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Abstract

Respiratory syncytial virus (RSV) causes significant childhood morbidity and mortality in the

developing world. The determinants of RSV seasonality are of importance in designing inter-

ventions. They are poorly understood in tropical and sub-tropical regions in low- and middle-

income countries. Our study utilized long-term surveillance data on cases of RSV associ-

ated with severe or very severe pneumonia in children aged 1 day to 59 months admitted to

the Kilifi County Hospital. A generalized additive model was used to investigate the associa-

tion between RSV admissions and meteorological variables (maximum temperature, rain-

fall, absolute humidity); weekly number of births within the catchment population; and

school term dates. Furthermore, a time-series-susceptible-infected-recovered (TSIR)

model was used to reconstruct an empirical transmission rate which was used as a depen-

dent variable in linear regression and generalized additive models with meteorological vari-

ables and school term dates. Maximum temperature, absolute humidity, and weekly

number of births were significantly associated with RSV activity in the generalized additive

model. Results from the TSIR model indicated that maximum temperature and absolute

humidity were significant factors. Rainfall and school term did not yield significant relation-

ships. Our study indicates that meteorological parameters and weekly number of births

potentially play a role in the RSV seasonality in this region. More research is required to

explore the underlying mechanisms underpinning the observed relationships.

Introduction

Respiratory syncytial virus (RSV) is an ubiquitous RNA virus that is a significant cause of early

childhood morbidity and mortality worldwide [1,2]. In low- and middle-income settings, RSV

is recognized as an important cause of hospitalized severe pneumonia in children aged
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between 28 days and 5 years [1]. In 2015, it was estimated that there were 33.1 million (uncer-

tainty range 21.6–50.3) RSV- Acute Lower Respiratory Infections (ALRI) episodes globally,

leading to about 3.2 (2.7–3.8) million hospital admissions, and 59,600 (48,000–74,500) hospital

deaths, in children < 5 years of age [2]. An approximate 1.4 million (1.2–1.7) in hospital

admissions, and 27,300 (20,700–36,200) in-hospital deaths were in young children < 6 months

of age. The vast majority of both morbidity and mortality arises from low- and middle-income

countries [2].

There is no recognised prophylactic for RSV-ALRI for general use. After over 50 years of

vaccine research and development, there is none, to date, that has been licensed [3]. Several

RSV vaccines and monoclonal antibody products are at various stages of pre-clinical and clini-

cal development targeting infants and pregnant women [4]. Most recently, a prophylactic

high-potency long half-life anti-F protein monoclonal antibody met its primary endpoint in a

Phase III trial [5]. Two maternal booster F protein vaccines are in Phase III trials [6]. The suc-

cessful use of these products in early infants and pregnant women to prevent severe disease in

children in the first few months of life will be affected by the timing of seasonal RSV transmis-

sion [7].

RSV is characterized by marked annual or biennial seasonal patterns [8]. In temperate cli-

mates, RSV infections have been found to happen in the winter months [9,10]. In tropical

regions, a wide variation in the timing has been observed [10]. However, comparatively little

attention has been directed to most tropical settings in Africa, hence the RSV seasonality pat-

tern remains largely unexplored in these regions, despite the considerable ALRI burden and

deaths [10,11]. To understand RSV seasonality, factors that drive these patterns should be well

understood. In regions with temperate climates, RSV seasonal epidemics peak in winter

months [11]. Previous studies in different tropical regions worldwide have yielded inconsistent

results. Temperature, humidity and precipitation have been found to be strongly, weakly or

not at all associated with RSV activity [12–18]. Seasonality in births has also been shown to

impact the seasonality in infectious diseases, especially with respect to first infections [19,20].

Malnutrition has been found to be associated with RSV seasonality [21,22]. Demographic fac-

tors such as household crowding indices have been found to influence the length of RSV sea-

sons [23].

Seasonal patterns of RSV in Kenya, through which the equator passes have been compared

in 3 distinct counties (Nairobi, Siaya and Kilifi) [24]. However, the potential factors driving

these seasonal patterns have not been assessed. The current study was carried out using previ-

ously collected datasets from the Kenya Medical Research Institute (KEMRI)-Wellcome Trust

Research Programme (KWTRP), located in Kilifi Town along the coastal region bordering the

Indian Ocean. The study aimed to investigate whether meteorological parameters (maximum

temperature, absolute humidity, rainfall), weekly number of births, and school terms could

be determinants of seasonal RSV epidemics. Identifying the potential factors driving RSV sea-

sonality would enhance the understanding of the virus transmission mechanisms in this

setting.

Methods

Ethics statement

The ethical approval for the study was granted by the Kenya Medical Research Institute–Scien-

tific Ethics Review Unit (reference number SERU 3178). Written informed consent was

obtained from parents or guardians for all eligible participants before any specimen(s) was col-

lected for RSV. The data was analysed anonymously.
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Inclusivity in global research

Additional information regarding the ethical, cultural, and scientific considerations specific to

inclusivity in global research is included in the Supporting Information (S1 Checklist).

Data

Data used were collected from routine longitudinal hospital case surveillance for RSV, and

routine longitudinal surveillance for the number of births and meteorological variables. The

datasets are described below.

RSV data

RSV data was obtained from Kilifi County Hospital located in Kilifi Town. Data was collected

from children aged 1 day to 59 months who presented with a clinical syndrome for either

severe or very severe pneumonia [25]. Written informed consent was obtained from parents

or guardians for all eligible participants before any specimen(s) was collected. The data

spanned the years 2002 to 2018. RSV was screened through immunofluorescence antibody test

(IFAT) for all years and real time reverse transcription-polymerase chain reaction (RT-rtPCR)

from 2007 [25]. Only data from locations covered by the Kilifi Health and Demographic Sur-

veillance System (KHDSS) were included [26]. The KHDSS area extends roughly 40km north

and south of Kilifi town and 30km in land, largely rural agricultural and the population size

has approximately increased from 200,000 to 300,000 over the study period (Fig 1).

Births data

Weekly number of birth data was obtained from the KHDSS registers. The system records the

number of births, deaths, pregnancies and migration events. The data spanned the years 2002

to 2018.

Meteorological data

Meteorological data was obtained from two weather stations. One station at Pwani University,

Kilifi Town and the other at KWTRP. Data from the Pwani station was recorded manually and

consisted of daily measurements of four main variables; maximum/minimum temperature (in

degree Celsius), rainfall (in millimeters), and average relative humidity (expressed in %). The

data comprised of measurements from January 2002 to July 2014. Data from KWTRP station

for maximum/minimum temperature, rainfall, and average relative humidity was measured by

an automatic weather station (Synoptic Automatic Weather Stations, Sutron, USA). Data from

this station was collected from July 2010 to November 2018. Absolute humidity was obtained

using equation 1, see supplementary material.

School term data

The data consisted of school start dates and end dates of half terms and holidays for pre-pri-

mary and primary [28]. Children attend pre-primary schooling for 2–3 years and encompasses

the age group 3–5 years. Primary school is attended for 8 years and includes children 6 years

and above.

Data processing

Weekly averages of meteorological variables were used in the analysis. Due to missing data in

the two meteorological datasets, multiple imputation using multivariate imputation by chained
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equations (MICE package) implemented in the R Statistical software (version 4.1.1) was per-

formed on the daily observations [29]. We performed five imputations resulting in five data-

sets for each meteorological dataset. The number of imputations (5) was chosen based on

imputation guidelines by Rubin [30] on the percentages of missing data. The resulting datasets

were merged with the RSV data, birth data, and data on school term by year and calendar

week. We performed separate analyses for the two meteorological datasets. See supplementary

material for more details on the rationale for separate analyses of the 2002–2014 and 2010–

2018 datasets.

Statistical analysis

To explore the plausible drivers of RSV seasonal epidemics, we applied two analytical

approaches. The first involved using a Generalized Additive Model (GAM), whilst the second

involved a time-series-susceptible-infected-recovered model (TSIR). GAMs are generalized

linear models with predictors specified as smooth functions of the covariates [31]. The cubic

spline smoothing function was adopted as it has been shown to yield smoother interpolations

when compared to other methods [31,32]. The model employed a negative binomial with a

log-link function due to over-dispersion in the weekly number of RSV cases. The model

included meteorological variables, weekly number of births, school term (in or out of term

time), and RSV activity in the previous 3 weeks (due to the serial correlation resulting from the

infection dynamics of RSV). We explored models for the lagged variables up to the previous

one week (i.e. values observed in the previous week for the covariates) to explore delay effects.

Fig 1. Geographical location of the study area. Left: Location of Kilifi county in Kenya. Middle: Map of Kilifi county showing KHDSS boundaries. Right:

KHDSS map showing Kilifi County Hospital location. Reprinted from [27] under a CC BY license, with permission from BioMed Central, Alice Kamau

(original copyright owner) [2017].

https://doi.org/10.1371/journal.pone.0278066.g001
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A cubic smoothing spline function of time was included to control for seasonal patterns and

long-term trend. Statistical significance was determined by an alpha level of 5%. All analyses

were done using the mgcv package in the R statistical software [33].

The TSIR method [34–36] was applied to enhance the exploration of how changes in birth

rates affect RSV dynamics as it has been shown for measles epidemics in England and Wales

[36]. Furthermore, it also provided an alternative approach to explore the plausible drivers of

RSV transmission dynamics in this region [34]. This discrete time epidemic model comprises

two state variables, namely: the infected and the susceptible. Since the susceptible is unob-

served, we reconstructed it using a set of recursive difference equations utilizing the weekly

number of RSV cases, weekly number of births and interpolated total weekly population over

the years using the tsiR package implemented in R statistical software [35]. Next, using the

reconstructed susceptible population over time, we reconstructed an empirical estimate of the

transmission rate which was subsequently used as a dependent variable in both linear regres-

sion and generalized additive negative binomial models with meteorological variables and

school term data as independent variables. More information on the TSIR and GAM method-

ologies is contained in the supplementary material.

Both analyses were performed on each of the five imputed 2002–2014 datasets and the five

imputed 2010–2018 datasets obtained as described above in the data pre-processing sub-sec-

tion. Our choice of independent analysis was motivated by the fact that imputation of the miss-

ing data in the meteorological variables was performed at daily resolutions and the weekly

averages were obtained to merge with the other considered datasets. Robust imputation meth-

odologies for data collected in different resolutions are still lacking in the literature and thus

future work in this area is warranted.

Results

In all our analyses, we observed that the weekly number of births was only significant at lag

two and three (number of births observed in the previous two and three weeks, respectively).

Hence in the GAM models, we considered a lag of two weeks of the weekly number of births

to coincide with the meteorological variables and school term, and a lag of three weeks of the

weekly births to coincide with a lag of one week of the meteorological variables and school

term. The two approaches (GAM and TSIR) yielded similar results, hence, we report the GAM

analyses below, the TSIR results are in the supplementary material.

In the 2002–2014 datasets, we observed that maximum temperature both at lags zero and

one week was a significant predictor of the weekly number of RSV cases (p-value <0.05,

Table 1). Absolute humidity was a significant predictor at lag one week (p-value <0.05,

Table 1). The weekly number of births was a significant predictor of the weekly number of

RSV cases at both lags two and three weeks (p-value <0.05, Table 1). Rainfall and school terms

did not yield significant relationships. The plots of the smooth terms of maximum tempera-

ture, absolute humidity and weekly number of births indicated non-linear relationships with

the weekly number of RSV cases (S1 Fig).

Analyses using the 2010–2018 datasets yielded similar results where maximum temperature

and absolute humidity were significant predictors of the weekly RSV cases at both lags zero

and one week (p-value <0.05, S1 Table in S1 File). Similarly, weekly number of births at both

lags two and three weeks was a significant predictor of the RSV cases (S1 Table in S1 File). The

plots of the smooth terms of maximum temperature, absolute humidity, and weekly number

of births showed non-linear relationships with the weekly number of RSV cases (Fig 2).

Generally, the correlation coefficients between the observed and the predicted number of

weekly RSV cases was high for both the 2002–2014 datasets (Table 1), and the 2010–2018
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datasets (S1 Table in S1 File). The curves of the predicted and the observed weekly RSV cases

closely followed each other for both the 2002–2014 datasets (Fig 3), and in the 2010–2018 data-

sets (Fig 4). The percentage of deviance explained was relatively higher for models including

the lagged values of meteorological variables, weekly number of births and school terms

(Table 1 & S1 Table in S1 File). The 2010–2018 datasets yielded higher values of the percent-

ages of the deviance explained, the adjusted R-squared, and the correlation coefficients

between the observed and predicted weekly number of RSV cases (Table 1 & S1 Table in

S1 File).

Discussion

In this study, we found that maximum temperature, absolute humidity and weekly number of

births are significant predictors of the weekly number of RSV cases from the independent

analysis of ten imputed datasets.

Although humans can reproduce throughout the year, some human populations exhibit

seasonal variation in reproduction leading to seasonal birth rates/patterns [37]. These varia-

tions can be utilized to characterize the seasonal variations in the incidence of infectious dis-

eases in early childhood [20,37]. In our study, the weekly number of births was a significant

Table 1. Generalized additive negative binomial models with lags zero and one week of meteorological variables and lags two and three weeks of weekly number of

births, respectively, in the 2002–2014 datasets.

Smooth terms EDF (p-value) †

Imputed

datasets

Maximum

Temperature

(Lag zero)

Absolute

Humidity

(Lag zero)

Weekly

Births

(Lag two)

Rainfall

(Lag

zero)

School

Term

(Lag zero)

Adj.R2 % Dev.

explained

Pred.

Corr. Coef ‡

Data 1 2.841

(< 0.001)

0.0014 (0.588) 2.245

(0.001)

0.833

(0.143)

-0.091

(0.330)

0.575 64.9 0.774

Data 2 2.786

(< 0.001)

0.001

(0.578)

2.280

(0.001)

0.794

(0.176)

-0.092

(0.328)

0.572 64.8 0.773

Data 3 3.195

(< 0.001)

0.0005

(0.639)

2.367

(<0.001)

0.0007

(0.492)

-0.071

(0.445)

0.566 65.0 0.770

Data 4 2.910

(< 0.001)

0.002

(0.640)

2.274

(<0.001)

0.671

(0.178)

-0.074

(0.429)

0.572 65.2 0.774

Data 5 3.052

(< 0.001)

0.001

(0.724)

2.303

(<0.001)

0.011

(0.347)

-0.079

(0.396)

0.571 65.0 0.733

Lag one of meteorological variables and school term

Imputed

datasets

Maximum

Temperature

(Lag one)

Absolute

Humidity

(Lag one)

Weekly

Births

(Lag three)

Rainfall

(Lag

one)

School

Term

(Lag one)

Adj.R2 % Dev.

explained

Pred.

Corr. Coef‡

Data 1 2.120

(0.007)

2.687

(0.015)

2.265

(<0.001)

1.126

(0.061)

-0.068

(0.461)

0.602 65.7 0.791

Data 2 2.262

(0.005)

2.127

(0.014)

2.30

(<0.001)

0.450

(0.229)

-0.063

(0.497)

0.595 65.3 0.787

Data 3 2.380

(< 0.001)

1.929

(0.046)

2.287

(<0.001)

0.695

(0.170)

-0.055

(0.557)

0.595 65.4 0.787

Data 4 2.215

(0.003)

2.110

(0.051)

2.229

(<0.001)

0.846

(0.141)

-0.061

(0.510)

0.599 65.2 0.789

Data 5 2.398

(< 0.001)

1.784

(0.049)

2.293

(<0.001)

0.553

(0.239)

-0.051

(0.580)

0.589 65.6 0.784

†EDF: Effective degrees of freedom for the estimated smooth terms.

‡ Correlation coefficient between the estimated and observed RSV.

https://doi.org/10.1371/journal.pone.0278066.t001
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predictor of RSV. Seasonality of births leads to pulses of new hosts in the population leading to

an expansion of the susceptible population, a significant factor modulating the transmission

dynamics of childhood infectious diseases [19,20]. A study in the US [38] found out that year-

to-year and state-to-state variations in birth rates determined the timing of rotavirus epidem-

ics. Another study in the US [39] showed variations in RSV epidemic timing where counties

with larger population sizes had earlier epidemic peaks and recorded higher RSV incidence. A

mathematical modelling study [40] found that changes in birth rates led to either annual or

biennial RSV seasonal epidemics. Another modelling study [16] in the US showed that the

transition to annual seasonal RSV epidemics in 2000 from biennial patterns in 1990s in Cali-

fornia could have been modulated by the changes in the birth rates. Similarly, another study

[20] in Sub-Saharan Africa showed that changes in seasonal birth rates can either lead to

annual or biennial dynamics of infectious diseases occurring early in life such as measles.

Thus, the observed associations between the weekly number of births and weekly RSV cases in

this region could suggest that the seasonal changes in births could be a potential driver of the

observed RSV seasonal epidemics. Further research is needed in this area.

School term did not yield significant relationships in our study. This might suggest that

school terms do not play a major role in determining the RSV seasonality in this region.

Fig 2. Plots of the meteorological smooth terms in the first imputed 2010–2018 dataset. The dashed lines are the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0278066.g002
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However, aggregation of children in schools has been found to play an important role in

increasing the transmission rates of measles in England and Wales [41], Influenza in England

and varicella zoster virus in several settings [42]. For RSV, it has been hypothesized that

increased contact rates during school terms could play a crucial role in influencing its season-

ality [43]. In addition, several studies have demonstrated that RSV is mostly introduced into

the households by school going siblings consequently leading to the infections to the infants

[44,45]. However, results from 4 recent studies do not appear to support this earlier hypothesis

[14–16,34] consistent with what we observed in our study. Insights into why ‘school terms’ is

not identified as a significant contributor to RSV seasonality would be gained from further

studies of RSV transmission patterns in the school setting, including linking RSV individual-

level infections data and social contact patterns for school going children at school-level, com-

munity and household levels to gain deeper understanding of ‘who infects who’ in the

community.

Rainfall did not yield significant relationships in our study implying that it might not be a

plausible driver of RSV seasonal epidemics in this region. This is in contrast with several other

studies that have found associations between rainfall and RSV activity in the following regions:

Baguio city in the Philippines, Okinawa in Japan [46], tropical Kolkata in India [47], and some

states in the US [16], Lombok island in Indonesia [12], Kuala Lumpur in Malaysia [47], the

Fig 3. Plot of observed and predicted weekly RSV cases in the first imputed 2002–2014 dataset. The black line connects the observed weekly RSV cases

while the red line connects the predicted weekly RSV cases.

https://doi.org/10.1371/journal.pone.0278066.g003
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Philippines [15], Gambia in West Africa [17], and an Equatorial city in Brazil [48]. Maximum

temperature showed non-linear relationship with RSV activity in this region. Interestingly,

absolute humidity also exhibited a non-linear relationship with the RSV activity. A previous

laboratory study [49] conducted to understand the stability of RSV in varying conditions

found out that at 37˚C, RSV inactivation took place over a period of 3 days. Varying the tem-

perature to 4˚C, indicated that 99% inactivation required a duration of 6 days or more.

Another study [50] at a constant temperature of 20.5˚C, the maximal stability of RSV was

recorded at 80–90% humidity, and maximal inactivation occurred at 20–30% humidity. Thus,

we postulate that stability of RSV in large particle aerosols in this tropical setting could be

dependent on variations in maximum temperature and absolute humidity. This could presum-

ably modulate aerosol transmission through altering the stability of RSV in the environment.

While meteorological factors and weekly number of births could likely influence RSV sea-

sonality, other plausible drivers of RSV epidemics such as malnutrition [22], household crowd-

ing and population density [23] could be explored. In our study, we used outdoor

measurements for the meteorological variables which could differ with indoor conditions

where the study domain (children under 5 years) spend much of their time. School term data

was inferred from the 2019 academic calendar, there might be year to year variations over the

study period. Our study assumed that the meteorological data had the same spatial coverage in

Fig 4. Plot of observed and predicted weekly RSV cases in the first imputed 2010–2018 dataset. The black line connects the observed weekly RSV cases

while the red line connects the predicted weekly RSV cases.

https://doi.org/10.1371/journal.pone.0278066.g004
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all locations where the study domain lived and there was no spatial heterogeneity based on the

distribution of these RSV cases. Furthermore, although Kenya sits on the equator, it has quite

different climatic regions. Thus, the chosen study location of coastal Kenya may differ from

other regions and hence our results might not be generalizable. More studies, using data from

geographically distinct locations with variation in the seasonal patterns and potential drivers

are needed in this regard.

Conclusion

Our study has identified maximum temperature, absolute humidity and weekly number of

births as potential drivers of RSV epidemics in this region. These findings contribute to the

current understanding of the potential drivers of RSV seasonality in a tropical low-income set-

ting where little is known about the plausible drivers of the RSV seasonality. Identifying these

factors is important in improving the understanding of the transmission dynamics of the virus

in this setting. Furthermore, these factors can be utilized in the formulation of prediction mod-

els of RSV activity in this setting. This potentially could provide early warnings of RSV seasons

and subsequently inform the timings of RSV immunizations using vaccine candidates cur-

rently in the pipeline. However, more research is needed in other regions with different cli-

matic classifications to shed more light on the observed relationships.
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