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ABSTRACT 

Federal Funds Rate Prediction* 

We examine the forecasting performance of a range of time-series models of 
the daily US effective federal funds (FF) rate recently proposed in the 
literature. We find that: (i) most of the models and predictor variables 
considered produce satisfactory one-day-ahead forecasts of the FF rate; (ii) 
the best forecasting model is a simple univariate model where the future FF 
rate is forecast using the current difference between the FF rate and its target; 
(iii) combining the forecasts from various models generally yields modest 
improvements on the best performing model. These results have a natural 
interpretation and clear policy implications. 
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1. Introduction 

The importance of the effective federal funds (FF) rate in US financial markets is unquestionable.  

The Federal Reserve (Fed) implements monetary policy by targeting the effective FF rate.  The ability 

of market participants to predict the FF rate is important to modern analyses of monetary policy in 

that other interest rates are believed to be linked to the FF rate by the market expectation of monetary 

policy actions that directly affect the FF rate.  It is therefore not surprising that a vast body of research 

has studied the behavior of the FF rate and proposed empirical models designed to explain it.  One 

strand of this literature focuses on the FF rate using data at monthly or quarterly frequency to establish 

the extent to which arguments of interest to the Fed - such as inflation and the output gap - are 

sufficient to explain the variation in the FF rate (e.g. Taylor, 1993, 1999; Clarida, Gali and Gertler, 

1998, 2000, and the references therein).  A related literature investigates the impact of monetary 

policy shocks on key macroeconomic aggregates, again using low frequency data, identifying shocks 

to monetary policy using the FF rate in structural vector autoregressions (e.g. Christiano, Eichenbaum 

and Evans, 1999, and the references therein).  Other studies focus on the high-frequency behavior of 

the FF rate, using data at the daily frequency.  This frequency is appealing because each day the 

Trading Desk of the Federal Reserve Bank of New York (hereafter Desk) conducts open market 

operations designed to move the FF rate in the desired direction (e.g. Hamilton, 1996; Roberds, 

Runkle and Whiteman, 1996; Balduzzi, Bertola and Foresi, 1997; Taylor, 2001).1 

The literature has suggested that several variables have predictive power for explaining FF 

rate movements: FF futures rates (Krueger and Kuttner, 1996), the FF rate target (Rudebusch, 1995; 

Taylor, 2001), and other interest rates linked to the FF rate via no-arbitrage conditions or the term 

structure of interest rates (e.g. Enders and Granger, 1998; Hansen and Seo, 2002; Sarno and Thornton, 

2003; Clarida, Sarno, Taylor and Valente, 2004).  A number of models, both univariate and 

multivariate, linear and nonlinear, have been proposed to capture the unknown process that drives FF 

rate movements.  To date, however, there appears to be no consensus on what variables and models 

best characterize the behavior of the FF rate at the daily frequency.  This paper attempts to fill this gap 

in the literature by examining a variety of univariate and multivariate, linear and nonlinear empirical 
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models of the FF rate, largely taken directly from or inspired by previous research in this context.  We 

estimate these models using daily data for the period from January 1 1990 through December 31 1996 

and generate forecasts over the remaining four years of data.  We also examine the potential to 

improve on the individual or ‘primitive’ models by using combinations of forecasts (see, inter alia, 

Diebold, 2001; Stock and Watson, 1999b, 2003; Swanson and Zeng, 2001). 

To anticipate our results, we find that, in general, most of the models and predictor variables 

considered produce satisfactory one-day-ahead forecasts of the FF rate.  However, the best forecasting 

model is a very parsimonious univariate model where the one-day-ahead funds rate is forecast using 

the current difference between the funds rate and its target.  This model can be thought of as a simple 

variant of the Desk’s reaction function proposed by Taylor (2001).  Combining the forecasts from 

various models provides generally modest improvements on this Desk’s reaction function.  We argue 

that these results have a natural interpretation and that they are in line with the growing empirical 

evidence suggesting that the Fed’s policy is well described as a forward-looking interest rate rule.2  

The remainder of the paper is set out as follows.  In Section 2 we describe the empirical 

models of the daily FF rate considered in the paper.  We also briefly discuss some econometric issues 

relevant to estimation of these models.  In Section 3 we describe the data.  Some preliminary data 

analysis and the in-sample estimation results are given in Section 4, while in Section 5 we present our 

forecasting results using both the primitive models and the combinations of forecasts, including 

evidence on point forecast accuracy and market timing ability.  A final section concludes.  

2. Empirical models of the federal funds rate 

This section describes the empirical models of the daily US effective FF rate considered in this paper.  

Our aim is to model the daily behavior of the FF rate.  However, we cannot rely on standard 

macroeconomic variables (such as inflation and output) that one may expect to drive monetary policy 

decisions and interest rate movements since these variables are not available at the daily frequency.  

Thus, the information set considered includes the FF rate target, other US interest rates to which the 

FF rate is likely to be linked via no-arbitrage conditions, and FF futures rates, in addition to lagged 

values of the FF rate.3  
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2.1 Univariate models 

The first specification considered is a simple driftless random walk (RW) model: 

 FF
t ti u∆ = ,  (1) 

where FF
ti∆  is the daily change in the effective FF rate.  Although several researchers have concluded 

that the interest rate fails to follow a random walk (e.g. Shiller, Campbell and Schoenholtz, 1983; 

Campbell, 1987; Barrett, Slovin and Sushka, 1988; Lasser, 1992; Hamilton, 1996; Roberds, Runkle 

and Whiteman, 1996; Balduzzi, Bertola and Foresi, 1997; Lanne, 1999, 2000), most studies cannot 

reject the unit root hypothesis for interest rates (e.g. Stock and Watson, 1988, 1999a).  Given the large 

empirical work suggesting that very persistent series with a root very close (if not equal) to unity are 

better approximated by (1)I  processes than by stationary ones (e.g. see Stock, 1997; Diebold and 

Kilian, 2000), it seems reasonable to consider a RW model for the FF rate as one of our specifications.  

A more general model of FF rate movements is a linear ARMA ( )p q,  model:  

 
1 1

p q
FF FF
t j t j t s t s

j s

i iγ ε φ ε− −
= =

∆ = ∆ + + .∑ ∑  (2) 

This model generalizes the RW model to account for higher-order autoregressive dependence and for 

moving-average serial correlation in the residual error.  

The third specification considered is a variant of the model recently proposed by Taylor 

(2001):  

 1 1
FF FF T
t t ti i i error termξ  

 − − 
∆ = − +  (3) 

where 1 1
FF T
t ti i 

 − − 
−  is the lagged difference between the FF rate, 1

FF
ti −  and the FF rate target, 1

T
ti − .  

Under this model, future daily changes in the FF rate are driven by current deviations of the FF rate 

from its target.  Taylor (2001) suggests that the Desk strives to keep the FF rate close to its target 

level, which, since 1994, is publicly announced by the Federal Open Market Committee (FOMC).  

According to the literature on forward-looking interest rate rules (Clarida, Gali and Gertler, 1998, 

2000), the FF rate target is set on the basis of considerations that may be parsimoniously summarized 
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in expected inflation and output gap.  Hence, equation (3) may be seen as the Desk’s reaction function 

designed to minimize deviations of the FF rate from the target, which is set by the FOMC at a level 

believed to deliver the desired inflation and output objectives.  Taylor argues that the adjustment to 

departures of the FF rate from its target is partial at daily frequency, implying that 1 0ξ− < < .4 5  

Another univariate model of the daily FF rate, first examined by Hamilton (1996), is the 

exponential generalized autoregressive conditional heteroskedasticity or EGARCH model.  An 

EGARCH ( )p q,  for the daily change in the FF rate may be written as follows:  

 1 3
FF FF FF
t t t t ti i i vη σ 

 − − 
∆ = − +  

 2 2

1 1

log
p q

t s t s t s
t j t j s s

j s t s t s t s

v v v
Eσ ω ϑ σ ρ ς

σ σ σ
  − − −
  − 

= = − − −

  
= + + − +      

∑ ∑  (4) 

 

where 1 3
FF FF
t ti i 

 − − 
−  is the cumulative change of the FF rate over the preceding two days, and tv  

denotes independently and identically distributed (i.i.d.) innovations with zero mean and unit 

variance.  The conditional variance 2
tσ  is modeled in the spirit of the analysis of Nelson (1990), 

where in order to take into account the asymmetric effect between future conditional variances and 

current FF rate changes, both sign and magnitude of the innovations are taken into account. 

Another univariate nonlinear model we consider is a Markov-switching p th-order 

autoregressive model with M  regimes, MS-AR ( )M p,  (Hamilton, 1988, 1989; Gray, 1996):  

 ( ) ( )
1

1 2
p

FF FF
t j t t j t t t

j

i z i z z … Mϕ σ ω−
=

∆ = ∆ + = , , , .∑  (5) 

Model (5) allows for the autoregressive structure, ( )1

p FF
j t t jj

z iϕ −=
∆∑ , and the variance of the error 

term, ( )2
tzσ , to be shifting over time across regimes.  In this model, the variance of the innovations 

tω  is time-varying but, unlike for the EGARCH, the dynamics is governed by an unobservable 

variable tz  which is assumed to follow a first-order Markov chain.  Markov-switching models have 

often been employed to model interest rates with some degree of success.  Such models are a 
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plausible alternative to models of the ARCH family designed to capture fat-tailed disturbances (e.g. 

Hamilton, 1988; Hamilton and Susmel, 1994; Ait-Sahalia, 1996; Gray, 1996; Bansal and Zhou, 2002; 

Dai, Singleton and Yang, 2003; Clarida, Sarno, Taylor and Valente, 2004).  

2.2  Multivariate models 

Among the multivariate models we consider, we include the Momentum-Threshold Autoregressive 

(M-TAR) model proposed by Enders and Granger (1998):  

 ( )
1

1 1 2 1
1

1
p

t j t j t t t t
j

y y I y I y errorα β α β
−

′ ′   
   − − −   

=

∆ = Λ ∆ + + − +∑  (6) 

 1

1

1 if 0
0 if 0

t
t

t

y
I

y
β
β

′
−

′
−

≥
=

<
 

where FF TB
t t ty i i 

  
= , ; TB

ti  is the 3-month Treasury Bill (TB) rate.  This model explicitly takes into 

account the existence of asymmetries that may occur in the adjustment process along the short-end of 

the yield curve.  Essentially, the adjustment parameters, 1α , 2α , differ depending on whether the 

slope of the short-end of the yield curve is positive or negative.  

Another multivariate threshold model, applied to the FF rate by Hansen and Seo (2002), is the 

bivariate TAR or BTAR model:  

 ( )
1 1

1 1 1 2 2 1
1 1

1
p p

t t j t j t t j t j t
j j

y I y y I y y errorα β α β
   − −
   ′ ′
   − − − −   

= =      

∆ = Λ ∆ + + − Λ ∆ + +∑ ∑  (7) 

 1

1

1 if

0 if
t

t
t

y k
I

y k

β

β

′
−

′
−

≥
=

<
 

where FF TB
t t ty i i 

  
= , .  Although both the M-TAR model (6) and the BTAR model (7) belong to the 

family of threshold autoregressive models, they differ in several respects.  First, in the BTAR model 

(7) the Heaviside indicator function tI  is equal to zero or unity according to whether the value of the 

cointegrating residual is smaller (or larger) than a threshold k , which must be estimated.  In contrast, 

in the M-TAR model (6) the threshold is assumed to be equal to zero.  Second, in the BTAR model 

(7) the whole set of parameters, iΛ , iα , is shifting over time, while in the M-TAR model (6) only the 
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speed of adjustment parameter, namely iα  (for 1 2i = , ), is shifting over time.  

The final model considered is a Markov-Switching Vector Error Correction Model or MS-

VECM of the term structure of FF futures rates.  This model is partly inspired by the recent work of 

Krueger and Kuttner (1996) and Kuttner (2001), where it is shown that FF futures rates are useful in 

predicting future changes in the FF rate.  If the FF rate and FF futures rates are (1)I  variables, it is 

straightforward to demonstrate that the FF rate and the FF futures rates should cointegrate with a 

cointegrating vector [1 1], − .6  In turn, via the Granger representation theorem (Granger, 1986), the 

joint dynamics of the FF rate and the FF futures rates can be described by a VECM:  

 ( ) ( ) ( )
1

1 2
1

1

p

t i t t j t t t t
j

y z y z y z ε
−

/
− −

=

∆ = Γ ∆ + Π + Σ∑  (8) 

where 1 2FF
t t t ty i f f 

  
= , , , and the long-run impact matrix ( ) ( )t tz zα β ′Π = .  The VECM in equation 

(8) has been generalized to a Markov-switching framework where the parameters can shift to take into 

account the evidence that interest rate changes are heteroskedastic and that their distribution is well 

approximated by a mixture of normal distributions (e.g. see Hamilton, 1988, 1996; Gray 1996; Bansal 

and Zhou, 2002; Dai, Singleton and Yang, 2003; Clarida, Sarno, Taylor and Valente, 2004).7  

3. Data issues 

The data set consists of daily observations on the effective FF rate FF nc
ti

, , the 3-month T-bill TB
ti , the 

FF rate target T
ti , and the FF futures rate m

tf  for 1 2m = , .  The FF rate is a weighted average of the 

rates on federal funds transactions of a group of federal funds brokers who report their transactions 

daily to the Federal Reserve Bank of New York.  Federal funds are deposit balances at Federal 

Reserve banks that institutions (primarily depositories, e.g. banks and thrifts) lend overnight to each 

other.  These deposit balances are used to satisfy reserve requirements of the Federal Reserve System.  

Because reserve requirements are binding at the end of the reserve maintenance period, called 

settlement Wednesday, the FF rate tends to be more volatile on settlement Wednesdays.8  The FF rate 

time series was adjusted in order to eliminate the effect of the increased volatility on settlement days, 

as done, for example, in Sarno and Thornton (2003).  Precisely, the adjusted time series for the FF 
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rate is the ordinary least squares residual from the regression of the FF rate on a dummy variable that 

equals zero on non-settlement days and unity on settlement days.  This yielded the time series for the 

corrected FF rate, FF
ti , which is the time series we employ in our empirical work.  Note that, since the 

corrected FF rate series was obtained using the whole sample to estimate the coefficient on the 

dummy variable, essentially the study of its properties is not purely out of sample.  However, the 

qualitative impact of this correction on our results is likely to be very small because settlement days 

are publicly known in advance.  Moreover, we check whether our results are robust to the inclusion of 

settlement days in our forecasting exercise below, and find that the forecasting results are qualitatively 

identical when settlement days are excluded from the analysis (see Section 5.2). 

m
tf  is the rate on a FF futures contract with maturity m , traded on the Chicago Board of 

Trade (CBT).  Futures contracts are designed to hedge against or speculate on the FF rate.  The CBT 

offers FF futures contracts at several maturities; however, the most active contracts are for the current 

month and a few months into the future.  The contracts are marked to market on each trading day, and 

final cash settlement occurs on the first business day following the last day of the contract month.  

The FF rate FF
ti  and the 3-month T-Bill rate TB

ti  were obtained from the Federal Reserve Bank of St. 

Louis database, Federal Reserve Economic Data (FRED).  The FF rate target, T
ti  was taken from 

Thornton and Wheelock (2000).  The FF futures rates m
tf  were obtained from the CBT.  

The sample period spans from January 1 1990 through December 31 2000, yielding a total of 

2 869,  observations.  This sample period was chosen for two reasons.  First, while the Fed has never 

explicitly stated when it began targeting the FF rate in implementing monetary policy, an emerging 

consensus view is that the Fed has been explicitly targeting the FF rate since at least the late 1980s 

(e.g. see Meulendyke, 1998; Hamilton and Jordá, 2001; Poole, Rasche and Thornton, 2002).  Second, 

while the FF futures market has existed since October 1988, trading activity in this market was 

initially small (Krueger and Kuttner, 1996, p. 867).  To insure against the possibility that the empirical 

analysis would be affected by the thinness of the FF futures market during the early years of its 

operation, we decided to begin the sample in January 1990.  
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Since we are interested in the predictive power of alternative time series models, we initially 

estimate each model over the period January 1 1990 through December 31 1996.  Forecasts over the 

remaining four years of data are generated using a recursive forecasting procedure, described in 

Section 5.1.  

4. Empirical results 

4.1 Preliminary data analysis and unit root tests 

Table 1 presents summary statistics for the series of interest, both in levels (Panel a) and first 

difference (Panel b).  These summary statistics show that all rates - the (non-corrected and corrected) 

FF rate, the TB rate, the FF futures rates, and the FF rate target - display similar values for the mean, 

variance, skewness and kurtosis.  It is, however, clear that the correction for settlement Wednesdays 

discussed in the previous section make the mean of the FF rate closer to the mean of the FF rate 

target; indeed, after this correction the mean difference between the FF rate and the FF rate target, 

FF T
t ti i 

 
 

− , is only 0.025 and statistically insignificantly different from zero when one takes into 

consideration its standard deviation.  Also, an examination of the third and fourth moments indicates 

the existence of both excess skewness and kurtosis, suggesting that the underlying distribution of each 

of these time series may be non-normal.  This is confirmed by the rejections of the Jarque-Bera test 

for normality reported in the last row of Panels a-b in Table 1.9  

4.2 Estimation results and in-sample performance 

We estimate each model described in Section 2 over the sample period January 1 1990 and December 

31 1996.  Although the core of our empirical work relates to the out-of-sample performance of these 

models, this section provides details on the ability of each model to explain the FF rate in sample.10  

Let us begin with the estimation results for the univariate models of the FF rate.  For model 

(2) we found an ARMA(2,1) specification to be satisfactory in that no serial correlation was left in the 

residuals.  Estimation of model (3), namely the Desk’s reaction function, suggests very fast, albeit 

partial, adjustment of the FF rate toward the FF rate target.  The speed of reversion parameter ξ  is 

consistent with over 70 percent of the daily difference between the FF rate and the target being 
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dissipated the following day.  The EGARCH model (4) was estimated following the specification 

procedure adopted in Hamilton (1996).11  

The univariate Markov-switching model (5) was specified and estimated by employing the 

‘bottom-up’ procedure suggested by Krolzig (1997, Ch. 6).  This procedure is designed to detect 

Markovian shifts in order to select the most adequate characterization of an M-regime p-th order MS-

AR for FF
ti∆ .  The bottom-up procedure suggested in each case that two regimes were sufficient to 

characterize the dynamics of FF rate changes, confirming previous results reported in the literature on 

modeling short-term interest rates (e.g. Gray, 1996; Ang and Bekaert, 2002).  Further, a specification 

which allows the autoregressive structure and the variance to shift over time (Markov-Switching-

Autoregressive-Heteroskedastic-AR, or MSAH-AR) was selected since a regime-shifting intercept 

was found to be insignificant at conventional statistical levels. 

Turning to the multivariate models, the M-TAR (6) and the BTAR (7) were estimated 

following the procedures described in Enders and Granger (1998) and Hansen and Seo (2002) 

respectively.  In particular, both models (6) and (7) were estimated by imposing the cointegrating 

vector [ ]1 1β ′ = ,− .  With respect to the BTAR model (7), the threshold parameter was estimated, as 

in Hansen and Seo (2002), using 300 gridpoints, and the trimming parameter was set to 0 05. .  

Finally, the MS-VECM (8) was estimated according to the conventional procedure suggested by 

Krolzig (1997) and employed, for example, by Clarida, Sarno, Taylor and Valente (2003, 2004), 

designed to jointly select the appropriate lag length and the number of regimes characterizing the 

dynamics of the FF rate and the FF futures rates.  The VARMA representations of the series 

suggested in each case that there are between two and three regimes.  We adopted a specification 

which allows the whole set of parameters - i.e. intercept, autoregressive structure, cointegrating matrix 

and variance-covariance matrix - to shift over time (Markov-Switching-Intercept-Autoregressive-

Heteroskedastic-VECM or MSIAH-VECM) with the number of regimes 3M = , which was found to 

adequately characterize the joint dynamics of the FF rate and FF futures rates.  

The estimation yields fairly plausible estimates of the coefficients for all the specifications 

considered.  Further, for any of the regime-shifting models (5)-(8) the null hypothesis of linearity is 
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rejected in all cases with very low p-values, suggesting that nonlinearities and asymmetries of the 

kind modeled here may be important ingredients for characterizing in sample the dynamics of the 

effective FF rate.  Statistics measuring the in-sample performance of the estimated models (2)-(8) are 

given in Table 2, where the 2
R  and conventional information criteria (namely, AIC, BIC and HQ) are 

reported.  The goodness of fit of the models is satisfactory and all the 2
R  are larger than 0 11. , which 

is a satisfactory 2
R  if one considers that we are modeling a daily interest rate time series in first 

difference.  Five models out of eight exhibit an 2 0 20R > .  and two of them, namely Taylor’s (2001) 

Desk reaction function and the MSIAH-VECM, display an 2 0 30R > . . Inspection of the 

information criteria tells us that, although the MSIAH-VECM has the highest 2
R  recorded, this 

model may be overparameterized.  In fact, within the group of multivariate models, the MSIAH-

VECM is outperformed by the two competing TAR models and it is also outperformed by the 

Taylor’s (2001) Desk reaction function, which displays the second highest 2
R  and the lowest 

information criteria within the set of competing models.  

5. Out-of-sample forecasting results 

5.1 Methodological issues 

In order to evaluate the forecasting performance of the empirical models of the FF rate considered, 

dynamic out-of-sample forecasts of the FF rate were constructed using each of the models estimated 

in the previous section.  In particular, we calculated one-step-ahead (one-day-ahead) forecasts over 

the period January 1 1997 and December 31 2000.  The out-of-sample forecasts are constructed 

according to a recursive procedure that is conditional only upon information available up to the date 

of the forecasts and with successive re-estimation as the date on which forecasts are conditioned 

moves through the data set.  

We assess the forecasting performance of each of the eight individual models examined and 

then consider combinations of forecasts (models) using the forecast pooling approach proposed by 

Stock and Watson (1999b, 2003).  For each time series we choose two separate periods: (i) a start-up 
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period over which forecasts are produced using the eight individual competing models but not the 

pooling procedures; (ii) the simulated real-time forecast period over which recursive forecasts are 

produced using all individual models as well as the pooling procedures.  Let 0T  be the date of the first 

observation used in this study (namely January 1 1990) and 1T  be the first observation for the forecast 

period (namely January 1 1997).  Then the start-up period ends at 2 1 261T T= +  (until the end of 

1997) and the forecast period goes from 2T  to 3T , where 3T  is the date of the final observation in our 

data set (December 31 2000).  All the forecasting results reported in the following sub-sections refer 

to the simulated real-time forecast period 2T  to 3T  (inclusive).  

5.2 Forecasting results: ‘primitive’ models 

In Table 3 we report the forecasting results obtained using the models described in Section 2 and 

estimated in Section 4, which we term ‘primitive’ models.  In Panel a) of Table 3 we report the mean 

absolute error (MAE) and the root mean square error (RMSE) for each of the estimated models.  

Using the random walk (RW) model as a benchmark in assessing the relative forecasting performance 

of the primitive models, we then report the p-values of tests for the null hypothesis of equal point 

forecast accuracy based on both the MAE and the RMSE.12   

We use the RW model as a benchmark since it is the benchmark used in the analysis of much 

research on the properties of the FF rate, cited in Section 2.1, and in particular the theoretical 

benchmark considered by Hamilton (1996).  Moreover, the RW model is often used as a benchmark 

in forecasting studies on financial variables, such as, for example, exchange rates (Meese and Rogoff, 

1983).  An alternative benchmark we might have chosen is the ARMA model in equation (2) (e.g. 

Nelson, 1972).  However, the exercise carried out in this paper is the first comprehensive out-of-

sample forecast comparison of FF rate models.  Out-of-sample forecast comparisons are popular in 

applied economic and finance largely because some landmark papers (e.g. Nelson, 1972; Meese and 

Rogoff, 1983) found that simple benchmarks do as well as theory-based models. 

Our calculations appear to suggest that the Taylor (2001) Desk reaction function (3) exhibits 

the best out-of-sample performance: the MAE and the RMSE obtained for the Desk reaction function 
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are the lowest obtained across all models.  However, the p-values for the null of equal predictive 

accuracy, calculated by bootstrap13, indicate that the null hypothesis is not rejected in each case.  

Hence, the differences in terms of MAEs and RMSEs reported in Panel a) of Table 3 are not 

statistically significant and do not enable us to discriminate among the models examined.  

Nevertheless, this result should be taken with caution as the non-rejection of the null of equal point 

forecast accuracy may be due to the low power of the relevant test statistic (e.g. see Kilian and Taylor, 

2003).14  Clark and West (2004) recently investigated out-of-sample mean squared prediction errors 

(MSPEs) to evaluate the null that a given series follows a zero-mean martingale difference against the 

alternative that it is linearly predictable.  Despite the fact that under the null of no predictability the 

population MSPE of the null model is equal to the MSPE of the linear alternative, Clark and West 

show that the alternative model’s sample MSPE is greater than the null’s, which is what we find in 

our results in Panel a) of Table 3.  Clark and West’s simulations suggest that the test power is about 

50 percent in their setup.  This led us to consider additional tests.  

Formal comparisons of the predicted and actual FF rate changes can be obtained in a variety 

of ways.  We consider a set of tests for market timing ability of the competing models, including the 

‘hit’ ratio (HR), calculated as the proportion of times the sign of the future FF rate change is correctly 

predicted over the whole forecast period, as well as other two test statistics.  We employ the test 

statistic proposed by Henriksson and Merton (1981), which is based on the idea that there is evidence 

of market timing if the sum of the estimated conditional probabilities of correct forecasts (that is the 

probability of correct forecast sign either when the FF rate is rising or falling) exceeds unity.  The 

Henriksson-Merton, hereafter HM, test statistic is given by:  

 

( )

( )
01 10

01 10 20 02
2

11

1

0 1
n n

n

n n n n
n n

n
HM N

−

−
= ,∼  (9) 

where 11n  is the number of correct forecasts when the FF rate is rising; 01 10n n,  are the number of 

positive FF rate changes and forecasts of positive FF rate changes respectively, while 02n  and 20n  

denote the number of negative FF rate changes and forecasts of negative FF rate changes respectively.  

The total number of evaluation periods is denoted by n .  The HM test is asymptotically equivalent  to 
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a one-tailed test on the significance of the slope coefficient in the following regression:  

 { } k{ }1 1
0 10 0FF FF

t t

HM HM
i i

I I error term
+ +∆ > ∆ >

= + +  (10) 

where 
k

1 1
FF FF
t ti i+ +∆ ,∆  denote the realized and forecast first difference of the FF rate respectively, and I  

is the indicator function equal to unity when its argument is true and zero otherwise.  

The other test employed is the ‘efficiency test’ introduced by Mincer and Zarnowitz (1969) 

and studied by West and McCracken (1998).  This test extends the HM test to take into account not 

only the sign of the realized returns, but also their magnitude.  Consider the auxiliary regression:  

 k k
1 1 0 1 1

MZ MZ
t t ti i i error termφ φ+ + +∆ −∆ = + ∆ +  (11) 

or alternatively  

 k
1 0 1 1

MZ MZ
t ti i error term+ +∆ = + ∆ +  (12) 

where 0 0
MZ MZφ=  and 1 11MZ MZφ 

 
 

= + .  The null hypothesis of market timing ability is that the slope 

coefficient 1
MZ  is equal to unity (or alternatively the slope coefficient 1

MZφ  is equal to zero). 

The results from calculating the hit ratio and executing the HM and efficiency tests are 

reported in Panel b) of Table 3.  A fairly clear-cut result emerges from these tests.  The analysis of the 

hit ratio statistics shows that most of the models (with the exception of the BTAR) exhibit evidence of 

market timing - i.e. the hit ratio is above 50 percent.  This finding is corroborated by the results of the 

regression-based market timing tests, which provide evidence that the primitive models have market 

timing ability.  However, the evidence of market timing ability is clearly stronger for the more 

parsimonious univariate models than for the richer nonlinear multivariate models, as evidenced by the 

fact that the p-values for the null of no market timing are drastically lower for the univariate models.  

This result is in line with the general finding that nonlinear models do not substantively outperform 

linear models in out-of-sample forecasting (e.g. see Clements and Krolzig, 1998; Stock and Watson, 

1999b).  It seems reasonable to conclude that, while all models examined display evidence of market 

timing ability, univariate models perform better than multivariate models.  Moreover, the Taylor 

(2001) Desk reaction function exhibits the best performance in terms of hit ratios and market timing, 

displaying p-values much lower than the ones recorded by the alternative models.  
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Several caveats are in order.  We have selected the best performing model on the basis of 

comparisons of the hit ratios and the p-values from carrying out market timing tests, essentially 

selecting the best performing model as the one for which the rejection of the null hypothesis of no 

market timing is strongest.  We did not directly test a model against another in terms of market 

timing, however, since a test for equal market timing ability between competing models is not 

available to date.  

Also, one may be concerned about the importance of the settlement days in our forecasting 

exercise even if we corrected the FF rate time series to eliminate the effect of settlement Wednesdays 

prior to beginning the empirical work.  Hence, we checked the robustness of a fraction of the results 

in Table 3 by comparing the forecasting performance of the simplest models - the RW model, the 

ARMA model, and Taylor Desk reaction function - when the final day of the settlement period is 

taken out of the calculations in constructing the forecasts errors used in the forecasting comparison of 

the models.  The results, reported in Table B1 in Appendix B, suggest that excluding settlement days 

does not affect our results reported in Table 3 in that there is no qualitative difference and only small 

quantitative differences between the results in Table 3 and in Appendix B.  

5.3 Combinations of forecasts 

In this section we investigate whether there may be gains from combining forecasts from the primitive 

models.  Following Stock and Watson (1999b, 2003), we employ five combinations of forecasts: 

simple combination forecasts; regression-based combination forecasts; median combination forecasts; 

discounted MSFE forecasts; and shrinkage forecasts.  These methods differ in the way they use 

historical information to compute the combination forecast and in the extent to which the weight 

given to a primitive model’s forecast is allowed to change over time.15  

Let 
k

1
FF
t ji + ,∆  be the one-step-ahead forecast of the FF rate change at time t  implied by the 

primitive model 1j … N= , , .  Most of the combination forecasts are weighted averages of the 

primitive models’ forecasts, i.e. 
k k

1 11

NFF FF
t c t j t jj
i w i+ , , + ,=

∆ = ∆∑  where t jw ,  is the weight associated at time 

t  with model j .  In general, the weights t jw 
 , 

 depend on the historical performance of the 
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individual forecast from model j .  As discussed in Section 5.1, in order to obtain the first estimates 

of the weights t jw , , we ‘train’ the individual models during the start-up period (i.e. 1997) and then we 

apply the following combination schemes.   

The simple combination forecasts scheme computes the weights based on the relative 

forecasting performance, measured by the MSFE, of the primitive models.  This relative performance 

is controlled by a parameter ω , which is set to zero in the simplest scheme that would place equal 

weight on all the forecasts.  As ω  increases, more importance is given to the model that has been 

performing better, in terms of MSFEs, in the past.  In our empirical work we consider 0 1 5ω = , , .  

The regression-based combination forecasts scheme computes the weights applied to the 

combination forecast as the result of estimating a regression of 1
FF
ti +∆  on the one-step-ahead forecast 

of the FF rate change at time t  implied by each primitive model and an intercept term (Granger and 

Ramanathan, 1984; Diebold, 2001).  

If forecast errors are non-normal, then linear combinations are no longer optimal.  The 

median combination forecasts scheme takes this into account and computes the combination forecasts 

as the median from a group of models.  This scheme avoids placing too big a weight on forecasts that 

are strongly biased upwards or downwards for reasons such as parameter breaks or parameters which 

have been estimated by achieving local (rather than global) optima.  

The discounted MSFE forecasts scheme (Diebold and Pauly, 1987; Diebold, 2001) computes 

the combination forecast as a weighted average of the primitive forecasts, where the weights depend 

inversely on the historical performance of each individual forecast according to a discount factor, d  

which we set equal to 0 95.  and 0 90.  in our calculations.  

Finally, the shrinkage forecasts scheme computes the weights as an average of the recursive 

Granger-Ramanathan regression-based estimates of the weights and equal weighting.  

The results of the combination forecast exercises are reported in Table 4.  Panel a) of Table 4 

shows the mean absolute error (MAE) and the root mean square error (RMSE) for each combination 

forecast and the best performing primitive model - i.e. the Taylor (2001) Desk reaction function.  The 

results suggest that the performance of the best primitive model is difficult to match even by using 
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sophisticated pooling forecast techniques.  The results of the test for equal point forecast accuracy 

indicate that we are not able to reject the null of equal predictive accuracy in each case.  Hence, the 

differences in MAEs and RMSEs reported in Table 4 are not statistically significant.  This conclusion 

is of course subject to the caveat that the test statistic for the null of equal point forecast accuracy may 

have low power in this context.  

Tests for market timing ability are reported in Panel b) of Table 4.  Using this metric, we find 

clear evidence of market timing for all of the forecasts examined.  This finding is corroborated by the 

values of the hit ratios and the results of the tests of market timing (HM and efficiency tests).  On the 

basis of the p-values (smaller p-values indicate stronger market timing ability), the best performing 

primitive model displays stronger market timing ability than most of the combination forecasts.  The 

exceptions, which appear to have stronger market timing ability than Taylor’s (2001) Desk reaction 

function, are the discounted MSFE forecast scheme and, marginally, the shrinkage forecasts scheme.  

5.4 Interpreting the forecasting results 

The forecasting results reported in this section provide several insights.  First, we confirm that, in 

general, most of the models and predictor variables considered produce satisfactory one-day-ahead 

forecasts of the FF rate.  Second, the best forecasting model is a simple and very parsimonious 

univariate model where the future FF rate is forecast using the current difference between the funds 

rate and its target.  Third, combining the forecasts from various models may improve on the best 

performing model, but the improvements are generally modest.  

These results may be seen as consistent with the growing empirical evidence uncovering that 

the Fed’s policy is well described as targeting the FF rate according to a forward-looking version of 

Taylor’s (1993) interest rate rule.  For example, if the Fed implements monetary policy on the basis of 

expectations of future inflation and output gap, then the FF rate target set by the Fed will presumably 

contain information about future inflation and output gaps, which a priori one would expect to be 

important in predicting future interest rates (Clarida, Gali and Gertler, 1998, 2000).  

Further, our results are also consistent with the Fed’s description of its monetary policy 

operating procedure and its understanding by the economics profession.  Indeed, there seems to be 
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general agreement that the Fed has explicitly targeted the funds rate at least since the late 1980s and, 

therefore, throughout the sample period under investigation in this paper (see Meulendyke, 1998; 

Hamilton and Jordá, 2001).  Also, since 1994 - hence throughout the forecast period examined - the 

Fed has announced target changes immediately upon making them.  Before 1994, target changes were 

not announced: the market had to infer the Fed’s actions by observing open market operations and the 

FF rate (e.g., Cook and Hahn, 1989; Rudebusch, 1995; Taylor, 2001; Thornton, 2004).  If one 

believes that the FF rate does in fact display reversion toward the FF rate target, then clearly this 

procedure would make it easier for the market to forecast the next-day FF rate by publicly announcing 

what the Fed’s desired FF rate is.  

Our results support the view that reversion to the target is a prominent feature of FF rate 

behavior during the sample examined and it is a crucial feature in forecasting out of sample the FF 

rate at the daily frequency.  Although the mechanism linking the FF rate to the FF rate target is one of 

partial, not full, adjustment at the daily frequency, we found it very hard to improve on the simple 

Desk reaction function linking the FF rate and the target by using much more sophisticated 

multivariate or nonlinear models and alternative predictor variables.  At the very least, our results 

suggest that the simple univariate Desk reaction function model suggested by Taylor (2001) is a very 

good first approximation to the FF rate behavior and represents a difficult benchmark to beat in one-

day-ahead forecasting of the FF rate.  

6. Conclusion 

In this paper we reported what we believe to be the first broad-based analysis of a variety of empirical 

models of the daily FF rate and examined their performance in forecasting out-of-sample the one-day-

ahead FF rate.  Our research was inspired by encouraging results previously reported in the literature 

on the predictability of the FF rate using linear and nonlinear models and on the explanatory power of 

variables such as the FF futures rates, the FF rate target and other US interest rates to which the FF 

rate is likely to be linked via no-arbitrage conditions.  

Using daily data over the period from January 1 1990 through December 31 1996, we 

confirmed that the predictor variables suggested by the literature have substantial explanatory power 
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on the FF rate in sample and that accounting for nonlinearity in the unknown true data generating 

process governing the FF rate may yield satisfactory characterizations of the time-series properties of 

the FF rate.  We then used a wide range of univariate and multivariate, linear and nonlinear models to 

forecast out of sample over the period January 1 1997 through to December 31 2000, using both 

conventional measures of point forecast accuracy based on mean absolute errors and root mean 

squared errors as well as hit ratios and market timing tests designed to evaluate the ability of the 

models to forecast both the direction and the magnitude of future FF rate changes.  The forecasting 

results were interesting.  Using conventional measures of point forecast accuracy we found that the 

reaction function proposed by Taylor (2001), where the gap between the FF rate and its target is used 

to predict the next-day FF rate, produces the lowest mean absolute errors and root mean square errors.  

However, general tests for equal point forecast accuracy did not enable us to distinguish among the 

competing models, possibly because of the low power of these tests in this context.  

Using hit ratios and market timing tests, we found that the simple univariate reaction function 

emerges as the best performing model, forecasting correctly over 66 percent of the times the direction 

of the next-day FF rate and showing satisfactory market timing ability.  Combining the forecasts from 

various models may improve on the best performing model, but the improvements are generally 

modest in size.   

In turn, these results have a natural interpretation and may be seen as consistent with the 

growing empirical evidence suggesting that the Federal Reserve’s policy may be characterized as a 

forward-looking interest rate rule.  Our results support the view that reversion to the target is a key 

ingredient in models designed for characterizing in sample and forecasting out of sample the FF rate 

at the daily frequency.  The simple univariate Desk reaction function suggested by Taylor (2001) is a 

very good first approximation to the FF rate behavior and represents a difficult benchmark to beat in 

one-day-ahead forecasting of the FF rate.  
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Table 1.  Summary statistics  
 
 
Panel a):  Levels  
 
 
 

 FF nc
ti

,  FF
ti  T

ti  FF T
t ti i 

 
 

− TB
ti  1

tf  2
tf  

Mean 5.265 5.249 5.224 0.025 5.056 5.277 5.304 

Variance 1.895 1.893 1.832 0.059 1.578 1.771 1.741 

Skewness 0.241 0.239 0.179 2.593 0.354 0.139 0.097 

Kurtosis 3.080 3.065 3.010 31.642 3.197 3.001 2.976 

JB 0  0  0  0  0  0  413 10x −  

 
 
 
Panel b):  First differences  
 
 
 

 FF nc
ti

,∆  FF
ti∆  T

ti∆  FF T
t ti i 

 
 

∆ − TB
ti∆  1

tf∆  2
tf∆  

Mean -0.0010 -0.0010 -0.0006 -0.0005 -0.0006 -0.0006 -0.0007 

Variance 0.084 0.080 0.001 0.081 0.002 0.001 0.001 

Skewness 0.825 0.755 2.294 0.821 0.109 2.275 0.091 

Kurtosis 25.025 23.829 142.691 23.256 19.901 49.385 23.996 

JB 0  0  0  0  0  0  0  

 
 
 
Notes:  FF nc FF

t ti i, , , T
ti , TB

ti , 1
tf , 2

tf , denote the non-corrected effective federal funds rate, the 
corrected effective federal funds rate (adjusted to account for settlement days, as discussed in Section 
3), the federal funds rate target, the 3-month T-Bill rate, the one-month and two-month federal funds 
futures rates respectively. The sample period spans from January 1 1990 through December 31 
2000.  JB denotes the Jarque-Bera test for the null hypothesis of normality, for which only p-values 
are reported; 0  denotes p-values lower than 410− .  ∆  is the first difference operator. 
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Table 2.  In-sample performance 
 
 
 

 2R  AIC  SIC  HQ  

RW −  −  −  −  

ARMA(2,1) 0.282 0.077 0.079 0.078 

Taylor (2001) 0.355 0.069 0.069 0.069 

EGARCH(1,1) 0.115 0.099 0.111 0.103 

MSAH-AR(2,1) 0.117 0.100 0.102 0.100 

M-TAR 0.256 0.081 0.085 0.083 

BTAR 0.244 0.083 0.088 0.085 

MSIAH-VECM(3,1) 0.402 0.094 0.119 0.103 

 
 
 
Notes:  The definitions of the models are given in Section 2.  All models are estimated over the 
sample period from 1 January 1990 to 31 December 1996.  AIC, BIC and HQ denote the Akaike, 
Schwartz and Hannan-Quinn information criteria respectively.   
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Table 3.  Out-of-sample performance: primitive models  
 
 
a)  Point forecast evaluation  
 
 

 MAE  p value−  RMSE  p value−  
RW 0.124 −  0.196 −  

ARMA(2,1) 0.114 0 773.  0.176 0 796.  
Taylor (2001) 0.105 0 497.  0.167 0 672.  

M-TAR 0.121 0 931.  0.189 0 943.  
EGARCH(1,1) 0.119 0 887.  0.186 0 918.  

MSAH-AR(2,1) 0.126 0 967.  0.194 0 986.  
BTAR 0.139 0 616.  0.202 0 923.  

MSIH-VECM(3,1) 0.138 0 656.  0.216 0 791.  
 
 
b)  Regression-based test for market timing  
 
 

 HR  HM   Efficiency test  
RW −  −  −  

ARMA(2,1) 0.634 0 0.914 ( )0 09.  
Taylor (2001) 0.664 0 0.980 (0 07).  

M-TAR 0.577 0 0.823 (0 11).  
EGARCH(1,1) 0.615 0 1.197 (0 13).  

MSAH-AR(2,1) 0.508 0.122 0.671 (0 27).  
BTAR 0.474 0.055 0.621 (0 22).  

MSIH-VECM(3,1) 0.519 0.104 0.505 (0 29).  
 
 
 
 
Notes:  The definitions of the models are given in Section 2.  The forecast period goes from January 1 
1998 to December 31 2000.  Panel a): MAE  and RMSE  denote the mean absolute error and the root 
mean square error respectively. p value−  is the p-value from executing test statistics for the null 
hypothesis that the model considered has equal point forecast accuracy as the random walk (RW), 
calculated by bootstrap using the procedure described in Appendix A.  Panel b): HR  is the hit ratio 
calculated as the proportion of correctly predicted signs. HM  and  Efficiency test  are the 
Henriksson and Merton (1981) and the ‘efficiency test’ calculated as in West and McCracken (1998), 
using the auxiliary regressions (10) and (12) respectively (see Section 5.2).  HM   and the 

 Efficiency test  are calculated using the Newey-West (1987) autocorrelation- and heteroskedasticity-
consistent covariance matrix.  For the HM  test statistics only p-values are reported; 0  denotes p-
values lower than 410− .  Values in parentheses are estimated standard errors. 



 22

Table 4. Out-of-sample performance: combinations of forecasts  
 
 
a)  Point forecast evaluation  
 

 MAE  p value−  RMSE  p value−  
Taylor (2001) 0.105 −  0.167 −  
LCF, 0ω =  0.114 0 752.  0.179 0 848.  
LCF, 1ω =  0.113 0 791.  0.177 0 869.  
LCF, 5ω =  0.108 0 936.  0.170 0 952.  

RCF 0.110 0 891.  0.174 0 949.  
Median 0.115 0 700.  0.179 0 828.  

DCF, 0 95d = .  0.102 0 906.  0.159 0 915.  
DCF, 0 90d = .  0.102 0 906.  0.159 0 915.  
SCF, 0 25κ = .  0.117 0 754.  0.189 0 845.  
SCF, 0 50κ = .  0.116 0 768.  0.188 0 851.  
SCF, 1 00κ = .  0.115 0 791.  0.187 0 862.  

 
 
 
b)  Regression-based test for market timing  
 

 HR  HM   Efficiency test  
Taylor (2001) 0.664 0 1.006 (0.06) 
LCF, 0ω =  0.621 0 1.072 (0.09) 
LCF, 1ω =  0.634 0 1.077 (0.09) 
LCF, 5ω =  0.677 0 1.089 (0.09) 

RCF 0.655 0 1.052 (0.07) 
Median 0.606 0 1.093 (0.10) 

DCF, 0 95d = .  0.782 0 1.005 (0.06) 
DCF, 0 90d = .  0.783 0 1.004 (0.05) 
SCF, 0 25κ = .  0.666 0 1.006 (0.06) 
SCF, 0 50κ = .  0.669 0 1.005 (0.06) 
SCF, 1 00κ = .  0.669 0 1.004 (0.06) 

 
 
Notes: See Notes to Table 3.  The full forecast period goes January from 1 1997 to December 31 
2000, while the start-up period spans from January 1 1997 and December 31 1997.  LCF denotes the 
combination of forecasts where the weights assigned to each primitive model’s forecasts are 
calculated by using the simple combination forecasts scheme described in Section 5.3; and 0 1 5ω = , ,  
is a parameter controlling the relative weight of the best performing model within the panel.  RCF 
denotes the combination of forecasts where the weights assigned to each primitive model’s forecasts 
are calculated using the regression-based method of Granger and Ramanathan (1984).  Median is the 
combination of forecasts calculated as the median of the forecasts from the primitive models.  DCF 
denotes the combination of forecasts calculated according to the discounted forecasts scheme, and the 
discount factor 0 95 0 90d = . , . .  SCF is the combination of forecasts where the weights assigned to 
each primitive model’s forecasts are calculated as an average of the recursive ordinary-least-squares 
estimator and equal weighting, with a degree of shrinkage κ=0.25, 0.5, 1.0. 
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Appendix A.  Bootstrap procedure for the p-value of the test of equal point forecast accuracy 
 
 
The bootstrap algorithm used to determine the p-values of the test statistic of equal point forecast 

accuracy consists of the following steps:  

1. Given the sequence of observations { }tx  where FF
t t tx i z

′ 
 
 

= ∆ ,  and tz  denotes the 

explanatory variables, estimate each of the models (2)-(8) in Section 2 and construct the test statistic 

of interest, �θ  (i.e. test statistic for the null hypothesis, 0H , of equal point forecast accuracy).  

2. Postulate a data generating process (DGP) for each of the models (2)-(8) given in Section 2, 

where the FF rate is assumed to follow a driftless random walk under 0H  and the innovations are 

assumed to be i.i.d.  More precisely, the FF rate is assumed to be a random walk with respect to the 

additional variables (e.g. FF rate target, Treasury bill rate, FF futures rate) for the multivariate models 

(6)-(8).  

3. Based on the model specified in step 2), generate a sequence of pseudo observations tx∗ 
 
 

 of 

the same length as the original data series { }tx  and discard the first 1,000 transient.  The pseudo 

innovation terms are random and drawn with replacement from the set of observed residuals. Repeat 

this step 5,000 times.  

4. For each of the 5,000 bootstrap replications tx∗ 
 
 

, estimate each of the models (2)-(8) and 

construct the test statistic of interest, �θ
∗.   

5. Use the empirical distribution of the 5,000 replications of the bootstrap test statistic, �θ
∗  to 

determine the p-value of the test statistic �θ . 
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Appendix B.  Robustness results 

 
 
 
Table B1.  Out-of-sample performance of three primitive models without using the forecasts of 
settlement days  
 
 
a)  Point forecast evaluation  
 
 

 MAE  p value−  RMSE  p value−  
RW 0.123 −  0.197 −  

ARMA(2,1) 0.112 0 751.  0.174 0 771.  
Taylor (2001) 0.103 0 503.  0.165 0 648.  

 
 
 
b)  Regression-based test for market timing  
 
 

 HR  HM   Efficiency test  
RW −  −  −  

ARMA(2,1) 0.596 0 1.023 ( )0 09.  
Taylor (2001) 0.618 0 1.073 (0 08).  

 
 
 
 
Notes:  The definitions of the models are given in Section 2.  The forecast period goes from January 1 
1998 to December 31 2000.  Panel a): MAE  and RMSE  denote the mean absolute error and the root 
mean square error respectively. p value−  are p-values from executing test statistics for the null 
hypothesis that the model considered has equal point forecast accuracy as the random walk (RW), 
calculated by bootstrap using the procedure described in Appendix A.  Panel b): HR  is the hit ratio 
calculated as the proportion of correctly predicted signs. HM  and  Efficiency test  are the 
Henriksson and Merton (1981) and the ‘efficiency test’ as in West and McCracken (1998) calculated 
using the auxiliary regressions (10) and (12) respectively (see Section 5.2).  HM and 

 Efficiency test  are calculated using the Newey-West (1987) autocorrelation and heteroskedasticity 
consistent covariance matrix.  For the HM  test statistics only p-values are reported; 0  denotes p-
values lower than 410− .  Values in parentheses are estimated standard errors. 
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Endnotes 

1 See also Shiller, Campbell and Schoenholtz (1983), Campbell (1987), Barrett, Slovin and Sushka 

(1988), Lasser (1992), Krueger and Kuttner (1996). 

2 We stick to one-step-ahead forecasting in this paper.  In a previous version of the paper we also 

analyzed forecasts up to eight weeks ahead, although an exercise of this kind would ideally require a 

model of how the FF rate target changes.  Given our focus on one-day-ahead forecasts, changes in the 

target affect very few of the observations and hence the models considered here are not intended to 

explore issues related to explaining or forecasting target changes. 

3 In each of the models of FF rate changes described below, we do not allow for a constant term since, 

for all models, in preliminary estimations the constant was always found to be very small in size and 

statistically insignificantly different from zero at conventional significance levels. 

4 It should be noted that the original formalization in Taylor (2001) considers as the dependent 

variable the change in the Federal supply balances which, in turn, are adjusted by the Fed in order to 

induce the desired change in the FF rate.  However, we use the FF rate change as the left-hand-side 

variable in equation (3).  See also Rudebusch (1995). 

5 We also investigated whether the adjustment coefficient ξ has changed over the sample by 
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estimating equation (3) recursively.  However, recursive estimation revealed little, if any, time 

variation in ξ, suggesting that this parameter has been fairly stable over the sample period examined. 

6 Empirically, the [1,-1] restriction is often rejected in studies of the Expectations Hypothesis of the 

term structure of interest rates using US data (e.g., Hall, Anderson and Granger, 1992; Hall, Martin 

and Pagan, 1996).  On exception is Hansen (2003), who argues that the rejection may be due to non-

constant parameters. 

7 An alternative model to consider in future work is that of Rahbek and Shephard (2002); in that 

model, the error correction is either active or inactive, where the probability of the error correction 

being active increases with the deviation from equilibrium. 

8 Since February 1984 the reserve maintenance period has been two weeks for all institutions.  Before 

1984 it was one week for most large institutions.  For a more detailed discussion of the Federal 

Reserve’s reserve requirements and the microstructure of the federal funds market, see, for example, 

Taylor (2001). 

9 Before proceeding to estimating the models described in Section 2, we carried out preliminary unit 

root tests for each of 
FF
ti , 

TB
ti , 

1
tf , 

2
tf  and 

T
ti  (available upon request).  Using standard augmented 

Dickey-Fuller tests we found evidence that the interest rate time series are I(1), consistent with much 

previous research (e.g., Stock and Watson, 1988, 1999a).  Although it is unlikely that interests rates 

are strictly I(1), it seems useful to treat them as such for forecasting purposes, also because the least 

squares estimator of a root near unity is downwards biased and, therefore, it may be better to impose 

unity rather than estimating it. 

10 The full estimation results are not reported to conserve space but they are available upon request. 

11 However, differently from Hamilton (1996), the distribution of the innovations is assumed to be 

Gaussian for simplicity.  Under this specification 
2t s

t s

vE σ π
−

−
=

 s∀  in equation (4). 

12 This would be the test proposed by Diebold and Mariano (1995) under certain circumstances, and 

specifically if we had models with no estimated parameters. 

13 The finite-sample distribution of the test statistic for equal point forecast accuracy may deviate from 
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normality; this problem is particularly severe in the presence of estimated parameters (see West 1996; 

West and McCracken 1998; McCracken 2000; Gilbert, 2001).  The p-values reported in this paper 

were calculated by bootstrap (see Mark, 1995; Kilian, 1999), and a description of the procedure 

employed is given in Appendix A.  Note that in this bootstrap procedure we do not allow for 

conditional heteroskedasticity in the data generating process or for serial correlation in the 

denominator of the test statistics.  West (1996) proves that allowance for serial correlation may not be 

necessary in RMSE comparisons, but it may be necessary for MAE comparisons.  Hence, we judge 

the RMSE results as more informative, although the results reported below for RMSE and MAE 

comparisons are qualitatively identical. 

14 Although Kilian and Taylor (2003) document the low power of this class of test statistics in finite 

sample, admittedly they are working with a smaller sample than the one used in this paper. 

15 A further extension of our work may involve considering nonlinear combination schemes (Deutsch, 

Granger and Terasvirta, 1994; Elliott and Timmermann, 2002a,b). 




