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DIFFERENCES BETWEEN PERFECT POWERS : PRIME POWER GAPS

MICHAEL A. BENNETT AND SAMIR SIKSEK

Abstract. We develop machinery to explicitly determine, in many instances, when the differ-
ence x2 − yn is divisible only by powers of a given fixed prime. This combines a wide variety

of techniques from Diophantine approximation (bounds for linear forms in logarithms, both

archimedean and non-archimedean, lattice basis reduction, methods for solving Thue-Mahler
and S-unit equations, and the Primitive Divisor Theorem of Bilu, Hanrot and Voutier) and

classical Algebraic Number Theory, with results derived from the modularity of Galois repre-
sentations attached to Frey-Hellegoaurch elliptic curves. By way of example, we completely

solve the equation

x2 + qα = yn,

where 2 ≤ q < 100 is prime, and x, y, α and n are integers with n ≥ 3 and gcd(x, y) = 1.
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1. Introduction

The Lebesgue-Nagell equation

(1) x2 +D = yn

has a very extensive literature, motivated, at least in part, by attempts to extend Mihăilescu’s
Theorem [33] (née Catalan’s Conjecture) to larger gaps in the sequence of perfect powers, in an
attempt to attack Pillai’s conjecture [35]. In equation (1), we will suppose that x and y are coprime
nonzero integers, and that the prime divisors of D belong to a fixed, finite set of primes S. Under
these assumptions, bounds for linear forms in logarithms, p-adic and complex, imply that the set
of integer solutions (x, y, n) to (1), with |y| > 1 and n ≥ 3, is finite and effectively determinable. If,
in addition, we suppose that D is positive and that y is odd, then these solutions may be explicitly
determined, provided |S| is not too large, through appeal to the Primitive Divisor Theorem of
Bilu, Hanrot and Voutier [10], in conjunction with techniques from Diophantine approximation.

If either D > 0 and y is even, or if D < 0, the Primitive Divisor Theorem cannot be applied to
solve equation (1) and we must work rather harder, appealing to either bounds for linear forms in
logarithms or to results based upon the modularity of Galois representations associated to certain
Frey–Hellegouarch elliptic curves. In a companion paper [6], we develop machinery for handling
(1) in the first difficult case where D > 0 and y is even. Though the techniques we discuss in
the present paper are more widely applicable, we will, for simplicity, restrict attention to the case
where D in equation (1) is divisible by a single prime q, whilst treating both the cases D < 0 and
D > 0. That is, we will concern ourselves primarily with the equation

(2) x2 + (−1)δqα = yn, q - x,

where δ ∈ {0, 1} and α is a nonnegative integer. In case δ = 0, our main result is the following.

Theorem 1. If x, y, q, α and n are positive integers with q prime, 2 ≤ q < 100, q - x, n ≥ 3 and

(3) x2 + qα = yn,

then (q, α, y, n) is one of

(2, 1, 3, 3), (2, 2, 5, 3), (2, 5, 3, 4), (3, 5, 7, 3), (3, 4, 13, 3), (7, 1, 2, 3), (7, 3, 8, 3), (7, 1, 32, 3),

(7, 2, 65, 3), (7, 1, 2, 4), (7, 2, 5, 4), (7, 1, 2, 5), (7, 1, 8, 5), (7, 1, 2, 7), (7, 3, 2, 9), (7, 1, 2, 15)

(11, 1, 3, 3), (11, 1, 15, 3), (11, 2, 5, 3), (11, 3, 443, 3), (13, 1, 17, 3), (17, 1, 3, 4), (19, 1, 7, 3),

(19, 1, 55, 5), (23, 1, 3, 3), (23, 3, 71, 3), (23, 3, 78, 4), (23, 1, 2, 5), (23, 1, 2, 11), (29, 2, 5, 7),

(31, 1, 4, 4), (31, 1, 2, 5), (31, 1, 2, 8), (41, 2, 29, 4), (41, 2, 5, 5), (47, 1, 6, 3), (47, 1, 12, 3),

(47, 1, 63, 3), (47, 2, 17, 3), (47, 3, 74, 3), (47, 1, 3, 5), (47, 1, 2, 7), (53, 1, 9, 3), (53, 1, 29, 3),

(53, 1, 3, 6), (61, 1, 5, 3), (67, 1, 23, 3), (71, 1, 8, 3), (71, 1, 6, 4), (71, 1, 3, 7), (71, 1, 2, 9),

(79, 1, 20, 3), (79, 1, 2, 7), (83, 1, 27, 3), (83, 1, 3, 9), (89, 1, 5, 3), (97, 2, 12545, 3), (97, 1, 7, 4).

One might note that the restriction q - x can be removed, with a modicum of effort, at least for
certain values of q. The cases where primitive divisor arguments are inapplicable correspond to
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q ∈ {7, 23, 31, 47, 71, 79} and y even (and this is where the great majority of work lies in proving
Theorem 1). If q = 7, Theorem 1 generalizes recent work of Koutsianas [24], who established a
like result under certain conditions upon α and q, and, in particular, showed that equation (3) has
no solutions with q = 7 and prime n ≡ 13, 23 (mod 24). We note that the solution(s) with q = 83
were omitted in the statement of Theorem 1 of Berczes and Pink [9].

Our results for (2) with δ = 1 are less complete, at least when α is odd.

Theorem 2. Suppose that

(4) q ∈ {7, 11, 13, 19, 23, 29, 31, 43, 47, 53, 59, 61, 67, 71, 79, 83}.
If x and n are positive integers, q - x, n ≥ 3 and

(5) x2 − q2k+1 = yn,

where y and k are integers, then (q, k, y, n) is one of

(7, 2, 393, 3), (7, 1,−3, 5), (11, 1, 37, 3) (11, 0, 5, 5), (11, 1, 37, 3), (13, 0, 3, 5),

(19, 0, 5, 3), (19, 2,−127, 3), (19, 0,−3, 4), (19, 0, 3, 4), (23, 1, 1177, 3), (31, 0,−3, 3),

(43, 0,−3, 3), (71, 0, 5, 3), (71, 1,−23, 3) or (79, 0, 45, 3).

To the best of our knowledge, these are the first examples of primes q for which equation (5)
has been completely solved (though the cases with k = 0 are treated in the thesis of Barros [2]).
There are eight other primes in the range 3 ≤ q < 100 for which we are unable to give a similarly
satisfactory statement. For four of these, namely q = 3, 5, 17 and 37, the equation (5) has a
solution with y = ±1. For such primes we are unaware of any results that would enable us to
completely treat fixed exponents n of moderate size; this difficulty is well-known for the D = −2
case of (1). One should note that it is relatively easy to solve (5) for q ∈ {3, 5, 37}, under the
additional assumption that y is even (and somewhat harder if q = 17 and y is even). For the other
four primes, namely q = 41, 73, 89 and 97, we give a method which appears theoretically capable
of success, but is alas prohibitively expensive, computationally-speaking. We content ourselves by
proving the following modest result for these primes.

Theorem 3. Let q ∈ {41, 73, 89, 97}. The only solutions to (5) with q - x and 3 ≤ n ≤ 1000 are
with (q, k, y, n) one of

(41, 0,−2, 5), (41, 0, 2, 3), (41, 0, 2, 7), (41, 1, 10, 5), (73, 0,−6, 4),

(73, 0,−4, 3), (73, 0, 2, 3), (73, 0, 3, 3), (73, 0, 6, 3), (73, 0, 6, 4), (73, 0, 72, 3),

(89, 0,−4, 3), (89, 0,−2, 3), (89, 0, 2, 5), (89, 0, 2, 13) or (97, 0, 2, 7).

There are no solutions to equation (5) with n > 1000, q - x and either q = 73 and y ≡ 0 (mod 2),
or with q = 97 and y ≡ 1 (mod 2).

The additional assumption that the exponent of our prime q is even simplifies matters consid-
erably. In the case of equation (3), Berczes and Pink [8] deduced Theorem 1 for even values of
α (whence primitive divisor technology works efficiently). For completeness, we extend this to
q < 1000; the results for q < 100 are, of course, just a special case of Theorem 1.

Theorem 4. If x, y, q, k and n are positive integers with q prime, 2 ≤ q < 1000, q - x, n ≥ 3 and

(6) x2 + q2k = yn,

then (q, k, y, n) is one of

(2, 1, 5, 3), (3, 2, 13, 3), (7, 1, 65, 3), (7, 1, 5, 4), (11, 1, 5, 3), (29, 1, 5, 7), (41, 1, 29, 4), (41, 1, 5, 5),

(47, 1, 17, 3), (97, 1, 12545, 3), (107, 1, 37, 3), (191, 1, 65, 3), (239, 1, 169, 4), (239, 1, 13, 8),

(431, 1, 145, 3), (587, 1, 197, 3) or (971, 1, 325, 3).
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More interesting for us is the case where the difference x2 − yn is positive (so that primitive
divisor arguments are inapplicable and there are no prior results available in the literature). Here,
we prove the following.

Theorem 5. If x, q, k and n are positive integers with q prime, 2 ≤ q < 1000, q - x, n ≥ 3 and

(7) x2 − q2k = yn,

where y is an integer, then (q, k, y, n) is one of

(3, 1,−2, 3), (3, 1, 40, 3), (3, 1,±2, 4), (3, 2,−2, 5), (5, 2, 6, 3), (7, 2, 15, 3), (7, 1, 2, 5), (11, 1, 12, 3),
(11, 2, 3, 5), (13, 1, 3, 3), (13, 1, 12, 5), (17, 1,−4, 3), (17, 1,±12, 4), (17, 2, 42, 3), (29, 1,−6, 3),

(31, 1, 2, 7), (43, 1,−12, 3), (43, 1, 126, 3), (43, 4, 96222, 3), (47, 1, 6300, 3), (53, 1, 6, 3),
(71, 1, 30, 3), (71, 2,−136, 3), (89, 1, 84, 3), (97, 2, 3135, 3), (101, 1, 24, 3), (109, 1, 20, 3),
(109, 1, 35, 3), (109, 1, 570, 3), (127, 1,−10, 3), (127, 1, 8, 3), (127, 1, 198, 3), (127, 1, 2, 9),

(179, 1,−30, 3), (193, 1, 63, 3), (197, 1, 260, 3), (223, 1, 30, 3), (251, 1,−10, 3), (251, 1,−6, 5),
(257, 1,−4, 5), (263, 1, 2418, 3), (277, 1,−30, 3), (307, 1, 60, 3), (307, 1, 176, 3), (307, 2, 2262, 3),

(359, 1,−28, 3), (383, 2, 25800, 3), (397, 1,−42, 3), (431, 1, 12, 3), (433, 1,−12, 3),
(433, 1, 143, 3), (433, 2, 26462, 3), (479, 1, 90, 3), (499, 1,−12, 5), (503, 1, 828, 3), (557, 1,−60, 3),

(577, 1,±408, 4), (593, 1,−70, 3), (601, 1, 72, 3), (659, 1, 42, 3), (683, 1, 193346, 3), (701, 1, 4452, 3),
(727, 1, 18, 3), (739, 1, 234, 3), (769, 1, 255, 3), (811, 1,−70, 3), (857, 1,−72, 3) or (997, 1, 48, 3).

We note that, with sufficient computational power, there is no obstruction to extending the
results of Theorems 4 and 5 to larger prime values q. Without fundamentally new ideas, it is not
clear that the same may be said of, for example, Theorem 1. In this case, the bounds we obtain
upon the exponent n via linear forms in logarithms, even for relatively small q, leave us with a
computation which, while finite, is barely tractable.

Equation (8) has been completely resolved ([22], [39]) for q = 2, except for the case (α, δ) = (1, 1)
which corresponds to D = −2 in (1). The solutions for q = 2 in our theorems are included for
completeness. For the remainder of the paper, we suppose that q is an odd prime. In particular,
we are concerned with the equation

(8) x2 + (−1)δqα = yn, gcd(x, y) = 1, α > 0,

where q is a fixed odd prime, n ≥ 3, and δ ∈ {0, 1}.

Our proofs will use a broad combination of techniques, which include:

• Lower bounds for linear forms in complex and p-adic logarithms which yield bounds for
the exponent n in (8).
• Frey–Hellegouarch curves and their Galois representations which provide a wealth of local

information regarding solutions to (8).
• The celebrated Primitive Divisor Theorem of Bilu, Hanrot and Voutier, that can be used

to treat most cases of (8) when y is odd and δ = 0.
• Elementary descent arguments that reduce (8) for a fixed exponent n to Thue–Mahler

equations, which are possible to resolve thanks to the Thue–Mahler solver associated to
[20].

The outline of this paper is as follows. In Section 2, we solve the equation x2 +(−1)δqα = yn for
n ∈ {3, 4} and 3 ≤ q < 100 by reducing the problem to the determination of S-integral points on
elliptic curves. In Section 3, we solve the equation x2− q2k = yn, for q in the range 3 ≤ q < 1000,
with y odd using an elementary sieving argument; this completes the proof of Theorem 5 in case
y is odd. Next, Section 4 provides a short overview of Lucas sequences, their ranks of apparition,
and the Primitive Divisor Theorem of Bilu, Hanrot and Voutier. We make use of this machinery
in Section 5 to solve the equation x2 + q2k = yn for q in the range 3 ≤ q < 1000, thereby proving
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Theorem 4. Section 6 reduces the equation x2 − q2k = yn, for even values of y, to Thue–Mahler
equations of the form

(9) yn1 − 2n−2yn2 = qk.

In Section 7, we give a brief outline of the modular approach to Diophantine equations. Section 8
applies this modular approach, particularly the (n, n, n) Frey–Hellegouarch elliptic curves of Kraus
[25] to equation (9); this allows us to deduce that there are no solutions for 3 ≤ q < 1000 except for
possibly q ∈ {31, 127, 257}, where the mod n representation of the Frey–Hellegouarch curve arises
from that of an elliptic curve with full 2-torsion and conductor 2q. Before we can complete the proof
of Theorem 5, we need an upper bound for the exponent n. We give a sharpening of Bugeaud’s
bound [13] for the equation x2−q2k = yn, which uses (9) and the theory of linear forms in real and
p-adic logarithms. In Section 10, we complete the proof of Theorem 5; our approach makes use of a
sieving technique that builds on the information obtained from the modular approach in Section 8
and the upper bound for n established in Section 9. The remainder of the paper is concerned with
(8) where α = 2k+ 1, and for 3 ≤ q < 100. In Section 11 , we resolve x2 + q2k+1 = yn with y odd
with the help of the Primitive Divisor Theorem, and in Section 12 we solve x2 − q2k+1 = y5 by
reducing to Thue–Mahler equations.

It remains, then, to handle the equations x2 − q2k+1 = yn and x2 + q2k+1 = yn where, in the
latter case, we may additionally assume that y is even. In Section 13, we study the more general
equation

(10) yn + qαzn = x2, gcd(x, y) = 1

where q is prime, using Galois representations of Frey–Hellegouarch curves. Our approach builds
on previous work of the first author and Skinner [7], and also on the work of Ivorra and Kraus [23].
We then restrict ourselves in Section 14 to the case z = ±1 and α odd in (10). In this section,
we develop a variety of sieves based upon local information coming from the Frey–Hellegouarch
curves that allows us, in many situations, to eliminate values of q from consideration completely
and, in the more difficult cases, to solve equation (8) for a fixed pair (q, n). In particular, we
employ this strategy to complete the proofs of Theorems 2 and 3. Finally, in Section 15, we return
to bounds for linear forms in p-adic and complex logarithms to derive explicit upper bounds upon
n in (8), and then report upon a (somewhat substantial) computation to use the arguments of
Section 14 to solve (8) for all remaining pairs (q, n) required to finish the proof of Theorem 1.

2. Reduction to S-integral points on elliptic curves for n ∈ {3, 4}

In the following sections, it will be of value to us to assume that the exponent n in equation
(8) is not too small. This is primarily to ensure that the Frey–Hellegouarch curve we attach to a
putative solution has a corresponding mod n Galois representation that is irreducible. For suitably
large prime values of n (typically, n ≥ 7), the desired irreducibility follows from Mazur’s isogeny
theorem. In Section 4, such an assumption allows us to (mostly) ignore so-called defective Lucas
sequences.

In this section, we treat separately the cases n = 3 and n = 4 for q < 100, where the problem
of solving equation (8) reduces immediately to one of determining S-integral points on specific
models of genus one curves; here S = {q}. This approach falters for many values of q in the range
100 < q < 1000 as we are often unable to compute the Mordell–Weil groups of the relevant elliptic
curves. Thus for the proofs of Theorems 4 and 5 for exponents n = 3, n = 4, where we treat
values of q less than 1000, we shall employ different techniques including sieving arguments and
reduction to Thue–Mahler equations.

2.1. The case n = 3. Supposing that we have a coprime solution to (8) with n = 3, we can write
α = 6b + c, where 0 ≤ c ≤ 5. Taking X = y/q2b and Y = x/q3b, it follows that (X,Y ) is an
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Table 1. Solutions to the equation x2 + (−1)δqα = y3 for primes 2 ≤ q < 100,
δ ∈ {0, 1} and x, y, α integers satisfying α > 0, x > 0, y 6= 0, and gcd(x, y) = 1.

q δ α x y

2 0 1 5 3

2 0 2 11 5

2 1 1 1 −1

2 1 7 71 17

2 1 9 13 −7

2 1 3 3 1

3 0 4 46 13

3 0 5 10 7

3 1 1 2 1

3 1 2 1 −2

3 1 2 253 40

5 1 1 2 −1

5 1 4 29 6

7 0 1 1 2

7 0 1 181 32

7 0 2 524 65

7 0 3 13 8

7 1 4 76 15

7 1 5 7792 393

11 0 1 4 3

11 0 1 58 15

11 0 2 2 5

11 0 3 9324 443

11 1 2 43 12

11 1 3 228 37

13 0 1 70 17

13 1 2 14 3

17 1 1 3 −2

17 1 1 4 −1

q δ α x y

17 1 1 5 2

17 1 1 9 4

17 1 1 23 8

17 1 1 282 43

17 1 1 375 52

17 1 7 21063928 76271

17 1 1 378661 5234

17 1 2 15 −4

17 1 4 397 42

19 0 1 18 7

19 1 1 12 5

19 1 5 654 −127

23 0 1 2 3

23 0 3 588 71

23 1 3 40380 1177

29 1 2 25 −6

31 1 1 2 −3

37 1 1 6 −1

37 1 1 8 3

37 1 1 3788 243

37 1 3 228 11

41 1 1 7 2

43 1 1 4 −3

43 1 2 11 −12

43 1 8 30042907 96222

43 1 2 1415 126

47 0 1 13 6

47 0 1 41 12

47 0 1 500 63

47 0 2 52 17

q δ α x y

47 0 3 549 74

47 1 2 500047 6300

53 0 1 26 9

53 0 1 156 29

53 1 2 55 6

61 0 1 8 5

67 0 1 110 23

71 0 1 21 8

71 1 1 14 5

71 1 2 179 30

71 1 3 588 −23

71 1 4 4785 −136

73 1 1 3 −4

73 1 1 9 2

73 1 1 10 3

73 1 1 17 6

73 1 1 611 72

73 1 1 6717 356

79 0 1 89 20

79 1 1 302 45

83 0 1 140 27

89 0 1 6 5

89 1 1 5 −4

89 1 1 9 −2

89 1 1 33 10

89 1 1 408 55

89 1 2 775 84

97 0 2 1405096 12545

97 1 1 77 18

97 1 4 175784 3135

S-integral point on the elliptic curve

(11) Y 2 = X3 + (−1)δ+1qc,

where S = {q}. Here, for a particular choice of δ ∈ {0, 1} and prime q we may use the standard
method for computing S-integral points on elliptic curves based on lower bounds for linear forms
in elliptic logarithms (e.g. [34]). We made use of the built-in Magma ([11]) implementation of this
method to compute these S-integral points on (11) for δ ∈ {0, 1} and 2 ≤ q < 100. We obtained a
total of 83 solutions to (8) for these values of q with α > 0, x > 0, y 6= 0 and gcd(x, y) = 1. These
are given in Table 1.
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Table 2. Solutions to the equation x2 + (−1)δqα = y4 for primes 2 ≤ q < 100,
δ ∈ {0, 1} and x, y, α integers satisfying α > 0, x > 0, y > 0, and gcd(x, y) = 1.

q δ α x y

2 0 5 7 3

2 1 3 3 1

3 1 1 2 1

3 1 5 122 11

3 1 2 5 2

q δ α x y

7 0 1 3 2

7 0 2 24 5

17 0 1 8 3

17 1 2 145 12

19 1 1 10 3

q δ α x y

23 0 3 6083 78

31 0 1 15 4

41 0 2 840 29

71 0 1 35 6

73 1 1 37 6

97 0 1 48 7

2.2. The case n = 4. Next we consider the case n = 4 separately. Write α = 4b + c where
0 ≤ c ≤ 3. Let X = (y/qb)2, Y = xy/q3b. Then (X,Y ) is an S-integral point on the elliptic curve

(12) Y 2 = X(X2 + (−1)δ+1qc),

where S = {q}. We again appealed to the built-in Magma ([11]) implementation of this method to
compute these S-integral points on (12) for δ ∈ {0, 1} and 2 ≤ q < 100. We obtained a total of 16
solutions to (8) for these values of q with α > 0, x > 0, y > 0 and gcd(x, y) = 1. These are given
in Table 2.

3. An elementary approach to x2 − q2k = yn with y odd

In this section, we apply an elementary factorisation argument to prove Theorem 5 for y odd.
In other words, we consider the following equation

(13) x2 − q2k = yn, x, k, n positive integers, n ≥ 3, gcd(x, y) = 1, y an odd integer.

Here q ≥ 3 is a prime. From this, we immediately see that

(14) x+ qk = yn1 and x− qk = yn2 ,

with y = y1y2, so that we have

(15) yn1 − yn2 = 2qk.

If 2 | n, then yn1 ≡ yn2 ≡ 1 (mod 4), a contradiction. We may suppose henceforth, without loss of
generality, that n is an odd prime. Observe that

(16) (y1 − y2)(yn−1
1 + yn−2

1 y2 + · · ·+ yn−1
2 ) = yn1 − yn2 = 2qk.

Clearly y1 > y2 and, as they are both odd, y1 − y2 ≥ 2 and 2 | (y1 − y2). Write

d = gcd(y1 − y2, y
n−1
1 + yn−2

1 y2 + · · ·+ yn−1
2 )

so that y2 ≡ y1 (mod d) and

0 ≡ yn−1
1 + yn−2

1 y2 + · · ·+ yn−1
2 ≡ nyn−1

1 (mod d).

Similarly, we have nyn−1
2 ≡ 0 (mod d) and so d ∈ {1, n}.

We first deal with the case d = n, whereby, from (16), q = n. Let r = ordn(y1 − y2) ≥ 1 and
write y1 = y2 + nrκ where n - κ. Then

ordn(yn−1
1 + yn−2

1 y2 + · · ·+ yn−1
2 ) = ordn

(
(y2 + nrκ)n − yn2

nrκ

)
= 1.

Hence

(17) y1 − y2 = 2nk−1 and yn−1
1 + yn−2

1 y2 + · · ·+ yn−1
2 = n,
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and so

n =

n−1∏
i=1

|y1 − ζiny2| ≥ | |y1| − |y2| |n−1.

Recall that y1 and y2 are both odd. If y2 6= ±y1, then the right hand-side of this last inequality
is at least 2n−1, which is impossible. Thus y2 = ±y1, so that, from (17), yn−1

1 | n. It follows that
|y1| = |y2| = 1, contradicting (14).

Thus d = 1, whence

(18) y1 − y2 = 2 and yn−1
1 + yn−2

1 y2 + · · ·+ yn−1
2 = qk.

Since the polynomial Xn−1 +Xn−2 + · · ·+1 has a root modulo q, the Dedekind–Kummer theorem
tells us that q splits in Z[ζn] and so q ≡ 1 (mod n). We therefore have the following.

Proposition 3.1. If x, y, q, k and n are positive integers satisfying (13) with n and q prime, then
n | q − 1 and there exists an odd positive integer X such that y = X(X + 2) and

(19) (X + 2)n −Xn = 2qk.

This last result makes it an extremely straightforward matter to solve equation (7) in case y is
odd.

Lemma 3.2. The only solutions to (13) with 3 ≤ q < 1000 prime correspond to the identities

762 − 74 = 153, 1222 − 114 = 35. 142 − 132 = 33, 1757842 − 974 = 31353,

2342 − 1092 = 353, 5362 − 1932 = 633, 17642 − 4332 = 1433, 41442 − 7692 = 2553.

Proof. Suppose first that n = 3, where equation (19) becomes

(20) 3(X + 1)2 + 1 = qk.

From [17] and [18], we know that the equation 3u2 + 1 = ym has no solutions with m ≥ 3. We
conclude that k = 1 or 2. Solving equation (20) with k = 1 or 2 and 3 ≤ q < 1000 leads to the
seven solutions with n = 3.

We now suppose that n ≥ 5 is prime. By a theorem of the first author and Skinner [7, Theorem
2], the only solutions to the equation Xn + Y n = 2Z2 with n ≥ 5 prime and gcd(X,Y ) = 1 are
with either |XY | = 1 or (n,X, Y, Z) = (5, 3,−1,±11). We note that if k is even then (19) can be
rewritten as (X + 2)n −Xn = 2(qk/2)2, and therefore n = 5, X = 1 and qk/2 = 11. This yields
the solution 1222 − 114 = 35.

We may therefore suppose that k is odd. Recalling that n | (q − 1) leaves us with precisely
191 pairs (q, n) to consider, ranging from (11, 5) to (997, 83). Fix one of these pairs (q, n) and let
` - nq be an odd prime. Let Z` be the set of β ∈ Z/(`−1)Z such that β is odd and the polynomial

(X + 2)n −Xn − 2qβ

has a root in F`. We note that the value of qk modulo ` depends only on the residue class of k
modulo `− 1. From (19), we deduce that (k mod `) ∈ Z`. Now let `1, `2, . . . , `m be a collection of
odd primes with `i - nq for 1 ≤ i ≤ m. Let

(21) M = lcm(`1 − 1, `2 − 1, . . . , `m − 1)

and set

(22) Z`1,...,`m = {β ∈ Z/MZ : (β mod `i) ∈ Z`i for i = 1, . . . ,m}.

It is clear that (k mod M) ∈ Z`1,...,`m . We wrote a short Magma script which, for each pair (q, n),
computed Z`1,...,`m where `1, `2, . . . , `m are the odd primes ≤ 101 distinct from n and q. In all
191 cases we found that Z`1,...,`m = ∅, completing the desired contradiction. �
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4. Lucas Sequences and the Primitive Divisor Theorem

The Primitive Divisor Theorem of Bilu, Hanrot and Voutier [10] shall be our main tool for
treating equation (8) when δ = 0 and y is odd. In this section, we state this result and a related
theorem of Carmichael that shall be useful later. A pair of algebraic integers (γ, δ) is called a
Lucas pair if γ + δ and γδ are non-zero coprime rational integers, and γ/δ is not a root of unity.
We say that two Lucas pairs (γ1, δ1) and (γ2, δ2) are equivalent if γ1/γ2 = ±1 and δ1/δ2 = ±1.
Given a Lucas pair (γ, δ) we define the corresponding Lucas sequence by

Lm =
γm − δm

γ − δ
, m = 0, 1, 2, . . . .

A prime ` is said to be a primitive divisor of the m-th term if ` divides Lm but ` does not divide
(γ − δ)2 · L1L2 . . . Lm−1.

Theorem 6 (Bilu, Hanrot and Voutier [10]). Let (γ, δ) be a Lucas pair and write {Lm} for the
corresponding Lucas sequence.

(i) If m ≥ 30, then Lm has a primitive divisor.
(ii) If m ≥ 11 is prime, then Lm has a primitive divisor.

(iii) L7 has a primitive divisor unless (γ, δ) is equivalent to
(

(a−
√
b)/2 , (a+

√
b)/2

)
where

(23) (a, b) ∈ {(1,−7), (1,−19)}.

(iv) L5 has a primitive divisor unless (γ, δ) is equivalent to
(

(a−
√
b)/2 , (a+

√
b)/2

)
where

(24) (a, b) ∈ {(1, 5), (1,−7), (2,−40), (1,−11), (1,−15), (12,−76), (12,−1364)}.

Let ` be a prime. We define the rank of apparition of ` in the Lucas sequence {Lm} to be
the smallest positive integer m such that ` | Lm. We denote the rank of apparition of ` by m`.
The following theorem of Carmichael [16] will be useful for us; a concise proof may be found in
[5, Theorem 8]

Theorem 7 (Carmichael [16]). Let (γ, δ) be a Lucas pair, and {Lm} the corresponding Lucas
sequence. Let ` be a prime.

(i) If ` | γδ then ` - Lm for all positive integers m.
(ii) Suppose ` - γδ. Write D = (γ − δ)2 ∈ Z.

(a) If ` 6= 2 and ` | D, then m` = `.
(b) If ` 6= 2 and

(
D
`

)
= 1, then m` | (`− 1).

(c) If ` 6= 2 and
(
D
`

)
= −1, then m` | (`+ 1).

(d) If ` = 2, then m` = 2 or 3.
(iii) If ` - γδ then

` | Lm ⇐⇒ m` | m.

5. The equation x2 + q2k = yn : the proof of Theorem 4

In this section, we prove Theorem 4 with the help of the Primitive Divisor Theorem. We are
concerned with the equation

(25) x2 + q2k = yn, x, k, n positive integers, n ≥ 3, gcd(x, y) = 1.

Here q ≥ 3 is a prime. Considering this equation modulo 8 immediately tells us that y is odd and
x is even. Without loss of generality, we may suppose that 4 | n or that n is divisible by an odd
prime.
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Lemma 5.1. Solutions to (25) with 4 | n and odd prime q satisfy k = 1, q2 = 2yn/2 − 1 and
x = (q2 − 1)/2. In particular, the only solutions to (25) with 4 | n and prime 3 ≤ q < 1000
correspond to the identities

242 + 72 = 54, 8402 + 412 = 294 and 285602 + 2392 = 138 = 1694.

Proof. Suppose that 4 | n. Then (yn/2 + x)(yn/2 − x) = q2k, and so

yn/2 + x = q2k and yn/2 − x = 1.

Thus 2yn/2 = q2k + 1. By Theorem 1 of [7], the only solutions to the equation Ar + Br = 2C2

with r ≥ 4, ABC 6= 0 and gcd(A,B) = 1 are with |AB| = 1 or (r,A,B,C) = (5, 3,−1,±11). It
follows that the equation 2yn/2 = q2k + 1 has no solutions with k ≥ 2 and 4 | n. Therefore k = 1,
and hence q2 = 2yn/2 − 1. The only primes in the range 3 ≤ q < 1000 such that q2 = 2yn/2 − 1
with 4 | n, are q = 7, 41 and 239, which lead to the solutions in the statement of the lemma. �

Henceforth, we will suppose that n is an odd prime. Thus x + qki = αn, where we can write
α = a + bi, for a and b coprime integers with y = a2 + b2. Subtracting this equation from its
conjugate yields

(26) qk = b · α
n − αn

α− α
.

Lemma 5.2. Solutions to (25) with n = 3 and odd prime q must satisfy

(i) either q = 3 and (k, x, y) = (2, 46, 13);
(ii) or q = 3a2 − 1 for some positive integer a and (k, x, y) = (1, a3 − 3a, a2 + 1);

(iii) or q2 = 3a2 + 1 for some positive integer a and (k, x, y) = (1, 8a3 + 3a, 4a2 + 1).

In particular, the only solutions to (25) with n = 3 and prime 3 ≤ q < 1000 correspond to the
identities

462 + 34 = 133, 5242 + 72 = 653, 22 + 112 = 53, 522 + 472 = 173,

14050962 + 972 = 125453, 1982 + 1072 = 373, 4882 + 1912 = 653, 16922 + 4312 = 1453,

27022 + 5872 = 1973 and 57782 + 9712 = 3253.

Proof. Let n = 3. Thanks to Table 1, we know that the only solution with q = 3 is the one given
in (i). We may thus suppose that q ≥ 5. Equation (26) gives

qk = b(3a2 − b2).

By the coprimality of a and b, we have b = ±1 or b = ±qk. We note that b = −1 gives qk = 1−3a2

which is impossible. Also if b = qk then 3a2 − q2k = 1 which is impossible modulo 3. Thus either
b = 1 or b = −qk. If b = 1, then

qk = 3a2 − 1,

and if b = −qk then

q2k = 3a2 + 1.

From Theorem 1.1 of [7], these equations have no solutions in positive integers if k ≥ 4 or k ≥ 2,
respectively. If k = 3, the elliptic curve corresponding to the first equation has Mordell-Weil rank
0 over Q and it is straightforward to show that the equation has no integer solutions. We therefore
have that k = 1 in either case. Thus q = 3a2 − 1 or q2 = 3a2 + 1, and these yield the parametric
solutions in (ii) and (iii). For 5 ≤ q < 1000, the primes q of the form 3a2 − 1 are

11, 47, 107, 191, 431, 587 and 971.

For 5 ≤ q < 1000, the primes q satisfying q2 = 3a2 + 1 are q = 7 and 97. These yield the solutions
given in the statement of the lemma. �
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We expect that there are infinitely many primes q of the form 3a2−1, but are very unsure about
the number of primes q satisfying q2 = 3a2 + 1 (the only ones known are 7, 97 and 708158977).
Quantifying such results, in any case, is well beyond current technology.

In view of Lemma 5.2, we henceforth suppose that n is ≥ 5 and prime. The following lemma
now completes the proof of Theorem 4.

Lemma 5.3. Let (k, x, y, n) be a solution to (25) with prime n ≥ 5 and odd prime q. Then k is
odd,

(27)

{
n | (q − 1) if q ≡ 1 (mod 4)

n | (q + 1) if q ≡ 3 (mod 4),

and there is an integer a such that

y = a2 + 1, x =
(a+ i)n + (a− i)2

2
,

(a+ i)n − (a− i)n

2i
= ±qk.

In particular, the only solutions to (25) with prime 3 ≤ q < 1000 and prime n ≥ 5 correspond to
the identities

382 + 412 = 55, 2782 + 292 = 57.

Proof. Suppose n is ≥ 5 and prime in (25). By Theorem 1 of [4], the equation A4 +B2 = Cm has
no solutions satisfying gcd(A,B) = 1, AB 6= 0 and m ≥ 4. We conclude that k is odd. We note
that (α, α) is a Lucas pair and write {Lm} for the corresponding Lucas sequence. By Theorem 6,
Ln must have a primitive divisor, and from (26) this primitive divisor is q. In particular, q does
not divide D = (α− α)2 = −4b2. Thus by (26) we have b = ±1 and D = −4. Moreover, the rank
of apparition of q in the sequence is n. By Theorem 7, we have n | (q − 1) if q ≡ 1 (mod 4) and
n | (q + 1) if q ≡ 3 (mod 4).

We now let q be a prime in the range 3 ≤ q < 1000. There are 168 pairs (q, n) with q in this
range and n a prime ≥ 5 satisfying (27), ranging from (19, 5) to (997, 83). For each of these pairs
(q, n), and each sign η = ±1, we need to consider the equation

(28)
(a+ i)n − (a− i)n

2i
= η · qk

where k is an odd integer. We shall follow the sieving approach of Lemma 3.2 to eliminate all but
two of the possible 2× 168 = 336 triples (q, n, η). Fix such a triple (q, n, η). Let fn ∈ Z[X] be the
polynomial

fn(X) =
(X + i)n − (X − i)n

2i
.

Let ` - nq be an odd prime, and let Z` be the set β ∈ Z/(` − 1)Z such that β is odd and
fn(X) − η · qβ has a root in F`. It follows that (k (mod `)) ∈ Z`. Now let `1, `2, · · · , `m be a
collection of odd primes - qn. Define M and Z`1,...,`m by (21) and (22) respectively. It is clear that
(k (mod M)) ∈ Z`1,...,`m . We wrote a short Magma script which, for each triple (q, n, η), computed
Z`1,...,`m where `1 . . . , `m are the odd primes < 150 distinct from n and q. In all but two of the
336 cases we found that Z`1,...,`m = ∅. The two exceptions are (q, n, η) = (41, 5, 1) and (29, 7,−1),
and so these are the only two cases we need to consider. Let

Fn(X,Y ) =
(X + iY )n − (X − iY )n

2iY
.

This is a homogeneous degree n − 1 polynomial belonging to Z[X,Y ]. Now (28) can be written
as Fn(a, 1) = η · qk. Thus it is sufficient to solve the Thue–Mahler equations Fn(X,Y ) = η · qk for
(q, n, η) = (41, 5, 1) and (29, 7,−1). Explicitly these equations are

(29) 5X4 − 10X2Y 2 + Y 4 = 41k
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and

(30) 7X6 − 35X4Y 2 + 21X2Y 4 − Y 6 = −29k.

Using the Magma implementation of the Thue–Mahler solver described in [20], we find that the
solutions to (29) are (X,Y, k) = (±2,±1, 1) and (0,±1, 0), and that the solutions to (30) are also
(X,Y, k) = (±2,±1, 1) and (0,±1, 0). These lead to the two solutions in the statement of the
lemma. �

6. The equation x2 − q2k = yn with y even: reduction to Thue–Mahler equations

Section 3 dealt with (7) in the case that y is odd, using purely elementary means. We now turn
our attention to (7) with y even, and consider the equation

(31) x2 − q2k = yn, x, k, n positive integers, n ≥ 3, gcd(x, y) = 1, y an even integer.

Here q ≥ 3 is a prime and, without loss of generality, n = 4 or n is an odd prime.

Lemma 6.1. Write γ = 1+
√

2. Any solution to (31) with n = 4 and q an odd prime must satisfy
k = 1,

(32) q =
γ2m + γ−2m

2
, x =

γ4m + 6 + γ−4m

8
and y =

γ2m − γ−2m

2
√

2
,

for some integer m. In particular, the only solutions with 3 ≤ q < 1000 correspond to the identities

52 − 32 = (±2)4, 1452 − 172 = (±12)4 and 1664652 − 5772 = (±408)4.

Proof. Suppose n = 4. Then (x+ y2)(x− y2) = q2k, and so, by the coprimality of x and y,

x+ y2 = q2k and x− y2 = 1,

or equivalently

(33) x =
q2k + 1

2
and q2k − 2y2 = 1.

First we show that k = 1. From the second equation, we have (qk + 1)(qk − 1) = 2y2. Since the
greatest common divisor of the two factors on the left is 2 we see that one of the two factors must
be a perfect square, i.e. qk + 1 = z2 or qk − 1 = z2 for some non-zero integer z, and it is easy
to see that k must be odd. The impossiblity of these cases for k ≥ 3 follows from Mihăilescu’s
theorem [33] (i.e. Catalan’s conjecture). Hence k = 1.

The second equation in (33) implies that q + y
√

2 is a totally positive unit in Z[
√

2]. Thus

(34) q + y
√

2 = γ2m and q − y
√

2 = γ−2m,

for some integer m. The formulae for q and y in (32) follow from this, and the formula for x
follows from the first relation in (33).

We focus on primes 3 ≤ q < 1000. From the first relation in (34),

|m| < log(2q)

2 log γ
<

log(2000)

2 log(1 +
√

2)
< 5.

Thus −4 ≤ m ≤ 4. The values m = ±1, ±2, ±4, respectively, give the three solutions in the
statement of the Lemma. If m = 0 or ±3, then we obtain q = 1 or 99 which are not prime. �

In view of Lemma 6.1, we may henceforth suppose that n ≥ 3 is odd. Let x′ be either x or −x,
chosen so that x′ ≡ qk (mod 4). From (31), we deduce the existence of relatively prime integers
y1 and y2 for which

(35) x′ + qk = 2yn1 and x′ − qk = 2n−1yn2 ,
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with y = 2y1y2, so that we have

(36) yn1 − 2n−2yn2 = qk.

We have thus reduced the resolution of (31) for particular q and n to solving a degree n Thue–
Mahler equation.

Lemma 6.2. The only solutions to (31) with n ∈ {3, 5} and 3 ≤ q < 1000 an odd prime correspond
to the identities

532 − 32 = 403, 12 − 32 = (−2)3, 72 − 34 = (−2)5, 292 − 54 = 63, 92 − 72 = 25, 432 − 112 = 123,

4992 − 132 = 125, 152 − 172 = −43, 3972 − 174 = 423, 252 − 292 = (−6)3, 112 − 432 = (−12)3,

14152 − 432 = 1263, 300429072 − 438 = 962223, 5000472 − 472 = 63003, 552 − 532 = 63,

1792 − 712 = 303, 47852 − 714 = (−136)3, 7752 − 892 = 843, 1552 − 1012 = 243,

136092 − 1092 = 5703, 1412 − 1092 = 203, 1292 − 1272 = 83, 1232 − 1272 = (−10)3,

27892 − 1272 = 1983, 712 − 1792 = (−30)3, 41972 − 1972 = 2603, 2772 − 2232 = 303,

2492 − 2512 = (−10)3, 2352 − 2512 = (−6)5, 2552 − 2572 = −45, 1189012 − 2632 = 24183,

2232 − 2772 = (−30)3, 23552 − 3072 = 1763, 1430272 − 3074 = 22623, 5572 − 3072 = 603,

3272 − 3592 = (−28)3, 41466892 − 3834 = 258003, 2892 − 3972 = (−42)3, 4332 − 4312 = 123,

4312 − 4332 = (−12)3, 43086932 − 4334 = 264623, 9792 − 4792 = 903, 132 − 4992 = (−12)5,

238312 − 5032 = 8283, 3072 − 5572 = (−60)3, 932 − 5932 = (−70)3, 8572 − 6012 = 723,

7132 − 6592 = 423, 850164152 − 6832 = 1933463, 2970532 − 7012 = 44523, 7312 − 7272 = 183,

36552 − 7392 = 2343, 5612 − 8112 = (−70)3, 6012 − 8572 = (−72)3 and 10512 − 9972 = 483.

Proof. For n ∈ {3, 5} and primes 3 ≤ q < 1000, we solved the Thue–Mahler equation (36) using
the Magma implementation of the Thue–Mahler solver described in [20]. The computation resulted
in the solutions given in the statement of the lemma. �

7. The modular approach to Diophantine equations: some background

Let F/Q be an elliptic curve over the rationals of conductor NF and minimal discriminant ∆F .
Let p ≥ 5 be a prime. The action of Gal(Q/Q) on the p-torsion F [p] gives rise to a 2-dimensional
mod p representation

ρF,p : Gal(Q/Q)→ GL2(Fp).
Suppose ρF,p is irreducible (i.e. F does not have an p-isogeny); this can often be established by
appealing to Mazur’s isogeny theorem [30]. A standard consequence of Ribet’s lowering theorem
[36], building on the modularity of elliptic curves over Q due to Wiles and others [45], [12], is that
ρF,p arises from a weight 2 newform of level

N = NF

/ ∏
` ‖NF

p|ord`(∆F )

` .

More precisely, there is a newform f of weight 2 and level N with normalized q-expansion

(37) f = q +

∞∑
m=2

cmqm

such that

(38) ρF,p ∼ ρf,p
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where p is a prime ideal above p of the ring of integers Of of the Hecke eigenfield Kf =
Q(c1, c2, . . . ).

The original motivation for the great theorems of Ribet and Wiles included Fermat’s Last
Theorem. To motivate what is to come in later sections, we quickly sketch the deduction of FLT
from the above. Let x, y and z be non-zero coprime rational integers satisfying xp + yp + zp = 0
where p ≥ 5 is prime. After appropriately permuting x, y and z, we may suppose that 2 | y and
that xn ≡ −1 (mod 4). Let F be the Frey–Hellegouarch curve

Y 2 = X(X − xp)(X + yp).

It follows from Mazur’s isogeny theorem and related results that ρE,p is irreducible. A short
computation reveals that

∆F = 2−8(xyz)2p and NF = 2 Rad(xyz),

where Rad(m) denotes the product of the prime divisors of m. We find that N = 2. Thus ρF,p
arises from a newform f of weight 2 and level 2; the nonexistence of such newforms provides the
desired contradiction.

It is possible to use a similar strategy to treat various Diophantine problems including gener-
alised Fermat equations Axp +Byq = Czr, for certain signatures (p, q, r). This is done by Kraus
[25] for signature (p, p, p) and by the first author and Skinner [7] for signature (p, p, 2). Fortu-
nately, these papers provide recipes for the Frey–Hellegouarch curves F and for the levels N , and
establish the required irreducibility of ρF,n. We shall make frequent use of these recipes in later
sections. It is known (and easily checked using standard dimension formulae) that there are no
weight 2 newforms at levels

(39) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60,

but there are newforms at all other levels. Thus, if the level N predicted by the recipes is not in
the list (39) then we do not immediately obtain a contradiction. Instead, we may compute the
possible newforms using implementations (e.g. in Magma or SAGE) of modular symbols algorithms
due to Cremona [19] and Stein [42]. We then use the relation (38) to help us extract information
about the solutions to our Diophantine equation. In doing this, we shall often make use of the
following standard result, e.g. [27], [40, Section 5].

Lemma 7.1. Let F/Q be an elliptic curve of conductor NF . Let f be a weight 2 newform of
level N having q-expansion as in (37). Suppose (38) holds for some prime p ≥ 5. Let ` 6= p be a
rational prime.

(i) If ` - NFN then a`(F ) ≡ c` (mod p).
(ii) If ` - N but ` || NF then `+ 1 ≡ ±c` (mod p).

If f is a rational newform (i.e. Kf = Q) then (i), (ii) also hold for ` = p.

We will also make frequent use of the following theorem of Kraus [25, Proposition 2].

Theorem 8 (Kraus). Let f be a newform of weight 2 and level N with q-expansion as in (37),
and Hecke eigenfield Kf with ring of integers Of . Write

M = lcm(4, N) and µ(M) = M ·
∏
r|M

r prime

(
1 +

1

r

)
.

Let p be a prime ideal of Of and suppose the following two conditions hold.

(i) For all primes ` ≤ µ(M)/6, ` - 2N , we have

`+ 1 ≡ c` (mod p).
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(ii) For all primes ` ≤ µ(M)/6, ` | 2N , `2 - 4N , we have

(`+ 1)(c` − 1) ≡ 0 (mod p).

Then `+ 1 ≡ c` (mod p) for all primes ` - 2N .

8. The equation x2 − q2k = yn with y even: an approach via Frey curves

We are still concerned with equation (31). In view of the results of Section 6, we may suppose
that n ≥ 7 is prime. To show that (31) has no solutions for a particular pair (q, n), it is enough to
show the same for (36). We shall think of (36) as a Fermat equation of signature (n, n, n) by writing
it as yn1 − 2n−2yn2 = qk · 1n. This enables us to apply recipes of Kraus [25] for Frey–Hellegouarch
curves and level lowering. The following lemma will eliminate some cases when applying those
recipes.

Lemma 8.1. Suppose n ≥ 7 is prime. Then gcd(k, 2n) = 1.

Proof. Theorem 1.2 of [7] asserts that the equation Ap + 2αBp = C2 with prime p ≥ 7 has no
solutions in non-zero integers with gcd(A,B,C) = 1 and α ≥ 2. It immediately follows from (36)
that k is odd. Moreover, Theorem 3 of [37] asserts that the equation Ap + 2αBp +Cp = 0 has no
solutions with ABC 6= 0 for prime p ≥ 7 and 2 ≤ α ≤ p− 1. It follows that n - k. �

Following Kraus, we attach to a solution of (36) a Frey–Hellegouarch curve F , where

(40) F : Y 2 = X(X + yn1 )(X + 2n−2yn2 )

if q ≡ 1 (mod 4), and

(41) F : Y 2 = X(X − qk)(X + 2n−2yn2 ),

if q ≡ 3 (mod 4). The Frey–Hellegouarch curve F is semistable, and has minimal discriminant
and conductor respectively given by

(42) ∆F = 22n−12q2k(y1y2)n and NF = 2q · Rad2(y1y2),

where Rad2(m) denotes the product of the odd primes dividing m. From Kraus [25], the mod n
representation of F arises from a newform f of weight 2 and level N = 2q.

Let ` - 2q be a prime. Write

T = {a ∈ Z ∩ [−2
√
`, 2
√
`] : a ≡ `+ 1 (mod 4)}.

Let
D′f,` = ((`+ 1)2 − c2`) ·

∏
a∈T

(a− c`),

and

Df,` =

{
` · D′f,` if Kf 6= Q
D′f,` if Kf = Q,

Lemma 8.2. Let f be a newform of weight 2 and level 2q, and suppose that (38) holds. Let ` - 2q
be a prime. Then n | Df,`.

Proof. If ` - y1y2, then ` - NF and so is a prime of good reduction for F . As F has full 2-torsion
we deduce that 4 | (` + 1 − a`(F )). By the Hasse–Weil bounds, a`(F ) belongs to the set T . If
` | y1y2, then ` || NF . The lemma now follows from Lemma 7.1. �

It is straightforward from Lemma 8.2 and the fact that n | n that n | Norm(Df,`). Thus if
Df,` 6= 0, we immediately obtain an upper bound upon the exponent n. This approach will result
in a bound on the exponent n in (31) unless f corresponds to an elliptic curve over Q with full
2-torsion and conductor N = 2q; for this see [40, Section 9]. Mazur showed that such an elliptic
curve exists if and only if q ≥ 31 is a Fermat or a Mersenne prime; see for example [40, Theorem
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8]. We note that 31, 127 and 257 are the only such primes in our range 3 ≤ q < 1000. We shall
exploit this approach to prove the following.

Proposition 8.3. Let n ≥ 7 and 3 ≤ q < 1000 be primes.

(i) If q 6∈ {31, 127, 257}, then (31) has no solutions.
(ii) Suppose q ∈ {31, 127, 257}, write q = 2m + η where η = ±1, and let

(43) Eq : Y 2 = X(X + 1)(X − η · 2m).

Suppose (k, x, y) is a solution to (31) and let F be as above. Then

ρF,n ∼ ρEq,n

In Cremona’s notation, these Eq are the elliptic curves 62a2, 254d2 and 514a2, for q = 31, 127
and 257, respectively.

Proof. There are no newforms of weight 2 and levels 6, 10 and 22. Therefore the proof is complete
in the cases where q ∈ {3, 5, 11}. We may thus suppose that 7 ≤ q < 1000 is prime and that
q 6= 11.

For a newform f of weight 2 and level 2q, and a collection of primes `1, . . . , `m (all coprime to
2q), we write Df,`1,...,`m for the ideal of Of generated by Df,`1 , . . . ,Df,`m . Let Bf,`1,...,`m ∈ Z be
the norm of the ideal Df,`1,...,`m . If ρF,n ∼ ρf,n, then n | Df,`1,...,`m by Lemma 8.2. As n | n, we
deduce that n | Bf,`1,...,`m . In our computations we will take `1, . . . , `m to be all the primes < 200
distinct from 2 and q, and write Bf for Bf,`1,...,`m .

We wrote a short Magma script which computed, for all newforms f at all levels 2q under
consideration, the integer Bf . We found that Bf 6= 0 for all newforms f except for three rational
newforms of levels 62, 254 and 514 (corresponding to q = 31, 127 and 257, respectively). Thus, for
all other newforms, we at least obtain a bound on n. In many cases this bound is already sharp
enough to contradict our assumption that n ≥ 7. We give a few examples.

Let q = 13. Then there are two eigenforms f1, f2 of level 2q = 26, and

Bf1 = 3× 5, Bf2 = 3× 7.

Thus we eliminate f1 from consideration, and also conclude that n = 7. It is natural to wonder
if n = 7 can be eliminated by increasing the size of our set of primes `1, . . . , `m, but this is not
the case. The newform f2 is rational and corresponds to the elliptic curve 26b1 with Weierstrass
model

E′ : Y 2 +XY + Y = X3 −X2 − 3X + 3.

The torsion subgroup of E′(Q) is isomorphic to Z/7Z, generated by the point (1, 0). In particular,
for any prime ` - 26, we have 7 | (` + 1 − a`(E

′)). Since a`(E
′) = c`(f2), we have 7 | Bf2,`.

Thus 7 | Bf,`1,...,`n regardless of the set of primes `1, . . . , `m that we choose. However we can still
obtain a contradiction for n = 7 in this case. Indeed, we have ρF,7 ∼ ρf2,7 ∼ ρE′,7. Since E′

has non-trivial 7-torsion, the representation ρE′,7 is reducible. However, the representation of the
Frey curve ρF,7 is irreducible as shown by Kraus [25, Lemme 4], contradicting the fact that F has
full rational 2-torsion.

For q = 31, there are two newforms, g1 and g2. We find that Bg1 = 0 and Bg2 = 23 × 32; thus
we may eliminate g2 for consideration. The eigenform g1 is rational and corresponds to the elliptic
curve E31 with Cremona label 62a2. Hence ρF,p ∼ ρg1,p ∼ ρE31,p, whence the proof is complete
for q = 31.

For q = 37, there are two newforms, h1 and h2. We find that Bh1 = 33 and Bh2 = 19. Thus
n = 19 and

(44) ρF,19 ∼ ρh2,19.
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The newform h2 has q-expansion

h2 = q + q2 + αq3 + q4 + (−3α− 1)q5 + αq6 + 2αq7 + · · · , where α =
−1 +

√
5

2
,

and Hecke eigenfield K = Q(
√

5). Let n be the prime ideal n = (4− α) · OK having norm 19. We
checked, using Theorem 8, that ` + 1 ≡ c` (mod n) for all primes ` - 2 · 37, where c` is the `-th
coefficient of h2. From relation (44), we know that

a`(F ) ≡ c` (mod n)

for all primes ` of good reduction for F3,1. Thus 19 | (` + 1 − a`(F3,1)) for all primes ` of good
reduction. As before, this now implies that ρF,19 is reducible [38, IV-6], giving a contradiction.
The proof is thus complete for q = 37.

The above arguments allow us to prove (ii) in the statement of the proposition, and to obtain
a contradiction for all 3 ≤ q < 1000, q 6∈ {31, 127, 257}, except when n = 7 and q belongs to the
list

43, 101, 103, 139, 163, 379, 467, 509, 557, 569, 839, 937, 947, 977.

For n = 7 and these values of q, we checked using the aforementioned Thue–Mahler solver that
the only solutions to (36) are (y1, y2, k) = (1, 0, 0). Since k 6= 0 in (31), the proof is complete. �

Symplectic criteria. When q ≥ 31 is a Fermat or Mersenne prime, it does not seem to be
possible, working purely with Galois representations of elliptic curves, to eliminate the possibility
that ρF,n ∼ ρEq,n. However, the so-called ‘symplectic method’ of Halberstadt and Kraus [21]

allows us to derive an additional restriction on the solutions to (31).

Lemma 8.4. Let q = 2m+η be a Fermat or Mersenne prime. Let n ≥ 7 be a prime 6= q. Suppose
(x, y, k) is a solution to (31), and let F be the Frey–Hellegouarch curve constructed above, and Eq
be given by (43). Suppose ρF,n ∼ ρEq,n. Then either n | (m− 4) or

(45)

(
(24− 6m)k

n

)
= 1.

Proof. We note that the curves F and Eq have multiplicative reduction at both 2 and q. Write
∆1 and ∆2 for the minimal discriminants of F and Eq, respectively. By [21, Lemme 1.6], the ratio

ord2(∆1) · ordq(∆1)

ord2(∆2) · ordq(∆2)

is a square modulo n, provided n - ord2(∆i), n - ordq(∆i). It is in invoking this result of
Halberstadt and Kraus that we require the assumption that n 6= q. We find that

∆1 = 22n−12q2k(y1y2)2n and ∆2 = 22m−8q2.

We have previously noted that n - k by appealing to a result of Ribet. Suppose n - (m− 4). Then
the valuations ord2(∆i) and ordq(∆i) are all indivisible by n. The result follows. �

9. The equation x2 − q2k = yn: an upper bound for the exponent n

To help us complete the proof of Theorem 5, we begin by deriving an upper bound for n. Our
approach is essentially a minor sharpening of Theorem 3 of Bugeaud [13] in a slightly special case.
Since this result is valid for an arbitrary prime q, it may be of independent interest.

Theorem 9. Let x, y, q, k ≥ 1 and n ≥ 3 be integers satisfying equation (7), with n and q prime,
and q - x. Then

n < 1000 q log q.
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Proof. If q = 2, then we have that n ≤ 5 from Theorem 1.2 of [7]. We may thus suppose that q
is odd and, additionally, that y is even, or, via Proposition 3.1, we immediately obtain the much
stronger result that n | (q−1). We are therefore in case (35). By Proposition 8.3, we may suppose
that q = 31 or that q ≥ 127. Set Y = max{|y1|, |2y2|} and suppose first that

(46) qk ≥ Y n/2,

or equivalently

(47) 2k log q ≥ n log Y.

We set

Λ =
qk

(2y2)n
=

(
y1

2y2

)n
− 1

4
;

we wish to apply an upper bound for linear forms in q-adic logarithms to Λ, in order to bound k.
To do this, we must first treat the case where y1/2y2 and 1/4 are multiplicatively dependent, i.e.
where y1y2 has no odd prime divisors. Under this assumption, since y1 is odd, we find from (36)
that

2j ± 1 = qk,

for an integer j with j ≡ −2 (mod n). Via Mihailescu’s theorem [33], if n ≥ 7, necessarily k = 1,
y1 = ±1, y2 = −2κ for some integer κ and

q = 2(κ+1)n−2 ± 1.

In this case, we find a solution to equation (7) corresponding to the identity

(−q ± 2)2 − q2 = 4∓ 4q =
(
∓2κ+1

)n
,

whereby, certainly n < 1000 q log q.
Otherwise, we may suppose that y1/2y2 and 1/4 are multiplicatively independent and that

Y ≥ 3. We will appeal to Théorème 4 of Bugeaud and Laurent [14], with, in the notation of that
result, (µ, ν) = (10, 5) (see also Proposition 1 of Bugeaud [13]). Before we state this result, we
require some notation. Let Qq denote an algebraic closure of the q-adic field Qq, and define νq
to be the unique extension to Qq of the standard q-adic valuation over Qq, normalized so that
νq(q) = 1. For any algebraic number α of degree d over Q, define the absolute logarithmic height
of α via the formula

(48) h(α) =
1

d

(
log |a0|+

d∑
i=1

log max
(

1, |α(i)|
))

,

where a0 is the leading coefficient of the minimal polynomial of α over Z and the α(i) are the
conjugates of α in C.

Theorem 10 (Bugeaud-Laurent). Let q be a prime number and let α1, α2 denote algebraic num-
bers which are q-adic units. Let f be the residual degree of the extension Qq(α1, α2)/Qq and put
D = [Qq(α1, α2) : Qq]/f . Let b1 and b2 be positive integers and put

Λ1 = αb11 − α
b2
2 .

Denote by A1 > 1 and A2 > 1 real numbers such that

logAi ≥ max

{
h(αi),

log q

D

}
, i ∈ {1, 2},

and put

b′ =
b1

D logA2
+

b2
D logA1

.



PRIME POWER GAPS 19

If α1 and α2 are multiplicatively independent, then we have the bound

νq(Λ1) ≤ 24q(qf − 1)

(q − 1) log4(q)
D4

(
max

{
log b′ + log log q + 0.4,

10 log q

D
, 5

})2

· logA1 · logA2.

We apply this with

f = 1, D = 1, α1 = y1/2y2, α2 = 1/4, b1 = n, b2 = 1,

so that we may choose

logA1 = max{log Y, log q}, logA2 = max{2 log 2, log q},
and

b′ =
n

logA2
+

1

logA1
.

Let us assume now that

(49) n ≥ 1000 q log q,

whilst recalling that either q = 31 or q ≥ 127. We therefore have

b′ < 1.001
n

log q

and hence find that

(50) k ≤ 24
q

log3 q
(max {log n+ 0.401, 10 log q})2

logA1,

whence, from (47),

(51) n log Y ≤ 48
q

log2 q
(max {log n+ 0.401, 10 log q})2

logA1.

Let us suppose first that

log n+ 0.401 ≥ 10 log q.

If q ≥ Y , we have that logA1 = log q and hence

n log Y

(log n+ 0.401)
2 ≤ 48

q

log q
.

From (49), we thus have

log2 q

(log(1000q log q) + 0.401)
2 ≤

0.048

log Y
≤ 0.048

log 3
,

contradicting q ≥ 31. If, on the other hand, q < Y , then logA1 = log Y and so

(52)
n

(log n+ 0.401)
2 ≤ 48

q

log2 q
.

With (49), this implies that

log3 q < 0.048 (log(1000q log q) + 0.401)
2
,

again contradicting q ≥ 31.
We may therefore assume that

log n+ 0.401 < 10 log q,

so that

n log Y ≤ 4800 q logA1.

If q ≥ Y , then, from (49),

log Y < 4.8,
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whereby 3 ≤ Y ≤ 121. If |y1| ≥ 2|y2|, it follows from equation (36) that

(53) qk ≥ |y1|n −
1

4
|y1|n =

3

4
Y n.

Suppose, conversely, that |y1| ≤ 2|y2| − 1 (so that 1 ≤ |y2| ≤ 60). If y1 > 0 and y2 < 0, it follows
from (36) that

(54) qk >
1

4
Y n.

We may thus suppose that y1 and y2 have the same sign, whence, from (36), (49) and |y2| ≤ 60,

(55) qk = 2n−2|y2|n − |y1|n > 0.24 · |2y2|n = 0.24 · Y n.
Combining (53), (54) and (55), we thus have from (50) that

n log Y + log(0.24) < k log q ≤ 2400 q log q,

contradicting (49) and q ≥ 31. If q < Y , then, via (49),

(56) 1000 q log q ≤ n ≤ 4800 q,

a contradiction for q ≥ 127. We may thus suppose that q = 31, Y > 31 and, from (52), n ≤ 12119,
which contradicts (49).

Next suppose that inequality (46) (and hence also inequality (47)) fails to hold. In this case,
we will apply lower bounds for linear forms in two complex logarithms. Following Bugeaud, we
take

Λ1 = 4Λ =
4qk

(2y2)n
= 4

(
y1

2y2

)n
− 1,

so that

(57) log |Λ1| = 2 log 2 + k log q − n log(|2y2|).
If Y = max{|y1|, |2y2|} = |y1|, then, from (35), it follows that

qk ≥ 3

4
|y1|n =

3

4
Y n,

contradicting qk < Y n/2. It follows that Y = |2y2| and so, from (57),

(58) log |Λ1| = 2 log 2 + k log q − n log Y ≤ 2 log 2− n

2
log Y.

From (49), we have that |Λ1| ≤ 1/2000, so that

(59)

∣∣∣∣n log

∣∣∣∣2y2

y1

∣∣∣∣− 2 log 2

∣∣∣∣ ≤ |log (1− Λ1)| ≤ 1.001 |Λ1| .

We will appeal to Corollary 1 of Laurent [28] :

Theorem 11 (Laurent). Consider the linear form

Λ = c2 log β2 − c1 log β1,

where c1 and c2 are positive integers, and β1 and β2 are multiplicatively independent algebraic
numbers. Define D = [Q(β1, β2) : Q]

/
[R(β1, β2) : R] and set

b′ =
c1

D logB2
+

c2
D logB1

,

where B1, B2 > 1 are real numbers such that

logBi ≥ max{h(βi), | log βi|/D, 1/D}, i ∈ {1, 2}.
Then

log |Λ| ≥ −CD4 (max{log b′ + 0.21,m/D, 1})2
logB1 logB2,
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for each pair (m,C) in the following set

{(10, 32.3), (12, 29.9), (14, 28.2), (16, 26.9), (18, 26.0), (20, 25.2),
(22, 24.5), (24, 24.0), (26, 23.5), (28, 23.1), (30, 22.8)} .

Applying this result to the left hand side of (59), with (m,C) = (10, 32.3),

β2 = |2y2/y1|, β1 = 4, c2 = n, c1 = 1, D = 1,

logB2 = log Y, logB1 = 2 log 2 and b′ =
n

2 log 2
+

1

log Y
<

1.001n

2 log 2
,

we may conclude that

log |Λ1| ≥ −0.001− 44.8 (max {log n− 0.11, 10})2
log Y.

Combining this with (58), we thus have

n ≤ 89.6 (max {log n− 0.11, 10})2
+

1.4

log Y
.

After a little work we find that

n ≤ 8961,

contradicting (49) and q ≥ 31. �

10. The equation x2 − q2k = yn: proof of Theorem 5

In this section, we complete the proof of Theorem 5. Let 3 ≤ q < 1000 be a prime and let
(k, x, y, n) be a solution to (7) where x, k ≥ 1 and n ≥ 3 are positive integers satisfying q - x.
Thanks to Lemmata 3.2, 6.1 and 6.2, we may suppose that y is even and that n ≥ 7 is prime.
It follows from Proposition 8.3 that q = 31, 127 or 257 and ρF,n ∼ ρEq,n, where Eq is given in

(43), and F is the Frey–Hellegouarch curve given in (40) or (41) according to whether q ≡ 1 or
3 (mod 4). From Theorem 9, we have

n < 1000× 257× log(257) < 1.5× 106.

We now give a method, which for given exponent n and prime q ∈ {31, 127, 257}, is capable
of showing that (36) has no solutions. This is an adaptation of the method called ‘predicting the
exponents of constants’ in [40, Section 13]. Let n ≥ 7 be prime and choose ` 6= q to be a prime
satisfying the following:

(i) ` = tn+ 1 for some positive integer t;
(ii) n - ((`+ 1)2 − a`(Eq)2).

For κ ∈ F`, κ 6∈ {0, 1} set

E(κ) : Y 2 = X(X − 1)(X − κ).

Let g be a primitive root for ` (i.e. a generator for F∗` ) and let h = gn. Define X` ⊂ F∗` via

X` = {hr/4 : 0 ≤ r ≤ t− 1 and hr 6≡ 4 (mod `)}
and

Y` =
{

(κ− 1) · (F∗` )n : κ ∈ X` and a`(E(κ))2 ≡ a`(Eq)2 (mod n)
}
⊂ F∗`/(F∗` )n.

Define further

φ : Z/nZ→ F∗`/(F∗` )n via φ(s) = qs · (F∗` )n.
Finally, let

Z` =

{
s ∈ φ−1 (Y`) :

(
(24− 6m)s

n

)
= 1

}
,

where q = 2m ± 1; thus m = 5, 7 and 8 for q = 31, 127 and 257, respectively. We note that
n - (m− 4) in all cases, so that (45) holds.
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Lemma 10.1. Let q ∈ {31, 127, 257} and n ≥ 7, n 6= q be prime. Let `1, . . . , `t be primes 6= q
satisfying (i) and (ii) above, and also

(60)

t⋂
i=1

Z`i = ∅.

Then equation (7) has no solutions with k ≥ 1 and q - x.

Proof. From Proposition 8.3, ρF,n ∼ ρEq,n. The minimal discriminant and conductor of F are

given in (42). Thus a prime ` - 2q satisfies ` || NF if and only if ` | y1y2, otherwise ` - NF . Let
` 6= q be a prime satisfying (i) and (ii). By (ii) we know, thanks to Lemma 7.1, that ` - y1y2, and
so a`(F ) ≡ a`(Eq) (mod n). Let κ ∈ F` satisfy

κ ≡ 2n−2yn2 /y
n
1 (mod `).

Then E(κ)/F` is a quadratic twist of F/F` and so a`(E(κ)) = ±a`(F ). We conclude that
a`(E(κ))2 ≡ a`(Eq)2 (mod n).

Recall that ` = tn+ 1 and h = gn, where g is a primitive root of F`. Observe that

4κ ≡ 2nyn2 /y
n
1 ≡ hr (mod `),

for some 0 ≤ r ≤ t− 1. Moreover,

κ− 1 ≡ 2n−2yn2
yn1

− 1 ≡ − q
k

yn1
6≡ 0 (mod `).

In particular, κ 6= 1 and so κ ∈ X` and qk · (F∗` )n = (κ − 1) · (F∗` )n ∈ Y`. Hence s ∈ φ−1(Y`),
where s = k ∈ Z/nZ. Since k also satisfies (45), we conclude that s ∈ Z`. As this is true for
` = `1, . . . , `t, the element s belongs to the intersection (60) giving a contradiction. �

Corollary 10.2. For q ∈ {31, 127, 257} and prime n with 7 ≤ n < 1.5× 106, equation (7) has no
solutions with k ≥ 1 and q - x.

Proof. For n 6= q, we ran a short Magma script that searches for suitable primes `i and verifies the
criterion of Lemma 10.1. This succeeded for all the primes 7 ≤ n < 1.5 × 106 in a few minutes,
except for (q, n) = (31, 7). In this case, we found that ∩Z`i = {1} no matter how many primes `i
we chose. The reason for this is that there is a solution to equation (36) with n = 7 and k = 1,
namely (−1)7 − 25 · (−1)7 = 311.

In case n = q, we are unable to appeal directly to Lemma 10.1 as we no longer necessarily have
(45). We can however, still derive a slightly weaker analogue of Lemma 10.1 with the Z` replaced
by the (typically) larger sets

Z ′` = φ−1 (Y`) .

For n = q, we find that

Z ′311 ∩ Z ′373 = ∅, Z ′509 ∩ Z ′2287 = ∅ and Z ′1543 = ∅,

for q = 31, 127 and 257, respectively. �

To complete the proof of Theorem 5, it remains only to solve the Thue–Mahler equation

y7
1 − 32y7

2 = 31k.

Using the Magma implementation of [20], we find that the only solution with k positive is with
k = 1 and y1 = y2 = −1, corresponding to the solution (q, k, y, n) = (31, 1, 2, 7) to equation (7).
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11. The equation x2 + q2k+1 = yn with y odd

In previous sections, we have completed the proofs of Theorems 4 and 5, therefore solving
equation (8) with 3 ≤ q < 1000 prime, for even exponents α. The remainder of the paper is
devoted to solving (8) for odd exponents α, and for the more modest range 3 ≤ q < 100. In this
section, we focus on the equation

(61) x2 + q2k+1 = yn, x, y, k integers, k ≥ 0, gcd(x, y) = 1, y odd,

with exponent n ≥ 5 prime; here q ≥ 3 is prime.

Theorem 12 (Arif and Abu Muriefah). Suppose q ≥ 3 and n ≥ 5 are prime, and that n does not
divide the class number of Q(

√
−q). Then the only solution to (61) corresponds to the identity

(62) 224342 + 19 = 555.

Proof. The proof given by Arif and Abu Muriefah [1] is somewhat lengthy and slightly incorrect.
For the convenience of the reader we give a corrected and simplified proof. Let M = Q(

√
−q) and

suppose that n does not divide the class number of M . This and the assumptions in (61) quickly
lead us to conclude that

x+ qk
√
−q = αn

for some α ∈ OM with Norm(α) = y. Thus

(63) αn − αn = 2qk
√
−q.

If α/α is a root of unity, then by the coprimality of α and α, we can conclude that α is a unit and
so y = 1 giving a contradiction. Thus α/α is not a root of unity. Therefore

um =
αm − αm

α− α
is a Lucas sequence. Since αα = y, we note that αα is coprime to 2q. Suppose that the term
un has a primitive divisor `. By definition, this is a prime ` dividing un that does not divide
(α − α)2 · u1u2 · · ·un−1. However α = u + v

√
−q or α = (u + v

√
−q)/2 where u, v ∈ Z. Thus

(α − α)2 = −4q or −q respectively. In particular ` 6= q. It follows from (26) that ` = 2. By
Theorem 7 and the primality of n, we have n = m2, the rank of apparition of ` = 2 in the
sequence un. Again by Theorem 7, n = m2 = 2 or 3 contradicting our assumption that n ≥ 5. It
follows that un does not have a primitive divisor.

We now invoke the Primitive Divisor Theorem (Theorem 6) to conclude that n = 5 or 7 and

that (α, α) is equivalent to ((a−
√
b)/2, (a+

√
b)/2) where possibilities for (a, b) are given by (24)

if n = 5, and by (23) if n = 7. For illustration, we take n = 5 and (a, b) = (12,−76). Thus
α = (±12 ±

√
−76)/2 = ±6 ±

√
−19, whence q = 19 and y = Norm(α) = 55, quickly giving

the solution in (62). The other possibilities for (a, b) in (23) and (24) do not yield solutions to
(61). �

Corollary 11.1. The only solutions to (61) with 3 ≤ q < 100 and n ≥ 5 prime correspond to the
identities

224342 + 19 = 555, 142 + 47 = 35 and 462 + 71 = 37.

Proof. Write hq for the class number of M = Q(
√
−q). Thanks to Theorem 12, if n - hq then the

only corresponding solution is 224342 + 19 = 555. Thus we may suppose that n | hq. The only
values of q in our range with hq divisible by a prime ≥ 5 are q = 47, 71 and 79, where hq = 5, 7
and 5, respectively. We therefore reduce to considering the three cases (q, n) = (47, 5), (71, 7) and
(79, 5), with hq = n in all three cases. From (61), we have

(x+ qk
√
q) · OM = An.
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If A is principal, then we are in the situation of the proof of Theorem 12 and we obtain a contra-
diction. Thus A is not principal. Now for the three quadratic fields under consideration the class
group is generated by the class [P] where

P = 2 · OM +
(1 +

√
−q)

2
· OM

is one of the two prime ideals dividing 2. We conclude that [A] = [P]−r for some 1 ≤ r ≤ n− 1.
Observe that CC is principal for any ideal C of OM , so [C] = [C]−1. We choose B = A or A so
that [B] = [P]−r where 1 ≤ r ≤ (n− 1)/2. We note that

(x± qk
√
−q) · OM = Bn = (P−n)r · (PrB)n

where the ± sign is + if B = A and − is B = A. We note that both P−n and PrB are principal.
We find that P−n = 2−n−1(u+ v

√
−q) · OM where u, v are

(u, v) =


(−9, 1) if q = 47,

(−21, 1) if q = 71,

(7, 1) if q = 79.

The ideal PrB is integral as well as principal, and so has the form (X ′ + Y ′
√
−q) · OM where X ′

and Y ′ are either both integers, or both halves of odd integers. We conclude that

2s+rn+r(x± qk
√
−q) = (u+ v

√
−q)r · (X + Y

√
−q)n

where X, Y ∈ Z and s = 0 or n. Equating imaginary parts gives

Gr(X,Y ) = ±2s+rn+rqk

where Gr ∈ Z[X,Y ] is a homogeneous polynomial of degree n. We solved this Thue–Mahler
equation using the Thue–Mahler solver associated to the paper [20], for each of our three pairs
(q, n) and each 0 ≤ r ≤ (n − 1)/2. For illustration, we consider the case q = 47, n = 5, r = 2.
Thus (u, v) = (−9, 1). We find

G2(X,Y ) = 2(−9X5 + 85X4Y + 4230X3Y 2 − 7990X2Y 3 − 99405XY 4 + 37553Y 5)

and are therefore led to solve the Thue–Mahler equation

−9X5 + 85X4Y + 4230X3Y 2 − 7990X2Y 3 − 99405XY 4 + 37553Y 5 = ±2jqk.

We find that the solutions are

(X,Y, j, k) = (1, 1, 16, 0) and (−1,−1, 16, 0),

and compute G2(1, 1) = −217, G2(−1,−1) = 217. We note that 17 = n + rn + r, therefore
s = n = 5. We deduce that

x± 47k
√
−47 = ±(−9 +

√
−47)2 · (1 +

√
−47)5 = ±(14−

√
−47).

Thus x = ±14 and k = 0, giving the solution 142 + 47 = 35. The other cases are similar. �

12. The equation x2 + (−1)δq2k+1 = y5

We will soon apply Frey–Hellegouarch curves to study the equation x2 + (−1)δq2k+1 = yn for
prime exponents n ≥ 7, and for q a prime in the range 3 ≤ q < 100. In Section 2, we have
solved this equation for n ∈ {3, 4}. This leaves only exponent n = 5 which we now treat through
reduction to Thue–Mahler equations.
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Lemma 12.1. Let 3 ≤ q < 100 be a prime. The only solutions to the equation

x2 − q2k+1 = y5, x, y, k integers, k ≥ 0, gcd(x, y) = 1,

correspond to the identities

22 − 3 = 15, 22 − 5 = (−1)5, 102 − 73 = (−3)5, 562 − 11 = 55, 162 − 13 = 35,

42 − 17 = (−1)5, 72 − 17 = 25, 62 − 37 = (−1)5, 37882 − 37 = (27)5,

32 − 41 = (−2)5, 4112 − 413 = 105 and 112 − 89 = 25.

Proof. Let M = Q(
√
q). For q in our range, the class number of M is 1, unless q = 79 in which

case the class number is 3. Suppose first that y is odd. Then

(x+ qk
√
q)OM = A5

where A is an ideal of OM . Since the class number is not divisible by 5, we see that A is principal
and conclude that

(64) x+ qk
√
q = εr · α5,

where ε is some fixed choice of a fundamental unit for M , −2 ≤ r ≤ 2, and α ∈ OM . Note that

−x+ qk
√
q = ε−r · β5,

where β is one of ±α. Thus we may without loss of generality suppose that 0 ≤ r ≤ 2. The
case r = 0 is easily shown not to lead to any solutions by following the approach in the proof of
Theorem 12. Thus we suppose r = 1 or 2.

Let

θ =

{√
q if q ≡ 3 (mod 4)

(1 +
√
q)/2 if q ≡ 1 (mod 4).

Then {1, θ} is a Z-basis for OM and so we may write α = X + Y θ where X, Y ∈ Z. It follows
that

εr · α5 = Fr(X,Y ) +Gr(X,Y )θ,

where Fr, Gr are homogeneous degree 5 polynomials in Z[X,Y ]. Equating the coefficients of θ in
(64) yields the Thue–Mahler equations

Gr(X,Y ) =

{
qk if q ≡ 3 (mod 4)

2qk if q ≡ 1 (mod 4).

Solving these equations for prime 3 ≤ q < 100 and for r ∈ {1, 2} leads to the solutions given in
the statement of the theorem with y odd.

Next we consider the case when y is even, so that q ≡ 1 (mod 8). The possible values of q in
our range are 17, 41, 73, 89 and 97 (where, in each case, M has class number 1). We can rewrite
the equation x2 − q2k+1 = y5 as(

x+ qk
√
q

2

)(
x− qk√q

2

)
= 23y5

1

where y1 = y/2. The two factors on the left-hand side are coprime. Let β be a generator of

P = 2OM +

(
1 +
√
q

2

)
· OM

which is one of the two prime ideals above 2. After possibly replacing x by −x we obtain

x− qk

2
+ qkθ =

x+ qk
√
q

2
= εrβα5
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where −2 ≤ r ≤ 2. Writing α = X + Y θ and equating the coefficients of θ on both sides gives,
for each choice of q and r, a Thue–Mahler equation. Solving these leads to the solutions in the
statement of the theorem with y even. �

Lemma 12.2. Let 3 ≤ q < 100 be a prime. The only solutions to the equation

x2 + q2k+1 = y5, x, y, k integers, k ≥ 0, gcd(x, y) = 1,

correspond to the identities

52 + 7 = 25, 1812 + 7 = 85, 224342 + 19 = 555,

32 + 23 = 25, 12 + 31 = 25 and 142 + 47 = 35.

Proof. By Corollary 11.1 we know that the only solutions when y is odd correspond to the identities
224342 + 19 = 555 and 142 + 47 = 35. Thus we may suppose y is even, and write y = 2y1. It
follows that q = 7, 23, 31, 47, 71, 79. Let M = Q(

√
−q). Let θ = (1 +

√
−q)/2, so that 1, θ is a

Z-basis for OM . Observe that(
x+ qk

√
−q

2

)(
x− qk

√
−q

2

)
= 23y5

1 ,

where the two factors on the left hand-side generate coprime ideals. Let

P = 2OM + θ · OM ;

this is one of the two primes above 2. Thus, after possibly changing the sign of x,(
x+ qk

√
−q

2

)
· OM = P3 · A5

for some ideal A of OM . The class number of OM is 1, 3, 3, 5, 7, 5 according to whether q = 7,
23, 31, 47, 71, 79. In all cases the class group is cyclic and generated by [P]. If q = 47 or 79 then
the class number is 5, and so A5 is principal. Hence P3 is principal which is a contradiction. Thus
there are no solutions for q = 47 or 79. Let

C =

{
1 · OM q = 7, 23, 31

P2 q = 71.

Note that P3C−5 is principal and we write P3C−5 = (u+ vθ) · OM . Thus(
x+ qk

√
−q

2

)
· OM = (u+ vθ) · (CA)5.

As the class number is coprime to 5, we see that CA is principal. Write CA = (X + Y θ) · OK .
After possibly changing the signs of X, Y , we have

x− qk

2
+ qkθ =

x+ qk
√
−q

2
= (u+ vθ)(X + Y θ)5.

Comparing the coefficients of θ yields a degree 5 Thue–Mahler equation. Solving these Thue–
Mahler equations as before gives the claimed solutions with y even. �

13. Frey–Hellegouarch curves for a ternary equation of signature (n, n, 2)

In studying equation (7), we employed a factorisation argument which reduced to (36) (which
in turn we treated as a special case of a Fermat equation having signature (n, n, n)). In the
remainder of the paper, we are primarily interested in the equation x2 + (−1)δq2k+1 = yn, where
q is a prime. We shall treat this, for prime n ≥ 7, as a Fermat equation of signature (n, n, 2) by
rewriting this as yn + q2k+1(−1)(δ+1)n = x2, a special case of

(65) yn + qαzn = x2, gcd(x, y) = 1.
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Equation (65) has previously been studied by Ivorra and Kraus [23], and by the first author and
Skinner [7]. In this section, we recall some of these results and strengthen them slightly before
specialising them to the case z = ±1 in forthcoming sections.

Theorem 13 (Ivorra and Kraus). Suppose that q is a prime with the property that q cannot be
written in the form

q = |t2 ± 2k|,
where t and k are integers, with k = 0, k = 3 or k ≥ 7. Then there are no solutions to the
Diophantine equation (65) in integers x, y, z, n and α with n prime satisfying

(66) n >
(√

8(q + 1) + 1
)2(q−1)

.

To verify whether or not a given prime q can be written as |t2 − 2k|, an old result of Bauer
and the first author [3] can be helpful. We have, from Corollary 1.7 of [3], if t and k are positive
integers with k ≥ 3 odd, ∣∣t2 − 2k

∣∣ > 213k/50,

unless

(t, k) ∈ {(3, 3), (181, 15)}.
In particular, a short computation reveals that Theorem 13 is applicable to the following primes
q < 100 :

(67) q ∈ {11, 13, 19, 29, 43, 53, 59, 61, 67, 83}.
We shall make Theorem 13 more precise for these particular values of q. To this end we attach
to a solution of (65) a certain Frey–Hellegouarch curve, following the recipes of the first author
and Skinner. If yz is even in (65), then we define, assuming, without loss of generality, that
x ≡ 1 (mod 4),

(68) F : Y 2 +XY = X3 +

(
x− 1

4

)
X2 +

yn

64
X, if y is even,

and

F : Y 2 +XY = X3 +

(
x− 1

4

)
X2 +

qαzn

64
X, if z is even.

If, on the other hand, yz is odd, we define

(69) F : Y 2 = X3 + 2xX2 + qαznX

or

(70) F : Y 2 = X3 + 2xX2 + ynX,

depending on whether y ≡ 1 (mod 4) or y ≡ −1 (mod 4), respectively. Let

(71) κ =

{
1 if yz is even

5 if yz is odd.

By the results of [7], in each case, we may suppose that n - α and that the mod n representation
of F arises from a newform f of weight 2 and level N = 2κ · q. Let the q-expansion of f be given
by (37). As before, we denote the Hecke eigenfield by Kf = Q(c1, c2, . . . ) and its ring of integers
by Of . In particular, there is a prime ideal n of Of such that (38) holds. Let ` - 2q be prime and

T = {a ∈ Z ∩ [−2
√
`, 2
√
`] : a ≡ 0 (mod 2)}.

We write

D′f,` = ((`+ 1)2 − c2`) ·
∏
a∈T

(a− c`),
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and

Df,` =

{
` · D′f,` if Kf 6= Q
D′f,` if Kf = Q.

Lemma 13.1. Let f be a newform of weight 2 and level N = 2κ · q. Let ` - 2q be a prime. If
ρF,n ∼ ρf,n then n | Df,`.

Proof. The proof is almost identical to the proof of Lemma 8.2. The only difference is the definition
of T which takes into account the fact F has a single rational point of order 2 instead of full 2-
torsion. �

The following is a slight refinement of Theorem 1.3 of [7].

Proposition 13.2. Suppose that q belongs to (67). Then there are no solutions to equation (65)
in integers x, y, z, n and α with gcd(x, y) = 1 and n ≥ 7 prime, unless, possibly, n = 7 and
q ∈ {29, 43, 53, 59, 61}, or one of the following holds

q = 11, n = 7 and yz ≡ 1 (mod 2), or

q = 19, n = 7 and yz ≡ 1 (mod 2), or

q = 43, n = 11 and yz ≡ 1 (mod 2), or

q = 53, n = 17 and yz ≡ 1 (mod 2), or

q = 59, n = 11 and yz ≡ 0 (mod 2), or

q = 61, n = 13 and yz ≡ 1 (mod 2), or

q = 67, n ∈ {7, 11, 13, 17} and yz ≡ 1 (mod 2), or

q = 83, n = 7 and yz ≡ 1 (mod 2).

Proof. For a weight 2 newform f of level N and primes `1, . . . , `m (all coprime to 2q), write
Df,`1,...,`m for the ideal of Of generated by Df,`1 , . . . ,Df,`m . Let Bf,`1,...,`m ∈ Z be the norm
of the ideal Df,`1,...,`m . If ρF,n ∼ ρf,n then n | Df,`1,...,`m by Lemma 13.1. Write Bf,`1,...,`m =
Norm(Df,`1,...,`m). Thus n | Bf,`1,...,`m . In our computations, we take `1, . . . , `m to be the primes
< 100 coprime to 2q, and we let Bf = Bf,`1,...,`m . If Bf 6= 0, then we certainly have a bound on n.
If Bf is divisible only by primes ≤ 5, then we know that (38) does not hold for that particular f ,
and we can eliminate it from further consideration.

For primes q in (67), we apply this with newforms f of levels N = 2κq, κ ∈ {1, 5}. We
obtain the desired conclusion that equation (65) has no solutions provided n ≥ 7 is prime, unless
q ∈ {29, 43, 53, 59, 61} and n = 7, or (q, n, κ) is one of

(11, 7, 5), (13, 7, 1), (19, 7, 5), (43, 11, 1), (43, 11, 5), (53, 17, 5), (59, 11, 1), (61, 31, 1),
(61, 13, 5), (67, 17, 1), (67, 7, 5), (67, 11, 5), (67, 13, 5), (67, 17, 5), (83, 7, 1), (83, 7, 5).

We show that the triples (13, 7, 1), (43, 11, 1), (61, 31, 1), (67, 17, 1) and (83, 7, 1) do not have
corresponding solutions; the remaining triples lead to the noted possible exceptions. For illustra-
tion, take q = 83 and κ = 1, so that N = 2×83 = 166. There are three conjugacy classes of weight
2 newforms of level N , which we denote by f1, f2, f3, which respectively have Hecke eigenfields
Q, Q(

√
5) and Q(θ) where θ3 − θ2 − 6θ + 4 = 0. We find

Bf1 = 32 × 5, Bf2 = 5, Bf3 = 7.

We therefore reduce that f = f3 and n = 7. In fact, Df = (7, 3 + θ) is a prime ideal above 7, so
we take n = (7, 3 + θ). A short calculation verifies the congruences in hypotheses (i) and (ii) of
Theorem 8, whence `+ 1 ≡ c` (mod n) for all ` with ` - 2 · 83. It follows from Lemma 7.1 that

a`(F ) ≡ c` (mod n)

for all primes ` of good reduction for F and hence 7 | (`+ 1− a`(F )) for all such primes ` of good
reduction. This now implies that ρF,7 is reducible [38, IV-6], giving a contradiction.
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We argue similarly for

(q, n, κ) = (13, 7, 1), (43, 11, 1), (61, 31, 1) and (67, 17, 1).

In each case, Lemma 13.1 eliminates all but one class of newforms which are in turn treated via
Theorem 8. �

For other odd primes q < 100, outside the set (67), we can, in certain cases, still show that
equation (65) has no nontrivial solutions for suitably large n, under the additional assumption
that yz ≡ 0 (mod 2) or, for other q, under the assumption that yz ≡ 1 (mod 2). To be precise,
we have

Proposition 13.3. Suppose that q ∈ {3, 5, 37, 73}. Then there are no solutions to equation (65)
in integers x, y, z, n and α with yz ≡ 0 (mod 2), gcd(x, y) = 1 and n ≥ 7 prime, unless, possibly,
(q, n) = (73, 7).

and

Proposition 13.4. Suppose that q ∈ {23, 31, 47, 71, 79, 97}. Then there are no solutions to equa-
tion (65) in integers x, y, z, n and α with yz ≡ 1 (mod 2), gcd(x, y) = 1 and n ≥ 7 prime, unless,
possibly, n = 7 and q ∈ {23, 31, 47, 71, 97}, or (q, n) = (79, 11), or (q, n) = (97, 29).

As in the case of Proposition 13.2, these results follow after a small amount of computation, by
applying Lemma 13.1 and Theorem 8.

14. The equation x2 ± q2k+1 = yn and proofs of Theorems 2 and 3

We now specialize and improve on the results of Section 13, proving the following.

Proposition 14.1. Let (x, y, k) be a solution to the equation

(72) x2 + (−1)δq2k+1 = yn, δ ∈ {0, 1}, k ≥ 0, gcd(x, y) = 1

where q is a prime in the range 3 ≤ q < 100, and n ≥ 7 is prime. Suppose moreover that

(a) if y is odd then δ = 1;
(b) if δ = 1 then q 6∈ {3, 5, 17, 37}.

If y is even, suppose without loss of generality that x ≡ 1 (mod 4). Write

(73) κ =

{
1 if y is even

5 if y is odd.

Let v ∈ {0, 1} satisfy k ≡ v (mod 2). Attach to the solution (x, y, k) the Frey–Hellegouarch curve

G = Gx,k :


Y 2 = X3 + 4xX2 + 4(x2 + (−1)δq2k+1)X if κ = 1,

Y 2 = X3 − 4xX2 + 4(x2 + (−1)δq2k+1)X if κ = 5 and q ≡ (−1)δ mod 4,

Y 2 = X3 + 2xX2 + (x2 + (−1)δq2k+1)X if κ = 5 and q ≡ (−1)δ+1 mod 4.

Then either n > 1000 and ρG,n ∼ ρE,n where E/Q is an elliptic curve of conductor 2κq given in
Table 3 or the solution (x, y, k) corresponds to one of the identities

112 + 7 = 27, 452 + 23 = 211, 132 − 41 = 27, 92 + 47 = 27,

72 + 79 = 27, 912 − 89 = 213 or 152 − 97 = 27.

Before proceeding to the proof of this result, we make a few remarks on the assumptions in
Proposition 14.1. Our eventual goal is to prove Theorems 1, 2 and 3, and thus we are interested
in the equation x2 + (−1)δqα = yn where 3 ≤ q < 100. Theorems 4 and 5 (proved in Sections 5
and 10, respectively) treat the case where α is even, so we are reduced to α = 2k+ 1. The results
of Sections 2, Corollary 11.1 and Lemmas 12.1, 12.2 allow us to restrict the exponent n to be a
prime ≥ 7. Thanks to Theorem 12, we need not consider the case where δ = 0 and y is odd,
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Table 3. Data for Proposition 14.1. Here the elliptic curves E are given by their
Cremona labels.

q δ κ v E

7 0 1 0 14a1

7 0 1 1 14a1

23 0 1 0 46a1

31 0 1 0 62a1

31 0 1 1 62a1

41 1 1 0 82a1

41 1 5 0 1312a1, 1312b1

41 1 5 1 1312a1, 1312b1

q δ κ v E

47 0 1 0 94a1

71 0 1 0 142c1

71 0 1 1 142c1

73 1 5 0 2336a1, 2336b1

73 1 5 1 2336a1, 2336b1

79 0 1 0 158e1

89 1 1 0 178b1

97 1 1 0 194a1

which explains the reason for assumption (a). With a view to proving the proposition, we will
soon provide a method which is usually capable, for a fixed q, δ and n, of showing that (72) does
not have a solution. If δ = 1, and q is one of the values 3, 5, 17 or 37, then there is a solution to
(72) for all odd values of the exponent n:

22 − 3 = 1n, 22 − 5 = (−1)n, 42 − 17 = (−1)n and 62 − 37 = (−1)n,

and so our method fails if δ = 1 and q is one of these four values; this explains assumption (b) in
the statement of the proposition.

We note that (72) is a special case of (65) with z specialised to the value (−1)δ+1, and with
α = 2k+1. The value κ in the statement of the proposition agrees with value for κ in (71) given in
the previous section. We note that if y is odd, then y ≡ (−1)δ · q (mod 4). The Frey–Hellegouarch
curve G is, up to isogeny, the same as the Frey–Hellegouarch curve F in the previous section, but
is more convenient for our purposes. More precisely, the model G is isomorphic to F given in (68)
if y even (i.e. κ = 1), and to F given in (70) if y ≡ 3 (mod 4) (i.e. κ = 5 and q ≡ (−1)δ+1 mod 4).
It is 2-isogenous to F in (69) if y ≡ 1 (mod 4) (i.e. κ = 5 and q ≡ (−1)δ mod 4). Thus ρF,n ∼ ρG,n
in all three cases. We conclude from the previous section that ρG,n ∼ ρf,n where f is a weight 2
newform of level N = 2κq.

Note that if κ = 1 (i.e. y is even) then 1 + (−1)δq ≡ 0 (mod 8). This together with the
assumptions of Proposition 14.1 shows that we are concerned with 30 possibilities for the triple
(q, δ, κ), namely

(74)


(7, 0, 1), (7, 1, 5), (11, 1, 5), (13, 1, 5), (19, 1, 5), (23, 0, 1), (23, 1, 5), (29, 1, 5),

(31, 0, 1), (31, 1, 5), (41, 1, 1), (41, 1, 5), (43, 1, 5), (47, 0, 1), (47, 1, 5), (53, 1, 5),

(59, 1, 5), (61, 1, 5), (67, 1, 5), (71, 0, 1), (71, 1, 5), (73, 1, 1), (73, 1, 5), (79, 0, 1),

(79, 1, 5), (83, 1, 5), (89, 1, 1), (89, 1, 5), (97, 1, 1), (97, 1, 5).

Bounding the exponent n. In the previous section we defined an ideal Df,`1,...,`r which if non-
zero allows us to bound the exponent n in (65). That bound will also be valid for (72) since it is
a special case of (65). We now offer a refinement that is often capable of yielding a better bound
for (72).

Fix a triple (q, δ, κ) from the above list. We also fix v ∈ {0, 1} and suppose that k ≡ v (mod 2).
Let f be a weight 2 newform of level N = 2κq with q-expansion as in (37). Write Kf for the
Hecke eigenfield of f , and Of for the ring of integers of Kf . For a prime ` 6= 2, q, define

S` = { a`(Gw,v) : w ∈ F`, w2 + (−1)δq2v+1 6≡ 0 (mod `) }.
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Let

T = T` =

{
S` ∪ {`+ 1,−`− 1} if (−1)δ+1q is a square modulo `

S` otherwise.

Let

E ′` =
∏
a∈T

(a− c`) and E` =

{
` · E ′` if Kf 6= Q,
E ′` if Kf = Q,

where, as before, c` is the `-th coefficient in the q-expansion of f .

Lemma 14.2. Let n be a prime ideal of Of above n. If ρG,n ∼ ρf,n then n | E`.

Proof. Write k = 2u+ v with u ∈ Z. Let w ∈ F` satisfy w ≡ x/q2u (mod `). Hence

yn = x2 + (−1)δq2k+1 ≡ q4u · (w2 + (−1)δq2v+1) (mod `).

It follows that ` | y if and only if w2 + (−1)δq2v+1 (mod `). Suppose first that ` - y. The
elliptic curves Gx,k/F` and Gw,v/F` are isomorphic, and so a`(Gx,k) = a`(Gw,v). In particular,
a`(Gx,k) ∈ T` and so a`(Gx,k)−c` divides E`. Likewise, if ` | y (which can only happen if (−1)δ+1q
is a square modulo `) then (`+ 1)2 − c2` divides E`. The lemma follows from Lemma 7.1. �

A sieve. Lemma 14.2 will soon allow us to eliminate most possibilities for the newform f in a
manner similar to Propositions 13.2, 13.3 and 13.4. We will still need to treat some cases for fixed
exponent n. To this end, we will employ a sieving technique similar to the one in Section 10.

Fix a prime n ≥ 7, and let n be a prime ideal of Of above n. Let ` 6= q be a prime. Suppose

(i) ` = tn+ 1 for some positive integer t;
(ii) either n - (4− c2`), or (−1)δ+1q is not a square modulo `.

Let

A = {m ∈ {0, 1, . . . , 2n− 1} : m ≡ v (mod 2), n - (2m+ 1)},

X` = {(z,m) ∈ F` ×A : (z2 + (−1)δq2m+1)t ≡ 1 (mod `)},
Y` = {(z,m) ∈ X` : a`(Gz,m) ≡ c` (mod n)},
Z` = {m : there exists z such that (z,m) ∈ Y`}.

Lemma 14.3. Let `1, . . . , `r be primes 6= q satisfying (i), (ii). Let

Z`1,...,`r =

r⋂
i=1

Z`i .

If ρG,n ∼ ρf,n then

(k mod 2n) ∈ Z`1,...,`r .

Proof. Let m be the unique element of {0, 1, . . . , 2n− 1} satisfying k ≡ m (mod 2n). Let ` 6= q be
a prime satisfying (i) and (ii). It is sufficient to show that m ∈ Z`. First we will demonstrate that
` - y. If (−1)δ+1q is not a square modulo ` then ` - y from (72). Otherwise, by (ii), n - (4 − c2`).
However, from (i) and the fact that n | n we have ` + 1 ≡ 2 (mod n) and so n - ((` + 1)2 − c2`).
It follows from Lemma 7.1 that ` is a prime of good reduction for Gx,k and so ` - y. We deduce
from Lemma 7.1 that a`(Gx,k) ≡ c` (mod n).

In the previous section, we observed that n - α in equation 65 thanks to the results of [7],
whence n - (2k + 1). Since k ≡ v (mod 2), we know that m ∈ A. Write k = 2nb + m with b a
non-negative integer and let z ∈ F` satisfy z ≡ x/q2nb (mod `). Then

z2 + (−1)δq2m+1 ≡ 1

q4nb
(x2 + (−1)δq2k+1) ≡ (y/q4b)n (mod `).
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From (i), we deduce that

(z2 + (−1)δq2m+1)t ≡ (y/q4b)`−1 ≡ 1 (mod `).

Thus (z,m) ∈ X`. Moreover, we have that Gx,k/F` and Gz,m/F` are isomorphic elliptic curves,
whence a`(Gz,m) = a`(Gx,k) ≡ c` (mod n). Thus (z,m) ∈ Y` and so m ∈ Z` as required. �

Remarks. We would like to explain how to compute Z` efficiently, given n and `.

(1) In our computations, the value t will be relatively small compared to n and to ` = tn+ 1.
Let g be a primitive root modulo ` (i.e. a cyclic generator for F×` ), and let h = gn. The

set X` consists of pairs (z,m) ∈ F` × A such that (z2 + (−1)δqm)t ≡ 1 (mod `). Hence
z2 +(−1)δqm is one of the values 1, h, h2, . . . , h(t−1). Thus, to compute X`, we run through
i = 0, 1, . . . , t − 1 and m ∈ A and solve z2 = hi − (−1)δqm. We note that the expected
cardinality of X` should be roughly t×#A ≈ t× n ≈ `.

(2) It seems at first that, in order to compute Y` and Z`, we need to compute a`(Gz,m) for all
(z,m) ∈ X`, and this might be an issue for large `. There is in fact a shortcut that often
means that we need to perform few of these computations. In fact we will need to compute
Z` for large values of ` only for rational newforms f that correspond to elliptic curves E/Q
with non-trivial 2-torsion. In this case, we note that a`(Gz,m) ≡ a`(E) (mod 2), as both
elliptic curves have non-trivial 2-torsion. If (z,m) ∈ Y`, then a`(Gz,m) ≡ a`(E) (mod 2n).
However, by the Hasse–Weil bounds,

|a`(Gz,m)− a`(E)| ≤ 4
√
`.

Suppose moreover that n2 > 4` (which will be usually satisfied as t is typically small).
Then, the congruence a`(Gz,m) ≡ c` = a`(E) (mod 2n) is equivalent to the equality
a`(Gz,m) = a`(E), and so to #Gz,m(F`) = #E(F`). To check whether the equality
#Gz,m(F`) = #E(F`) holds for a particular pair (z,m) ∈ X`, we first choose a random
point Q ∈ Gz,m(F`) and check whether #E(F`) · Q = 0. Only for pairs (z,m) ∈ X` that
pass this test do we need to compute a`(Gz,m) and check the congruence a`(Gz,m) ≡
a`(E) (mod n).

A refined sieve. We note that if Z`1,...,`r = ∅ then ρG,n � ρf,n. In our computations, described
later, we are always able to find suitable primes `1, . . . , `r satisfying (i), (ii), so that Z`1,...,`r = ∅,
at least for n suitably large. For smaller values of n (say less than 50), we occasionally failed. We
now describe a refined sieving method that, whilst being somewhat slow, has a better chance of
succeeding for those smaller values of the exponent n.

Let (q, δ, κ) be one of our 30 triples given in (74), and let n ≥ 7 be a prime. Suppose that

(x, y, k) is a solution to (72) where y is even if and only if κ = 1. Let φ =
√

(−1)δ+1q and set
M = Q(φ). Let P be one of the prime ideals of OM above 2.

Our first goal is to produce a finite set S ⊂M∗, such that

(75) x+ qkφ = γ · αn

for some γ ∈ S and α ∈ OM . This is the objective of Lemmata 14.4 and 14.5. Both of these make
an additional assumption on the class group, but this assumption will in fact be satisfied in all
cases where we need to apply our refined sieve.

Lemma 14.4. . Let κ = 5. Suppose that the class group Cl(OM ) of OM is cyclic and generated
by the class [P]. Let h = # Cl(OM ) and set

I = {0 ≤ i ≤ h− 1 : P−ni is principal}.
Choose for each i ∈ I a generator βi for P−ni. Let ε be a fundamental unit for M (recall that if
κ = 5 then δ = 1 and so M is real). Let

S = {εjβi : −(n− 1)/2 ≤ j ≤ (n− 1)/2, i ∈ I}.
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Then there is some γ ∈ S and α ∈ OM such that (75) holds. Moreover, Norm(α) = 2µy for some
µ ≥ 0.

Proof. As κ = 5, we have that y is odd. Then

(x+ qkφ)OM = An,

where A is an ideal of OM with norm y. Since [P] generates the class group, the same is true of
[P]−1. Hence [A] = [P]−i for some i ∈ {0, 1, . . . , h− 1}. Now

(x+ qkθ)OM = P−ni · (Pi · A)n.

Since Pi · A is principal, it follows that P−ni is also principal. The lemma follows. �

Lemma 14.5. Let κ = 1. Suppose that the class group Cl(OM ) of OM is cyclic and generated by
the class [P]. Let h = # Cl(OM ) and set

I = {0 ≤ i ≤ h− 1 : Pn(1−i)−2 is principal}.
Choose for each i ∈ I a generator βi for Pn(1−i)−2. Let

S ′ = {βi : i ∈ I} ∪ {βi : i ∈ I},
where βi denotes the Galois conjugate of βi. Let

S =

{
{2 · β : β ∈ S ′} if δ = 0

{2 · εj · β : −(n− 1)/2 ≤ j ≤ (n− 1)/2, β ∈ S ′} if δ = 1,

where ε is a fundamental unit for M . Then there is some γ ∈ S and α ∈ OM such that (75) holds.
Moreover, Norm(α) = 2µy for some µ ∈ Z.

Proof. As κ = 1, we have that y is even. Then(
x+ qkφ

2

)
OM = Cn−2An

where A is an ideal of OM with norm y/2 and C is one of P, P. Since [P] generates the class
group so does [C]−1. Hence [A] = [C]−i for some i ∈ {0, 1, . . . , h− 1}. Now(

x+ qkφ

2

)
OM = Cn(1−i)−2 · (CiA)n.

But Ci · A is principal, whence Cn(1−i)−2 is principal, and so i ∈ I and Cn(1−i)−2 is generated by
either βi or βi. The lemma follows. �

We will now describe our refined sieve. Fix m ∈ {0, 1, . . . , 2n} and suppose k ≡ m (mod 2n).
Let n be a prime ideal of Of above n. Let ` 6= q be a prime. Suppose

(a) ` = tn+ 1 for some positive integer t;
(b) n - (4− c2`);
(c) (−1)δ+1q is a square modulo `.

We choose an integer s such that s2 ≡ (−1)δ+1q (mod `). Let

L = `OM + (s− φ)OM .
By the Dedekind–Kummer theorem ` splits in OM and L is one of the two prime ideals above `.
In particular, OM/L ∼= F` and φ ≡ s (mod L). Let

X`,m = {z ∈ F` : (z2 + (−1)δq2m+1)t ≡ 1 (mod `)},
Y`,m = {z ∈ X`,m : a`(Gz,m) ≡ c` (mod n)},

U`,m = {(z, γ) : z ∈ Y`,m, γ ∈ S, (z + qmφ)t ≡ γt (mod L)},
W`,m = {γ : there exists z such that (z, γ) ∈ U`,m}.
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Lemma 14.6. Let `1, . . . , `r be primes 6= q satisfying (a), (b) and (c) above. Let

W =W`1,...,`r =

r⋂
i=1

W`i .

If ρG,n ∼ ρf,n, then there is some γ ∈ W and some α ∈ OM such that (75) holds.

Proof. Suppose ` satisfies conditions (a), (b) and (c). As ` satisfies (a) and (b), it also satisfies
hypotheses (i) and (ii) preceding the statement of Lemma 14.3. Write k = 2nb + m where b is a
non-negative integer, and let z ≡ x/q2nb (mod `). It follows from the proof of Lemma 14.3 that
` - y and that z ∈ Y`,m. We know from Lemmata 14.4 and 14.5 that there is some γ ∈ S such that
x+ qkφ = γαn where α ∈ OM satisfies Norm(α) = 2µy for some µ ∈ Z. Note that γ is supported
only on the prime ideals above 2. Since L | `, we have ordL(α) = ordL(γ) = 0. Hence

z + qmφ ≡ 1

q2nb
(x+ qkφ) ≡ γ ·

(
α

q2b

)n
(mod L).

Since (OM/L)∗ ∼= F∗` is cyclic of order `− 1 = tn, we have

(z + qmφ)t ≡ γt (mod L).

Thus (z, γ) ∈ U`,m and hence γ ∈ W`,m. The lemma follows. �

Proof of Proposition 14.1. Our proof of Proposition 14.1 is the result of applying Magma

scripts based on Lemmata 14.2, 14.3 and 14.6, as well as solving a few Thue–Mahler equations.
Our approach subdivides the proof into 60 cases corresponding to 60 quadruples (q, δ, κ, v): here
(q, δ, κ) is one of the 30 triples in (74), and v ∈ {0, 1}. Let (x, y, k) be a solution to (72) with prime
exponent n ≥ 7. Suppose that y is even if κ = 1 and y is odd if κ = 5. Suppose moreover that
k ≡ v (mod 2). Our first step is to compute the newforms f of weight 2 and level N = 2κq. We
know that for one these newforms f , we have ρG,n ∼ ρf,n where G = Gx,k is the Frey–Hellegouarch
curve given in Proposition 14.1, and n | n is a prime ideal of Of , the ring of integers of the Hecke
eigenfield Kf . Let p1, . . . , ps be the primes ≤ 200 distinct from 2, q and let

Ef =

s∑
i=1

Epi ,

where Epi is as in Lemma 14.2. It follows from Lemma 14.2 that if ρG,n ∼ ρf,n then n | Ef , and so
n | Norm(Ef ).

We illustrate this by taking (q, δ, κ, v) = (31, 1, 5, 0). There are 8 newforms f1, . . . , f8 of weight
2 and level 2κq = 992, which all happen to be irrational. We find that

Norm(Efj ) = 7, 7, 210, 210, 23, 23, 26 × 32, 26 × 32,

respectively for j = 1, 2, . . . , 8. Thus n = 7 and f = f1 or f2. We consider first

f = f1 = q +
√

2q3 − q5 − (1 +
√

2)q7 − q9 + 2(1−
√

2)q11 + · · · ,

with Hecke eigenfield Kf = Q(
√

2) having ring of integers Of = Z[
√

2]. We found that Ef =

(1 + 2
√

2) which is one of the two prime ideals above 7. Hence n = (1 + 2
√

2). Next we compute
Z = Z`1,...,`30 as in Lemma 14.3 where `1, . . . , `30 6= 31 are the 30 primes satisfying (i) and (ii)
with t ≤ 200. We find that Z = {0, 8}. Thus, by Lemma 14.3, we have k ≡ 0 or 8 (mod 14). Now
for m = 0 and m = 8, we compute W = W`1,...,`36 as in Lemma 14.6, where `1, . . . , `36 6= 31 are
the 36 primes satisfying (a), (b) and (c) with t ≤ 800. We found that W = ∅ for m = 0 and that

W = {ε3} for m = 8 where ε = 1520 + 273
√

31 is the fundamental unit of M = Q(
√

31). Hence
we conclude, by Lemma 14.6, that k ≡ 8 (mod 14) and that

x+ 31k
√

31 = (1520 + 273
√

31)3(X + Y
√

31)7,
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for some integers X, Y . Equating the coefficients of
√

31 on both sides results in a degree 7
Thue–Mahler equation with huge coefficients. However, using an algorithm of Stoll and Cremona
[43] for reducing binary forms we discover that this Thue–Mahler equation can be rewritten as

31k = −56U7 + 112U6V − 84U5V 2 + 140U4V 3 + 490U3V 4 + 1596U2V 5 + 2807UV 6 + 2119V 7,

where U , V ∈ Z are related to X, Y via the unimodular substition

U = 2X + 11Y and V = 7X + 39Y.

We applied the Thue–Mahler solver to this and found that it has no solutions. Next we take
f = f2 which also has Hecke eigenfield Kf = Q(

√
2). We apply Lemmata 14.2, 14.3 and 14.6

using the same sets of primes pj and `i as for f1. We find Ef = (1− 2
√

2), and so n = (1− 2
√

2)
and n = 7. Again we obtain Z = {0, 8} on applying Lemma 14.3. We find that W = ∅ for m = 0
and W = {ε3} for m = 8. Again the corresponding Thue–Mahler equation has no solutions. Thus
equation (72) has no solutions with n ≥ 7 prime for q = 31, δ = 1 and with y odd (i.e. κ = 5) and
k ≡ 0 (mod 2). We used the above approach to deal with all the cases where Ef is non-zero. In
all the cases where Ef = 0, the newform f is rational, and in fact corresponds to an elliptic curve
E/Q with non-trivial 2-torsion. These elliptic curves are listed in Table 3. Thus ρG,n ∼ ρE,n.
What is required for Proposition 14.1 is to show in these cases that there are no solutions with
prime 7 ≤ n < 1000 apart from the ones listed in the statement of the proposition. We illustrate
how this works by taking (q, δ, κ, v) = (7, 0, 1, 0). There is a unique newform f of weight 2 and
level N = 2κq = 14 which corresponds to the elliptic curve

Y 2 +XY + Y = X3 + 4X − 6

with Cremona label 14a1. For each prime 7 ≤ n < 1000 we computed Z = Z`1,...,`r with `1, . . . , `r
being the primes 6= 7 satisfying conditions (i), (ii) with t ≤ 200. The results of this computation
is summarized in Table 4. Note that by Lemma 14.3, (k (mod 2n)) ∈ Z. We deduce that there
are no solutions for prime n satisfying 17 ≤ n < 1000, n 6= 41. For n = 7, 11, 13 and 41,
and for each m in the corresponding Z, we compute W = W`1,...,`r as in Lemma 14.6 where
`1, . . . , `r are now the primes 6= q satisfying (a), (b) and (c) with t ≤ 800. We found that W = ∅
in all cases except for n = 7, m = 0, when W = 11−

√
−7. It follows from Lemma 14.6 that

x+ 7k
√
−7 = (11−

√
−7) · α7 where α ∈ Z[θ] where θ = (1 +

√
−7)/2. Write α = (X + Y θ) with

X, Y ∈ Z. Thus

x− 7k

2
+ 7k · θ = (6− θ) · (X + Y θ)7.

Equating the coefficients of θ on either side yields the Thue–Mahler equation

−X7 + 35X6Y + 147X5Y 2 − 105X4Y 3 − 595X3Y 4 − 231X2Y 5 + 161XY 6 + 45Y 7 = 7k.

We find that the only solution is (X,Y, k) = (−1, 0, 0). Hence x = −11, and the corresponding
solution to (72) is 112 + 7 = 27. We observe that −11 ≡ 1 (mod 4) which is consistent with our
assumption x ≡ 1 (mod 4) if κ = 1, made in the statement of Proposition 14.1. The other cases
are similar.

Proofs of Theorems 2 and 3. We now deduce Theorems 2 and 3 from Proposition 14.1. These
two theorems concern the equation x2 − q2k+1 = yn with n ≥ 3 and q - x. Thus we are in the
δ = 1 case of the proposition. By the remarks following the statement of the proposition we are
reduced to the case n ≥ 7 is prime. Theorem 2 is concerned with the primes q appearing in (4),
whilst Theorem 3 deals with q = 41, 73, 89 and 97. A glance at Table 3 reveals that all the elliptic
curves E appearing in Proposition 14.1 for the case δ = 1 in fact correspond to the values q = 41,
73, 89 and 97. Theorems 2 and 3 now follow immediately from the proposition.
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n Z
7 {0, 8, 12}
11 {8}
13 {4}
41 {44}

other values ∅
Table 4. For the quadruple (q, δ, κ, v) = (7, 0, 1, 0) and for prime 7 ≤ n < 1000
we computed Z = Z`1,...,`r as given by Lemma 14.3. Here we chose `1, . . . , `r to
be the primes 6= q satisfying (i) and (ii) with t ≤ 200.

A Remark. It is well-known that the exponent n can be explicitly bounded in (72) in terms of
the prime q. For example, if δ = 1 and κ = 5 (i.e. y is odd) then Bugeaud [13] shows that

(76) n ≤ 4.5× 106q2 log2 q.

Let (q, δ, κ, v) = (73, 1, 5, 1) and E be the elliptic curve with Cremona label 2336a1; this is one
of the two outstanding cases from Table 3 for which the bound (76) is applicable. We are in fact
able to substantially improve this bound for the case in consideration through a specialization and
minor refinement (we omit the details) of Bugeaud’s approach and deduce that

n < 6× 106.

Theorem 3 only resolves x2 − 732k+1 = yn for 3 ≤ n ≤ 1000. It is natural to ask whether we
can apply the same technique, namely Lemma 14.3, to show that there are no solutions for prime
exponents n in the range 1000 < n < 6 × 106. Write nu for the smallest prime > 2u. For
10 ≤ u ≤ 22 the prime n = nu belongs to the range 1000 < n < 6 × 106. For each of these 13
primes we computed primes `1, . . . , `r satisfying conditions (i) and (ii) such that Z`1,...,`r = ∅,
whence by Lemma 14.3 there are no solutions for that particular exponent n. Table 5 records the
values of `1, . . . , `r as well as the time taken to perform the corresponding computation in Magma

on a single processor. There are 412681 primes in the range 1000 < n < 6× 106. On the basis of
the timing in the table we crudely estimate that it would take around 60 years to carry out the
computation (on a single processor) for all 412681 primes.

We shall shortly give a substantially faster method for treating the case δ = 0. Alas this method
is not available for δ = 1, as we explain in due course.

15. The proof of Theorem 1 : large exponents

We now complete the proof of Theorem 1 which is concerned, for prime 3 ≤ q < 100, with the
equation x2 + qα = yn, subject to the assumptions that q - x and n ≥ 3. The exponents n = 3 and
n = 4 were treated in Section 2, so we may suppose that n ≥ 5 is prime. The case α = 2k was
handled in Section 5, so we suppose further that α = 2k+ 1. The case with y odd was the topic of
Section 11, so we may assume that y is even. Finally, the case with exponent n = 5 was resolved
in Section 12, whence we may suppose that n ≥ 7 is prime. To summarize, we are reduced to
treating the equation

(77) x2 + q2k+1 = yn, k ≥ 0, q - x, y even, n ≥ 7 prime..

By Proposition 14.1, we may in fact suppose that n > 1000 and that

(78) q ∈ {7, 23, 31, 47, 71, 79}.

For convenience, we restate Proposition 14.1 specialized to our current situation.
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n {`1, . . . , `r} Time

210 + 7 = 1031 {2063, 12373, 30931} 0.18 seconds
211 + 5 = 2053 {94439, 110863, 143711, 168347, 197089} 7.75 seconds
212 + 3 = 4099 {73783, 98377, 114773} 4.390 seconds
213 + 17 = 8209 {246271, 525377, 574631} 15.5 seconds
214 + 27 = 16411 {98467, 459509, 590797} 6.19 seconds
215 + 3 = 32771 {65543, 983131, 1179757} 3.91 seconds
216 + 1 = 65537 {917519, 1310741, 1703963, 2359333} 57.51 seconds

217 + 29 = 131101 {2097617, 9439273, 11799091, 12585697} 142.59 seconds
218 + 3 = 262147 {1048589, 4194353, 6291529} 65.89 seconds
219 + 21 = 524309 {6291709, 10486181, 23069597} 402.12 seconds
220 + 7 = 1048583 {20971661, 25165993, 44040487} 1319.57 seconds
221 + 17 = 2097169 {37749043, 176162197, 188745211} 2468.46 seconds
222 + 15 = 4194319 {75497743, 92275019, 100663657} 4983.07 seconds

Table 5. Write nu for the smallest prime > 2u. For 10 ≤ u ≤ 22 the prime
n = nu belongs to the range 1000 < n < 6 × 106. The table lists the primes
n = nu in this range and, for each, a set of primes `1, . . . , `r satisfying conditions
(i), (ii) such that Z`1,...,`r = ∅. It also records the time the computation took for
each of these values of n, on a single processor.

Lemma 15.1. Let q be one of the values in (78). Let (x, y, k) satisfy (77), where n > 1000
is prime. Suppose without loss of generality that x ≡ 1 (mod 4). Attach to this solution the
Frey–Hellegouarch elliptic curve

G = Gx,k : Y 2 = X3 + 4xX2 + 4(x2 + q2k+1)X.

Then ρG,n ∼ ρE,n where E is an elliptic curve of conductor 2q and non-trivial 2-torsion given in
Table 6.

q Cremona Label for E A minimal model for E

7 14a1 Y 2 +XY + Y = X3 + 4X − 6
23 46a1 Y 2 +XY = X3 −X2 − 10X − 12
31 62a1 Y 2 +XY + Y = X3 −X2 −X + 1
47 94a1 Y 2 +XY + Y = X3 −X2 − 1
71 142c1 Y 2 +XY = X3 −X2 −X − 3
79 158e1 Y 2 +XY + Y = X3 +X2 +X + 1

Table 6.

Upper bounds for n : linear forms in logarithms, complex and q-adic. We will appeal
to bounds for linear forms in logarithms to deduce an upper bound for the prime exponent n in
(77) where q belongs to (78).
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Proposition 15.2. Let q belong to the list (78). Let (x, y, k) satisfy (77) with prime exponent
n > 1000. Then n < Uq where

(79) Uq =



2.8× 108 if q = 7,

1.1× 109 if q = 23,

5.0× 108 if q = 31,

2.2× 109 if q = 47,

2.3× 109 if q = 71,

2.2× 109 if q = 79.

To obtain this result, our first order of business will be to produce a lower bound upon y.

Lemma 15.3. If there exists a solution to equation (77), then y > 4n− 4
√

2n+ 2.

Proof. We suppose without loss of generality that x ≡ 1 (mod 4), so that we can apply Lemma 15.1.
We first show that y is divisible by an odd prime. Suppose otherwise and write y = 2µ with
µ ≥ 1. Then the Frey–Hellegouarch curve Gx,k has conductor 2q and minimal discriminant
−22nµ−12q2k+1. A short search of Cremona’s tables [19] reveals that there are no such elliptic
curves for the values q in (78) (recall that n > 1000). Thus, there necessarily exists an odd prime
p | y; since q - y, we observe that q 6= p. By Lemma 7.1,

ap(E) ≡ ±(p+ 1) (mod n),

where E is given by Table 6. As E has non-trivial 2-torsion, we conclude that 2n | (p+1∓ap(E)).
However, from the Hasse–Weil bounds

0 < p+ 1∓ ap(E) < (
√
p+ 1)2 ≤ (

√
y/2 + 1)2,

and therefore 2n < (
√
y/2 + 1)2. The desired inequality follows. �

Now let q be any of the values in (78), write M = Q(
√
−q), and let OM be its ring of integers.

Note that the units of OM are ±1. Fix P to be one of the two prime ideals of OM above 2. After
possibly replacing x by −x we have

(80)
x+ qk

√
−q

2
· OM = Pn−2 · An,

where A is an ideal of OM with norm y/2. Hence

x− qk
√
−q

x+ qk
√
−q

=

(
P

P

)2

·
(
P · A
P · A

)n
.

For all six values of q under consideration, the class group is cyclic and generated by the class
[P]. Let hq be the class number of M ; this value is respectively 1, 3, 3, 5, 7 and 5 for q in (78)
(see Table 7). As n > 1000 is prime, gcd(n, hq) = 1. Since OM has class number hq, it follows
that Phq is principal, say Phq = (αq) · OM . We fix our choice of P so that αq is given by Table 7.
Write βq = αq/αq. Thus

(81)

(
x− qk

√
−q

x+ qk
√
−q

)hq

= β2
qγ

n,

where γ ∈M is some generator for the principal ideal ((P · A)/(P · A))hq .
To derive an upper bound upon n, we will begin by using (81) to find a “small” linear form in

logarithms. Write

Λ = log

(
x− qk

√
−q

x+ qk
√
−q

)
.
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q hq αq q hq αq

7 1 1+
√
−7

2 47 5 9+
√
−47

2

23 3 3+
√
−23

2 71 7 21+
√
−71

2

31 3 1+
√
−31

2 79 5 7+
√
−79

2

Table 7. Here, hq denotes the class number of M = Q(
√
−q), and αq is a

generator for the principal ideal Phq , where P is one of the two prime ideals of
OM above 2.

Lemma 15.4. If there exists a solution to equation (77) with yn > 100 q2k+1, then

log |Λ| < 0.75 + (k + 1/2) log q − n

2
log y.

Proof. The assumption that yn > 100 q2k+1, together with, say, Lemma B.2 of Smart [41], implies
that

|Λ| ≤ −10 log(9/10)

∣∣∣∣x− qk√−qx+ qk
√
−q
− 1

∣∣∣∣ = −20 log(9/10)
qk
√
q

yn/2
,

whence the lemma follows. �

To show that log |Λ| here is indeed small, we first require an upper bound upon k. From (81),
we have that (

x− qk
√
−q

x+ qk
√
−q

)hq

− 1 = β2
qγ

n − 1

and so

(82)
−2qk

√
−q

x+ qk
√
−q

hq−1∑
i=0

(
x− qk

√
−q

x+ qk
√
−q

)i
= β2

qγ
n − 1.

Since gcd(x, q) = 1, it follows from (82) that, if we set

Λ1 = γn − βq
2
,

then νq(Λ1) ≥ k. To complement this with an upper bound for linear forms in q-adic logarithms,
we will appeal to Theorem 10, with

q ∈ {7, 23, 31, 47, 79}, f = 1, D = 2, α1 = γ, α2 = βq, b1 = n, b2 = 2,

logA1 =
hq
2

log y, logA2 =
1

2
log q and b′ =

n

log q
+

2

hq log y
.

Here, we use Lemma 13.2 of Bugeaud, Mignotte and Siksek [15] which implies that

h(α1) =
hq
2

log(y) and h(α2) =
hq
2

log 2.

In case q = 71, we make identical choices except to take logA2 = 7
2 log 2, whence

b′ =
n

7 log 2
+

2

7 log y
.

Theorem 10 thus yields the inequality

νq(Λ1) ≤ 96 q hq

log3 q
· (max {log (b′) + log log q + 0.4, 5 log q})2

log y,

for q ∈ {7, 23, 31, 47, 79}, and

ν71(Λ1) ≤ 701.2 · (max {log (b′) + log log 71 + 0.4, 5 log 71})2
log y,



40 MICHAEL BENNETT AND SAMIR SIKSEK

if q = 71.
Let us now suppose that

(83) n > 108,

which will certainly be the case if n ≥ Uq, for Uq as defined in (79). Then, from Lemma 15.3, in
all cases we have that

b′ < 1.001
n

log q

and hence obtain the inequalities

(84) k <
96 q hq

log3 q
· (max{log (n) + 0.4001, 5 log q})2

log y, if q ∈ {7, 23, 31, 47, 79}

and

(85) k < 701.2 · (max{log (n) + 0.4001, 5 log 71})2
log y, if q = 71.

Now consider

(86) Λ2 = hq log

(
x− qk

√
−q

x+ qk
√
−q

)
= n log (ε1γ) + 2 log (ε2βq) + jπi,

where we take the principal branches of the logarithms and the integers εi ∈ {−1, 1} and j are
chosen so that Im(log (ε1γ)) and Im(log (ε2βq)) have opposite signs, and we have both

|log (ε2βq)| <
π

2

and |Λ2| minimal. Explicitly,

q ε2 | log (ε2βq) | q ε2 | log (ε2βq) |
7 −1 arccos(3/4) 47 1 arccos(17/64)
23 −1 arccos(7/16) 71 1 arccos(185/256)
31 −1 arccos(15/16) 79 −1 arccos(15/64)

Assume first that

yn ≤ 100 q2k+1.

If q ∈ {7, 23, 31, 47, 79}, it follows from (84) that

n <
2 log 10

log y
+

log q

log y
+

192 q hq

log2 q
· (max{log (n) + 0.4001, 5 log q})2

,

in each case contradicting Lemma 15.3 and (83). We obtain a like contradiction in case q = 71
upon considering (85).

It follows, then that we may assume yn > 100 q2k+1 and hence conclude, from Lemma 15.4,
that

log |Λ2| < log hq + 0.75 + (k + 1/2) log q − n

2
log y.

If q ∈ {7, 23, 31, 47, 79}, (84) thus implies that

log |Λ2| < log hq + 0.75 +
1

2
log q +

96 q hq

log2 q
· (max{log (n) + 0.4001, 5 log q})2

log y − n

2
log y.

An analogous inequality holds for q = 71, upon appealing to (85). From Lemma 15.3 and (83),
we find that

(87) log |Λ2| < −κq n log y,
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where

(88) κq =



0.499 if q = 7,

0.497 if q ∈ {23, 31},
0.494 if q = 47,

0.486 if q = 71,

0.490 if q = 79.

It therefore follows from the definition of Λ2 that

|j|π < πn+ 2 arccos(15/64) + y−0.486n < πn+ π,

and so

(89) |j| ≤ n.

Linear forms in three logarithms. To deduce an initial lower bound upon the linear form in loga-
rithms |Λ2|, we will use the following, the main result (Theorem 2.1) of Matveev [29].

Theorem 14 (Matveev). Let K be an algebraic number field of degree D over Q and put χ = 1
if K is real, χ = 2 otherwise. Suppose that α1, α2, . . . , αn0 ∈ K∗ with absolute logarithmic heights
h(αi) for 1 ≤ i ≤ n0, and suppose that

Ai ≥ max{Dh(αi), |logαi|}, 1 ≤ i ≤ n0,

for some fixed choice of the logarithm. Define

Λ = b1 logα1 + · · ·+ bn0
logαn0

,

where the bi are integers and set

B = max{1,max{|bi|Ai/An0 : 1 ≤ i ≤ n0}}.
Define, with e := exp(1), further,

Ω = A1 · · ·An0
,

C(n0) = C(n0, χ) =
16

n0!χ
en0(2n0 + 1 + 2χ)(n0 + 2)(4n0 + 4)n0+1 (en0/2)

χ
,

C0 = log
(
e4.4n0+7n5.5

0 D2 log(eD)
)

and W0 = log (1.5eBD log(eD)) .

Then, if logα1, . . . , logαn0 are linearly independent over Z and bn0 6= 0, we have

log |Λ| > −C(n0)C0W0D
2 Ω.

We apply Theorem 14 to Λ = Λ2 with

D = 2, χ = 2, n0 = 3, b3 = n, α3 = ε1γ, b2 = −2, α2 = ε2βq, b1 = j and α1 = −1.

We may thus take

A3 = log y, A2 = max{hq log 2, | log (ε2βq) |}, A1 = π and B = n.

Since

4C(3)C0 = 218 · 3 · 5 · 11 · e5 · log
(
e20.2 · 35.5 · 4 log(2e)

)
< 1.80741× 1011,

and

W0 = log (3en log(2e)) < 2.63 + log n,

we may therefore conclude that

log |Λ2| > −5.68× 1011 max{hq log 2, | log (ε2βq) |} (2.63 + log n) log y.

It thus follows from (87) that

n < κ−1
q 5.68× 1011 max{hq log 2, | log (ε2βq) |} (2.63 + log n)
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and hence

(90) n <


2.77× 1013 if q = 7,

8.24× 1013 if q ∈ {23, 31},
1.42× 1014 if q ∈ {47, 79}
2.02× 1014 if q = 71.

To improve these inequalities, we appeal to a sharper, rather complicated lower bound for
linear forms in three complex logarithms, due to Mignotte (Theorem 2 of [31]). Our argument is
very similar to that employed in a recent paper of the authors [6]. We note that recent work of
Mignotte and Voutier [32] would substantially improve our bounds (and reduce our subsequent
computations considerably).

Theorem 15 (Mignotte). Consider three non-zero algebraic numbers α1, α2 and α3, which are
either all real and > 1, or all complex of modulus one and all 6= 1. Further, assume that the
three numbers α1, α2 and α3 are either all multiplicatively independent, or that two of the numbers
are multiplicatively independent and the third is a root of unity. We also consider three positive
rational integers b1, b2, b3 with gcd(b1, b2, b3) = 1, and the linear form

Λ = b2 logα2 − b1 logα1 − b3 logα3,

where the logarithms of the αi are arbitrary determinations of the logarithm, but which are all real
or all purely imaginary. We assume that

0 < |Λ| < 2π/w,

where w is the maximal order of a root of unity in Q(α1, α2, α3). Suppose further that

(91) b2| logα2| = b1 | logα1|+ b3 | logα3| ± |Λ|

and put

d1 = gcd(b1, b2), d3 = gcd(b3, b2) and b2 = d1b
′
2 = d3b

′′
2

Let K,L,R,R1, R2, R3, S, S1, S2, S3, T, T1, T2, T3 be positive rational integers with

K ≥ 3, L ≥ 5, R > R1 +R2 +R3, S > S1 + S2 + S3 and T > T1 + T2 + T3

Let ρ ≥ 2 be a real number. Let a1, a2 and a3 be real numbers such that

ai ≥ ρ| logαi| − log |αi|+ 2D h(αi), i ∈ {1, 2, 3},

where D = [Q(α1, α2, α3) : Q]
/

[R(α1, α2, α3) : R], and set

U =

(
KL

2
+
L

4
− 1− 2K

3L

)
log ρ.

Assume further that

(92) U ≥ (D + 1) log(K2L) + gL(a1R+ a2S + a3T ) +D(K − 1) log b− 2 log(e/2),

where

g =
1

4
− K2L

12RST
and b = (b′2η0)(b′′2ζ0)

(
K−1∏
k=1

k!

)− 4
K(K−1)

,

with

η0 =
R− 1

2
+

(S − 1)b1
2b2

and ζ0 =
T − 1

2
+

(S − 1)b3
2b2

.

Put

V =
√

(R1 + 1)(S1 + 1)(T1 + 1).

If, for some positive real number χ, we have
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(i) (R1 + 1)(S1 + 1)(T1 + 1) > KM,

(ii) Card{αr1αs2αt3 : 0 ≤ r ≤ R1, 0 ≤ s ≤ S1, 0 ≤ t ≤ T1} > L,

(iii) (R2 + 1)(S2 + 1)(T2 + 1) > 2K2,

(iv) Card{αr1αs2αt3 : 0 ≤ r ≤ R2, 0 ≤ s ≤ S2, 0 ≤ t ≤ T2} > 2KL, and

(v) (R3 + 1)(S3 + 1)(T3 + 1) > 6K2L,

where

M = max
{
R1 + S1 + 1, S1 + T1 + 1, R1 + T1 + 1, χ V

}
,

then either

(93) |Λ| · LSe
LS|Λ|/(2b2)

2|b2|
> ρ−KL,

or at least one of the following conditions (C1), (C2), (C3) holds :

(C1) |b1| ≤ R1 and |b2| ≤ S1 and |b3| ≤ T1,

(C2) |b1| ≤ R2 and |b2| ≤ S2 and |b3| ≤ T2,

(C3) either there exist non-zero rational integers r0 and s0 such that

(94) r0b2 = s0b1

with

(95) |r0| ≤
(R1 + 1)(T1 + 1)

M− T1
and |s0| ≤

(S1 + 1)(T1 + 1)

M− T1
,

or there exist rational integers r1, s1, t1 and t2, with r1s1 6= 0, such that

(96) (t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1,

which also satisfy

|r1s1| ≤ gcd(r1, s1) · (R1 + 1)(S1 + 1)

M−max{R1, S1}
,

|s1t1| ≤ gcd(r1, s1) · (S1 + 1)(T1 + 1)

M−max{S1, T1}
and

|r1t2| ≤ gcd(r1, s1) · (R1 + 1)(T1 + 1)

M−max{R1, T1}
.

Moreover, when t1 = 0 we can take r1 = 1, and when t2 = 0 we can take s1 = 1.

We will apply this result to Λ = Λ2. For simplicity, we will provide full details for the case
q = 7; the arguments for the other values of q under consideration. are similar and follow closely
their analogues in [6]. If j = 0, then Λ2 immediately reduces to a linear form in two logarithms
and we may appeal to Theorem 11, with (in the notation of that result)

c2 = n, β2 = ε1γ, c1 = 2, β1 =
1

ε2βq
, D = 1,

whence we may choose

logB2 =
1

2
log y and logB1 = 1.
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We thus have, from (83) and Lemma 15.3,

b′ =
4

log y
+ n < 1.001n.

From Theorem 11 with (m,C) = (10, 32.3), it follows, again from (83), that

log |Λ2| ≥ −64.6 (log n+ 0.211})2
log y.

Combining this with inequality (87) contradicts (83). We argue similarly if j = ±n, again reaching
a contradiction via bounds for linear forms in two complex logarithms.

We may thus suppose that j 6= 0 and |j| < n (so that, in particular, gcd(j, n) = 1), and hence
choose

(97) b1 = 2, α1 =
1

ε2βq
, b2 = n, α2 = ε1γ, b3 = −j and α3 = −1,

whence, from the fact that Im(log (ε1γ)) and Im(log (ε2βq)) have opposite signs, (91) is satisfied
and we have

d1 = d3 = 1 and b′2 = b′′2 = n.

It follows that

h(α1) =
1

2
log(2), h(α2) =

1

2
log(y) and h(α3) = 0,

and hence we can take

a1 = ρ arccos(3/4) + log(2), a2 = ρπ + log(y) and a3 = ρπ.

As noted in [15], if we suppose that m ≥ 1 and define

(98)
K = [mLa1a2a3], R1 = [c1a2a3], S1 = [c1a1a3], T1 = [c1a1a2], R2 = [c2a2a3],

S2 = [c2a1a3], T2 = [c2a1a2], R3 = [c3a2a3], S3 = [c3a1a3] and T3 = [c3a1a2],

where

(99)
c1 = max{(χmL)2/3, (2mL/a1)1/2}, c2 = max{21/3(mL)2/3, (m/a1)1/2L}

and c3 = (6m2)1/3L,

then conditions (i)-(v) are automatically satisfied. It remains to verify inequality (92).
To carry this out, we optimize numerically over values of ρ, L,m and χ as in [6] (full details

are available there, by way of example, in case q = 7). Pari/GP code for carrying this out, due to
Voutier, is available at

https://github.com/PV-314/lfl3-kit.

In each case, we obtain a sharpened upper bound upon the exponent n, provided inequality (93)
holds. If, on the other hand, inequality (93) fails to be satisfied, from inequality (83) and our
choices of S1 and S2, necessarily (C3) holds and we may rewrite Λ2 as a linear form in two
complex logarithms to which we can apply Theorem 11. In this case, we once again obtain a
sharpened upper bound for n. Iterating this process leads to the upper bounds Uq given in (79).
We observe that direct application of the new bounds from [32], with the corresponding Pari/GP
code, substantially sharpens these bounds, though this is not especially important for our purposes.
This completes the proof of Proposition 15.2.

https://github.com/PV-314/lfl3-kit
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Proof of Theorem 1. We now finish the proof of Theorem 1. By the remarks at the beginning
of the current section, we are reduced to considering solutions (x, y, k) to (77), where q belongs to
(78). Thanks to Propositions 14.1 and 15.2, we may suppose that the prime exponent n belongs
to the range 1000 < n < Uq where Uq is given by (79).

Lemma 15.5. Let (x, y, k) be a solution to (77) where q belongs to (78) and the exponent n is
a prime belonging to the range 1000 < n < Uq. Let M = Q(

√
−q). Let hq and αq be as in

Table 7, and choose i to be the unique integer 0 ≤ i ≤ hq − 1 satisfying ni ≡ −2 (mod hq). Write
n∗ = (−ni− 2)/hq. Then, after possible changing the sign of x,

(100)
x+ qk

√
−q

2
= αn

∗

q · γn,

where γ ∈ OM . Moreover, Norm(γ) = 2i−1y.

Proof. Recall that hq is the class number of M , and that Phq = αqOM , where P is one of the two
prime ideals of OM above 2. From (78), after possibly replacing x by −x,(

x+ qk
√
−q

2

)
· OM = P−2 · An,

where A is an ideal of OM of norm y/2. Now, for the values of q we are considering, the class
group is cyclic and generated by [P]. Thus there is some 0 ≤ i ≤ hq−1 such that PiA is principal.
However, (

x+ qk
√
−q

2

)
· OM = P−ni−2 · (Pi · A)n.

We deduce that P−ni−2 is principal. As the class [P] generates the class group, we infer that i
is the unique integer 0 ≤ i ≤ hq − 1 satisfying ni ≡ −2 (mod hq). Write n∗ = (−ni − 2)/hq. As

Phq = αq, we have P−ni−2 = αn
∗

q · OM . Hence

x+ qk
√
−q

2
= αn

∗

q · γn,

where γ ∈ OM is a generator for the principal ideal PiA. We note that Norm(γ) = 2i−1y. �

The following lemma, inspired by ideas of Kraus [26], provides a computational framework for
showing that (77) has no solutions for a particular exponent n.

Lemma 15.6. Let q belong to the list (78) and let βq = αq/αq. Let n be a prime belonging to the
range 1000 < n < Uq. Let E be the elliptic curve given in Table 6. Let ` 6= q be a prime satisfying
the following three conditions.

(I) −q is a square modulo `;
(II) ` = tn+ 1 for some positive integer t;

(III) a`(E)2 6≡ 4 (mod n).

Let L be one of the two prime ideals of OM above `, and write FL = OM/L ∼= F`. Let β ∈ FL
satisfy β ≡ αq/αq (mod L). Choose g to be a cyclic generator for F∗L, set h = gn, and define

X`,n = {βn
∗
· hj : j = 0, 1, . . . , t− 1} ⊂ FL.

For x ∈ X`,n let

Ex : Y 2 = X(X + 1)(X + x).

Finally, define

Y`,n = {x ∈ X : aL(Ex)
2 ≡ a`(E)2 (mod n)}.

If Y`,n = ∅, then the equation (77) has no solutions.
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Proof. Suppose that (x, y, k) is a solution to (77) for our particular pair (q, n). We change the sign
of x if necessary so that (100) holds and let x′ = ±x so that x′ ≡ 1 (mod 4). By Lemma 15.1, we
know that ρGx′,k,n

∼ ρE,n. Observe that Gx′,k is either the same elliptic curve as Gx,k if x′ = x, or

it is a quadratic twist by −1 if x′ = −x. Hence a`(Gx,k) = ±a`(Gx′,k) for any odd prime ` of good
reduction for either (and hence both) elliptic curves. We let ` be a prime satisfying conditions
(I), (II) and (III). From (III) and (II), we note that a`(E) 6≡ ±(` + 1) (mod n). It follows from
Lemma 7.1 that ` - y, and that a`(Gx′,k) ≡ a`(E) (mod n). Thus a`(Gx,k)2 ≡ a`(E)2 (mod n).
By Lemma 15.5, identity (100) holds where Norm(γ) = 2i−1y. In particular, L is disjoint from
the support of γ and αq. It follows from (100) that

x− qk
√
−q

x+ qk
√
−q

=

(
αq
αq

)n∗
·
(
γ

γ

)n
.

As g is a generator of F∗L which is cyclic of order ` − 1 = tn, and as h = gn, there is some
0 ≤ j ≤ t− 1 such that (γ/γ)n ≡ hj (mod L). Hence

x− qk
√
−q

x+ qk
√
−q
≡ x (mod L),

for some x ∈ X`,n. The Frey–Hellegouarch curve Gx,k defined in Lemma 15.1 can be rewritten as

Y 2 = X
(
X + 2(x− qk

√
−q)

) (
X + 2(x+ qk

√
−q)

)
and hence modulo L is a quadratic twist of Ex. We deduce that aL(Ex)

2 = a`(Gx,k)2 ≡
a`(E)2 (mod n), whence x ∈ Y`,n. This completes the proof. �

To finish the proof of Theorem 1, we wrote a Magma script which, for each q in (78) and each
prime n in the interval 1000 < n < Uq, found a prime ` satisfying conditions (I), (II) and (III), with,
further, Y`,n = ∅. The following table gives the approximate time taken for this computation, on
a single processor.

q Time q Time
7 115 hours 47 988 hours
23 450 hours 71 1058 hours
31 226 hours 79 1019 hours

As one may observe from our proofs, for a given q, the upper bound Uq upon n in equation
(77), coming from bounds for linear forms in logarithms, depends strongly upon the class number
of Q(

√
−q). It is this dependence which makes extending Theorem 1 to larger values of q an

expensive proposition, computationally.

16. Concluding remarks

There are quite a few additional Frey-Hellegouarch curves at our disposal, that might prove
helpful in completing the solution of equation (5), for certain of our problematical values of q. A
number of these arise from considering (5) as a special case of

x2 − qδzκ = yn,

where, say, κ ∈ {3, 4, 6} and 0 ≤ δ < κ. In each case, the dimensions of the spaces of modular forms
under consideration grow quickly, complicating matters. This is particularly true if κ ∈ {4, 6},
where our Frey-Hellegouarch curve will a priori be defined over Q(

√
q), and so the relevant modular

forms are Hilbert modular forms which are more challenging to compute than classical modular
forms.

In case y is even in equation (5) (whence we are in the situation where our bounds coming from
linear forms in logarithms are weaker), we can attach a Frey-Hellegouarch Q-curve to a potential
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solution (which at least corresponds to a classical modular form). To do this, write M = Q(
√
q)

and OM for the ring of integers of M . Assuming that M has class number one (which is the case
for, say, the remaining values q ∈ {41, 89, 97}), we have

x+ qk
√
q

2
= δrγn−2αn

for some r ∈ Z and α ∈ OM . Here, δ is a fundamental unit for OM and γ is a suitably chosen
generator for one of the two prime ideals above 2 in M . From this equation,

qk
√
q = δrγn−2αn − δrγn−2αn.

Treating this as a ternary equation of signature (n, n, 2), we can attach to such a solution a
Frey–Hellegouarch Q-curve; see for example [44, Section 6]. We will not pursue this here.
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