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Abstract

Motivation: The ability to distinguish imported cases from locally acquired cases has important
consequences for the selection of public health control strategies. Genomic data can be useful for this,
for example using a phylogeographic analysis in which genomic data from multiple locations is compared
to determine likely migration events between locations. However, these methods typically require good
samples of genomes from all locations, which is rarely available.
Results: Here we propose an alternative approach that only uses genomic data from a location of interest.
By comparing each new case with previous cases from the same location we are able to detect imported
cases, as they have a different genealogical distribution than that of locally acquired cases. We show
that, when variations in the size of the local population are accounted for, our method has good sensitivity
and excellent specificity for the detection of imports. We applied our method to data simulated under the
structured coalescent model and demonstrate relatively good performance even when the local population
has the same size as the external population. Finally, we applied our method to several recent genomic
datasets from both bacterial and viral pathogens, and show that it can, in a matter of seconds or minutes,
deliver important insights on the number of imports to a geographically limited sample of a pathogen
population.
Availability and Implementation: The R package DetectImports is freely available from
https://github.com/xavierdidelot/DetectImports
Contact: xavier.didelot@warwick.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Many infectious disease pathogens spread mostly within multiple
geographical locations, for example countries, and are also occasionally
imported from one location to another. When pathogen genetic data is
available from several locations, a phylogeographic approach can be used
to infer past migrations between countries (Lemey et al., 2009; Bloomquist
et al., 2010). Here, however, we consider the situation where genetic data is

available only from a single location, which is subject to imports from other
locations about which little is known. This situation occurs frequently, for
example due to high discrepancies between the sequencing capacities of
high and low income countries. Furthermore, even if limited sequences
are available from other locations, biases in sampling between locations
can often confuse phylogeographic methods (De Maio et al., 2015).

We therefore address the problem of inferring the number and
phylogenetic location of imports into a population based on samples taken
only from that population. This problem is important for determining
which measures to take in the control of infectious diseases, since different

1

 

© The Author(s) 2022. Published by Oxford University Press. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac761/6849542 by guest on 30 N

ovem
ber 2022



2 Didelot et al.

measures are effective against importation and local transmission. It is
also important to consider the presence of imports into a population before
attempting to reconstruct local transmission chains with one of the recently
developed methods for this purpose (Jombart et al., 2014; Didelot et al.,
2017; Klinkenberg et al., 2017; De Maio et al., 2016). Only one of these
methods considered the possibility of importation by performing a test
based on the number of mutations between a case and its most likely
donor (Jombart et al., 2014).

Our starting point is a dated phylogeny for the samples at the location
of interest. Such a phylogeny can be constructed either directly from the
genomes using BEAST (Suchard et al., 2018) or BEAST2 (Bouckaert
et al., 2019), or by dating the nodes in a standard phylogeny using treedater
(Volz and Frost, 2017), TreeTime (Sagulenko et al., 2018) or BactDating
(Didelot et al., 2018). We consider the leaves of this dated phylogeny in
increasing order of sampling dates, asking ourselves for each leaf whether
it is likely to to be the result of local transmission from the population
sampled so far. If not, the leaf is the first representative of a previously
undetected imported population, even though it is unlikely to be the import
itself since in most situations only a relatively small fraction of cases are
sampled and present in the phylogeny. This chronological approach is
important to assess the true number of imports: for example if an import
occurred followed by local transmission of the imported variant, the first
sample from this variant should be labelled as an import, but subsequent
samples from the same variant should not. The approach also lends itself
naturally to the online assessment of imports as new cases arise, which
is often needed when performing infectious disease epidemiology in real
time.

Since we do not have any information about the external sources, and
do not want to make any assumptions about them, we build statistical
models based on the hypothesis of local transmission, which are fitted
using Bayesian methods. When a leaf of the dated phylogeny is found
to be a bad fit for this local model, we deduce that an importation is
likely to have occurred. Our model is based on the coalescent framework
(Kingman, 1982; Donnelly and Tavare, 1995) and in particular its extension
to heterochronous sampling (Drummond et al., 2002, 2003). We also use
the version of the coalescent model that accounts for variations in the
population size (Griffiths and Tavare, 1994; Donnelly and Tavare, 1995).
We use simulated datasets to show that our approach has an excellent
specificity and a good sensitivity for the detection of imports. We also
show that our approach can be useful in practice by analysing several
recently published real datasets.

2 Methods

Coalescent framework and notations

Letn denote the number of tips in a dated phylogenyG, let s1:n denote the
dates of the leaves and c1:(n−1) denote the dates of the internal nodes. Let
A(t) denote the number of lineages at time t in G. This is easily computed
as the number of leaves dated after t minus the number of internal nodes
dated after t:

A(t) =
n∑
i=1

1[si > t]−
n−1∑
i=1

1[ci > t] (1)

In the coalescent model, each pair of lineages coalesces at rate1/Ne(t)

whereNe(t) is the effective population size at time t (Griffiths and Tavare,
1994). Note that here and throughout this paper we use the notationNe and
the name effective population size to denote what is in fact the product of
the generation duration and the population size in an idealised Wright-
Fisher population. Let us initially assume that this function Ne(t) is
known, and we will see later how to extend to the situation where it is
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Fig. 1. Illustration of the notations used for a genealogy with n = 10 leaves. The leaves
are indexed by k = 1, ..., n in increasing order of sampling dates sk . The internal nodes
are indexed by k = 1, ..., n − 1 so that the leaf k coalesces at node k − 1 with the
genealogy made of the previous leaves 1, ..., k − 1. The date of the internal node k is
denoted ck . The coalescent interval for the last leaf k = 10 at date s10 is shown in red.

not known. The total coalescent rate for all pairs at time t is therefore
equal to:

λ(t) =
(A(t)

2

) 1

Ne(t)
with the notation

(0
2

)
=
(1
2

)
= 0 (2)

However, here we consider an alternative equivalent formulation of the
coalescent model, in which the phylogeny is formed by iterating over the
leaves one by one in increasing order of date, and considering how each
leaf coalesces with the phylogeny made by the previous leaves (Didelot
et al., 2014; Carson et al., 2022). To do so, we consider that the dates
s1:n of the leaves are in increasing order, and that the dates c1:(n−1) of
the internal nodes are ordered so that ck−1 corresponds to the date of the
internal node created when adding the leaf indexed k to the tree made of
the first k − 1 leaves. Figure 1 shows an example of this notation used
for labelling the leaves and nodes of the tree. With these notations, the
tree made of the k first leaves contains the leaves with dates s1:k and the
nodes with dates c1:(k−1). We can therefore define the number Ak(t) of
lineages at time t in the tree made of only the first k samples in a way
similar to Equation 1:

Ak(t) =

k∑
i=1

1[si > t]−
k−1∑
i=1

1[ci > t] (3)

Note in particular that A(t) from Equation 1 is equal to An(t) from
Equation 3 as expected since this corresponds to the number of lineages in
the tree made of all n leaves and n− 1 internal nodes. The rate at which
a new leaf at date sk coalesces with the tree made of the first k− 1 leaves
is then:

λk(t) =
Ak−1(t)

Ne(t)
(4)

The difference in Equation 4 compared to Equation 2 is that we are
now considering coalescence of a single given lineage leading to leaf at
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Detection of infectious disease imported cases 3

date sk , rather than any two pairs of lineages, so that the binomial term
for the number of lineages is replaced with simply the number of previous
lineages. Note that after the date of leafk−1, i.e. for t > sk−1, we have no
previous lineages, i.e. Ak−1(t) = 0, so that λk(t) = 0, i.e. coalescence
is impossible. On the other hand, before the date of leaf k − 1, i.e. for
t < sk−1, we have always at least one previous lineage so thatλk(t) > 0.

Let Ck denote the coalescent interval for leaf k, which is defined as
the sum of branch lengths between time sk and ck−1 in the phylogeny
made of the k−1 first leaves. This represents the amount of branch lengths
before the new leaf k coalesced in the previous tree. Figure 1 shows an
example of how the coalescent interval is counted. More formally, we can
define the coalescent intervals as:

Ck =

∫ sk

ck−1

Ak−1(t)dt (5)

To obtain a given value of Ck , we need to have no coalescence of
the new lineage between ck−1 and sk , which happens with probability

exp

(
−
∫ sk
ck−1

Ak−1(t)
Ne(t)

dt

)
, and a coalescent event at time ck−1 with

one of theAk−1(ck−1) lineages existing at that time, which happens with
rate 1

Ne(ck−1)
. The probability density function of Ck can therefore be

written as:

p(Ck) =
1

Ne(ck−1)
exp

(
−
∫ sk

ck−1

Ak−1(t)

Ne(t)
dt

)
(6)

Note that Ck does not appear on the right hand side because it is fully
determined by the values of the leaf and node dates, as shown in Equation
5. This formula for the distribution ofCk is valid under the assumptions of
the coalescent model with varying population size (Griffiths and Tavare,
1994; Donnelly and Tavare, 1995).

Detecting imports into a population

Our aim is to find the number and phylogenetic location of import events in
a given dated phylogeny. We address this question by considering each leaf
of the tree and whether it is likely to be the result of a previously unreported
import, given the dated phylogeny made of only the previous samples. If
a leaf indexed k is not the result of a new import, then its coalescent
interval Ck is distributed as described in Equation 6 where Ne(t) is the
size of the local population. On the other hand, if the leaf indexed k is
the result of a new import, its coalescent interval will be larger, depending
on how distantly related the source of the import is. We do not attempt
to explicitly model the source of imports firstly because the data contains
little information about import sources, and secondly because we do not
want to make assumptions on the sources. We expect most cases in the
dated phylogeny to represent local transmission, with only a relatively
small ratio (e.g. < 5%) of the number of imports to the number of cases.
Only the chronologically first case of any imported population is classified
as an import, whereas further cases from the same imported population
represent local transmission following the import and therefore are not
classified as imports. Thus if a single import occurred followed by local
transmission of the imported variant, only the first representative of the
imported population will be labeled as an import. The first case in the
whole phylogeny is not tested for importation since it does not have a
coalescent interval.

To progressively explain our methodology for the detection of imports,
we will first assume that the demographic function is a known constant,
then extend to the case of an unknown constant value, and finally extend
to the general case of an unknown variable population size function.

Case of a known constant population size

Let us first assume that the demographic function Ne(t) is a known
constant Ne. In this case Equation 6 simplifies into:

p(Ck) =
1

Ne
exp

(
−
∫ sk

ck−1

Ak−1(t)

Ne
dt

)
=

1

Ne
exp

(
−
Ck

Ne

)
(7)

which means that in the case of a constant population size, the coalescent
intervals are independent and identically distributed as Exponential with
mean Ne. If the leaf indexed k is the first reported case of an import, it is
likely to have a coalescent interval Ck greater than would be expected if
transmission happened only locally, which can be used to form a simple
one-sided statistical test with p-value:

pk = exp

(
−
Ck

Ne

)
(8)

Case of an unknown constant population size

In the case where the population size function is a constant Ne(t) = Ne

which is unknown, we need to estimate it in order to detect imports. We take
a Bayesian viewpoint to perform this estimation, which requires setting a
prior π(Ne) and combining it with the likelihood terms in Equation 7 to
obtain the posterior distribution of Ne:

p(Ne|G) ∝ π(Ne)

n∏
k=2

1

Ne
exp

(
−
Ck

Ne

)
(9)

Note that the phylogeny G is treated as observed data, from which
the values of the coalescent intervalsCk can be computed using Equation
5. For π(Ne) we use a InvGamma(0.001,0.001) prior, which means that
the exponential rate parameter 1/Ne follows approximately its improper
Jeffrey’s prior (Spiegelhalter et al., 2002). The Gamma distributions used
here and throughout this article are parameterized in terms of the shape and
rate parameters, respectively. This same uninformative prior on Ne was
previously used in a method aimed at building dated phylogenies (Didelot
et al., 2018).

The posterior distribution in Equation 9 assumes that there are no
imports into the local population, so that all coalescent intervals are
distributed according to Equation 7. The estimated value of Ne could
therefore be biased upwards compared to the correct value of Ne in the
local population, since any import is likely to have higher coalescent
interval values. There are three reasons why this is not a concern in
practice. Firstly, we expect only a relatively small number of the leaves to
be new imports. Secondly, the distribution of coalescent intervals in the
local population (Equation 7) is permissive to high values, so that a few
high values do not push up the estimated mean dramatically. Thirdly, ifNe

is overestimated, then we are less likely to detect imports due to having
unexpectedly high coalescent intervals. This would therefore contribute
to making the method more conservative in the detection of imports,
rather than having false positives. High sensitivity is impossible to achieve
anyway since quick back-and-forwards migrations are unidentifiable.

We can use a Monte-Carlo approach to generate a sample ofN values
(N1

e , ..., N
N
e ) from the posterior distribution in Equation 9, and we can

then adapt Equation 8 to compute a posterior predictive p-value (Gelman
et al., 1996) to test if the leaf at date sk is the result of a previously
undetected import as:

pk =
1

N

N∑
i=1

exp

(
−
Ck

N i
e

)
(10)
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4 Didelot et al.

General case of an unknown variable population size

The distribution in Equation 6 represents the model for coalescent intervals
if only local transmission occurred and the population size was the function
Ne(t). However, this equation can not be used in the general case because
the demographic function Ne(t) is unknown. Phylodynamic methods
can be applied to reconstruct the Ne(t) function either at the same
time as reconstructing a dated phylogeny (Pybus and Rambaut, 2009;
Ho and Shapiro, 2011; Baele et al., 2016) or in a subsequent step (Lan
et al., 2015; Karcher et al., 2017; Volz and Didelot, 2018; Didelot et al.,
2021b). However, all these methods make some assumptions about the
demographic function. Furthermore, even if this function was known the
resulting distribution for the coalescent intervals in Equation 6 would not
be computable analytically. Since our aim here is not to estimate this
function but rather to detect imports, we take a different approach.

In the general case, Ne(t) is not constant, but when the coalescent
time ck−1 is soon before the sampling date sk , then Ne(t) should be
approximately constant between ck−1 and sk , so thatCk is approximately
exponential as in Equation 7. We therefore consider that the coalescent
intervals Ck are exponentially distributed with a mean µ(sk) which
depends on the date of sampling sk . This approximation is necessary
since the full distribution is unknown, and results on simulated datasets
show that this test is robust.

To perform Bayesian inference under this model, we need to define the
joint prior π(µ(s2), µ(s3), ..., µ(sn)). We use a Gaussian process with
mean zero and covariance function k(s, s′) equal to the the Matérn kernel
with smoothness ν = 3/2 (Genton, 2002; Williams and Rasmussen,
2006):

k(s, s′) = α2

(
1 +

√
3r

l

)
exp

(
−
√
3r

l

)
with r = |s− s′| (11)

The spectral density function of this kernel in one dimension is:

S(ω) = 4α2

(√
3

l

)3 (
3

l2
+ ω2

)−2

(12)

This kernel is characterised by two parameters: the length scale l
which represents how quickly the distance between two points reduces
their correlation, and the scale α which represents the marginal standard
deviation of the kernel. Specifying the prior on these two parameters
completes the definition of the prior model:

l ∼ InvGamma(al, bl)

α ∼ Half-Normal(σα)

log(µ(s)) ∼ GP{l,α}(0, k(s, s′))

(13)

This prior is applied to the dated phylogeny rescaled in the interval
[−1, 1], so that the root is at time t = −1 and the most recent leaf at time
t = 1. This ensures that the timescale used in the dated phylogeny does
not affect the analysis: for example the same dated phylogeny with branch
lengths measured in years or in days will produce exactly the same results.
In all examples shown here we used hyperparameter values al = bl =

σα = 5. We will show that the choice of these values has little effect on
our results.

We want to perform inference in a way that is not computationally
intensive even for large phylogenetic trees. Combining this objective with
the necessary assumption of dense sampling, together with the assumption
that the coalescent rate does not fluctuate too wildly, lends itself naturally
to the use of an approximation of the full-rank Gaussian Process. We resort
to using a Hilbert space Gaussian process (HSGP) approximation recently

described (Riutort-Mayol et al., 2020; Solin and Särkkä, 2020). This
requires setting two approximation parametersM andL corresponding to
the number of terms in the expansion and the domain size, respectively.
We useM = 20 andL = 2 as previously suggested (Riutort-Mayol et al.,
2020).

This model is fitted to the data using the dynamic Hamiltonian Monte
Carlo (HMC) method implemented in Stan, which provides a convenient
way to specify and infer the variable population size feature (Carpenter
et al., 2017; Betancourt, 2018). For a leaf at date sk , this results in a Monte-
Carlo sample of sizeN denoted (µ1(sk), ..., µ

N (sk)) from the posterior
distribution ofµ(sk). We can then use these values to detect imports using
a similar posterior predictive p-value as in Equation 10, namely:

pk =
1

N

N∑
i=1

exp

(
−

Ck

µi(sk)

)
(14)

The statistical tests in Equations 8, 10 and 14 are applied to all leaves
except the first one, resulting in n − 1 separate tests. Multiple testing
correction could be considered to limit the number of false positives,
however methods to do so pose their own problems (Rothman, 1990;
Gelman et al., 2012) therefore in all the results presented below we report
uncorrected p-values and consider whether they are below a threshold of
0.01, unless otherwise stated. Although this choice is somewhat arbitrary,
our results on simulated data show that they provide a good balance
between sensitivity and specificity. In our graphical representation of the
results, we show which cases are below the 0.01 threshold and also which
cases are below the more stringent 0.001 threshold. For users wishing
to apply a multiple testing correction, we provide the option to use for
example the Bonferroni correction or the false discovery rate correction
(Benjamini and Hochberg, 1995).

Implementation

We implemented the simulation and inference methods described in this
paper in a new R package entitled DetectImports which is available at
https://github.com/xavierdidelot/DetectImports for R version 3.5 or later.
We used the cmdstanr package (https://mc-stan.org/cmdstanr/) version
0.5.2.1 as interface to Stan version 2.3 (Carpenter et al., 2017) and the
posterior package version 1.2.2 (https://mc-stan.org/posterior/) to store
and analyse the results. Our default settings (used throughout this article)
use 4 chains with 4000 iterations each (1000 for warmup and 3000 for
sampling) and an adaptation target acceptance statistic δ = 0.9. This
number of chains is a choice of convenience, to show that good results
can be obtained on a standard laptop, but users have the option to increase
this number if wanted. We made sure that no divergent transitions occurred
during the sampling phase. Convergence and mixing of the algorithm were
verified by checking that for all parameters the improved R̂ statistics were
lower than 1.05 (Vehtarh et al., 2021) and the effective sample sizes greater
than 2000. All code and data needed to replicate the results are included
in the “run” directory of the DetectImports repository.

3 Results

Accounting for variations in the local population size is
necessary to correctly identify imports

We can show that the model with constant population size (Equation 10)
is insufficient to capture even relatively simple realistic scenarios,
and statistical inference based on the variable population size model
(Equation 14) is necessary to correctly identify imports. The simulated
phylogeny in Figure 2A includes 100 samples taken uniformly throughout
a single year, from the 1st January to the 31st December. The ancestral
process is the standard coalescent model without any import but with
varying effective population size (Griffiths and Tavare, 1994; Donnelly
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Fig. 2. Illustrative application to a single simulated dataset showing that ignoring variations
in the local population size can lead to false positives in the detection of imports. A:
Simulated phylogeny. B: Inference of imports under the model with constant population
size. C: Inference of imports under the model with variable population size. In parts B and
C, the inferred mean and 95% credible intervals of the mean coalescent intervals over time
are shown in blue.

and Tavare, 1995), which increased five fold in the second half of the
year compared to its previous level, from Ne = 0.2 year before the
1st July to Ne = 1 year afterwards. Consequently the branches tend
to be longer in the second half of the year compared to the first half
of the year and the part of the ancestry that occurred in the year prior
to sampling (Figure 2A). We first attempted to detect imports in this
phylogeny under our model assuming a constant local population size.
This took approximately one second on a standard laptop, and the result is
shown in Figure 2B. The mean coalescent interval was estimated to be 0.44
year (with 95% credible interval 0.37-0.54), with the three samples with
the largest coalescent intervals having been identified as likely imports (ie.
with a posterior predictive p-value p < 0.01). This is because these three
tips had coalescent intervals higher than would be expected by chance if
the population size had been constant, whereas these values were in fact
caused by the increase in the population size in the second half of the year.
We then inferred using our full model which accounts for variations in the
local population size. This took approximately three seconds on a standard
laptop, and the results are shown in Figure 2C. The mean coalescent
interval was inferred to have increased significantly from the start until
the end of 2020, from 0.19 (0.11-0.36) to 1.33 (0.74-2.54). Consequently,
the three tips with the largest coalescent intervals were no longer detected
as imports, ie the using the full model removed the false positives.

The example in Figure 2 shows that ignoring the variations in the
local population size can lead to the detection of imports that are not real.
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Fig. 3. Receiver operating characteristic (ROC) curves for the model with variable
population size (red) and the model with constant population size (blue). The dots represent
a p-value of 0.01.

Conversely, it is important to account for variations in the local population
size to avoid real imports going undetected. To illustrate this, we simulated
a phylogeny shown in Figure S1A in which the local population starts on 1st

January, with a single import happening on 1st April. Both the original and
imported strains follow the same linear growth in effective population size
Ne(τ) = 10τ where τ is measured in years since the strain introduction.
The original and imported strains coalesce together soon before the 1st

January. A total of 500 genomes were sampled between the 1st January
and the 31st December, with sampling happening at a rate proportional to
the effective population size of each strain. When inferring imports under
the constant population size model as shown in Figure S1B, the correct
import was not detected (p = 0.19) but seven spurious imports were
detected (p < 0.01). On the other hand, when inferring imports under
the variable population size model as shown in Figure S1C, the correct
import was the only one to be detected (p = 0.002). The run times were
approximately 2 and 13 seconds on a standard laptop computer, for the
inference with constant and variable population size, respectively.

We performed one hundred repeats of a similar simulated scenario to
the one described above, except that after the local population was initiated
on the 1st January, there were two imports in each simulation on the 1st

April and on the 1st July. A total of 500 genomes were sampled throughout
the year between the 1st January and the 31st December, with sampling
happening at a rate proportional to the effective population size of each of
the three strains (initial plus two imports). We performed inference under
both models with constant and variable population size, and computed the
sensitivity and specificity of both import classifiers at different values of
the posterior predictive p-values. This resulted in the receiver operating
characteristic (ROC) curves shown in Figure 3. The ROC curve for the
model with constant population size is far from perfect, with an area under
the curve (AUC) of 0.895. This AUC value represents the probability of
giving a lower posterior predictive p-value of import to an imported sample
compared to a sample that was not imported. In contrast, the model with
variable population size has an almost perfect ROC curve, with an AUC
of 0.997 (Figure 3). Considering p = 0.01 as the cutoff for significance,
the inference under the constant population size model has a specificity
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6 Didelot et al.

of 98.6% and a sensitivity of only 40.5%, whereas the inference under
the variable size model has a specificity of 99.7% and a sensitivity of
97.0%. To ensure that our choice of the prior did not have undue effect
on the results, we repeated this ROC analysis with hyperparameter values
al = bl = σα = 2 and found that it made little difference (Figure S2).

This ROC analysis (Figure 3) confirms the result illustrated with
specific examples in Figures 2 and S1 about the importance of accounting
for the variations in the local population size in order to detect imports with
good specificity and sensitivity, and the variable population size model
will therefore be used throughout the rest of this paper. The time taken to
run analyses in the default conditions under the variable population size
model grows approximately linearly with the number of genomes in the
phylogeny (Figure S3). We also performed inference based on simulations
using a logistic growth model for imported populations (Helekal et al.,
2021) and found similarly good accuracy of the import detection (Figure
S4).

Inference on simulated datasets from the structured
coalescent model

The simulations above were considering only the phylogenetic process
within the local population. Here we consider a more complex model
in which the global population is structured into several locations, also
known as demes, with migrations potentially occurring from any deme
to any other. The corresponding genealogical process is described by the
structured coalescent model (Notohara, 1990; Hudson, 1990; Muller et al.,
2017). We used the software Master, a stochastic simulator of birth-death
master equations, (Vaughan and Drummond, 2013) to simulate under this
model with D demes which all had the same effective population size
Ne = 1 year. The backward-in-time migration rate from any deme to any
other was sampled uniformly at random between 0 and 0.5/(D − 1), so
that the expected waiting time until a migration from one deme to any of
the otherD−1 demes was identical for all values ofD. Only one of theD
demes was sampled 500 times with dates taken uniformly at random over
a period of a year. We performed 100 simulations with D = 5, D = 3

and D = 2, each.
For each simulated dataset, we counted the correct number of imports

into the local population by looking through the whole migration history
for migrations into the local deme that led directly (ie without any other
migration event on the phylogenetic path) to at least one sampled leaf. We
also inferred the number of imports based on the dated phylogeny of the
samples from local deme, using the model with variable population size,
which took between 15 and 20 seconds to run for each simulated dataset.
Figure 4 compares the correct and inferred number of imports in each
simulation. The number of detected imports is correlated with the correct
number of imports in all three cases with D = 5 demes (Figure 4A),
D = 3 demes (Figure 4B) and D = 2 demes (Figure 4C). However, in
all three cases we find that the number of imports has been estimated, with
on average only 81%, 76% and 69% of imports being detected forD = 5,
D = 3 and D = 2 demes, respectively. This increasing relationship
between the number of demes and the ability to detect imports into one of
the demes is as expected: when the number of demes is larger, the local
population represents a smaller proportion of the global population. Each
import becomes more clearly separated in the phylogenies and therefore
easier to detect. The fact that some imports remain impossible to detect in
all three cases is also expected, since there is always the possibility that a
lineage going back in time migrates out of the local population and back
into it quickly afterwards, making it basically undetectable. Finally, the
case withD = 2 demes is especially interesting since in this case there are
just two populations of equal sizes, one which is sampled and the other one
not. Detecting imports is clearly challenging in these conditions, harder
than we would envisage in most applications to real data where the local
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Fig. 4. Application to simulated datasets from the structured coalescent model with 5 demes
(A), 3 demes (B) and 2 demes (C). Each dot corresponds to a single simulated dataset, with
the correct and inferred number of migrations shown on the x and y axes, respectively. The
solid line corresponds to x = y whereas the dotted line shows a linear regression through
the dots.

population would typically be a small fraction of the global population. It
is therefore encouraging to see that even in this difficult case our method
was able to detect the majority of the imports (Figure 4C). Analysis of the
same simulated datasets under the constant population size model had a
slightly improved power to detect imports, as would be expected since the
local population size was constant in the simulations (Figure S5).
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Fig. 5. Application to Shigella sonnei dataset. A: Dated phylogeny with imports highlighted
in red. B: Inference of imports. The inferred mean and 95% credible intervals of the mean
coalescent intervals over time are shown in blue.

Application to real datasets

We also applied our importation detection methodology to real datasets,
and considered how our inference compares with accepted epidemiological
wisdom about a number of outbreaks originated by diverse pathogens.

First we analysed a small dataset of 132 genomes from an outbreak of
Neisseria gonorrhoeae (Didelot et al., 2016). The genomes were collected
between 1995 and 2000 as part of a prospective study on gonorrhoea in
Sheffield (Ward et al., 2000), and all belonged to ST12 which was the
most prevalent NG-MAST type in this setting (Bilek et al., 2007). In
the previous study of this data (Didelot et al., 2016), a dated phylogeny
was built using BEAST (Suchard et al., 2018) as shown in Figure S6A.
Analysis took approximately 5 seconds and the result is shown in Figure
S6B. No detectable import was found in this dataset, confirming that all the
genomes seem to belong to the same outbreak and can be analysed as such
as previously performed (Didelot et al., 2016). In particular, there was a
gap of about 2 years in the sampling in 1998 and 1999, with most genomes
originating before this gap and only seven genomes corresponding to cases
afterwards. In principle, this gap could have been explained by a clearance
and reintroduction of ST12 in the region, but our analysis shows that this
is not the case. Instead, the later cases are descended from the earlier ones
through chains of unsampled transmission intermediates, as previously
proposed (Didelot et al., 2016) using outbreaker (Jombart et al., 2014).

Second, we analysed a collection of 155 Vietnamese genomes from
the VN clade of the emerging enteric pathogen Shigella sonnei (Holt et al.,
2013). These genomes were sampled between 1995 and 2010, and a dated
phylogeny was built using the additive relaxed clock model in BactDating
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Fig. 6. Application to Ebola dataset. A: Dated phylogeny showing the imports (red) and
locally transmitted descendants of imports (blue). B: Histogram showing the number of
locally transmitted (blue) and imported (red) isolates over time.

(Didelot et al., 2021a). The import analysis took approximately 6 seconds
and the result is shown in Figure 5. A single import was found (isolate
labelled 30451) with a posterior predictive p-value of 0.0057. This isolate
may not look remarkably different at first sight on the phylogeny (Figure
5A), but it is the second most recent isolate in the collection and has by
far the largest coalescent interval (Figure 5B). We repeated this analysis
for 100 phylogenies from the posterior sample produced by BactDating
(Figure S7). The results were robust to phylogenetic uncertainty, with only
isolate 30451 being a likely import. The p-values for this isolate had an
interquantile range between 0.007 and 0.014 (Figure S7). Given these p-
values we can not be absolutely certain if this isolate was indeed imported,
but if so it would most probably represent a relatively quick migration out
and back into the Vietnamese population, for example via a neighbouring
country.

We also analysed a collection of 1031 genomes of Ebola isolated from
Sierra Leone between the 25th May 2014 and 12th September 2015. A
dated phylogeny was built for these genomes using BEAST (Suchard
et al., 2018) in a previous study (Dudas et al., 2017). The import analysis
took 50 seconds. The results are shown in Figure 6, with 25 isolates
having a posterior predictive p-value of importation below 0.01, of which
5 had a probability below 0.001. All the inferred imports correspond to
isolates from 2015, despite most (544/1031) isolates in this collection
being from 2014, which is statistically significant (Fisher’s exact test
comparing imported vs non-imported in 2014 vs 2015, p < 10−4).
This result coincides well with the incidence of Ebola over time in Sierra
Leone and the two other badly affected neighbouring countries Guinea
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and Liberia (Shultz et al., 2016). The end of 2014 and beginning of 2015
corresponds to the time when Sierra Leone managed to greatly reduce the
number of Ebola cases, whereas other countries took longer to do so. The
previous study analysing these Sierra Leone genomes also included 210
genomes from Liberia and 369 genomes from Guinea (Dudas et al., 2017),
and performed a geographic history reconstruction of migrations between
the three countries using the discrete trait analysis method (Lemey et al.,
2009) implemented within BEAST (Suchard et al., 2018). It is therefore
interesting to compare the results of this previous phylogeographic analysis
(Dudas et al., 2017) with our own results based on the genomes from
Sierra Leone only (Figure 6). The phylogeographic analysis revealed
that the most recent common ancestor of the epidemic existed around
January 2014 in Guinea, from which it spread to Sierra Leone around
April 2014 (Dudas et al., 2017). The vast majority of subsequent cases in
Sierra Leone were descended from this initial introduction (Dudas et al.,
2017), which would not be detected by our approach since it corresponds
to the start of the local population. However, a few sporadic cases were
linked with several reintroduction events of Ebola into Sierra Leone,
especially from Guinea between January and April 2015 (Dudas et al.,
2017). The timing and phylogenetic position of these migrations is in good
qualitative agreement with our results on importation into Sierra Leone
(Figure 6). These reintroduction events occurred in spite of the closure of
the international borders between the three countries affected by Ebola in
mid-2014, as previously noted (Dudas et al., 2017). A phylogeography
approach would generally be expected to yield more accurate results on
migration between countries, since it is based on more complete data,
compared to an importation analysis based on genomes from a single
country only. However, in many situations genomes are not available
from all the countries in which a pathogen circulates, so that a traditional
phylogeographic method could not be applied.

Finally, we analysed a set of 3797 SARS-CoV-2 genomes isolated
in Scotland between March 2020 and June 2022. This collection was
obtained by downsampling the ∼200,000 Scottish sequences that have
been deposited in GISAID since the beginning of the COVID-19 pandemic;
for each day for which data was available, at most 5 genomes were
randomly selected from those having no ambiguous or unknown base. We
then cleaned up the multiple sequence alignment retrieved from GISAID
by only keeping the relevant rows, eliminating columns entirely made of
dashes, and trimming sequences at both sides by the minimum amount of
nucleotides needed to make the stretches of dashes at the beginning and the
end of each genome, which indicate unknown sequence, entirely disappear
for all the genomes selected. The resulting alignment was given as input to
FastTree version 2.1.10 (Price et al., 2010) to generate a phylogeny which
was then dated using BactDating version 1.1 (Didelot et al., 2018). This
choice of phylogenetic software was guided by the need for scalability to
large numbers of genomes. The inference of imports took approximately
20 minutes to compute, resulting in a total of 50 detected imports, as
shown in Figure 7 and listed in Table S1. Interestingly, no imports were
found until August 2020, perhaps as an effect of the first lockdown which
started at the end of March 2020 and was progressively relaxed throughout
Spring 2020. During August 2020 15 imports were identified, which was
the largest for any month in the analysis. Many of these imports may be
associated with Summer holidaying. According to our analysis the alpha
variant was imported in November 2020, soon after it had been reported
in England (Davies et al., 2021). Several imports corresponded to low
frequency variants, including Beta in December 2020, Zeta in December
2020 and Eta in March 2021. Fewer imports were detected in the first
few months of 2021, which may be the result of the second lockdown in
January and February 2021. The Delta variant was imported in April 2021,
soon before it became dominant throughout the UK (Elliott et al., 2021).
From then on, the Alpha variant was reimported three times and the Delta
variant nine times with the last imports occurring in December 2021. The
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Fig. 7. Application to SARS-CoV-2 dataset. A: Inference of imports. The inferred mean
and 95% credible intervals of the mean coalescent intervals over time are shown in blue.
B: Histogram showing the number of locally transmitted (blue) and imported (red) isolates
over time.

Omicron variant (Cao et al., 2022) was first imported in December 2021,
and reimported three times from January to March 2022, by which time
this variant had become dominant in the UK and globally.

4 Discussion
When studying the occurrence of an infectious disease in a geographically
limited population, it is often important to distinguish cases that have been
transmitted within the population from cases that have been imported
from external origins. Genomic data has the potential to distinguish
between these two types of cases, since new imported cases would usually
be more distantly related from previous cases than cases arising from
local transmission. We developed a statistical method that can quickly
establish which cases have been imported. Application to simulated
datasets showed that our method has excellent specificity, which means a
very low probability that a locally transmitted case would be inferred to
have been imported. Our method also has good sensitivity to detect cases
that have been truly imported, although this is not perfect since there is
always a chance that an import will be genetically similar to the locally
transmitting population. We also showed that our method can be useful in
four very different real applications: an outbreak of gonorrhoea in a single
city, a country-wide expansion of a bacterial clone causing enteric disease,
the 2013-2016 epidemic of Ebola virus disease in Sierra Leone, and the
COVID-19 pandemic.
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Our approach uses only genomic data from within the location of
interest, without making assumptions about the genomic epidemiology
of the disease outside of this location. This problem is therefore analogous
to the inference of recombination coming from external unsampled
sources (Didelot and Falush, 2007; Didelot and Wilson, 2015) rather than
recombination within a single population (Didelot et al., 2010). In this
case, genomes from other populations are sometimes used subsequently,
by comparing them with the inferred recombination tracts to determine if
they might be the origin of the recombination events (Didelot et al., 2011,
2012; Ozer et al., 2019). In the same way, for the problem of detecting
imports into a location we are interested in here, any information about the
genetic diversity at other locations could be used to assess the likely origin
of the detected imports, simply by comparing the genomic sequences of
the inferred imports with the genomes collected from other locations.

Our method requires first to compute a dated phylogeny from the
genomes before detecting imports, and therefore fits within the framework
of step-by-step approaches from microbial genomes to epidemiology
(Didelot and Parkhill, 2022). There are several advantages to this type of
approach, including scalability to large datasets as we demonstrated here
with the analysis in a matter of seconds of datasets containing hundreds of
pathogen genomes. There are however also drawbacks to such an approach
compared to a more integrated approach (Didelot and Parkhill, 2022). A
first issue concerns the fact that the model used to build the dated phylogeny
is contradicted here by the presence of imports. As previously noted (cf
Methods), this is unlikely to have a significant effect as long as imports
are relatively rare, but in any case the effect would be to overestimate the
local effective population size, thus making the method more specific and
less sensitive, as desired. Another inaccuracy of the step-by-step approach
is that a single dated phylogeny is used as input, which does not capture
the uncertainty in the phylogenetic reconstruction. A solution is to apply
the method to a posterior sample of the dated phylogenies (Nylander et al.,
2008), which is feasible here since our method to detect imports is very
fast. We applied this idea to one of the real datasets we analysed and found
that the detection of imports was relatively robust even when using a single
consensus tree (Figure S7). This is as expected since imports correspond
to long branches of the tree which are unlikely to have much uncertainty.

The main assumption in our model is that the local population evolves
according to a coalescent model with varying population size (Griffiths
and Tavare, 1994; Donnelly and Tavare, 1995). Imports are detected
as deviations from this model, rather than being based on an explicit
model of migration, so that our method could be described as being
semi-parametric. Consequently, our method can be applied to a wide
range of epidemiological scenarios, including: outbreaks, as showcased
by our analysis of a local gonorrhoea outbreak (Didelot et al., 2016); large
epidemics spanning multiple countries, as exemplified by the S. sonnei
and Ebola analyses (Figures 5 and 6); or even worldwide pandemics,
as in the SARS-CoV-2 application (Figure 7). Our method should be
especially useful when data is available mostly from a single location,
preventing the use of a standard phylogeography approach (Lemey et al.,
2009; Bloomquist et al., 2010; De Maio et al., 2015). Sampling of the
local population needs to be dense enough to infer fluctuations of its
effective size as in other phylodynamic methods (Pybus and Rambaut,
2009; Ho and Shapiro, 2011; Baele et al., 2016). If the sampling is not
dense enough, the credible range for the coalescent intervals will be very
large and imports will not be detectable. In addition, most cases need to
be locally transmitted rather than imported, since imports are detected
based on having larger coalescent intervals than other comparable cases
(Equation 14). Consequently, one situation where our method would be
misleading is if all cases are imported rather than locally transmitted. For
instance, consider a set of samples from a single hospital ward, with
all cases being community-acquired from a local outbreak rather than
transmitted on the ward. In this case the population size will be estimated

for the whole community population, rather than for the ward population,
and no import would be inferred, which would be misleading in terms
of distinguishing nosocomial and community transmission. Our method
should therefore be used only on genomes from a population within which
local transmission is known to happen frequently, with importation being
the exception rather than the rule.
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