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Abstract

A multimorbidity trajectory charts the
time-dependent acquisition of disease
conditions in an individual. This is im-
portant for understanding and manag-
ing patients who have a complex ar-
ray of multiple chronic conditions, par-
ticularly later in life. We construct
a novel probabilistic generative model
for multimorbidity acquisition within a
Bayesian framework of latent feature al-
location, which allows an individual’s
morbidity profile to be driven by mul-
tiple latent factors and allows the mod-
elling of age-dependent multimorbidity
trajectories. We demonstrate the util-
ity of our model in applications to both
simulated data and disease event data
from patient electronic health records.
In each setting, we show our model can
reconstruct clinically meaningful latent
multimorbidity patterns and their age-
dependent prevalence trajectories.

Keywords: Multimorbidity Analy-
sis, Bayesian Feature Allocation Model,
Markov Chain Monte Carlo

1. Introduction

Multimorbidity refers to individuals who
have two or more medical conditions simulta-
neously and can also be referred to as “mul-
tiple (long-term) health conditions”. Mul-
timorbidity presents a major challenge for

clinicians due to the interacting effects of
different conditions and the treatment ap-
proaches that may be employed. It is often
not clear what the optimal clinical manage-
ment approach should be for any given pa-
tient. The prevalence of multimorbidity is
increasing globally due to factors such as age-
ing populations and socioeconomic inequali-
ties.

While some health conditions occur to-
gether by chance, others are non-random due
to a background of common genetic or en-
vironmental pathways. As a consequence,
there is increasing recognition that multi-
morbidity cannot be thought of as a random
assortment of individual conditions but as a
series of predictable time-evolving ‘groups’ of
conditions within individuals. This has led
to an increasing interest in using large-scale
population-scale data sets to obtain evidence
for recurrent multimorbidity patterns.

Computational phenotyping techniques
(e.g. Hassaine et al., 2020) can be used
when there is access to full electronic health
records (EHRs). If the diagnosis times for
conditions acquired by each individual are
available, it may be possible to use matrix or
tensor factorisation approaches to determine
the latent factors corresponding to groups
of associated conditions as well as tempo-
ral factors describing their evolution. Alter-
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Figure 1: Multimorbidity data. Data can
be represented as a binary ma-
trix indicating whether an individ-
ual possesses a particular disease.
Clustering algorithms can help us
to identify recurrent multimorbid
disease groupings.

natively, Planell-Morell et al. (2020) used a
Markov graph clustering approach to under-
stand the sequence of conditions acquired by
individuals, whilst recent deep learning ap-
proaches have been developed to learn rep-
resentations of heterogeneous, non-uniformly
sampled clinical data (Qian et al., 2020).

2. Contribution

In this paper, we address the related problem
where access to EHRs is limited or health
survey data is being used. In these situa-
tions, full temporal information is not avail-
able and only a cross-sectional snapshot of
the study population is recorded. This would
provide information about the conditions an
individual possesses at the time of the survey
but no detailed health history. The cross-
sectional data scenario is illustrated by our
main exemplar, the Golestan study (Odland
et al., 2021). Existing computational pheno-
typing approaches are not applicable in this
situation.

We assume cross-sectional multimorbidity
data is available in the form of a binary
individual-condition matrix (Figure 1). Fur-
ther we will also assume that age information
is available for each individual which we shall

leverage to reconstruct temporal patterns in
multimorbidity acquisition in the absence of
explicit diagnosis times.
In this work, we construct a time-evolving

Bayesian feature allocation model which ex-
plicitly incorporates age-dependence in the
accumulation of multimorbidities. Our con-
tributions are to 1) Develop the first bespoke
probabilistic generative model that allows
one to make inferences about the temporal
dependencies driving patterns of multimor-
bidity without having to follow any specific
individual through time. 2) Demonstrate an
efficient inference algorithm which is exact
(there is no model approximation during in-
ference). 3) Show how our model can provide
a clear representation of clinically meaning-
ful multimorbidity patterns comprising ex-
plicit disease profiles and prevalence trajec-
tories thus facilitating interpretable analysis
in both simulated and real-world examples.

3. Wright–Fisher Multimorbidity
Trajectory Model

In the following, we describe the con-
struction of our model, which we call
the Wright–Fisher Multimorbidity Trajec-
tory Model (WF-MTM).

3.1. Generative model

We assume the existence of K latent time-
varying features, where Xk(t) denotes the
probability that, at time t, the latent feature
k would be active. The prior over each fea-
ture trajectory is given by a Wright–Fisher
diffusion with mutation parameters αβ/K
and β (see e.g. Durrett, 2008, Ch. 7):

Xk(t) ∼WF

(
αβ

K
, β

)
,

where α and β control the prevalence of the
latent features.
We associate each latent feature with an

intensity ϕk ∼ Gamma(γ, 1) and a morbidity
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probability profile, ρk, which tells us the prob-
ability of a morbidity d occurring for feature
k. Its prior is:

ρkd ∼ Beta(η0, η1), d = 1, . . . , D.

Thus each latent feature can be considered
to be associated with a collection of co-
morbidities. The hyperparameters η0, η1 are
taken to be identical across all features, im-
plying that the distribution of each feature
being associated with each morbidity is the
same a priori. In order to preserve model
identifiability, we allow latent feature preva-
lence to evolve with time but not their mor-
bidity profiles.

Given the latent feature trajectories, a bi-
nary feature indicator Z assigns latent fea-
tures to individuals at each time point. From
this, we specify θit = (θitk) which is a proba-
bility distribution over the K latent features
for each individual i at time t:

Zitk|Xk(t) ∼ Bernoulli(Xk(t)),

θit|Zit,ϕ ∼ Dirichlet(Zit ◦ ϕ),

where Zit = (Zitk), ϕ = (ϕk), and Zit ◦ ϕ
refers to their Hadamard product. This con-
struction allows the model to distinguish be-
tween feature prevalence and its contribution
to morbidity within an individual. Thus we
can successfully account for the possibility of
a morbidity profile which is rare in the pop-
ulation but which nonetheless accounts for a
substantial fraction of the conditions within
those individuals associated with that profile
(Williamson et al., 2010).
Finally, we use Witd ∈ {0, 1} to indicate

whether individual i at time t has morbidity
d. The morbidity is assumed to derive from
a latent feature and we use Aitd ∈ {1, . . . ,K}
as an indicator:

Aitd|θit ∼ Categorical(θit),

Witd|Aitd, ρAitd
∼ Bernoulli(ρAitdd).

A graphical illustration of the model is
given in Figure 10.

3.2. Inference

Posterior inference is based on Markov Chain
Monte Carlo (MCMC) with Gibbs-type up-
dates where the algorithm cyclically sam-
ples a single variable from its conditional
distribution given the others.1 To improve
mixing time, we integrate out θ and ρ and
sample only A, ϕ, Z, and X following Per-
rone et al. (2017). The allocations A can
be sampled with a Gibbs step and the pa-
rameters ϕ can be straightforwardly updated
with a random-walk Metropolis step (see Ap-
pendix). However, updating Z and X is
more complicated, as we now describe.

Sampling Z. The posterior distribution of
individual latent feature indicators Zit de-
pends on the posterior distribution of the
number of feature assignments across indi-
vidual morbidities, nit = (nitk). Suppose
ϕ∗ = (ϕs), n∗

it = (nits) are S-dimensional
sub-vectors with subscript s, the sth largest
element of the set Sit = {k : Zitk = 1} of the
cardinality S. Then

P (Zit|nit,X(t),ϕ) ∝
(
D

n∗
it

)
B(ϕ∗ + n∗

it)

B(ϕ∗)

×
K∏
k=1

Xk(t)
Zitk(1−Xk(t))

1−Zitk ,

where B(·) is the beta function.

We use a Hamming Ball sampler for effi-
cient sampling of Zit (Titsias and Yau, 2017);
this employs an auxiliary variable Uit that
allows iterative sampling from slices of the
state space of Zit and avoids exhaustive enu-
merations over the entire state space of Zit

with exponential complexity. The Hamming
Ball sampler can be more effective than the
standard Gibbs sampler in inferring a cor-
related posterior distribution, e.g. where la-
tent groups of morbidities co-occur within

1. We provide implementation of our inference at
https://github.com/thysics/WF-MTM.
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Reference Survey
Temporal

Data
Temporal
Model

Feature
Allocation

Uncertainty
Quantification

Clustering algorithms Cross-sectional ✗ ✗ ✗ ✗

Ruiz et al. (2014) Cross-sectional ✗ ✗ ✓ ✓

Hassaine et al. (2020) Longitudinal ✓ ✓ ✗ ✗

Qian et al. (2020) Longitudinal ✓ ✓ n/a ✓

WF-MTM Cross-sectional ✗ ✓ ✓ ✓

Table 1: Existing approaches for multimorbidity analysis.

an individual, since it has the ability to per-
form joint updates and move between differ-
ent posterior modes. The algorithm consists
of two steps:

Uit ←− P (Uit|Zit), (1)

Zit ←− P (Zit|Uit,Θ), (2)

where Θ = {nit, Xt,ϕ}.
The conditional distribution of Uit is

P (Uit|Zit) =
1

Zm
I(Uit ∈ Hm(Zit))

where Hm(Zit) = {Uit :
∑K

k=1 I(uitk ̸=
zitk) ≤ m} and Zm is the cardinality
of Hm(Zit). The posterior conditional
P (Zit|Uit,Θ) simplifies to P (Zit|Uit,Θ) ∝
P (Zit,Uit,Θ)I(d(Uit,Zit) ≤ m) where d(·)
denotes Hamming distance andm is the user-
defined Hamming radius, i.e. the number of
elements in Uit we allow to differ from Zit.

Sampling X. The posterior distribution of
feature probabilities X across time is propor-
tional to the transition probability of the WF
diffusion and is intractable. We use Particle
Gibbs sampling (Andrieu et al., 2010) to ap-
proximate this posterior distribution. More
precisely, we follow Perrone et al. (2017, Al-
gorithm 1) except we replace their discreti-
sation of the WF diffusion with an exact
WF simulation method to eliminate all dis-
cretisation error. The WF diffusion can be
simulated exactly by exploiting a probabilis-
tic representation of the transition function’s

eigenfunction expansion (Jenkins and Spanò,
2017).

By incorporating this exact simulation
method, we gain considerable computa-
tional advantages compared to previous ap-
proaches. While the exact method has
time complexity O(T ) such that T refers
to the number of age cohorts, a discretisa-
tion method has higher complexity of O(GT )
where G is the number of grid points. In
practice this translates into an order of mag-
nitude in computational gains.

4. Related Work

Despite its wide use in different fields such
as natural language processing (Williamson
et al., 2010; Perrone et al., 2017), public
health (Ruiz et al., 2012), and disease pheno-
typing (Ni et al., 2020), Bayesian feature al-
location models seem to be applied rarely in
multimorbidity analysis. An exception is the
work of Ruiz et al. (2014). This method is
closest to ours since it is not only applicable
to binary data but also can be used to obtain
an interpretable representation of groups of
morbidities. However, this model does not
incorporate age information and therefore is
not suited for identifying patterns of age-
dependent co-occurring diseases.

Previous studies have also used generic
clustering methods to partition patients into
mutually exclusive (latent) sets. These in-
clude the use of K-means (KM) (Violán
et al., 2019), Hierarchical Clustering Anal-
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ysis (HCA) (Roso-Llorach et al., 2018), and
Latent Class Analysis (LCA) (Larsen et al.,
2017; Hall et al., 2018; Zhu et al., 2020).
However, with such approaches, the time-
evolving behaviour of clusters can only be
examined by partitioning the study popu-
lation into age groups, clustering each age
group individually, and then integrating out-
puts post-hoc.

5. Experiments

We demonstrate the utility of our model on
both simulated and real-world data. For
comparison, we use a set of benchmark mod-
els which are widely used in the analysis of
multimorbidity: KM, HCA, LCA, and an
Indian Buffet Process-based feature alloca-
tion model (IBP) (Ruiz et al., 2014). The
evaluation is based on whether each model
can identify clinically meaningful latent mor-
bidity profiles and whether these profiles ex-
hibit time-dependence in their prevalence. In
curated examples, we compare the outcome
of each model with respect to a (curated)
ground truth; otherwise, we use other data-
driven metrics for comparison. To better un-
derstand how these models would perform
in real-world applications, we considered a
range of examples with increasing complex-
ity.

To compare methods we must account for
the fact that no model except for ours explic-
itly models the temporal dependence of mul-
timorbidity patterns. We therefore conduct
additional ‘post-analysis curations’ on com-
parator methods in order to obtain a proxy
for the trajectory of a feature and its mor-
bidity profile. We construct trajectories ret-
rospectively as follows: The morbidity pro-
file associated with a latent feature k is con-
structed by looking only at those individuals
to whom feature k—and no other features—
are associated. The empirical means of mor-
bidities within these observations are then

used as the corresponding morbidity pro-
file. For clustering methods, a temporal tra-
jectory is constructed by tracking the em-
pirical size of a cluster at each time where
the cluster itself is identified without know-
ing a patient’s age. We emphasise that our
method does not require such ad-hoc post-
analysis curation and automatically provides
a clear probabilistic representation of time-
dependent latent morbidity profiles.

Curated example: Non-overlapping
morbidity profiles. We considered a
complex simulated example which mimics a
real cross-sectional study. In this example,
each patient accumulates a series of symp-
toms (out of 15 different morbidities) from
one or more latent multimorbidity features
throughout their lifetime (10% of the popu-
lation develop morbidities from two differ-
ent features). Latent features have time-
varying prevalence. For instance, a collection
of co-morbidities (numbered 5–9) appears in
early age groups while a separate feature as-
sociated with morbidities numbered 10–14
emerges from middle age. The third profile,
associated with morbidities 0–4, is present
across all ages (Figure 7). To better reflect
the real-world data, 20% of patients are as-
sumed to be morbidity-free.

We further allow the morbidity profile
within each feature to be time-dependent,
ρkd = ρkd(t). This deviates from our genera-
tive process which assumes a time-invariant
profile where only the feature prevalences
Xk(t) evolve over time. Inference under this
example therefore also serves as a robustness
check for model misspecification.

Results are shown in Figure 2(a). Our
method, WF-MTM, as well as IBP suc-
cessfully recover morbidity profiles. Where
they are time-dependent, the inferred pro-
files are close to an average of underly-
ing profiles across time. However other,
clustering-based, methods fail to recover un-
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Figure 2: Analysis of simulated cross-sectional data sets. Two types of simulated
examples: a) non-overlapping and b) overlapping morbidity profiles. Empirical
proportion of patients in each feature (dashed line). WF-MTM: posterior credible
interval and its mean (shaded area, bold line) for feature trajectories. IBP and
LCA: a proportion of each feature at each age (inverted triangle); note that the
models themselves are not time-dependent.

derlying profiles since they all cluster indi-
viduals rather than morbidities. Their inac-
curate reconstructions of morbidity profiles
lead to the overestimation of feature tempo-
ral prevalence. Figure 2(a) shows that un-
like feature-allocation models, LCA overesti-
mates the prevalence of features across time
(similarly for KM and HCA). While both
WF-MTM and IBP reasonably recover tem-
poral trajectories, it is important to remark
that only our method can make inferences for
such trajectories directly without the need
for additional analysis.

Overlapping morbidity profiles. We
considered another simulated example where
we simulate 913 patients from our genera-
tive process across 10 time (i.e. age) points.
Here patients are susceptible to four under-

lying time-varying features whose profiles in-
volve D = 20 morbidities. Profiles were con-
structed in a way that each pair of profiles
share one common morbidity. In this more
realistic scenario the majority of patients,
68% of the population, possess morbidities
from multiple features with overlapping mor-
bidity profiles.

Posterior samples from the MCMC algo-
rithm successfully recapitulate the underly-
ing (true) feature trajectories and morbidity
profiles. Figure 2(b) shows that the credible
intervals for trajectories generally capture
the corresponding truth. However, the other
baseline methods, including IBP, reconstruct
morbidity profiles and temporal prevalences
which significantly deviate from the underly-
ing truth. For instance, LCA was only able
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Data Model Pearson Spearman

Semi-
curated
data

WF-MTM [0.360, 0.394] [0.337, 0.378]
IBP 2 0.190 0.167
LCA [0.310, 0.373] [0.305, 0.371]
HCA [0.035, 0.331] [0.043, 0.332]
KM [0.276, 0.354] [0.272, 0.357]

Real-
world
data

WF-MTM [0.362, 0.389] [0.343, 0.372]
LCA [0.268, 0.340] [0.258, 0.330]
HCA [0.061, 0.207] [0.050, 0.189]
KM [0.145, 0.296] [0.137, 0.288]

Table 2: Performance for all baselines.
Performance intervals are based on
either the 95% posterior credible
interval (WF-MTM) or the corre-
sponding bootstrap confidence in-
terval (others). Best performance is
highlighted in bold. See Appendix
for definitions of correlation metrics
and bootstrap confidence interval.

to reconstruct the trajectory of the feature
shown in purple while its estimates for others
continue to under-estimate the ground truth.

Golestan study. Odland et al. (2021)
sampled individuals aged 36–81 years in the
Golestan province in Iran. The data was
collected from a cross-sectional cohort study
conducted between 2006 and 2010 where
each individual is recorded only once. We
filtered the data so that every patient has
at least two morbidities. This resulted in
N = 13, 953 patients with 37 different age-
groupings from 39–75 years. On average,
each patient possesses 2.6 of the D = 19
conditions and there are 1, 534 unique sets
of co-morbidity patterns within the data,
whose size ranges from two to nine condi-
tions. We applied our method to infer age-
dependent multimorbidity profiles from the
cross-sectional data.

2. We could not obtain the outcome based on the
posterior credible interval for IBP since this re-
quires substantial modifications of its existing
code base.

Semi-curated dataset. Before analysing
the full data, we considered a subset which
we refer to as the semi-curated dataset, con-
sisting of patients exhibiting few distinct
multimorbidity patterns. Specifically, we
sample a subset of individuals each of whom
possesses either hypertension, thyroid dis-
ease, or stroke. This experiment allows us
to compare the performance of our model
against the current state-of-the-art feature
allocation-based model (IBP).3

Furthermore, unlike the full dataset where
there is no information about the ground
truth, the curated set allows us to seed some
anticipated multimorbidity patterns, which
makes it possible to evaluate the outcome of
each model. A reasonable reconstruction of
morbidity profile and feature trajectory is ex-
pected to be consistent with existing clinical
knowledge. For instance, in Iran, the stroke
incidence rate is higher among the older pop-
ulation and the condition tends to co-occur
with hypertension (Fallahzadeh et al., 2022).
Other studies suggest that the majority of
thyroid problems in developing countries oc-
cur in young adults (e.g. 32–51 years) (Tahir
et al., 2020; Tsegaye and Ergete, 2003). It
is also well-known that there is a strong as-
sociation between hypertension and thyroid
problems (Berta et al., 2019).

In our comparison, WF-MTM, IBP and
LCA are able to summarize dominant mul-
timorbidity patterns in the form of three
distinct latent features, each of which cap-
tures a set of co-occurring diseases coupled
with stroke, thyroid disease, and hyperten-
sion (Figure 3). However, it was only possi-
ble to do so for IBP and LCA through man-
ual stratification of patients into distinct age
groups. K-means and hierarchical clustering
did not reproduce these patterns. A mor-
bidity profile associated with thyroid disease

3. We could not apply IBP to the full dataset since
we found that its existing code base is scalable
only up to a couple of thousand observations.
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Figure 3: Analysis of semi-curated dataset. The posterior credible interval and its
mean (shaded area, bold line) for each feature inferred by WF-MTM. A propor-
tion of each feature at each age, constructed from the baseline models (inverted
triangle, dotted line). Features are named after their two leading conditions.

Figure 4: Multimorbidity disease profiles. The posterior means of disease occurrence
probabilities in each feature. Boxes cover the interquartile interval of the esti-
mates with whiskers being the 95% credible interval.

(or stroke) is strongly correlated with hy-
pertension, agreeing with well-known disease
associations (Figure 9). Our model, how-
ever, stood out by its ability to recapitulate
age-linked dependencies. As expected, Table
2 shows that the features inferred by WF-
MTM possess temporal dependencies that
better reflect changes in the occurrences of
its member diseases across time than other
baseline models. Furthermore, the posterior
feature trajectories are easily interpretable
thanks to their stable and smooth shape, dif-

ferent from the ones obtained by IBP, which
are both rough and unstable and therefore
harder to interpret (Figure 3). The dif-
ference is mainly due to explicit modelling
of time-dependence in WF-MTM allowing
the sharing of statistical strength across age-
groupings, which encourages the emergence
of multimorbidity patterns with clearer tem-
poral dependency.

Full real-world data. We next considered
the full real-world data. Incorporating age
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Figure 5: Temporal prevalence of single conditions. Each panel includes empirical
trajectories of single conditions (dashed lines) selected from the three most com-
mon diseases within that morbidity profile. Inferred feature trajectory is in bold.

Figure 6: Reconstruction of feature prevalence trajectory. Each coloured dotted
line represents the age-dependent prevalence trajectory of a feature. Trajectories
in benchmark models are constructed based on the empirical proportion of each
feature at each age. Features from various models are matched with each other
(by colour) in terms of their closeness with respect to the Wasserstein metric.

allows WF-MTM to identify time-dependent
emergence of morbidity profiles such as men-
tal health (MH), gastrointestinal (GI), in-
flammatory (INF), cardiometabolic (CM)
and cardiovascular (CV) profiles (we name
each profile after their leading constituent
disease). The patterns of co-occurrence
among diseases are consistent with well-
known disease-associations. Figure 4 shows
for example that feature CM captures that
hypertension is coupled with heart disease
and diabetes, while various gastrointestinal
conditions are grouped together in GI. Fur-

thermore, patient-level covariate data—not
used in the analysis—further support the va-
lidity of our findings; for instance, relative to
the population average, the ‘inflammatory’
feature is associated with increased num-
bers with arthritis (289% higher) whereas
both CV and CM are associated with in-
creased systolic blood pressure (20.6% and
22% higher, respectively) in comparison with
GI (the feature associated with the lowest
blood pressure).

The reconstructed temporal prevalences
from WF-MTM are also consistent with the
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temporal prevalence of its leading conditions
in the data (Figure 5). For instance, the
‘mental health’ profile, which shows a preva-
lence that decreases with age, has two lead-
ing conditions including ‘mental health dis-
order’ and ‘unspecified cardiovascular dis-
ease’, both of whose occurrences decrease
over time. The cardiovascular profile, on the
other hand, has an upward-sloping trajec-
tory, following that of its leading conditions
such as hypertension and heart disease.

Our model demonstrates superior perfor-
mance to alternative baseline models in cap-
turing the age-dependency of disease accu-
mulation. Figure 6 shows that the implied
prevalence of each feature obtained from KM
and HCA have little dependence on age while
the prevalence trajectories from our model
can capture strong dependency across age.
This is supported by a quantitative assess-
ment: Table 2 shows that our model per-
formed the best in each metric.

6. Conclusion

We introduced the Wright–Fisher Multi-
morbidity Trajectory Model (WF-MTM), a
novel probabilistic generative model for mul-
timorbidity analysis. Our model frames mul-
timorbidity analysis as a latent feature al-
location problem which assumes individual
disease susceptibility is driven by multiple
latent factors. We introduce temporal de-
pendence on these latent features, allowing
for age-varying multimorbidity trajectories.
We achieve state-of-the-art performance on
both synthetic and real-world data examples.
Using cross-sectional health surveys of large
cohorts with binary records of disease con-
ditions as well as patient ages, we are able
to identify age-dependent properties of latent
features driving the acquisition of multimor-
bidity.

The model we introduce is flexible and eas-
ily extended to a nonparametric counterpart

in which the number of clusters, K, can be
regarded as unknown and unbounded. We
found our model to be reasonably robust
to misspecification of K (Figure 8) and to
other types of model misspecification as dis-
cussed above, though we leave detailed anal-
ysis of the inference of K to future work.
Another extension includes a comparison be-
tween reconstructed groupings of morbidities
from the model and known biomedical classi-
fications, e.g., morbidity groupings that are
known to co-exist. Other important exten-
sions include allowing for time-dependence of
morbidity profiles within features, and the
incorporation of patient covariate data, be-
yond just age, directly into the model.
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Appendix A. Posterior inference

Sampling A. The posterior distribution of
the feature assignment for morbidity d in in-
dividual i at time t, Aitd, is proportional
to the conditional distribution of A−itd =
(Ai′t′d′)(i′,t′,d′ )̸=(i,t,d), i.e. of the cluster assign-
ments for all the other morbidities except for
Aitd, times the prior distribution of the cor-
responding morbidities status Witd.

P (Aitd = k|A−itd,W,Z
it
−k, Zitk = 0,ϕ) = 0,

P (Aitd = k|A−itd,W−itd,Witd = 1,Z
it
−k, Zitk = 1,ϕ)

∝
(ϕk + nitk − I(Aitd = k))(η0 + nkd

v=1 − I(Witd = 1, Aitd = k))

η0 + η1 +
∑1

j=0(n
kd
v=j − I(Witd = j, Aitd = k))

,

P (Aitd = k|A−itd,W−itd,Witd = 0,Z
it
−k, Zitk = 1,ϕ)

∝
(ϕk + nitk − I(Aitd = k))(η1 + nkd

v=0 − I(Witd = 0, Aitd = k))

η0 + η1 +
∑1

j=0(n
kd
v=j − I(Witd = 0, Aitd = k))

.

Here the number of morbidity ‘locations’
assigned to feature k and resulting in mor-
bidities status v (either 0 or 1) is denoted
by

nkd
v =

T∑
t=1

Nt∑
i=1

I(Aitd = k,Witd = v),
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and Zit
−k = (Zitj)j ̸=k. The above conditional

distribution can be computed exactly by enu-
meration across all k = 1, . . . ,K; this update
is a Gibbs step.

Sampling ϕ. The posterior distribution of
ϕ depends on the distribution of the fea-
ture assignments across the population and
on the prior distribution of ϕ. Let ϕ∗ =
(ϕs),n

∗
it = (nits) be S-dimensional vectors,

where S denotes the cardinality of the set
Sit = {k : Zitk = 1}. To simplify the no-
tation, we use the same notation S for ev-
ery observation although S varies across the
population. Then

P (ϕ|γ,A,Z) ∝
K∏
k=1

ϕγ−1
k e−ϕk

Γ(γ)

×
T∏
t=1

Nt∏
i=1

(
D

n∗
it

)
B(ϕ∗ + n∗

it)

B(ϕ∗)

where B(·) is the multivariate Beta func-
tion. We obtain samples from this distri-
bution based on a random-walk Metropolis–
Hastings algorithm with a normally dis-
tributed proposal whose variance is set to 0.1
throughout.

Appendix B. Implementation
Details

Clustering methods. The benchmark
clustering algorithms include K-means
(KM), Hierarchical Clustering Analysis
(HCA) and Latent Class Analysis (LCA).
We apply KM on the space of principal
components of the data. We use the Jaccard
metric for HCA. The implementation of
LCA follows Linzer and Lewis (2011).

IBP. The benchmark feature-allocation
model is developed in Ruiz et al. (2012,
2014). Inference is based on a Gibbs-sampler
(Ruiz et al., 2012) and the implementation
code was provided by the author. Since

this model requires data containing subjects
without any morbidities, we included those
in both curated and real-world data. Latent
feature memberships of subjects without any
morbidity is manually set to be the zero vec-
tor, following Ruiz et al. (2014). Although
this method can infer the number of latent
features, we found that the inferred num-
ber of latent features significantly deviated
from the ground truth in both curated and
semi-curated datasets. Therefore, we fixed
the number of latent features to be the true
value throughout.

WF-MTM. Throughout the paper, we
use the hyper-parameter set-up: η0 = η1 =
0.2, γ = 1.5, α = 1

K , β = 1, where K is
the number of latent features. The diffusion
time unit, dtj = tj − tj−1, ∀j is 0.5 (Infer-
ence under the model) or 0.05 (The rest).
The posterior analysis is conducted based on
the Monte Carlo samples obtained between
4000–5000th iteration (Semi-curated exam-
ple) and 2000–3000th iteration (Real-world
example).

Unlike IBP, our model is applicable both
with or without morbidity-free subjects; for
instance, in the curated example, our model
infers latent feature membership of those
without morbidity, and this leads to the
emergence of a “healthy” feature, i.e. the one
exclusively assigned to subjects without any
morbidity. In the main analysis, however,
we manually assigned zero latent features to
subjects without morbidity for comparison
with IBP.

Performance metric error measure-
ments To quantify the uncertainty of per-
formance evaluation measurements, we used
a 95% bootstrap confidence interval for base-
line methods including KM, HCA and LCA
whereas the 95% posterior credible interval
was used for our model.

Bootstrap confidence intervals were con-
structed by the following steps: after creat-
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Figure 7: Simulated cross-sectional data set. Each row represents a simulated patient
with a set of binary morbidity indicators across 15 diseases where zero values are
shown in white and those in color correspond to their comorbidity membership.
As in a real cross-sectional cohort, there are variable numbers of individuals in
each of the nine age groupings.

ing replicates of the dataset with sampling
with replacement, each baseline method is
implemented on each replicate where the
cluster trajectories are then obtained via
post-analysis curation. Based on these tra-
jectories, we compute the correlation met-
rics. The 95% bootstrap confidence inter-
val is comprised of the values between 2.5%
quantile and 97.5% quantile correlation val-
ues across the entire set of replicates.

Appendix C. Sensitivity Analysis

Time-varying disease profile. As de-
scribed in the main article, we curated an
example where each patient acquires disease
sequentially based on their feature member-
ship. Figure 7 shows that there are three
distinct groups of patients and their fea-
ture membership is indicated in correspond-
ing colours. According to their morbidity
profile, each patient accumulates morbidities
in chronological order; for instance, a green
group is likely to acquire the 5th morbidity

at a young age and then the 9th one sequen-
tially.

Correlation metric. Suppose K is the
number of latent co-morbidity profiles
(i.e. features) and D is the number of mor-
bidities. T denotes the number of age co-
horts. The correlation performance metrics
are defined as

1

K

K∑
k=1

pk
∑D

d=1 ρkdCorr(Xk,Ed)∑D
d=1 ρkd∑K

k=1 pk
, (3)

where Xk = (Xkt)t is estimated feature tra-
jectory. Ed = (Edt)t refers to the empiri-
cal proportion of individuals with the dth
morbidity across all age cohorts, i.e. Edt =
1
Nt

∑Nt
i=1 I(Widt = 1) such that Widt is the

dth morbidity indicator of the ith individ-
ual in the tth age cohort. ρkd is the esti-
mated morbidity acquisition probability for
the dth morbidity in the kth feature. pk is
the mean of the estimated cluster prevalence
across time, i.e. pk = 1

T

∑T
t=1Xkt.

We choose these correlation metrics
mainly because of their familiarity and sim-
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Figure 8: Inference under model mis-specification. (a) True morbidity profile. (b)
True feature trajectory in black while relevant trajectory estimates are in colour.
(c) True trajectory in bold and the sum of posterior trajectories is in dashed line
with 95% credible interval in shaded area. (d) Reconstructed morbidity profiles
combined to obtain the trajectory in (c).

plicity. The correlation between estimated
temporal co-morbidity trajectory and empir-
ical prevalence of each single condition serves
as a good first-order approximation to their
relationship and therefore can be used to
compare different models in terms of their
ability to recapitulate age-linked dependen-
cies of co-morbidities. Note that this perfor-
mance metric is unique to our analysis since
existing works did not consider age informa-
tion in finding correlations between morbidi-
ties.

Over-specification of K. We conducted
an experiment where we deliberately over-
specify the number of latent features K.
Since there is no information about “true”
latent multimorbidity in real-world data, it
is important that inferred features capture
a similar set of morbidities even when K is
mis-specified. We fit our model on the simu-
lated data in the previous section where we
mis-specify K = 15, more than three times

larger than the true value (K = 4). Apart
from this, we use the same set of hyperpa-
rameters as before. Our goal is to examine
(i) whether the reconstruction of true mor-
bidity profiles is achievable, and (ii) if it is
possible to recover underlying trajectories.

When K is mis-specified in this way, we
recover the true comorbidity profiles of all
features but in the form of a posterior ρ of
a set of ‘duplicate’ features where their co-
morbidity profiles are either equal or very
similar to each other. Furthermore, we can
even reconstruct the “true” prevalence tra-
jectory of each feature by summing up the
trajectories of the set of corresponding du-
plicate features. Figure 8 shows a true fea-
ture along with a set of its estimates. These
estimates have comorbidity profiles almost
equal to their ‘target’ profile while the sum of
their estimated trajectories encapsulate the
true trajectory in their 95% credible interval.
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Figure 9: Analysis of semi-curated dataset: morbidity profiles. Each column shows
reconstructed morbidity profiles from each model in the semi-curated dataset.

This demonstrates that the model is reason-
ably robust to the mis-specification of K.

Appendix D. Additional Figures

Figure 9 illustrates reconstructed morbid-
ity profiles from each model in the semi-
curated dataset. These profiles seem
to be consistent with well-known disease-
associations, e.g. hypertension–thyroid prob-
lems and hypertension–stroke.
Figure 10 shows a graphical illustration of

our model. We first assume that there ex-
ist a fixed number K of “multimorbidity fea-
tures”, each associated with a morbidity pro-
file ρk, k = 1, . . . ,K. Each profile describes
the probabilities of each morbidity occurring
(Figure 10A). The prevalence of each feature,
that is the probability that an individual pos-
sesses the feature, is time-varying. This al-
lows some features to be associated with in-

creasing age, while others may only be linked
to younger individuals or to transient periods
in an adult life (Figure 10B). Each individ-
ual in the cohort can possess any number of
these multimorbidity features. This feature
allocation approach means an individual is
not constrained to belong only to a single
feature (Figure 10C) and that different types
of multimorbidity can appear and disappear
throughout their lifetime. Finally, the ob-
served data consists of individuals, labelled
by age, and an indicator for the presence of
each morbidity (Figure 10D). Our objective
is to perform inference to learn feature mor-
bidity profiles and prevalences from the ob-
served data.
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Figure 10: Proposed Model. (A) The model assumes the existence of up to K latent
multimorbidity features each of which is associated with a profile of morbidity
probabilities. Here, feature 1 has high probabilities of morbidities A, D, E, while
feature 2 has high probabilities associated with morbidity B and C. (B) Each
feature is associated with a time-varying prevalence. For example, feature 1 is
prevalent around a certain range in middle-age, while feature 2 increases with
age. (C) Each individual may possess any of the K features, hence this is a
latent feature allocation model. (D) Finally, the observed data consists only of
the morbidities recorded for each individual and their ages at the time of the
study when the data was collected.
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