evaluate

on a human-annotated dataset. The second model, Spatio-Temporal Encoder-

Decoder (STED), predicts both object scale and trajectory using a novel

two-stream encoder-decoder architecture. We evaluate STED on the Citywalks

dataset, also introduced in Chapter 3, as well as another human-annotated

dataset.

The rest of this chapter is organized as follows. In Section 4.1, we intro-
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duce the traditional SCTF problem formulation and our new Multiple Object

Forecasting formulation. In Section 4.2, we describe the datasets used in

this chapter. In Section 4.3, we introduce our two proposed approaches and

present experimental results. In Section 4.4 we discuss the implications of the

contributions of the chapter. The chapter is concluded with a summary in

Section 4.5.

4.1 Problem Formulations and Baselines

In this section, we formalize the existing egocentric SCTF problem and intro-

duce the new task of Multiple Object Forecasting (MOF). We also introduce

baselines for each task.

4.1.1 Egocentric Single-Camera Trajectory Forecasting

Problem formulation

We defined trajectory forecasting more generally in Chapter 2 as the task

of predicting a sequence of object locations Lt+1:m given a sequence of past

locations Lt−n:t. Each location is comprised of a coordinate (x, y)t. From an

egocentric perspective, we define the location of an object as the centre point

of its bounding box, bit. This formulation enables us to use an object detection

model to predict an object bounding box and then convert this to a location

by removing the height and width components of the predicted bounding box.

Note that the visual information contained in video frames ft−n:t may be used

in addition to the sequence of locations Lt−n:t for learning features useful for

the egocentric trajectory forecasting task.

Our focus here is on predicting the centroid in the 2D coordinate space

obtained by a camera rather than the 3D world coordinates. For certain

applications, 2D object detections may be associated with 3D world coordinates

using a depth estimation method such as the one proposed by Hirschmuller

[176].

Baselines

We use Constant Velocity (CV) and a Linear Kalman Filter (LKF) as baselines.

These two baselines are used widely for comparison in both egocentric [31, 61,

89, 90, 92] and BEV [32, 33, 76, 80, 83, 84] trajectory forecasting literature.

Constant Velocity. We define the horizontal and vertical components of

velocity, vxt and vyt , at time t of a pedestrian relative to the camera in the 2D

projection obtained by a camera can be estimated by taking the first order
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derivative of the past n locations:

vxt =
xt − xt−n

n
, vyt =

yt − yt−n
n

(4.1)

We use only the past n locations as the trajectory may be long, over which

time the velocity can change considerably. As a baseline, we consider that the

pedestrian maintains their average velocity of the previous n timesteps in the

future m timesteps:

x̃t+m = xt + vxt ·m , ỹt+m = yt + vyt ·m (4.2)

Note that for this problem formulation, we only consider the object centroid.

We consider scale estimates in Section 4.1.2. We denote velocity at time t as vt,

comprised of vertical and lateral velocities vxt and vyt . The predicted location

of the centroid at time t + m following the constant velocity assumption is

denoted as:

L̃t+m = Lt + vt ·m (4.3)

Linear Kalman Filter (LKF). The LKF [74] is a recursive Bayesian filter-

ing technique for estimating the value of some variable given a sequence of

noisy measurements. By estimating a probability distribution for the variable

over time, the estimated value of the variable is usually more accurate than

any of the single measurements in isolation. The LKF filters noise in the

measurements, which has the effect of smoothing predictions for the trajectory

forecasting task. In this case, past object locations are the measurements.

4.1.2 Multiple Object Forecasting

A shortcoming of egocentric SCTF methods is that object scale is not considered

as part of the prediction, as object location is described only in terms of its

centroid. We introduce the task of MOF to address this, which is an extension

of the widely-studied Multi-Object Tracking (MOT) problem.

Problem formulation

Consider a sequence of n video frames f1, f2, . . . , fn. Given the tth frame ft,

the task of object detection is to associate each identifiable object i ∈ I in

the frame with an object bounding box bit = (xt, yt, wt, ht) which represents

the centroid (xt, yt), width, and height of the object bounding box, and I is

the set of all identifiable objects in the video. Given the framewise detections

{bi1}, {bi2}, . . . , {bin} for all i ∈ I, the task of MOT is to associate each detection
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Figure 4.1: Multiple Object Forecasting. Given detection (1) and tracking
(2) results, Multiple Object Forecasting involves the forecasting (3) of future
object bounding boxes. Target object trajectory, scale, and camera egomotion
must all be accounted for to accurately forecast future object bounding boxes.

bit with a unique object identifier j ∈ 1, 2 . . . |I|, where |I| is the total number

of unique objects across all frames, such that each object is tracked across the

set of frames.

We extend the MOT task to MOF, as shown in Figure 4.1. Given

ft−n, ft−n+1, . . . , ft with associated object detections {bit−n}, {bit−n+1} . . . {bit}
and tracks, we define MOF as the joint problem of predicting the future

bounding boxes {bit+1}, {bit+2}, . . . , {bit+m} and associated object tracks of the

upcoming ft+1, ft+2, . . . , ft+m video frames for each object present in frame

ft, where n is the number of past frames used as input and m is the number

of future frames to be predicted. The MOF task is similar to the egocentric

trajectory forecasting task, with the inclusion of object scale in addition to

trajectory.

Baselines

Constant velocity & constant scale. Similarly to the constant velocity

baseline, the constant velocity & constant scale baseline linearly extrapolates

the object location, i.e., the bounding box centroid. A constant value is

predicted for the object scale, i.e., the predicted bounding box height and

width is the last observed height and width.

Linear Kalman Filter. The LKF baseline can be applied to MOF in the

same way as with egocentric SCTF. The future height and width values are

predicted in the same way as the centroid.
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Figure 4.2: Example frames from JAAD. Different cameras and vehicles
are used for data collection, so there is some difference in camera placement.

4.2 Datasets

We use two datasets for model evaluation in addition to our BDD-10K and

Citywalks datasets introduced in Chapter 3.

4.2.1 Joint Attention in Autonomous Driving

The JAAD dataset introduced by Kotseruba et at. [64] consists of 346 short

video clips of footage shot using a front-facing camera mounted on a vehicle

dashboard. The dataset features many interactions between drivers and pedes-

trians, such as individuals crossing the road or yielding to the vehicle. Each

video is accompanied by full annotation of pedestrian bounding boxes, behavi-

oural data, weather conditions, time of day, and other information. We use

only the pedestrian bounding boxes in our analysis. Example frames from the

dataset are shown in Figure 4.2, and dataset metadata are listed in Table 4.1.

We make a few modifications to the JAAD dataset for evaluating our models.

Namely, pedestrians smaller than 50 pixels in height, occluded pedestrians,

and tracks shorter than 25 frames are discarded. These values were chosen

manually, as pedestrians that do not this criteria are more challenging to

extract visual features from.

4.2.2 MOT-17

The MOT-17 dataset [46] was originally created for studying the MOT task.

However, as full object bounding boxes and tracking information is provided,

the dataset is also suitable for the MOF task. The dataset features BEV
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Table 4.1: JAAD metadata. JAAD is a large annotated dataset for studying
driver-pedestrian interaction.

Video clips 346

Resolution 1280× 720 & 1920× 1080

Framerate 30hz

Clip length 5-15 seconds

Unique cities 5

Weather conditions Clear/Snow/Rain/Cloudy

Time of day Day/Night

Figure 4.3: Example frames from MOT-17. As we are interested in
forecasting from an egocentric perspective, we do not use video clips filmed
from overhead, such as the top right frame.

and egocentric footage and full annotations of object bounding boxes and

tracking information. Example video frames are shown in Figure 4.3 and

dataset metadata are shown in Table 4.2.

4.3 Proposed Approaches

In this section we introduce our proposed models: DTP and STED.
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Table 4.2: MOT-17 metadata.

Video clips 14

Egocentric video clips 10

Resolution 640× 480 & 1920× 1080

Framerate 30hz & 14hz

Clip length 17-85 seconds

(a) 
Prediction from origin

(b) 
Prediction from current 

location

(c) 
Prediction from constant 

velocity (proposed)

Figure 4.4: Constant velocity correction. Given an observed trajectory
(Green), SCTF aims at predicting the future trajectory of an object (Yellow).
Existing works have shown that a prediction vector relative to the current
object location ((b)) is more effective that predicting from the origin ((a)). We
propose to predict the object’s deviation from constant velocity (Blue) ((c)).

4.3.1 Dynamic Trajectory Predictor

Method

Inspired by the effectiveness of action recognition models that use optical flow

as an input modality [178, 179], DTP uses a stack of optical flow frames as input

to a CNN that extracts a compact representation of human and camera motion.

In many scenarios, such as when a pedestrian is stationary or walking at a

constant speed, the constant velocity baseline reasonably predicts their future

location. Challenging situations deviate significantly from this assumption,

such as when a pedestrian starts walking or abruptly changes direction. An

effective model must anticipate a change in velocity and adjusts predictions

accordingly. The error resulting from the constant velocity baseline is denoted

by:

ẽt+m = |Lt+m − L̃t+m| (4.4)

Rather than predicting a location L̂t+m directly, existing works [31, 92]

output the location relative to the last observed timestep, ∆Lt+m = Lt+m−Lt.
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Figure 4.5: Dynamic Trajectory Predictor. DTP forecasts pedestrian
trajectory relative to a constant velocity baseline. We use ResNet [177] with
modified input and output layers to compute features from past optical flow.
The optical flow magnitude is dependent on both object and ego motion.

Instead, we propose to output a compensation term, Pt = −ẽt, which corrects

for errors in the constant velocity baseline. The difference between these three

representations is shown in Figure 4.4. By training our model to predict Ct,

the model is first initialised to a strong baseline (in the case where Ct = 0, the

model’s predictions equal constant velocity) and then fine-tunes predictions

on training examples for which the constant velocity assumption results in

errors. Training a model to instead predict displacement, ∆Lt, initialises the

model to a the weaker constant position baseline, ∆Lt = 0. The final predicted

coordinates in the original 2D image projection, L̂t+m, are then recovered as

follows:

L̂t+m = L̃t+m + P̂t+m (4.5)

From the feature vector extracted from optical flow, DTP uses a fully

connected layer to predict the pedestrian’s future location, P̂t+m, representing

the estimated correction factor. A vector of large magnitude indicates that the

pedestrian velocity will increase or decrease, whereas a vector of magnitude

close to 0 indicates that the pedestrian will maintain their current velocity.
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Figure 4.6: Example pedestrians with associated optical flow. The
left 3 images are human-annotated pedestrians from the JAAD dataset, right
3 images are pedestrians detected on the BDD-100k dataset using YOLOv3.
Optical flow captures motion resulting from both the camera and the pedestrian.
In the lower row, we show the optical flow magnitude corresponding to the
RGB image above. The colour key to the right of the figure shows the direction
of pixel displacement.

We use ResNet [177] as our backbone network, owing to its consistently good

performance on many vision tasks. A high-level diagram of our model is shown

in Figure 4.5. Further details of the architecture modifications are outlined in

the implementation section below.

Performance evaluation

We implement DTP using Pytorch [180] and evaluate results using the BDD-

10k dataset introduced in Section 3.1.2 and the JAAD [64] dataset. We adopt

the conventional methodology of pre-training on a large dataset before fine-

tuning on a smaller target dataset, intending to improve generalizability on

the target dataset [181]. Code is available online at: https://github.com/

olly-styles/Dynamic-Trajectory-Predictor.

Implementation. Optical flow is extracted from cropped pedestrians us-

ing the provided human-annotated bounding boxes with the Flownet2-CSS

algorithm [150]. Pixel displacements are clipped at ±50 and scaled to the

range [0, 1]. Clipping displacements removes extreme values, and is common

practice in action recognition (see, for example, the work of Feichtenhofer et

al.[182]). Example pedestrian optical flow images are shown in Figure 4.6

(second row). We use a stack of n horizontal and n vertical optical flow frames

at timesteps t−n to t. Features are computed from the 2n input channels using

the ResNet-18 CNN architecture [177]. We modify the first convolutional layer
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to use 2n input channels rather than 3, keeping other dimensions the same.

We replace the 1000-D softmax output layer with a 30-D fully connected later,

producing predictions for the x and y coordinates of the 15 future bounding box

centroids, corresponding to one second into the future. We use cross-modality

pre-training, and partial batch normalization [179] to initialize our CNN with

ImageNet weights. The model is optimized to minimize the `2 loss between the

true and predicted future locations, Lt+1 . . . Lt+m and L̂t+1 . . . L̂t+m as follows:

loss = ||Lt+1...t+m − L̂t+1...t+m|| (4.6)

We perform 5 fold cross-validation on the JAAD training set to tune

hyperparameters. DTP is trained until convergence using the Adam [183]

optimizer with an initial learning rate of 10−5, which is reduced to 10−6 once

performance saturates. We use a batch size of 64 and a weight decay of 10−2.

Each pedestrian is resized to 256 × 256 pixels. For data augmentation, a

randomly cropped sub-image of size 224× 224 is taken.

We split the JAAD dataset into training (videos 0-250) and testing (videos

251-346) sets. Once hyperparameters are fixed, we obtain an estimate of the

model’s generalizability by training on each of the 5 folds until performance on

the respective validation set saturates. We then evaluate the model on the test

set. We report the mean performance on the test set for the 5 folds.

Evaluation. We use two metrics to evaluate model performance, mean squared

error (MSE) and displacement error (DE@t) at timesteps up to 15, following

existing works [31, 92]. The MSE is the mean of the squared errors of the

predicted centroid in pixels from all timesteps 1 to m and across all samples

in the test set. The DE@t is the mean Euclidean distance in pixels of the

predicted and ground truth centroid for timestep t only. Both metrics are

relative to an image resolution of 1280× 720.

We evaluate our proposed approach with 4 different inputs: a single RGB

frame at time t, a single optical flow frame at time t, a stack of 5 optical

flow frames at times t− 4 to t, and a stack of 9 optical flow frames at times

t − 8 to t. We use 9 as our maximum value of m rather than the 10 frames

commonly used for action recognition [178, 179]. As 2 consecutive frames are

required to compute optical flow, using 10 RGB frames results in 9 optical flow

frames, allowing us to compare fairly with Future Person Localization (FPL)

[31], which uses 10 frames as input. As each optical flow frame requires two

consecutive RGB frames to be computed, using 10 input frames results in 9

optical flow frames. Following prior works [31, 32] we adopt constant velocity

(CV) and constant acceleration (CA) as baselines. We compute the average

velocity in the image space using the previous locations and predict the future

location assuming the pedestrian maintains a linear velocity for the CV baseline.
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Table 4.3: Input modality comparison.

Input modality MSE DE@5 DE@10 DE@15 (FDE)

CA 1426 15.3 28.3 52.8

CV 1148 16.0 26.4 47.5

RGB frame 1042 11.6 24.9 45.2

Optical flow frame 873 11.1 23.0 41.2

5 optical flow frames 651 9.4 19.3 35.6

9 optical flow frames 610 9.2 18.7 34.6

Similarly, we compute the average acceleration using the change in previous

velocities over the same time period as the CV baseline for the CA baseline and

extrapolate these values into the future timesteps assuming linear acceleration.

Using 4 previous locations to compute both velocity and acceleration resulted

in the best cross-validation performance, using the cross-validation strategy as

outlined in Section 4.3.1.

Results. Table 4.3 shows the performance of each model with different input

modalities in comparison with the CV and CA baselines. Due to the relatively

poor performance of the RGB input, we do not fuse RGB and optical flow

models as in the two-stream action recognition model which inspired this work

[178]. Example successful trajectory predictions of our model using a stack

of 9 optical flow frames compared to baselines are shown in Figure 4.7. DTP

performs particularly well in situations where a pedestrian first begins walking

and when the ego-vehicle begins to turn sharply. Figure 4.8 shows failure cases.

DTP performs less well under conditions of significant background motion and

sudden upper body movements from the target pedestrian.

We compare our method using a stack of 9 optical flow frames with linear

baselines and FPL [31] in Table 4.4. We modify FPL to output 15 timesteps,

corresponding to 1 second in into the future at 15FPS rather than the 10 as in

the original architecture, which was implemented for a dataset at 10 FPS. We

use optical flow for ego-motion estimation as described in the original work.

We also find that removing the batch normalization layers results in better

performance for our dataset. Both DTP and FPL see a reduction in error

with our proposed Constant Velocity (CV) correction term Pt (rather than

directly predicting the location displacement ∆Lt+m). DTP attains the best

performance.
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Figure 4.7: Example successful trajectory forecasts on the JAAD test
set. Colours represent past trajectory (White), ground truth future trajectory
(Green), the constant velocity baseline (Red), FPL[31] (Blue), and DTP
(Yellow). Crosses represent final location after one second. DTP is able to
anticipate a pedestrian crossing before stepping into the road, and account for
vehicle ego-motion. Data samples were chosen from the predictions with lowest
FDE on the JAAD test set.

Machine-annotated pre-training

We pre-train DTP using our machine-annotated dataset, BDD-10K, introduced

in Chapter 3. By using a large dataset for pre-training, our goal is to learn
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Figure 4.8: Example unsuccessful trajectory forecasts on the JAAD
test set. Colours represent past trajectory (White), ground truth future
trajectory (Green), the constant velocity baseline (Red), FPL[31] (Blue),
and DTP (Yellow). Crosses represent final location after one second. DTP
performs poorly in situations with significant background motion, such as
those due to other vehicles (upper example), or upper body motion in the
counter walking direction (lower example). Data samples were chosen from
the predictions with highest FDE on the JAAD test set.

model weights that will be transferable to the target dataset through transfer

learning [181]. However, as BDD-10K is labelled using our machine-annotation

method and JAAD is labelled using human annotators, it is not clear that

features will generalize from one annotation method to the other. We evaluate

this by pre-training both DTP and FPL [31] using the BDD-10K dataset and

then fine-tuning models on the JAAD dataset.

Evaluation. We use an 80%-20% training-validation split for BDD-10K. We

pre-train DTP and FPL on BDD-10K using the same hyperparameters as in

other experiments outlined previously. Once performance on the validation

set saturates, the models are then fine-tuned on the JAAD training set. We

evaluate the trajectory forecasting performance with and without pre-training

on BDD-10K rather than the pedestrian detection quality, owing to the lack of

human-annotated bounding boxes.

Results. The impact of machine-annotated pre-training using the YOLOv3

detector before fine-tuning on the human-annotated JAAD dataset is shown in

Table 4.5. We observe an improvement in MSE and FDE for both DTP and

FPL when pre-trained on BDD-10K. The performance improvement may be
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Table 4.4: Model comparison.

Model
CV correction

term
MSE FDE

FPL [31] 7 1405 49.5

FPL [31] 3 881 41.3

DTP 7 1404 54.6

DTP 3 610 34.6

Figure 4.9: Impact of machine-annotated dataset pre-training. Impact
of pre-training dataset size and pedestrian detection algorithm on the per-
formance on JAAD (human-annotated) test set. Shaded areas show the 95%
confidence interval. Performance does not appear saturated at 100% of data
used for pre-training, suggesting that more data may improve performance
further.

due to the model’s ability to learn the motion patterns of under-represented

classes, such as children or the elderly, from a larger dataset.

We evaluate the impact of pre-training dataset size and pedestrian detector

by training DTP on subsets of BDD-10K ranging from 20% to 100% of the

total dataset size. Figure 4.9 shows the MSE on the JAAD test set for both

YOLOv3 and Faster-RCNN annotations using the DTP model. In general, the

error on the JAAD test set reduces as larger subsets of our machine-annotated

dataset is used for pre-training.
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Table 4.5: Impact of pre-training on BDD-10K with YOLOv3. Both
models perform better in terms of MSE and FDE on the human-annotated
JAAD dataset after pre-training on the machine-annotated BDD-10K dataset.

Model
Pre-training with

machine annotation
MSE FDE

FPL [31] 7 881 41.3

FPL [31] 3 805 40.1

DTP 7 610 34.6

DTP 3 539 32.7

Figure 4.10: Spatio-Temporal Encoder-Decoder (STED). STED consists
of a GRU, a CNN, and two FC layers for feature encoding. Our decoder takes
the encoded feature vector φc as input and outputs predicted object bounding
boxes for the next 2 seconds using another GRU and FC layer. This architecture
was chosen as recurrent units are commonly used for time series prediction
problems, and the CNN also allows visual features to be extracted from within
target bounding boxes.

4.3.2 Spatio-Temporal Encoder-Decoder

In this section, we present STED. STED is an encoder-decoder architecture for

MOF that combines visual and temporal features. STED predicts full object

bounding boxes, as opposed to trajectories alone. Similarly to DTP, STED

predicts values of the centroid relative to the constant velocity baseline. Height

and width are predicted relative to the current height and width.

Method

The proposed architecture has three components: (i) A bounding box feature

encoder based on a Gated Recurrent Unit (GRU) [184] that extracts tem-

poral features from past object bounding boxes (ii) A CNN-based encoder

that extracts motion features directly from optical flow, and (iii) a decoder

implemented as another GRU for generating future bounding box predictions

given the learned features. An overview of STED is shown in Figure 4.10.

Bounding box feature encoder. Our bounding box encoder extracts fea-
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tures from past bounding box coordinates of each object i represented in terms

of its centroid, width and height bit = (xt, yt, wt, ht). In addition, we compute

the velocity in the x and y directions, (vxt , v
y
t ), change in width, ∆wt, and change

in height, ∆ht. This results in an 8-dimensional vector associated with each

object bounding box at each timestep, Bi
t = (xt, yt, wt, ht, v

x
t , v

y
t ,∆wt,∆ht).

For each observed timestep, a GRU (GRU-1 in Figure 4.10) takes the vector

Bi
t as input and outputs an updated hidden state vector het . This update

is repeated for all timesteps, resulting in a single hidden state vector het at

the final timestep which summarizes the entire sequence of bounding boxes.

The 256-dimensional feature vector φb from a fully connected layer (FC-1 in

Figure 4.10) is used as a compact representation of the history of bounding

boxes.

Optical flow feature encoder. We adapt DTP to learn features directly

from optical flow. Optical flow frames, Ft, are extracted from within object

bounding boxes at each timestep. A stack of 10 frames is sampled uniformly

from timesteps t− 29 to t inclusively, representing 1 second of motion history.

The stack of 10 horizontal and 10 vertical frames are used as input to a CNN

which takes the 20 × 224 × 224 stack of frames as input and is trained to

predict future object bounding boxes. The 2048-dimensional feature vector

φf from the final fully connected layer (FC-2 in Figure 4.10) is used as a

compact representation of optical flow features. As optical flow captures both

object motion and ego-motion, the vector φf encodes information from these

two motion sources. Using optical flow as the input of our encoder rather

than features from a human pose estimation model [31] avoids the challenges

relating to obtaining accurate pose estimations, such as body part occlusion,

self occlusions, and clothing variations [47]. However, similarly to human pose

estimation, optical flow models are often computationally demanding, although

some faster models are available [150].

Decoder. Following the feature encoding stage, we use another GRU to

generate the estimated sequence of future bounding boxes, enabling the model

to generate predictions for an arbitrary number of timesteps into the future.

The two feature vectors, φf and φb, are concatenated resulting in a single

feature vector φc representing both optical flow and bounding box history. For

each future timestep to be predicted, the decoder GRU (GRU-2 in Figure 4.10)

receives two inputs: The concatenated feature vector φc, and the internal

hidden state hdt−1. The GRU outputs a new value for hdt at each timestep.

Given each generated hidden state, a final fully connected layer generates the

predicted bounding box for each timestep. Rather than representing object

bounding boxes by their absolute location [83], or relative displacement from

the previous bounding box [31], we adopt the same formulation as DTP and
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Figure 4.11: MOF metrics. We use the average and final displacement error
metrics which are used throughout the trajectory forecasting literature. To
evaluate the performance of the bounding box predictions (in addition to
centroids) we also introduce the average and final IOU metrics.

represent the bounding box centroid as the relative change in velocity. The

decoder generates a vector (∆vx,∆vy,∆w,∆h), representing the change in

velocity along the x and y-axes, and the change in bounding box width and

height. The untrained model is initialized to the case where ∆vx = ∆vy = 0

(constant velocity) and ∆w = ∆h = 0 (constant scale). This formulation

results in a better initialization than absolute or relative locations.

Experimental results

We use 4 metrics for evaluating models on the MOF task. We adopt the Average

Displacement Error (ADE) and Final Displacement Error (FDE) metrics from

the trajectory forecasting literature [32]. ADE is defined as the mean Euclidean

distance between predicted and ground-truth bounding box centroids for all

predicted bounding boxes, and FDE is defined similarly for the centroid at the

final timestep only. We also use the Average Intersection-Over-Union (AIOU)

and Final Intersection-Over-Union (FIOU). AIOU is defined as the mean IOU

of the predicted and ground truth bounding boxes for all predicted boxes, and

FIOU is the IOU for the box at the final timestep only. A visual representation

of these 4 metrics is shown in Figure 4.11.

We adapt the following models for MOF, which were initially developed for

trajectory forecasting. Each model is modified for full bounding box prediction
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assuming object scale is constant or by adding additional output channels

representing bounding box height and width for the learning-based approaches.

Constant Velocity & Constant Scale (CV-CS): We adopt the simple

constant velocity model, which is used widely as a baseline for trajectory

forecasting models [31, 32, 84] and as a motion model for MOT [185–187]. We

take the difference in start position and end position of the object averaged

over the previous 5 frames to compute velocity. We find that using a constant

scale performs better than linearly extrapolating a change in width and height,

which may be due locomotion causing changes in bounding box width.

Linear Kalman Filter (LKF) [74]: The LKF is a widely-used method for

tracking objects and predicting trajectories under noisy conditions. We use an

LKF with initial parameters chosen using cross-validation and the last updated

motion value for forecasting. The LKF is one of the most popular motion

models for MOT [122, 188, 189].

Future Person Localization (FPL) [31]: We adapt FPL, which uses ped-

estrian pose extracted using OpenPose [29] and ego-motion estimation using

optical flow extracted with FlowNet2 [150]. FPL predicts 10 output timesteps,

but Citywalks has a 2-second prediction horizon, totalling 60 timesteps. There-

fore, we train the model to predict a location for every 6th frame and linear

interpolate between predictions to get predictions for 60 timesteps. We evaluate

one version with just centroid predictions and another with additional output

channels for the height and width of the target bounding box.

Dynamic Trajectory Predictor (DTP) [1]: We adapt DTP, which uses a

CNN with past optical flow frames as input to predict future bounding boxes.

Similarly to FPL, we evaluate one version with just centroid predictions and

another with additional output channels for the height and width of the target

bounding box.

Clips from Citywalks are split into 3 folds, and the test set is further

divided 50% for validation and 50% for testing for each fold. We use inter-city

cross-validation, i.e., footage from cities in the validation/testing sets do not

appear in the training set. This challenging evaluation setup ensures that

pedestrian identities from the training set do not appear at test time, and

prevents models from overfitting to a particular environment.

Bounding box feature encoder. Bounding box vectors Bi
t are computed by

taking the velocity of the object over the previous 5 timesteps, i.e., vxt = xt−xt−4
and vyt = yt − yt−4. Our feature encoder consists of a GRU with 512 hidden

units which uses Bi
t−1 and the previous hidden state vector het−1 as input and

outputs an updated hidden state vector het . We use GRUs rather than LSTMs

as recurrent units in STED as we find the performance is similar while GRUs

is less computationally demanding.
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Table 4.6: Results averaged over 3 train-test splits on Citywalks with our two
annotation sets using YOLOv3. DTP and FPL predict object centroids only,
so IOU metrics are not applicable.

Model ADE (↓) FDE (↓) AIOU (↑) FIOU (↑)

CV-CS 32.9 60.5 51.4 26.7

LKF [74] 34.3 62.1 49.1 25.5

DTP [1] 28.7 52.4 − −

FPL [31] 30.2 53.4 − −

DTP-MOF 29.0 52.2 54.6 30.8

FPL-MOF 31.6 55.7 53.0 30.9

STED 27.4 49.8 56.8 32.9

Optical flow feature encoder. We compute optical flow for each video

frame using FlowNet2 [150]. The flow from within each pedestrian bounding

box is then cropped, clipped to a range of −50 to 50, scaled to a fixed size of

256 × 256, and normalized to a range of 0 to 1. We perform standard data

augmentation, taking a random crop of size 224× 224 from the stack of optical

flow frames. We train the optical flow feature encoder using ResNet50 [177] as

the backbone CNN architecture for 10k iterations with a batch size of 64 and

learning rate of 1× 10−5 to predict future object locations and then freeze the

weights to use our optical flow encoder as a fixed feature extractor.

Decoder. Our decoder takes the concatenated feature vector φc as input. The

decoder consists of another GRU with 512 hidden units. For each of the 60

timesteps to be predicted, the decoder takes φc and previous hidden state hdt−1
and outputs a new hidden state hdt . A linear layer takes the hidden state and

generates a predicted bounding box for the respective timestep. The optical

flow feature encoder is used as a fixed feature extractor, while the bounding

box encoder and decoder are trained jointly end-to-end using an initial learning

rate of 1× 10−3, which is halved every 5 epochs. We use a batch size of 1024

and train the model for 20 epochs. The model is optimized using the smooth

`1 loss, defined as follows:

loss(y, ŷ) =

0.5(y − ŷ)2, if |y − ŷ| < 1

|y − ŷ| − 0.5, otherwise
(4.7)

We find the smooth `1 loss to be more robust to outliers in the training

data than the `2 loss.
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Table 4.7: Results averaged over 3 train-test splits on Citywalks with our two
annotation sets using Mask-RCNN. DTP and FPL predict object centroids
only, so IOU metrics are not applicable.

Model ADE (↓) FDE (↓) AIOU (↑) FIOU (↑)

CV-CS 31.6 57.6 46.0 21.3

LKF [74] 32.9 59.0 43.9 20.1

DTP [1] 26.7 48.5 − −

FPL [31] 28.6 49.8 − −

DTP-MOF 27.3 49.2 49.6 25.1

FPL-MOF 29.3 51.0 44.9 22.6

STED 26.0 46.9 51.8 27.5

Table 4.8: Ablation study evaluating the bounding box (BB), optical flow (OF)
encoders separately. Results are the mean of both annotation sets.

Model ADE / FDE (↓) AIOU / FIOU (↑)

BB-encoder 29.6 / 53.2 51.5 / 27.9

OF-encoder 27.5 / 50.0 53.2 / 28.8

Both encoders 26.7 / 48.4 54.3 / 30.2

4.3.3 Results

We evaluate each model on the Citywalks dataset using both the YOLOv3 and

Mask-RCNN annotation sets and evaluate each component of STED separately.

Finally, we evaluate the cross-dataset generalizability of each model on the

MOT-17 dataset [46].

Results on Citywalks. Table 4.6 shows the ADE / FDE1 and AIOU /

FIOU of all methods on Citywalks using the YOLOv3 annotation set, and

Table 4.7 shows the same results using the Mask-RCNN annotation set. We

evaluate the original DTP and FPL models for trajectory forecasting, as well

as the versions modified for MOF. STED consistently performs better than

existing approaches across all metrics, resulting in more precise bounding box

forecasts. Figure 4.12 shows example bounding box predictions. STED impli-

citly anticipates both object and ego-motion in a diverse range of environments

and situations. Figure 4.13 shows failure cases. The model performs poorly

in challenging conditions such as large ego-motions and when the pedestrian

scale is small.

1A displacement error of 50 pixels corresponds to 2.5% of the total frame size at a resolution
of 1280 × 720.
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Figure 4.12: Example successful object forecasts using STED. Colours
represent ground truth (Green), constant velocity and scale (Blue), and
STED (Yellow). Forecasts are made for each of 60 timesteps in the future for
all pedestrians in the scene, but here we visualize the predicted bounding box
at t = 60 only and at most two pedestrians per frame for clarity. Line type
(dashed/solid) denotes unique pedestrians. Data samples were chosen from the
predictions with highest FIOU on the Citywalks test set. More examples are
available at: https://youtu.be/GPdNKE6fq6U
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Figure 4.13: Example unsuccessful object forecasts using STED. Col-
ours represent ground truth (Green), constant velocity and scale (Blue), and
STED (Yellow). The examples highlight the difficulty of the Citywalks data-
set, which contains several distant pedestrians and motions that are not well
predicted by constant velocity. Data samples were chosen from the predictions
with lowest FIOU on the Citywalks test set

We further break down performance on Citywalks in Figure 4.14. We find

that most models perform better for sequences recorded in cities with clear

weather conditions (e.g., Barcelona, Prague) than, in particular, snow (e.g.,

Tallinn, Helsinki). To confirm this intuition, we further plot the performance in

different weather conditions and at different times of the day. Larger prediction

errors in rainy and snowy conditions may be due to the additional challenge

of extracting features from optical flow under poor weather conditions or

less predictable movements from the targets negotiating snow and puddles.

Finally, we plot the mean IOU at all predicted timesteps 1 to 60. The IOU of
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(a)

(b) (c) (d)

Figure 4.14: Performance analysis on Citywalks. Here, we report per-
formance on both validation and test sets for all 3 folds to cover the entire
dataset. Performance is broken down by (a) top 3 and bottom 3 cities by
AIOU, (b) weather condition, (c) time of day and (d) future timestep.

the predicted and ground-truth bounding boxes predictably declines quickly,

particularly for earlier timesteps. STED maintains the best IOU throughout

the entire prediction horizon.

Ablation study. We evaluate the benefits of each feature stream of

our proposed model by evaluating them separately. Specifically, we use the

bounding box encoder feature vector φb as input to the decoder, rather than

the concatenated feature vector φc. We repeat this for the optical flow encoder

feature vector φf . By not concatenating the two vectors, the output feature

vector from the encoder is halved in size. Therefore, we also half the size of the

decoder GRU-2 hidden state. Table 4.8 shows the results of our ablation study

on Citywalks. Both the bounding box and optical flow encoders contribute

to the overall performance and therefore work in a complementary fashion.

The optical flow encoder performs better than the bounding box encoder in

isolation. The optical flow is considerably higher dimensional (20× 224× 224)

than the bounding box (10× 8) inputs.

Computational complexity. The most computationally expensive com-

ponent of STED is computing optical flow. Our implementation uses FlowNet2,

which requires 123ms to compute on an Nvidia GTX 1080 GPU [150]. This

model may be replaced by more efficient methods, although we found the

quality of optical flow to impact overall performance. Additional components,

such as the CNN architecture or the number of hidden units in the GRUs may
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Table 4.9: Results on MOT-17 after training on fold 3 of Citywalks. Models
are not fine-tuned on MOT-17.

Model ADE / FDE (↓) AIOU / FIOU (↑)

CV-CS 58.9 / 104.7 43.8 / 21.5

LKF [74] 62.0 / 110.2 41.6 / 20.1

FPL [31] 56.9 / 96.3 −

DTP [1] 55.2 / 99.0 −

FPL-MOF 58.0 / 98.4 41.4 / 20.4

DTP-MOF 52.2 / 92.4 47.7 / 26.1

STED 51.8 / 91.6 46.7 / 24.4

be modified if real-time performance is required, at some cost in forecasting

accuracy.

Cross-dataset evaluation. In order to evaluate the generalizability of

models trained on Citywalks, we use the popular MOT-17 dataset [46]. We use

sequences 2, 9, 10, and 11 from the MOT-17 train set and discard sequences 4

and 13 as these sequences are filmed from an overhead perspective. We also

discard sequence 5 due to the low image resolution and frame rate. We follow

a similar pre-processing setup to Citywalks, discarding tracks shorter than 3

seconds. We also ensure pedestrians are occluded no more than 50% of their

total bounding box size using the annotations provided, resulting in 83 unique

pedestrian tracks. We take each model trained on Citywalks and evaluate

using each of the four sequences. Note that we do not modify the models,

and crucially we do not fine-tune on MOT-17. Table 4.9 shows encouraging

results suggesting that models trained on Citywalks generalize cross-dataset

and to human-annotated bounding boxes. However, due to the small size of

the MOT-17 dataset, these results should be treated with caution.

4.4 Discussion

The methods introduced in this chapter have demonstrated the benefits of using

dense optical flow as an input modality for egocentric trajectory forecasting

models. Modelling motion information in this way facilitates the learning of

cues that indicate a person’s intentions. For example, several of the examples

shown in Figure 4.7 demonstrate that DTP can anticipate a pedestrian crossing

the street before they step into the road. Optical flow is also a useful input

modality for our other model, STED, and our ablation study demonstrates

that both optical flow and bounding box encoders are complementary.

Training models to predict the target’s deviation from constant velocity
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baseline using our proposed constant velocity correction term rather than

directly predicting their trajectory relative to their current location improves

the performance of the models we tested. As several existing works such as

FPL [31] predict trajectories relative to an object’s current location, we suggest

that future works consider using the deviation from constant velocity as a

training target instead. Our promising results suggest that initializing to a

stronger baseline in this way improves trajectory forecasting accuracy.

The performance of trajectory forecasting models improves as more machine-

annotated data is used for pre-training. Furthermore, models trained using

the machine-annotated Citywalks dataset outperform the constant-velocity

constant-scale baseline on the MOT-17 dataset without fine-tuning. This result

is encouraging, particularly in settings where human-labelled training data

is scarce, as is the case for egocentric trajectory forecasting and MOF. The

benefits of pre-training models on machine-annotated datasets to improve their

performance on a human-annotated dataset is also studied in the follow-up

work of Ansari et al. [155], which will be discussed in more detail in Chapter 6.

4.5 Summary

In this chapter, we have formally defined the egocentric SCTF problem and

MOF problems and proposed a model for each problem formulation. DTP

outperforms the existing state-of-the-art using the JAAD dataset. Our experi-

ments results demonstrate that our proposed machine-annotation pre-training

strategy improves the performance of both DTP and an existing state-of-the-art

model, FPL [31]. Furthermore, we show that our proposed CV correction term

also improves the performance of both DTP and FPL.

We also introduced STED, a two-stream encoder-decoder model for MOF.

STED predicts object scale in addition to trajectory and outperforms existing

state-of-the-art using the Citywalks dataset. Our ablation study demonstrates

that the bounding box and optical flow streams are complementary and perform

better than either stream in isolation. Further performance breakdown also

reveals that STED and other comparable models generally perform better in

fair weather conditions (sun or overcast) compared to poor weather conditions

(snow or rain) and perform better for video sequences shot during the day than

those shot after dark.

Our proposed models predict the trajectory of an object as viewed from a

single camera view, which may be mounted on an intelligent vehicle or other

kinds of robotic systems that share space with pedestrians. Using an egocentric

perspective facilitates extracting features from optical flow in addition to

trajectory features from the sequence of historical locations. Both models

are trained using datasets generated using our machine-annotation procedure
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proposed in Chapter 3 and generalize to human-annotated datasets.

In the next chapter, we extend these methods by asking the following

question: How can we forecast trajectories in a multi-camera environment?
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Chapter 5

Multi-Camera Trajectory

Forecasting

The methods introduced in Chapter 4 tackle the task of single-camera trajectory

forecasting. A critical drawback of the single-camera settings is that models

cannot anticipate when new objects will enter the scene [17] as they are

limited to the data from a single camera. Furthermore, SCTF methods are

only suitable for short-term trajectory forecasting, typically 1 to 5 seconds

[2, 31–33, 84, 190], due to the limited field-of-view. The constraint of a single

camera viewpoint must be removed to overcome these issues. To this end, we

introduce Multi-Camera Trajectory Forecasting (MCTF) - a new framework

within trajectory forecasting. Given the information about an object’s location

in one or more camera views, we want to predict its future location across a

camera network in all possible camera views. This idea is shown visually in

Figure 5.1. The MCTF formulation introduces new challenges when compared

to SCTF, such as identifying which camera a person will re-appear and when

they will re-appear. Throughout this chapter, we consider predicting the

trajectory of humans, although MCTF can easily be generalised to any moving

object, such as vehicles or animals.

Given an object tracklet in one or more camera view(s), our MCTF frame-

work comprises the following three tasks: (i) In which cameras will the object

appear next? (ii) When will the object appear in those cameras? (iii) Where

will the object appear in the identified camera views? Owing to the wide body

of complementary literature on pedestrian detection [23] and person Re-ID

[124], we focus on pedestrians for our MCTF task. Nevertheless, our proposed

data representation and model can be easily generalized to any moving object.

We present a deep encoder-decoder approach to MCTF that introduces the

idea of trajectory tensors - a new technique to encode trajectories across multiple

camera views and the associated uncertainty in future locations. Trajectory

tensors are an attractive alternative to the coordinate-based trajectory, which
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Figure 5.1: Multi-Camera Trajectory Forecasting. We introduce a novel
formulation of the trajectory forecasting task which considers multiple camera
views.

is the de facto representation in existing trajectory forecasting works [2, 31–

33, 84, 190], with only a few recent exceptions [87]. Coordinate trajectories

represent the historical and predicted future locations of an object as a sequence

of coordinates. The representation considers coordinates in the image space in a

single-camera view or world coordinates if a projection is available. In contrast

to the coordinate approach, proposed trajectory tensors divide viewpoints from

several cameras into grid cells with values indicating an object’s presence or

absence. This representation enables us to intuitively model diverse future

locations, associated uncertainty, and object locations in an arbitrary number

of viewpoints. Trajectory tensors also offer easy to interpret results that can

be visualised easily.

The rest of this chapter is organised as follows. In Section 5.1, we introduce

Multi-Camera Trajectory Forecasting and the motivations behind studying

the problem. In Section 5.2, we formally introduce the problem formulations

within our proposed MCTF framework. We introduce our proposed approach in

Section 5.3, and evaluate model performance in Section 5.4. The implications of

our work are discussed in Section 5.5. The chapter is summarised in Section 5.6.

5.1 Motivation

A typical automated multi-camera surveillance system consists of detection,

tracking, and RE-ID components to monitor objects-of-interest [130, 132, 133].

Scaling such systems to large camera networks can be challenging due to

computational demands, as each component must run on each camera. Jain et
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al. [130] study the impact of scaling multi-camera tracking to large networks and

show that filtering the search space to high traffic areas can considerably reduce

the search space at only a small cost in person Re-ID recall. In addition to using

the traffic level in each area, trajectory information has also been used for both

RE-ID [129] and multi-camera tracking [131]. Using trajectories for these tasks

can supplement existing appearance-based models by providing a second source

of information for matching objects across camera views. However, previous

works [129–133] reactively use trajectory information, i.e., the object must

have already been observed in multiple camera views. Processing videos at a

lower image resolution or frame rate may reduce the computational demands,

but this often results in missed detections [191]. Alternatively, we may choose

to monitor only a subset of the cameras in a network, resulting in missed

detections. A successful MCTF model can mitigate this issue by preempting

an object’s location in a distributed camera network, allowing the system

to monitor fewer cameras through an intelligent selection technique. This is

distinct from previous works that use trajectory information for person Re-ID

[129] or vehicle tracking [131] which are reactive to observations after an object

has been observed in multiple camera views. Our proposed MCTF framework

is proactive - it predicts the future location of an object before it enters the

camera view.

Multiple overlapping camera views provide an additional information source

to machine learning models. This is beneficial in tasks such as human activity

recognition [192], where multiple camera viewpoints make recognising a particu-

lar activity easier. This result is intuitive, as different perspectives may provide

different information that helps to recognise the action easier. We hypothesise

that multiple overlapping camera viewpoints may also be helpful for trajectory

forecasting, as additional viewpoints act as a source of redundancy. This idea

is explored later in the chapter.

5.2 The Multi-Camera Trajectory Forecasting Frame-

work

Consider a typical multi-camera surveillance setup where a set of cameras

C = {ci}|C|i=1 are mounted overhead monitoring objects of interest. Given an

object’s bounding boxes from the previous n timesteps up to the current

timestep t, b(t−n:t) = {b(t−n), · · · b(t−1), b(t)} in one or more camera views,

MCTF is the task of predicting the objects future location within the area

covered by the camera network. We propose a hierarchy of MCTF problem

formulations at three levels.

In which camera(s) will the object appear in the future? Given b(t−n:t),
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our task is to identify a subset of C in which the object may appear at any

future timestep, up to a maximum of m timesteps. We cast this as a multi-class

multi-label classification problem. Our goal is to estimate the probability of

appearance of the object Pa(ci|b(t−n:t)) for each camera ci ∈ C where a positive

class is a camera in which the object re-appears. The output is a vector

[Pa(c1|b(t−n:t)), . . . , Pa(ck|b(t−n:t))] of length |C|.

When will the object appear? The task here is to predict when the object

will appear within the next m timesteps in a given camera. Similar to the Which

problem, we also formulate this as a multi-class multi-label problem, where

we compute the joint probability of appearance of the object Pa(ci, tj |b(t−n:t))
for each camera ci ∈ C at each timestep tj with j = 1, · · · ,m. The output is a

matrix
[ Pa(c1,t1|b(t−n:t)) ···

··· Pa(c|C|,tm|b(t−n:t))

]
of dimension k ×m.

Where will the object appear? This task aims at spatially localizing the

object within a camera view in addition to which and when. To this end, we

divide each camera view into a w×h grid and predict a probability of appearance

score Pa(ci, tj , gxy|b(t−n:t)) for each grid cell gxy, where x = 1, · · · , w and

y = 1, · · · , h. The output is a tensor Z of dimension |C| ×m× w × h containing

the probability of appearance scores Pa(ci, tj , gxy|b(t−n:t)) for each camera

ci ∈ C, timestep tj with j = 1, · · · ,m, and grid cell gxy with x = 1, · · · , w and

y = 1, · · · , h.

A visual representation of these three problem definitions is shown in

Figure 5.2. It is important to note that we focus on modelling target locations

in a multi-camera setting where accurate geometry information is not available.

We predict the location of a single target unless otherwise specified.

5.3 Proposed Approach

In this section, we introduce our proposed data representation technique,

models, and evaluation strategy for MCTF.

5.3.1 Trajectory Tensors

Existing works represent trajectories using a coordinate approach [32, 33,

84] for SCTF. Coordinate trajectories are (x, y)t vectors in the image or

world space, representing the location of an object at a particular timestep t.

Sometimes, the width (w) and height (h) of the object may be also included

in the representation, i.e., (x, y, w, h)t [2, 61]. The representation considers

coordinates in the image space in a single-camera view or world coordinates if

a projection is available.

There are three critical drawbacks to a coordinate trajectory representation:

(i) Standard coordinate-based approaches generally do not define a null tra-
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Figure 5.2: MCTF problem formulations. We formulate the MCTF frame-
work at three levels of granularity, where each level builds upon the previous.
The first level of the hierarchy predicts in which camera an object will appear.
At the second level, in addition to which camera, we predict when the object
will appear. At the final level, we predict where within each camera view the
object will be located. We predict the probability of appearance (Pa) at each
level. Owing to the impracticality of forecasting trajectories across multiple
camera views with a long time horizon at a pixel level, we predict trajectories
in a grid cell representation, where a grid cell represents multiple pixels.

jectory. This representation can be problematic in real-world scenarios where

object coordinates can become unavailable, such as when the object is occluded,

or the detection algorithm fails. It is particularly problematic in a multi-camera

scenario where objects are not visible in all camera views simultaneously.

(ii) Coordinate trajectories can only represent a trajectory as viewed from a

single camera. Due to the lack of representation for null trajectories, coordin-

ates cannot be easily generalised to multiple cameras unless all objects are

simultaneously visible in all cameras in C, or separate models are created for

each camera. Trajectories can instead be mapped to the world coordinate space

to overcome this issue. However, this mapping requires accurate measurements

of the camera locations and intrinsic parameters, which are not always available.

This work assumes that such information is not available.

(iii) Finally, coordinate trajectories do not inherently represent uncertainty,

which is intrinsic to the trajectory forecasting task. The space of future tra-

jectories is multi-modal, e.g., an object can travel either left or right at a

junction. Existing works address this issue by using generative models to

simulate multiple futures [84, 87], from which a probability distribution can be

created. Our approach, in contrast, intuitively models uncertainty in one shot.

To overcome the shortcomings of coordinate trajectory representation,

we introduce the idea of trajectory tensors - a novel technique for compact

representation of multi-camera trajectories. As shown in Figure 5.3, trajectory

tensors are constructed in four steps:

(i) We consider a set of cameras C = {ci}i=1, where an object of interest may

appear in any number of cameras in C.
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Figure 5.3: Trajectory tensors. Our proposed trajectory tensors are an
intuitive data representation capable of representing object trajectories in
multiple camera views, null trajectories, and associated uncertainty.

Figure 5.4: Single frame heatmap. We convert a bounding box detection
to a heatmap. Grids cells containing the target bounding box are set to 1, and
other cells to 0. The heatmap is then smoothed using a Gaussian kernel with
a σ value between 0 and 4.

(ii) Each camera ci has an associated detection di representing the object

bounding box, if present.

(iii) We convert each di into a heatmap Hi which is an alternative representa-

tion of the object’s location. This representation for a single frame is shown in

Figure 5.4. A heatmap is a matrix of size w × h, where each entry is a binary

value indicating the presence or absence of the object in this grid cell. A single

object may span any number of grid cells, depending on its size.

(iv) Finally, the heatmaps Hi for each of the cameras in C are stacked along

the camera dimension, and computed for t timesteps. We also smooth each

heatmap using a Gaussian kernel, which we find has a regularising effect. The

result is a trajectory tensor, Z, of shape |C| × t× w × h, where each entry is a

value between 0 and 1. Z represents the trajectory of an object in multiple

camera views simultaneously and can be used to represent both past (inputs)

and future (predicted) object locations. Encoding object locations as trajectory

tensors allows us to represent objects in multiple cameras elegantly. Trajectory

tensors enable the representation of null trajectories rather than discarding this
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data or using placeholder values. If a trajectory in not present in a particular

camera in a particular timestep, the values in the corridponding grid will

consist

Trajectory tensors share similarities with the grid-cell representation pro-

posed recently by Liang et al. [87]; however, our proposed encoding includes

multiple camera views. Besides, objects represented using trajectory tensors

may span multiple grid cells, which allows us to account for variability in object

scale. Object scale is not considered in most SCTF works [32, 33, 84, 87], but

is a critical component in our framework.

5.3.2 Models

Existing trajectory forecasting methods such as Social-LSTM [32], Social-GAN

[84], and SoPhie [33] are designed for SCTF using datasets with birds-eye view

cameras [76, 96] that do not include object scale. Although some previous

methods proposed [2, 31] forecast object scale in addition to location, they are

also designed for SCTF; hence direct comparison for MCTF is not possible.

To compare with these existing works, we adapt the methods to our MCTF

framework. These models, along with new approaches based on trajectory

tensors, are summarised in Figure 5.5. Each neural network-based model is

comprised of a combination of fully-connected, recurrent, and convolutional

layers. Inspired by fully-convolutional networks for semantic segmentation

[193], we use transposed convolutional layers when predicting trajectory tensors

as targets. Due to the large number of neural network models introduced in this

section, we introduce each briefly and provide full details of the architectures

needed to reproduce our results in Appendix B.

Coordinate trajectory approaches

Here we present our coordinate trajectory approaches which are shown in

Figure 5.5 (a) and (b). Due to the lack of data representations for coordinate

trajectories in multiple camera views, our coordinate trajectory approaches

use a separate model for each camera, resulting in k models.

GRU. Recurrent networks have been a prevalent approach for trajectory

forecasting in a single camera. We use an adapted version of STED, introduced

in Chapter 4. The model proposed for SCTF uses two encoders, one for

bounding box coordinates, and another which uses a Convolutional Neural

Network (CNN) to extract motion information from optical flow. We use only

the bounding box encoder for a fair comparison as other methods do not use

visual features. For the which task, we use a fully-connected classification

layer. For the when task, we use another GRU as a decoder with 128 hidden

units followed by a fully connected classification layer. For the where task, the
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Figure 5.5: MCTF models. We introduce 2 coordinate-trajectory based
(top) and 3 trajectory-tensor based (bottom) approaches for MCTF. (a) A
recurrent encoder-decoder adapted from STED [2]. (b) A 1D-CNN adapted
from FPL [31]. (c) A CNN approach with separated layers for spatial and
temporal feature extraction. (d) A CNN approach with 3D convolutions for
extracting spatial and temporal features simultaneously. (e) A hybrid CNN-
GRU approach which uses a CNN to extract spatial features which are passed
to an GRU for extracting temporal features. Note that for coordinate trajectory
models, a separate model is created for each camera. In contrast, trajectory
tensor models use a single unified model for all cameras. Each model is trained
with either the which, when, or where MCTF formulation.

decoder GRU is followed by 2D Transposed Convolutional Neural Network

(tCNN) layers for spatial upsampling.

LSTM. Our LSTM model is the same as our GRU, with an alternative
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recurrent unit for both encoder and decoder.

1D-CNN. 1D-CNNs have received some attention as an alternative to the de

facto recurrent models for tasks involving time series [194], including trajectory

forecasting [31]. We use the encoder architecture proposed by Yagi et al. [31],

with modified decoders adapted for the MCTF formulation. For the which

task, we use a fully-connected classification layer. For the when task, we use

1D transposed convolutional layers as a decoder with 4 layers. For the where

task, the 1D transposed convolutional layers are followed by 2D transposed

convolutional layers for spatial upsampling. Similarly to STED, we use only

the trajectory feature extractor for a fair comparison with other methods.

Trajectory tensor approaches

Here we present our trajectory tensor approaches which are shown in Figure 5.5

(c), (d), and (e). Our proposed representation enables efficient modelling of

object trajectories across multiple camera views. Therefore, each approach

consists of a single unified model for all cameras, which is less cumbersome

and more scalable than the multi-model approach for coordinate trajectories.

Each model uses an encoder-decoder architecture with the same encoder for

each task and a task-dependent decoder.

2D-1D-CNN. We use a CNN consisting of three 2D convolutional and pooling

layers for spatial feature extraction followed by three 1D convolutional and

pooling layers for temporal feature extraction. Using separate 2D and 1D

convolutional layers rather than 3D layers reduce the number of network

parameters and is inspired by existing models for video classification [195].

We use a fully-connected layer as decoder for the which formulation, 5 1D

transposed convolution layers for the when formulation, and 3 1D transposed

convolution followed by 3 2D transposed convolution layers for the where

formulation.

3D-CNN. We use a 3D-CNN with four layers for spatio-temporal feature

extraction. 3D convolutions can simultaneously extract spatial and temporal

features and have seen some success for tasks such as action recognition [196].

We use a fully-connected layer as decoder for the which formulation, 5 1D

transposed convolution layers for the when formulation, and 4 3D transposed

convolution layers for the where formulation.

CNN-GRU. We train a convolutional auto-encoder to reduce a trajectory

tensor at a single timestep (dimension |C| × w × h) to a feature vector of

dimension 512. This encoding is then used as the input to a GRU which

predicts future feature vectors, which are decoded as shown in Figure 5.5 (e).

The auto-encoder is first pre-trained until convergence and then trained end-

to-end with the GRU. This architecture is inspired by the model proposed by
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Figure 5.6: Visual representation of the SIOUwhen metric. The sum of
the predictions that overlap with the ground truth is divided by the sum of
the predictions that do not overlap with the ground truth plus the sum of the
ground truth values. Shown is an example of computing the SIOUwhen for a
single camera. If a target appears in more than one camera, we take the mean
SIOUwhen value for all cameras in which the target appears.

Luc et al. [45], which uses a similar strategy of forecasting future convolutional

features for predicting future instance segmentation maps. We use a fully-

connected layer as decoder for the which formulation, a GRU followed by a

fully-connected layer for the when formulation, and a GRU followed by 3 2D

transposed convolution layers for the where formulation.

5.3.3 Evaluation Strategy

Due to the high levels of uncertainty and the multi-modal nature of the MCTF,

traditional SCTF metrics such as average and final displacement errors are not

well-suited to MCTF. Alternatively, some works generate multiple trajectories

and select the one most similar to the ground truth [84]; however, this evaluation

method is optimistic as performance comparable to sophisticated methods can

be obtained using a simple constant velocity model that generates trajectories

with high variance [86]. Owing to shortcomings of displacement error metrics,

we compute the Average Precision (AP) for all problem formulations and plot

precision-recall curves in addition to computing displacement error metrics. We

choose precision-recall curves over Receiver Operating Characteristic (ROC)

curves. We find ROC to be an overly-optimistic metric due to the considerable

class imbalance between the positive (object presence) and negative (no object

presence) classes. We define APwhich, APwhen, and APwhere for the three

problem definitions respectively. For each, we take the entire set of predictions

and compute the Average Precision with respect to the entire set of targets.

The AP metrics provide a holistic interpretation of model performance but

are not easy to interpret. Therefore, we propose two new, more interpretable

metrics for MCTF evaluation, the soft-intersection-over-union (SIOU) for the

when and where problem formulations. The SIOU for evaluating the when

formulation is as follows:

SIOUwhen =
1

|C+|

C+∑
c

∑T +

t ŷct∑T
t ŷ

c
t

(5.1)
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where C+ and T + are sets of true positive cameras and timesteps, respect-

ively. ŷct ∈ (0, 1) is the predicted value for the presence the object in camera c

at timestep t. Intuitively, SIOUwhen is a value between 0 and 1, representing

the temporal overlap between the predicted and ground truth timesteps for all

cameras where the individual appears. Figure 5.6 depicts the SIOUwhen for a

single camera view.

We compute the SIOU for evaluating the where problem as follows:

SIOUwhere =
1

|C+|

C+∑
c

1

|T +|

T +∑
t

∑I+
i

iŷct∑I
i
iŷct

(5.2)

where I+ is the set of grid cells where the individual is present. SIOUwhere

is similarly a value between 0 and 1 representing the spatial overlap between

predicted and ground truth grid cell locations for all true positive cameras and

timesteps. Figure 5.7 depicts the SIOUwhere for a single timestep and camera

view. We use these new SIOU metrics because the metrics are more easy to

interpret, unlike the AP metric. Both SIOU metrics are a value between 0

and 1 representing the overlap between targets and ground truth, where a

value of 0 mean no overlap, 1 mean perfect overlap, and everything else in

between. We use the SIOU metrics jointly with AP metrics as the SIOU

metrics only consider True Positives, whereas AP metrics consider both True

and False Positives. We therefore suggest both metrics are considered when

evaluating MCTF models.

In addition to our new metrics, we also adapt the standard Average Dis-

placement Error (ADE) and Final Displacement Error (FDE) metrics used

widely in the SCTF literature [32, 33, 83, 84]. We refer to these metrics as

ADEwhere and FDEwhere hereinafter to distinguish them from their SCTF

counterparts. We compute a single coordinate value for a heatmap Hi by

computing the center of mass, Rx,y, as follows:

Rx,y = ((
1

M

∑
m∈Hi

xm · rmx ), ((
1

M

∑
m∈Hi

ym · rmy ))), (5.3)

where M is the sum of all elements in Hi. Note that Hi denotes a heatmap

for camera i at a single timestep. rmx and rmy respectively denote the x and y

positions of the mth element in Hi, and xm and ym denote heatmap values at

position m. This value corresponds to the centroid of the target bounding box

in the image space, weighted by heatmap value. As a target can appear in more

than one camera view, we compute ADEwhere and FDEwhere separately for

each camera the target appears and take the mean. ADEwhere and FDEwhere

are valid for the where problem formulation.
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Figure 5.7: Visual representation of the SIOUwhere metric. The sum of
the predictions that overlap with the ground truth is divided by the sum of
the predictions that do not overlap with the ground truth plus the sum of the
ground truth values. Shown is an example of computing the SIOUwhere for a
single timestep in a single camera. We then compute the mean SIOUwhere for
all timesteps and in all camera views in which the target appears.

5.4 Performance Evaluation

In this section, we introduce the evaluation dataset, baseline approaches, and

assess the performance of each model for the which, when, and where tasks.

5.4.1 Warwick-NTU Multi-Camera Forecasting Dataset

We introduced the Warwick-NTU Multi-Camera Forecasting (WNMF) dataset

in Chapter 3. WNMF was collected specifically for MCTF using a set of 15 cam-

eras in a building on the Nanyang Technological University campus and contains

both overlapping and non-overlapping views recorded over 20 days. The data-

set consists of cross-camera trajectories where an individual departs from one

camera view and then re-appears in another after no more than 12 seconds. An

individual may also be visible in any number of other camera views during this

tracking period. We use a robust 5-fold cross-validation setup in all experiments

that follow, where training, validation, and testing sets all contain footage recor-

ded on different days. The WNMF dataset is available to download at https:

//github.com/olly-styles/Multi-Camera-Trajectory-Forecasting.

5.4.2 Baseline Approaches

In addition to the models introduced in Section 5.3.2, we also evaluate several

baselines.

Shortest real-world distance. We use the physical distance between cam-

eras in the real world and predict the camera closest to the current camera.

This baseline applies to the which formulation only.

Training set mean. We consider all training set observations for a particular

camera and take the mean of all ground truth labels in the training set.
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Most similar trajectory. We find the most similar trajectory in terms of `2

distance in the same camera from the training set to the observed trajectory

and predict the same label.

Hand-crafted features. We extract some features from the bounding boxes

and classify them with a fully-connected network. Our 10-dimensional hand-

crafted feature vector contains velocity in x and y direction, acceleration in

x and y direction, last observed bounding box height and width, and four

coordinates. We compute all features with respect to the 2D coordinate system

as captured by the camera.

5.4.3 Which Camera Will the Target Appear?

Experimental setup. We use our proposed network architectures (Sec-

tion 5.3.2) and baselines (Section 5.4.2). For the coordinate trajectory ap-

proaches, we train a separate model for each camera. To adapt the SCTF

models for MCTF, we leave encoders unchanged and change decoders to fully-

connected output layers of size 15, the number of cameras in the WNMF

dataset. We use a binary cross-entropy loss function with a sigmoid activation

function at the output layer. The activation maps each output to a value

between 0 and 1, representing the predicted probability of appearance for the

individual in each camera. Coordinate trajectory and trajectory tensor models

are trained with the Adam optimizer using learning rates of 1× 10−3 and

1× 10−4, respectively, chosen using cross-validation. Coordinate trajectory

encoders extract a feature vector of size 128, whereas trajectory tensor ap-

proaches extract a feature vector of size 512 as a single encoder is shared across

all cameras and therefore requires a larger representation capacity. All models

are trained using a batch size of 64. We use a heatmap H of size either 16× 9,

32× 18, or 48× 27 and a Gaussian smoothing kernel size between 0 and 4 as

input, chosen using cross-validation. The impact of changing these parameters

is investigated in Section 5.4.7.

Results. The APwhich for each model is shown in Table 5.1, and precision-

recall plots are shown in Figure 5.15a. Coordinate trajectory approaches

outperform our 4 baselines, and trajectory tensor approaches perform the best.

5.4.4 When Will the Target Appear?

Experimental setup. We use the same encoders for evaluating the when task,

with either 1D-transposed convolutional layers or recurrent unit for decoding as

shown in Figure 5.5. Each model is trained with the binary cross-entropy loss,

and the trajectory tensor models are trained with the same hyperparameters

as the which problem formulation.
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Table 5.1: Which results. Given observations from one camera, each model
predicts which camera(s) the person will re-appear.

Model APwhich (↑)

Baselines

Shortest real-world distance 45.4

Training set mean 68.9

Most similar trajectory 65.3

Hand-crafted features 76.2

Coordinate
trajectories

LSTM 84.1

GRU 84.0

1D-CNN 83.3

Trajectory
tensors

2D-1D-CNN 87.1

3D-CNN 87.5

CNN-GRU 86.1

Results. The APwhen and SIOUwhen for each model are shown in Table 5.2,

and precision-recall plots are shown in Figure 5.15b. We observe a similar trend

to the results of the which task, with the 3D-CNN trajectory tensor model

performing best. The most similar trajectory baseline method performs well in

terms of SIOUwhen, but poorly in terms of APwhen. This result suggests that

this approach effectively predicts the correct time window an individual will

be visible in the target camera but often predict the wrong camera.

5.4.5 Where Will the Target Appear?

Experimental setup. We use the same target heatmap size of 16×9 regardless

of the input heatmap size for a fair comparison. We use this small heatmap

size to reduce computational complexity, and 16× 9 is the smallest possible

while maintaining the original aspect ratio of the video frames. The output

trajectory tensor is, therefore, of dimension 15 × 60 × 16 × 9. Unlike when

using trajectory tensors as inputs, we do not apply Gaussian smoothing to

the ground truth trajectory tensor targets. We use 2D or 3D transposed

convolutional layers to upsample extracted feature vectors to trajectory tensor

outputs, representing an individual’s future location. The trajectory tensor

models are trained with the same hyperparameters as in Section 5.4.3, again

using the binary cross-entropy loss.

Results. The APwhere, SIOUwhere, ADEwhere, and FDEwhere for each model

is shown in Table 5.3 and Table 5.4, and precision-recall plots are shown in

Figure 5.15c. Note that due to the considerably increased complexity of the
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Table 5.2: When results. Given observations from one camera, each model
predicts in which camera(s) the person will re-appear, and when (i.e., in which
timesteps) they will be present.

Model APwhen (↑) SIOUwhen (↑)

Baselines

Training set mean 61.7 40.0

Most similar trajectory 46.6 56.7

Hand-crafted features 67.1 48.7

Coordinate
trajectories

LSTM 76.8 51.8

GRU 77.5 53.7

1D-CNN 77.1 52.8

Trajectory
tensors

2D-1D-CNN 77.4 54.4

3D-CNN 79.0 53.9

CNN-GRU 69.1 42.0

Where problem formulation compared to Which and When, the AP is much

lower. Results for this problem formulation are more mixed than for the

Which and When, and some methods perform well on one metric but poorly

on others. For example, the hand-crafted feature baseline performs the best

in terms of ADEwhere and FDEwhere, but poorly in terms of APwhere. Unlike

the APwhere metric, the displacement error and SIOUwhere metrics do not

take into account erroneous predictions in camera views that the target does

not appear. Therefore, this result suggests that the hand-crafted features

baseline accurately forecasts the target trajectory but incorrectly assigns a

high likelihood to the target appearing in other camera views.

5.4.6 Qualitative Results

Here, we visualise successful and unsuccessful model predictions for each

problem formulation. For reference, we reproduce the WNMF dataset camera

network topology in Figure 5.8.

Which problem formulation. Two successful predictions of the next camera

the individual will re-appear are shown in Figure 5.9. In the upper example,

an individual departs from Camera 5 and continues straight, re-appearing in

Camera 7. Our trajectory-tensor based model also assigns some probability

that the individual will re-appear in Camera 4, positioned further down the

corridor. In the lower example, an individual departs from Camera 11. Our

model assigns Camera 6 and Camera 10 as the most likely next cameras, which

both have a view of the corridor. An unsuccessful prediction is shown in

Figure 5.10. All models incorrectly assign Camera 6 as the most likely next
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Table 5.3: Where results. Given observations from one camera, each model
predicts which camera(s) the person will re-appear, in which timesteps they
will be present, and where in the camera view they will appear. Best results
are highlighted in bold typeface, second best are underlined.

Model
APwhere

(↑)
SIOUwhere

(↑)

Baselines

Training set mean 28.4 14.4

Most similar trajectory 11.8 29.8

Hand-crafted features 25.5 20.2

Coordinate
trajectories

LSTM 16.3 8.7

GRU 16.5 8.8

1D-CNN 16.4 8.6

Trajectory
tensors

2D-1D-CNN 34.5 22.6

3D-CNN 37.4 22.9

CNN-GRU 22.4 12.8

Figure 5.8: WNMF camera network topology. The dataset contains 15
cameras in an indoor environment.

camera rather than Camera 10. These two camera views are overlapping, so

either may detect the target after departing from Camera 11.

When problem formulation. Two successful predictions of when the indi-

vidual will re-appear in the target camera views are shown in Figure 5.11. In

the upper example, an individual departs from Camera 5, turning the corner

and re-appearing in Camera 7 after a short delay. Some models incorrectly

assign a high probability to the individual appearing in Camera 6, which would

be the case if they continued walking straight rather than turning at the junc-

tion. Our trajectory tensor-based model correctly assigns a high probability

to Camera 7 after a short delay. In the lower example, an individual departs

from Camera 14 and turns left at the junction, re-appearing in Camera 3

after 16 timesteps. Most models assign high probabilities to Camera 12, where

the target would appear if they did not turn. Our proposed model correctly
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Table 5.4: Where results using traditional SCTF metrics. Given obser-
vations from one camera, each model predicts which camera(s) the person will
re-appear, in which timesteps they will be present, and where in the camera
view they will appear. Best results are highlighted in bold typeface, second
best are underlined. SCTF metrics do not penalize models for predicting a
trajectory in the wrong camera view, and therefore less appropriate than our
proposed metrics for evaluating MCTF performance.

Model
ADEwhere

(↓)
FDEwhere

(↓)

Baselines

Training set mean 226.1 260.4

Most similar trajectory 312.9 375.4

Hand-crafted features 216.2 255.2

Coordinate
trajectories

LSTM 285.9 365.5

GRU 286.0 366.0

1D-CNN 287.2 368.1

Trajectory
tensors

2D-1D-CNN 225.9 265.8

3D-CNN 223.3 279.2

CNN-GRU 280.1 351.7

predicts the re-appearance in Camera 3 with steadily increasing probability

over time. However, the model prediction does not cross a prediction threshold

of 0.5 until after the target has been visible in camera 3 for several timesteps.

An unsuccessful prediction is shown in Figure 5.12. All models incorrectly

predict the target will appear in Camera 6 after a short delay rather than

Camera 10. Camera 6 does not pick up the individual, possibly due to low

lighting or occlusion. The individual is instead captured in Camera 10 after a

long delay.
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Figure 5.9: Example successful which predictions. Our model successfully
anticipates the next camera an individual will re-appear. As the maximum
time between target observations is 12 seconds, individuals generally re-appear
in a nearby camera.

Figure 5.10: Example unsuccessful which predictions. All models incor-
rectly assign camera 6 as the most likely next camera.
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Figure 5.11: Example successful when predictions. Our model correctly
anticipates individuals turning at intersections and approximates the time of
re-appearance in another camera in the network.

Figure 5.12: Example unsuccessful when predictions. This is a similar
scenario as the which prediction in Figure 5.10 where the individual is predicted
to appear in the wrong camera out of two overlapping views.
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Figure 5.13: Example successful where predictions. Here we show ex-
ample where predictions for our trajectory tensor model with 3D-CNN archi-
tecture. The predictions are made in a 16× 9 grid which are smoothed with a
Gaussian kernel for cleaner visualization.

Figure 5.14: Example unsuccessful where prediction. The predictions
are made in a 16 × 9 grid which are smoothed with a Gaussian kernel for
cleaner visualization.
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Where problem formulation. Two successful predictions of where the

individual will re-appear are shown in Figure 5.13. In the upper example, the

individual departs from Camera 4 and continues to walk down the corridor.

Our model correctly identifies where in the view of Camera 2 the individual

will be visible. Note how the size of the predicted region decreases in later

timesteps. In the lower example, we show a multi-modal prediction. Our model

assigns some probability of the individual turning at the junction and appearing

in Camera 6, and some probability of the individual continuing straight and

appearing in Camera 5. A higher probability is assigned to Camera 6. An

unsuccessful prediction is shown in Figure 5.14. Here the model predicts that

the individual will stop at the water dispenser (visible in Camera 4) rather

than turning right (visible in Camera 3). This result highlights the reliance on

training data and the importance of gathering sufficient data to cover various

scenarios.

5.4.7 Ablation Studies

Multi-view trajectory tensors. Our proposed trajectory tensor data repres-

entation enables us to model the same individual captured in multiple camera

views. To study the impact of multiple camera views, we train our trajectory

tensor-based models using only one of the available views, i.e., we set each

heatmap at each timestep to the zero matrix for all but one of the camera

channels c ∈ Z. The results in Table 5.5 show a comparison of our trajectory

tensor models with a single-view trajectory (each heatmap is 0 for all but one

of the cameras c ∈ Z) and a multi-view trajectory (where more than one of the

camera channels c ∈ Z may be non-zero). The results show that the models

can make use of the location information available in multiple camera views.

Heatmap size and smoothing. We investigate the impact of heatmap size

Table 5.5: Multi-view trajectory tensor results. Comparison of single-
view and multi-view trajectories. Observing a trajectory in multiple camera
views improves model performance in most cases.

Model Multi-view trajectories APwhich APwhen APwhere

2D-1D-CNN
No 81.8 76.6 37.4

Yes 87.1 77.4 34.5

3D-CNN
No 83.0 77.1 38.8

Yes 87.5 79.0 37.4

CNN-GRU
No 83.4 68.4 23.6

Yes 86.1 69.1 22.4
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(a) Which (b) When

(c) Where

Figure 5.15: Precision-recall plots. Precision and recall of each model
for all three problem formulations. Colours represent Training Set Mean
(Dark Blue), Most Similar Trajectory (Orange), Shortest Real-world Dis-
tance (Light Blue), Hand-crafted Features (Green), GRU (Red), LSTM
(Purple), 1D-CNN (Brown), 2D-1D-CNN (Pink), 3D-CNN (Grey), and
CNN-GRU (Yellow). The performance of all models for the Where problem
formulation is lower than the Which and When formulations owing to the
considerably increased difficulty.

and standard deviation of the Gaussian filter for smoothing. Larger heatmap

sizes afford models more representation power at the cost of more parameters

and a tendency to overfit the training data. On the other hand, smoothing has

a regularising effect by reducing the impact of errors during the detection and

tracking stages. We suggest, therefore, that both heatmap size and smoothing

sigma should be tuned in tandem. Figure 5.16 shows the impact of heatmap

size and smoothing sigma.

5.4.8 Multi-Target Multi-Camera Trajectory Forecasting

Thus far, we have focused on the problem of Single-Target MCTF, where

models predict the trajectory of a single target. We extend this to Multi-

Target Multi-Camera Trajectory Forecasting (MT-MCTF), allowing us to

predict multiple target trajectories simultaneously. The WNMF dataset, as

first introduced in Chapter 3, does not contain MT-MCTF labels, so we first

generate a new set of annotations amenable to MT-MCTF.

Experimental setup. We start our trajectory predictions when a target
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Figure 5.16: Impact of heatmap size and smoothing. Here we show the
impact of heatmap size and smoothing sigma using 5-fold cross validation. We
observe that larger heatmap sizes are most beneficial for the Where problem
formulation where more fine-grained predictions are required.

departs from a particular camera view. Therefore, for multi-target MCTF,

we group trajectories into multi-target groups where each target departs at

a similar time. Specifically, we group trajectories into bins of 2 seconds (10

timesteps), such that targets with trajectories ending within 2 seconds of

each other are considered multi-target trajectories. As we predict the future

trajectory using 2 seconds of past data, grouping trajectories in this way ensures

that trajectories overlap temporally for at least one timestep. Trajectories may

be visible in the same or different camera views to other trajectories in the

same multi-target group. To focus on the multi-target problem, we discard

trajectories where only one target is visible, resulting in 58 data samples,

containing a total of 119 trajectories, an average of 2.05 trajectories per sample.

The maximum number of trajectories in a single data sample is 4. Due to the

small size of the multi-target subset (119 trajectories compared to 1, 967 in

the full dataset), results should be treated with caution.

We evaluate our trained models and baselines on the multi-target subset of

WNMF, which is available to download alongside the full dataset. We use 5-fold

cross-validation, using a model trained on data collected on different days to
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Table 5.6: Multi-target multi-camera trajectory forecasting results.
Comparison of each model on a multi-target subset of the WNMF dataset. Tra-
jectory tensor models stack multi-targets across an additional tensor dimension.
Other models process each trajectory sequentially.

Model
APwhich

(↑)
APwhen

(↑)
APwhere

(↑)

Baselines

Shortest real-world distance 39.5 N/A N/A

Training set mean 63.9 56.8 28.6

Most similar trajectory 58.6 40.7 12.2

Hand-crafted features 48.0 36.6 10.0

Coordinate
trajectories

LSTM 77.8 73.1 19.5

GRU 73.5 72.3 20.7

1D-CNN 75.3 71.6 20.2

Trajectory
tensors

2D-1D-CNN 70.8 70.6 33.4

3D-CNN 80.0 63.3 30.2

CNN-GRU 46.9 36.3 18.0

the test set. Each model is trained until the performance on the validation set

saturates for each fold, and is then evaluated on the test set. For our baselines

and coordinate trajectory approaches, we process each trajectory sequentially.

As our trajectory tensor-based approaches use a single unified model for all

camera views, we process the multi-target trajectories in parallel by stacking

trajectories along the batch dimension. Therefore, the input trajectory tensors

are of dimension b × |C| × t × w × h, where b is the number of targets, and

other dimensions are the same as described in Section 5.3.1. Stacking inputs

along the batch dimension enables us to simultaneously predict trajectories for

any arbitrary number of targets that fit into system memory.

Results. Results for multi-target MCTF are shown in Table 5.6. Learned

approaches outperform the baselines, although there is variation between the

performance of the three tasks across models. This variation may be due to

the small size of the multi-target subset compared to the full dataset. Our

2D-1D-CNN and 3D-CNN trajectory tensor models outperform coordinate

trajectory approaches for the which and where tasks and process all targets and

camera views using a single unified model rather than predicting trajectories

for each target sequentially using a separate model for each camera.
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5.5 Discussion

Our results show that using trajectory tensors has several advantages over

traditional coordinate trajectories for MCTF. Representing trajectories as

tensors allows us to model relative object locations in multiple camera views

simultaneously, which improves MCTF performance when used as inputs and

provides an intuitive way to represent multi-modal futures when used as targets.

Trajectory tensors are also considerably more efficient than using coordinate

trajectories in an MCTF setting, as a single model can be used rather than

creating separate models for each camera. Note that our approach and other

baselines require that the camera network is the same at training and testing

time.

Trajectory Tensors are robust to camera failure. As objects are potentially

visible in multiple camera views, the trajectory may still be modelled if the

object is not visible in a particular camera view or if the camera is not

operational. Trajectory tensors also facilitate the representation of trajectories

in multiple cameras simultaneously. Furthermore, trajectory tensors are an

intuitive way to represent multi-modal future trajectories. Existing work has

explored other approaches to representing multi-modal futures, such as using

generative models to generate many possible futures. Trajectory Tensors model

multiple futures in one shot.

We find the 3D-CNN architecture consistently performs the best across

MCTF tasks. 3D-CNNs have traditionally only seen major success in settings

where vast amounts of data are available for training [196]. However, in our

setting, we use resolutions of up to 48× 27 rather than the 224× 224 or higher

commonly used in activity recognition, which considerably reduces the number

of parameters and facilitates training on smaller datasets.

5.6 Summary

We have developed a complete framework for MCTF formulated in a hierarchy of

three spatio-temporal localization tasks: In which camera, when, and where will

the object(s) appear? Our work is the first to address the challenges of trajectory

forecasting in a multi-camera environment. We introduced the idea of the

trajectory tensor - a new trajectory representation that facilitates the encoding

of multi-camera trajectories and associated uncertainty. Trajectory tensors are

an attractive alternative to the traditional coordinate trajectory representation

used in previous works. Our experiments demonstrate the accurate performance

of trajectory tensor models on the WNMF dataset. Furthermore, we found

that using data from multiple camera views proves to be beneficial for MCTF

using trajectory tensors. We envision our MCTF framework and model will
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enhance multi-camera surveillance systems, complementing existing models for

person Re-ID and multi-camera tracking.
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Chapter 6

Conclusions and Future Work

In this thesis, we have proposed a set of strategies for pedestrian trajectory

forecasting in video. In this chapter, we summarise our contributions, discuss

applications, and consider future work.

6.1 Summary of Contributions

In Chapter 3, we presented a method for generating machine-annotated datasets

for egocentric SCTF, and a machine-aided annotation method for generating

MCTF datasets. Our methods address the issue of prohibitively small datasets

in the trajectory forecasting field by providing a framework for collecting data

with minimal human labour. We collected new annotation for the BDD-100k

[105] dataset, and collected the new Citywalks and WNMF datasets, which

are made available to download for the research community. In Chapter 4, we

presented DTP, a method for vehicle-view trajectory forecasting, and STED,

a method for our newly-defined MOF problem formulation. DTP used optical

flow as an input modality to predict trajectories, and performance improved on

a human-annotated dataset after training the model on a machine-annotated

dataset, annotated using our method introduced in Chapter 3. STED used

past object bounding boxes in addition to optical flow to predict full future

object bounding boxes. STED outperformed other methods on the Citywalks

dataset, and also outperformed other methods on the human-annotated MOT-

17 dataset after training on the machine-annotated Citywalks dataset without

fine-tuning. In Chapter 5, we introduced the MCTF framework. MCTF

extends the existing trajectory forecasting problem formulation to a multi-

camera environment, opening new applications for trajectory forecasting. We

introduced the trajectory tensor, which enables us to model multi-camera

trajectories with a single model elegantly. Our proposed model uses a 3D-CNN

backbone and outperforms existing SCTF works adapted for MCTF.
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6.2 Applications

The methods proposed in this thesis have a range of applications. We identify

four main application domains, shown in Figure 6.1.

6.2.1 Intelligent Vehicles

The rapid improvements in pedestrian detection systems have led many car

manufacturers, such as Toyota, to implement ADAS to aid drivers in critical

situations [197]. Such systems provide warnings or even apply automatic

braking if a pedestrian is detected in front of the vehicle but work only in a

limited capacity for potentially dangerous events that require the anticipation

of future intentions of pedestrians. Forecasting future pedestrian trajectories is

vital for an AV to be safe, particularly in light of the recent pedestrian fatality

as a result of an AV malfunction [198].

6.2.2 Mobile Robotics

Service robots in environments shared with humans are beginning to become

more common in both domestic and industrial settings and generally travel at

low speeds in order to minimise the frequency and impact of collisions [199].

Trajectory prediction is a crucial component for such robots to travel more

quickly in environments shared with humans or to assist humans based on

their likely future movements [67].

6.2.3 Intelligent Traffic Surveillance

A MCTF system could be deployed for vehicle prediction to improve traffic

flow and transport efficiency. Existing methods use infrastructure-to-vehicle

communication in order to enable more effective planning for intelligent vehicles

[200]. With an accurate MCTF system, overhead CCTV cameras could relay

information about future vehicle trajectories, helping to improve traffic flow

at signalised intersections and reduce congestion without the need for other

sensors.

6.2.4 Object Tracking

Tracking objects in video is a widely studied problem in computer vision.

Current systems often use a Kalman filter to model short term motion of

objects [122, 201]. However, our results in Chapter 4 have demonstrated

that our proposed methods outperform a Kalman filter for short term motion

prediction up to 2 seconds. Using a model such as DTP or STED capable of

modelling non-linear motion for motion prediction rather than a Kalman filter
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Figure 6.1: Applications of our contributions. Predicting the future
location of an object in video has several application domains.

is likely to result in better object tracking, especially in scenarios where the

object track is lost due to occlusions.

6.3 Future Work

In this section, we discuss works that have used our proposed methods and

consider future research directions.

6.3.1 Works Using our Machine-Annotation Methods

Our single-camera machine annotation framework was extended by Le et

al. [202]. The authors adopt our proposed machine-annotation method to

generate additional training data for an object detection model rather than

a trajectory prediction model. As part of the machine-annotation schedule

involves using an object detector, the proposed method is repeated iteratively,

using the re-trained detector with each pass of the unlabelled data. The

authors also extend our machine-annotation framework with an additional step

for recovering missed objects. After removing low-confidence detections and

tracks shorter than a minimum length l, the remaining tracks are extended in

both directions where the neighbouring frames contain detections with an IOU

above a threshold. The work demonstrates the applicability of our proposed

machine-annotation framework to other computer vision tasks.

Ansari et al. [155] use the Citywalks dataset to study transfer learning

across egocentric trajectory forecasting datasets and propose a real-time ego-

centric forecasting model. The proposed model trained on Citywalks performs

comparability to state-of-the-art methods on the FPL [31] dataset without

any fine-tuning. The model performs poorly when evaluated on the JAAD

[64] dataset without fine-tuning, as the JAAD dataset contains footage from a
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vehicle-mounted camera, which is different to the Citywalks dataset. However,

fine-tuning with 15% of the JAAD dataset results on state-of-the-art perform-

ance. These encouraging results show promise for using our machine-annotated

data from pre-training egocentric trajectory forecasting models.

Bouhsain et al. [203] use the Citywalks dataset to predict future object

bounding boxes. The authors propose a model which is evaluated on both the

human-annotated JAAD [64] datasets. The proposed model is discussed in

more detail in the next subsection.

6.3.2 Works Using our Trajectory Forecasting Methods

Makansi et al. [154] propose a model for MOF and compare predictions with

DTP and STED. Their model combines predicted vehicle egomotion with a

novel reachability prior to predict the future locations of both vehicles and

pedestrians using a vehicle-mounted camera. The reachability prior learns

the most likely future locations of objects based on the scene’s semantic

segmentation. For example, vehicles are more likely to travel on roads than

pavements. The proposed model outperforms the existing state-of-the-art.

Although computing semantic segmentation can be computationally expensive,

this is a common processing step in intelligent vehicles and could therefore be

reused for other tasks, such as drivable area detection [204].

Ansari et al. [155] propose a model for MOF that uses only object bounding

boxes as the model input. The emphasis in this work is on creating a fast

and lightweight network that can run in real-time with minimal hardware

requirements. The proposed model uses a similar encoder-decoder architecture

to STED without the optical flow feature stream. The model uses a separate

auto-encoder loss in addition to the future trajectory loss. After encoding the

past bounding boxes using an LSTM, a separate decoder LSTM reconstructs

the past bounding boxes in reverse order. This approach ensures that the

encoder can reproduce the input. The authors train the model using our

Citywalks dataset and demonstrate that the model generalises to the FPL

dataset [31] without fine-tuning.

STED was used by Bouhsain et al. [203] who showed that performance

comparable to our model in terms of displacement error was attainable on the

Citywalks dataset using an LSTM model at half the runtime. However, the

proposed model, SV-LSTM, does not perform as well as STED in terms of

average and final IOU. The authors also train their SV-LSTM model using the

JAAD dataset in a multi-task setting. SV-LSTM predicts both the future state

of the pedestrian (crossing or not crossing) and their future bounding boxes.

The multi-task formulation improves the performance of SV-LSTM for both

tasks either in isolation, suggesting that the future state and future bounding
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box prediction tasks are complementary.

Poibrenski et al. [205] propose M2P3, a model for egocentric trajectory

forecasting. M2P3 is an Conditional Variational Auto-Encoder (CVAE)-based

model, meaning multiple future trajectories can be sampled from a single input

trajectory. The authors show that M2P3 performs slightly better than DTP on

the JAAD dataset when a single trajectory is sampled and considerably better

when the best of 3 sampled trajectories is used. M2P3 is one of the first multi-

modal approaches for egocentric trajectory forecasting, clearly demonstrating

the advantages of such an approach.

Yin et at. [206] propose a MTN, a model for MOF from on board a moving

vehicle, and compare with DTP and STED. MTN uses vehicle odometry

information (where available), past target bounding boxes, and optical flow

from within the target bounding boxes. Optical flow from the centre area of

the camera view is also used to model the motion of the ego vehicle. All optical

flow frames are downsampled using spatial average pooling and used as inputs

to a transformer-based network. The proposed model is marginally better than

STED in terms of MSE, while using considerably fewer model parameters.

Kesa et al. [207]1 extend the MOF problem formulation to Multiple

Object Tracking and Forecasting (MOTF), where objects are tracked have

their locations forecast by the same model. The authors propose JLA, a

joint learning architecture for simultaneous tracking and forecasting. JLA

uses a shared image feature embedding, where the features extracted from

images are shared for both tracking and forecasting. Experimental results

demonstrate that the multi-task framework improves performance on both

tasks, i.e., the information from the tracking model is helpful for forecasting,

and the information from the forecasting model is helpful for tracking. The

proposed model reduces the number of identity switches by 33% - 47% on the

MOTChallange benchmark datasets [46, 103].

6.3.3 Future Research Directions

Collecting new machine-annotated datasets. Our proposed dataset an-

notation strategies have made it quicker and cheaper to gather large datasets

for trajectory forecasting. While our methods have been evaluated on human

trajectory forecasting, our proposed annotation strategies and models are easily

generalisable to any class of moving object. However, the performance of our

methods for other object classes is currently unknown. Collecting datasets

of other objects, such as vehicles, would enable us to study the differences in

trajectory forecasting for different objects and open the possibility to explore

new applications. For example, vehicle trajectory forecasting could enable

1The author of this thesis also contributed to this work.
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intelligent traffic monitoring systems that control the flow of traffic by mon-

itoring vehicles’ current location and using accurate predictions about each

vehicle’s future trajectory.

Re-using our datasets for other tasks. The BDD-10k, WNMF and City-

walks datasets could be used for other tasks. For example, additional annota-

tions could be added using a pose estimation algorithm to forecast human

poses and trajectories. This addition would be particularly notable using the

WNMF dataset, as to the best of our knowledge, there are no prior works on

multi-camera pose forecasting.

Using the IOU as an objective function for MOF models. We use the

AIOU and FIOU metrics to evaluate our MOF methods, but do not use these

metrics as the objective function during training. Our MOF method, STED,

is trained using the smooth `1 loss and FPL[31] is trained using the `2 loss.

Recent work [208] has shown that optimizing the IOU metric directly improves

the performance of object detection methods. A similar approach may be used

for MOF methods by directly optimising for AIOU/FIOU.

Single-camera object interactions. Our MOF problem formulation con-

siders the future bounding boxes of all identifiable objects in the scene. However,

our proposed method does not consider the interactions between these objects

during prediction. Existing trajectory forecasting works from a BEV show that

modelling object interactions can be useful in trajectory prediction. Model-

ling object interactions is considerably more challenging from an egocentric

perspective, as the impact of scale and perspective must also be considered.

Nonetheless, effective modelling of the location of other objects is likely to

improve the performance of MOF methods.

Multi-camera object interactions. Our proposed method for multi-target

MCTF processes all targets in parallel but does not consider the interactions

between targets. Similarly to a single camera view, modelling target interactions

is likely to improve performance.

Multi-camera anomaly detection. Our trajectory forecasting models and

datasets may also be used for the task of anomaly detection. Yao et al. [40, 93]

proposed methods for anomaly detection using forecasting algorithms. If the

observed trajectory deviated substantially from the predicted trajectory, this

might indicate an anomalous event. In particular, the WNMF dataset provides

suitable data for evaluating anomalous trajectory detection in a multi-camera

environment. For example, if an MCTF model predicts with high confidence

that a target will appear in a camera they do not appear, this may indicate

that the individual is following an anomalous route.

MCTF for multi-camera tracking. Tracking a target across multiple non-

overlapping camera views involves matching disjoint object trajectories. Our
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MCTF framework may be used to aid in tracking, as the observed and predicted

object track should be similar if the MCTF model is accurate. Matching tracks

based on this similarity score may complement similarity scores using visual

metrics and help distinguish between targets with similar visual appearance.

Promising preliminary results on MCTF for multi-camera tracking using the

WNMF dataset are shown in Appendix A.

Camera network independent MCTF methods. Our MCTF approach

implicitly learns the camera network topology from training data. If the

method is deployed on a new camera network, the model must be re-trained

in order to learn the topology of the new camera network. Our proposed

machine-aided annotation method makes data collection considerably easier

than fully manual annotation; however, some human labour is still required. A

model may generalise to other camera networks if multi-camera trajectories

are projected to the world coordinate space without re-training.

6.4 Final Remarks

This thesis set out to expand on the state-of-the-art in human trajectory

forecasting in video. We have created trajectory forecasting models at all

stages of the pipeline: From data collection and annotation to model creation

and evaluation. All of the code, datasets, and methods discussed in this thesis

are available online at https://github.com/olly-styles, which we hope will

facilitate future research towards increasingly more sophisticated trajectory

forecasting systems.
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Appendix A

Multi-Camera Trajectory

Forecasting for Multi-Camera

Tracking

One of the core applications of an MCTF system is multi-camera object tracking.

Although a detailed study of this task is outside the scope of this thesis, here

we present preliminary results of how an MCTF model may be deployed to

facilitate multi-camera object tracking1.

Methodology

We investigate the impact of using both an appearance-based person re-

identification model in conjunction with our proposed MCTF model on cross

camera tracking. The goal is to link two disjoint tracks, t1 and t2, that share

the same identity. The tracks are always taken from different cameras, i.e.,

ct1 6= ct2 .

Appearance features. We define Mapp(t) as the appearance features com-

puted by a person re-identification model for track t. The appearance distance

between a pair of tracks t1 and t2 are compared by computing the difference

between their appearance features, Dapp(t1, t2) = F (Mapp(t1),Mapp(t2)), where

F measures the cosine distance between the appearance features, Mapp(t1) and

Mapp(t2), of tracks t1 and t2.

Trajectory features. We use an MCTF model to compute a trajectory

distance score, Dtraj , between a pair of tracks, t1 and t2. Dtraj is computed by

comparing the future path predicted by our MCTF model with the observed

tracks, Dtraj(t1, t2) = G(Mtraj(t1),Mdet(t2)) where G measures the euclidean

distance between the predicted and detected track.

1The work presented in this appendix was created in collaboration with Xufeng Lin.
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Track association. Tracks from different cameras are associated by applying

a pairwise bipartite matching algorithm to a distance matrix. We introduce a

threshold η to avoid merging two tracks with a distance greater than η, i.e. when

Dapp(k1, k2) > η. We use a weighting parameter λ ∈ [0, 1] to control the relative

importance of the appearance distance score, Dapp, and trajectory distance

score, Dtraj , to compute an overall distance score, D = λDapp + (1− λ)Dtraj .

Performance evaluation

We annotate a subset of the WNMF dataset with identity labels and use an

existing pre-trained person re-identification model to study the efficacy of joint

track association using both appearance and trajectory features.

Dataset. The WNMF dataset consists of 1967 cross-camera trajectories.

Identities are not annotated, and each cross-camera trajectory is not guaranteed

to be a unique identity. We take trajectories from the first day of data collection

and manually remove duplicate identities. Of the original 122 trajectories, 115

remain.

Experimental setup. We use Omni-Scale Network (OSNet) [209] to extract

appearance features. The model is trained on the QMUL i-LIDS dataset (476

images, 119 identities and 4 non-overlapping cameras) [210] and MSMT17

dataset (126,441 images, 4101 identities and 15 cameras) [211]. We use our

best-performing model (trajectory-tensors with a 3D-CNN backbone) as our

MCTF model. We use the IDF1 metric to evaluate results, which is the ratio

of correctly identified detections over the average number of ground-truth and

computed detections [101].

Results. The impact of varying λ on the tracking performance in terms of

IDF1 scores is shown in Figure A.1. The highest IDF1 score is observed when

0 < λ < 1, i.e., when both Dapp and Dtra contribute to the overall distance

score, D. In Table A.1, we show the IDF1 scores for different matching

thresholds η and different weighting factors λ. For most cases, the highest

IDF1 score is observed when 0 < λ < 1. We see the best performance using the

when problem formulation. This may be due to incorrect location predictions

for the where formulation causing true matches to be unmatched.
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(a) Using which model predictions to
compute Dtraj

(b) Using when model predictions to
compute Dtraj

(c) Using where model predictions to
compute Dtraj

Figure A.1: Impact of varying λ on the IDF1 score. We use a matching
threshold of 0.40 and compare IDF1 scores using the 3 MCTF problem
formulations to compute Dtraj . We observe the highest scores using the when
problem formulation.
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Table A.1: Multi-camera tracking results with the which, when, and where
MCTF models in terms of the IDF1 score on the WNMF dataset. The row
with λ? shows the highest achievable IDF1 score and the value in parentheses
is the value of λ? when this highest IDF1 score is achieved. We highlight the
highest IDF1 score in bold when a performance improvement is observed.

λ

η
0.15 0.20 0.25 0.30 0.35 0.40

W
h

ic
h 0 76.5 78.0 74.8 74.5 74.1 72.7

1 59.9 68.9 75.8 80.3 80.9 80.7

λ? 78.4(0.05) 81.2(0.05) 83.7(0.8) 89.5(0.85) 92.3(0.9) 91.1(0.9)

W
h

en

0 59.2 61.2 62.2 64.8 66.4 65.1

1 59.9 68.9 75.8 80.3 80.9 80.7

λ? 66.2(0.15) 71.1(0.35) 83.6(0.75) 92.1(0.85) 97.0(0.8) 97.9(0.8)

W
h

er
e 0 57.6 59.4 63.0 65.3 66.3 68.9

1 59.9 68.9 75.8 80.3 80.9 80.7

λ? 59.9(1) 68.9(1) 78.4(0.85) 85.7(0.8) 92.1(0.65) 94.0(0.6)
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Appendix B

Multi-Camera Trajectory

Forecasting Model

Architecture Details

Here, we provide details for the model architectures introduced in Chapter 5.

Table B.1: RNN architecture. Based on [2]

Block Layer type
Kernel

size
Stride

Output
dimension

Encoder
Input - - 4

FC + ReLU - - 128
RNN + ReLU - - 128

Which decoder FC + Sig. - - 15

When decoder
RNN + ReLU - - 128

FC + Sig. - - 15

Where
decoder

RNN + ReLU - - 128
2D-TConv + ReLU 1 1 128
2D-TConv + ReLU 4 2 128
2D-TConv + Sig. 3 2 128
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Table B.2: 1D-CNN architecture. Based on [31]

Block Layer type
Kernel

size
Stride

Output
dimension

Encoder

Input - - 4
1D-Conv + ReLU 3 1 32
1D-Conv + ReLU 3 1 64
1D-Conv + ReLU 3 1 128
1D-Conv + ReLU 3 1 128

Which decoder FC + Sig. - - 15

When decoder

1D-TConv + ReLU 4 2 128
1D-TConv + ReLU 4 2 128
1D-TConv + ReLU 4 2 128
1D-TConv + Sig. 4 2 128

Where
decoder

1D-TConv + ReLU 4 2 128
1D-TConv + ReLU 4 2 128
1D-TConv + ReLU 4 2 128
1D-TConv + ReLU 4 2 128
2D-TConv + ReLU 1 1 128
2D-TConv + ReLU 4 2 128
2D-TConv + Sig. 3 2 128
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Table B.3: 2D-1D CNN architecture.

Block Layer type
Kernel

size
Stride

Output
dimension

Encoder
(9)

Input - - 15
2D-Conv + ReLU 3 1 64

2D Max pool 2 - 64
2D-Conv + ReLU 2 1 128

2D Max pool 2 1 128
1D-Conv + ReLU 3 1 256

1D-Max pool + ReLU 2 1 256
1D-Conv + ReLU 3 1 256

Encoder
(18)

Input - - 15
2D-Conv + ReLU 5 1 64

2D Max pool 2 - 64
2D-Conv + ReLU 3 1 256

2D Max pool 5 1 256
1D-Conv + ReLU 3 1 256

1D-Max pool + ReLU 2 1 256
1D-Conv + ReLU 3 1 256

Encoder
(27)

Input - - 15
2D-Conv + ReLU 5 1 32

2D Max pool 2 - 32
2D-Conv + ReLU 3 1 128

2D Max pool 2 1 128
2D-Conv + ReLU 3 1 256

2D Max pool 2 1 256
1D-Conv + ReLU 3 1 256

1D-Max pool + ReLU 2 1 256
1D-Conv + ReLU 3 1 256

Which decoder FC + Sig. - - 15

When decoder

1D-TConv + ReLU 4 2 256
1D-TConv + ReLU 4 2 128
1D-TConv + ReLU 4 2 64
1D-TConv + ReLU 4 2 32
1D-TConv + Sig. 1 1 15

Where decoder

1D-TConv + ReLU 7 1 256
1D-TConv + ReLU 7 2 256
1D-TConv + ReLU 6 3 256
2D-TConv + ReLU 1 2 128
2D-TConv + Sig. 4 2 64
2D-TConv + Sig. 3 2 15
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Table B.4: 3D CNN architecture.

Block Layer type
Kernel

size
Stride

Output
dimension

Encoder
(9)

Input - - 15
3D-Conv + ReLU 3 1 64

3D Max pool 2 - 64
3D-Conv + ReLU 3 1 256

3D Max pool 1 - 256

Encoder
(18)

Input - - 15
3D-Conv + ReLU 3 1 64

3D Max pool 1 - 64
3D-Conv + ReLU 3 1 128

3D Max pool 2 - 128
3D-Conv + ReLU 3 1 256

3D Max pool 1 - 256

Encoder
(27)

Input - - 15
3D-Conv + ReLU 1 1 64

3D Max pool 1 - 64
3D-Conv + ReLU 3 1 128

3D Max pool 1 - 128
3D-Conv + ReLU 3 1 256

3D Max pool 2 - 256
3D-Conv + ReLU 3 1 256

3D Max pool 1 - 256

Which decoder FC + Sig. - - 15

When decoder

1D-TConv + ReLU 4 2 256
1D-TConv + ReLU 4 2 128
1D-TConv + ReLU 4 2 64
1D-TConv + ReLU 4 2 32
1D-TConv + Sig. 1 1 15

Where decoder

3D-TConv + ReLU 5 2 256
3D-TConv + ReLU 5 2 256
3D-TConv + ReLU 5 2 128
3D-TConv + Sig. 4 2 15
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Table B.5: CNN-GRU architecture.

Block Layer type
Kernel

size
Stride

Output
dimension

Encoder
(9)

Input - - 15
2D-Conv + ReLU 3 1 128

2D Max pool 2 - 128
2D-Conv + ReLU 2 1 256

2D Max pool 2 1 256
GRU + ReLU - - 256

Encoder
(18)

Input - - 15
2D-Conv + ReLU 5 1 64

2D Max pool 2 - 64
2D-Conv + ReLU 3 1 256

2D Max pool 5 1 256
GRU + ReLU - - 256

Encoder
(27)

Input - - 15
2D-Conv + ReLU 5 1 32

2D Max pool 2 - 32
2D-Conv + ReLU 3 1 128

2D Max pool 2 1 128
2D-Conv + ReLU 3 1 256

2D Max pool 2 1 256
GRU + ReLU - - 256

Which decoder FC + Sig. - - 15

When decoder
GRU + ReLU - - 256

FC + Sig. - - 15

Where decoder

GRU + ReLU - - 256
2D-TConv + ReLU 1 2 128
2D-TConv + Sig. 4 2 64
2D-TConv + Sig. 3 2 15
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[15] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio

Frazzoli. A survey of motion planning and control techniques for self-

driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1):33–

55, 2016.

[16] Tharindu Fernando, Simon Denman, Sridha Sridharan, and Clinton

Fookes. Tracking by prediction: A deep generative model for mutli-

person localisation and tracking. In Winter Conference on Applications

of Computer Vision (WACV), 2018.

[17] Hiroaki Minoura, Ryo Yonetani, Mai Nishimura, and Yoshitaka Ushiku.

Crowd density forecasting by modeling patch-based dynamics. IEEE

Robotics and Automation Letters, 6(2):287–294, 2020.

[18] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani,

Dariu M Gavrila, and Kai O Arras. Human motion trajectory prediction:

A survey. The International Journal of Robotics Research, 39(8):895–935,

2020.

[19] Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. Agreeing to cross:

How drivers and pedestrians communicate. In Intelligent Vehicles Sym-

posium, pages 264–269. IEEE, 2017.

125



[20] Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. Understanding

pedestrian behavior in complex traffic scenes. IEEE Transactions on

Intelligent Vehicles, 3(1):61–70, 2018.

[21] Sarah Schmidt and B Färber. Pedestrians at the kerb–recognising the

action intentions of humans. Transportation Research Part F: Traffic

Psychology and Behaviour, 12(4), 2009.

[22] Tianjiao Wang, Jianping Wu, Pengjun Zheng, and Mike McDonald.

Study of pedestrians’ gap acceptance behavior when they jaywalk outside

crossing facilities. In Intelligent Transportation Systems (ITSC), pages

1295–1300. IEEE, 2010.

[23] Shanshan Zhang, Rodrigo Benenson, Mohamed Omran, Jan Hosang,

and Bernt Schiele. Towards reaching human performance in pedestrian

detection. Transactions on Pattern Analysis and Machine Intelligence,

40(4):973–986, 2018.

[24] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier,

Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back,

Paul Natsev, et al. The kinetics human action video dataset. arXiv

preprint arXiv:1705.06950, 2017.

[25] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta.

Revisiting unreasonable effectiveness of data in deep learning era. In

IEEE International Conference on Computer Vision, pages 843–852,

2017.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet

classification with deep convolutional neural networks. In Advances in

Neural Information Processing Systems, pages 1097–1105, 2012.

[27] Dirk Helbing and Peter Molnar. Social force model for pedestrian dy-

namics. Physical Review E, 51(5):4282, 1995.

[28] Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds.
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