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Abstract Training deep neural networks using simulations
typically requires very large numbers of simulated events.
This can be a large computational burden and a limitation in
the performance of the deep learning algorithm when insuf-
ficient numbers of events can be produced. We investigate
the use of transfer learning, where a set of simulated images
are used to fine tune a model trained on generic image recog-
nition tasks, to the specific use case of neutrino interaction
classification in a liquid argon time projection chamber. A
ResNet18, pre-trained on photographic images, was fine-
tuned using simulated neutrino images and when trained with
one hundred thousand training events reached an F1 score of
0.896 ± 0.002 compared to 0.836 ± 0.004 from a randomly-
initialised network trained with the same training sample.
The transfer-learned networks also demonstrate lower bias as
a function of energy and more balanced performance across
different interaction types.

1 Introduction

The usage of Deep Learning has increased rapidly in neutrino
physics over the last 5–10 years [1,2]. The data from many
neutrino experiments can be easily and naturally represented
in an image format, hence Convolutional Neural Networks
(CNNs) are a very popular choice of deep learning algorithm
in the field. CNN models contain millions of parameters that
must be trained, which is typically done using large numbers
of simulated neutrino interactions. For example, the CNN
used to perform the neutrino event classification in the Deep
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Underground Neutrino Experiment (DUNE) was trained on
over three million simulated events [3,4].

However, detector simulations for large detectors are very
time consuming and resource intensive, so other methods
are being explored to be able to train powerful and accurate
deep learning algorithms without a very large computational
burden. Potential solutions to this problem fall in to three
categories: methods to make faster simulations, methods to
improve computational performance of the networks and
methods to reduce the number of simulated events required.
However, the use of GPUs in deep learning can carry its own
computational burden, and this resource intensity is becom-
ing of increasing importance in the light of high energy costs
and increased focus on the carbon footprint of research activ-
ities [5] and we must therefore ensure we use such resources
as effectively and efficiently as possible. Methods to make
faster simulations often use a generative model, typically a
Generative Adversarial Network, to approximate the simula-
tion to produce events much more quickly (see, for example,
Chapter 6 of Ref. [6] for a review). To improve computa-
tional performance, alternative network architectures using
sparse representations of the images have been deployed (see,
for example, Ref. [7]). For reduction of event requirements
transfer learning can be used as an approach to use a much
smaller number of simulated events to fine tune an existing,
pre-trained model, with these models often trained on pho-
tographic images.

Transfer learning was first proposed in 1976 by Bozi-
novski and Fulgosi [8,9] for the training of perceptrons. More
recently it has been applied to deep learning [10], including
in fields similar to neutrino physics: an example from the AT-
TPC nuclear physics experiment showed that a fairly small
number (thousands) of training examples gave good perfor-
mance when used to fine tune a generically pre-trained model
[11].
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As in the AT-TPC experiment, liquid argon time projection
chamber (LArTPC) event displays bare little resemblance to
the photographic images used to train existing models, and
therefore the goal of this article is to assess the effectiveness
of using transfer learning for the classification of interactions
in a DUNE-like LArTPC detector and determine the most
appropriate approaches to fine tuning. The details of the event
simulation and image production are given in Sect. 2, Sect. 3
presents a case-study with the aim of classifying three general
types of neutrino interactions, Sect. 4 presents the results
of the study, and Sect. 5 provides a discussion and closing
remarks.

2 Simulated event samples

Neutrino interactions were generated using GENIE
v3_00_06 [12] and a uniform flux distribution between
1 GeV/c2 and 4 GeV/c2. The flux distribution was chosen to
give a rough approximation of the DUNE flux in the main
oscillation region of the spectrum [13]. Three balanced sam-
ples of interaction were produced: charged-current muon
neutrino (CC νμ), CC electron neutrino (CC νe), and neu-
tral current (NC) interactions. The important outputs from
GENIE in this case are the kinematics of the incoming neu-
trino and the argon target, and the kinematics of all of the
final-state particles produced in the interaction.

The final-state particles are tracked through a simple
LArTPC detector using Geant4 v4_10_6 [14]. The detec-
tor geometry is defined as a cuboid filled with liquid
argon and the dimensions in the (x, y, z) directions are
5 m × 5 m × 5 m, where z defines the beam direction, y is
vertical and x is the drift direction. The simulation produces
three-dimensional energy deposits within the detector vol-
ume that are projected into three two-dimensional views of
the yz plane, similar to the three wire readout planes in the
planned DUNE detectors [15]. These three views are referred
to as u, v and w and are aligned at 35.9◦, -35.9◦ and 0◦ to
the vertical, respectively.

The output of the simulation is formed by three two-
dimensional images showing u, v, and w on the horizontal
axis, and the drift coordinate x on the vertical axis. The pixel
intensity is given by the amount of energy deposited. Exam-
ples of a CC νμ, a CC νe and an NC interaction are shown in
the left, centre and right panels of Fig. 1, respectively. Each
event is shown in the (w, x) view. The CC νμ event shows
the characteristic long muon track, the CC νe event shows
the typical electron shower emanating from the interaction
vertex, and the example NC event shows that NC events can
sometimes include components similar to the CC νμ and
CC νe interactions. The chosen pre-trained network requires
224 × 224 pixel input images, so the images are produced
such that each pixel represents a 1×1 cm2 region, cropped

and centred on the region surrounding the interaction. This
represents an approximately twofold decrease in resolution
compared to the ∼5 mm granularity of the readout planes
in order to contain larger interactions within the images.
These pre-trained networks are used to classify photographic
images, hence the three images of each event are stacked
together to produce a depth three image that is analogous to
a colour image with red, green and blue colour channels.

The total number of images available was 140,000, of
which 20,000 events were used as a validation set and another
20,000 images as a test set to produce the final results.

3 Event classification case study overview

The aim of this study is to investigate the use of transfer
learning to train a CNN for the task of neutrino event classi-
fication. In the simplest case, long-baseline neutrino oscilla-
tion experiments need to be able to accurately and efficiently
identify CC νμ, CC νe, and NC interactions. Each neutrino
interaction will therefore be classified as one of the three true
categories: CC νμ, CC νe or NC.

The PyTorch [16] framework was used because of the wide
range of pre-trained architectures available. The architecture
chosen was the ResNet18 [17], since ResNets are a popular
choice in the neutrino physics field and the relatively shal-
low depth eases the computational burden for training the
hundreds of networks required by this study.

3.1 Network architecture

We consider the architecture as two sub-networks: the fea-
ture extractor network and the classifier network. The fea-
ture extractor network consists of the many convolutional
layers that extract features from the input images, and the
classifier network, that provides the specific outputs for the
task being performed. The classifier is specific to each use
case, so must be appended to the predefined ResNet18 fea-
ture extractor network. The choice for the classifier was a
single three node dense layer taking the (nb, 512) output
from the ResNet18 and returning the final three classifica-
tion scores, where nb is the number of images per batch. The
final architecture is shown in Fig. 2, where only the convolu-
tional and pooling layers of the ResNet18 have been shown
for clarity. The naming convention from the ResNet archi-
tecture is used here, which breaks up the network into six
blocks of layers, with the middle four blocks named Layer
1 to Layer 4. The total number of trainable weights in the
network is 11,178,051, divided between the layers as fol-
lows: 9536 (Layer 0); 147,968 (Layer 1); 525,568 (Layer 2);
2,099,712 (Layer 3); 8,393,728 (Layer 4); 1539 (classifier).
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Fig. 1 Three simulated neutrino interactions shown in the (w, x) view.
Examples of a CC νμ, a CC νe and an NC interaction are shown in the
left, centre and right panels, respectively. Each image is 224×224 pixels,

each pixel corresponds to an area of 1×1 cm2, and the colour represents
the deposited energy (blue is lowest, yellow is highest)

3.2 Training details

Stochastic gradient descent (SGD) was chosen as the opti-
miser. In all cases, the starting learning rate was set to 0.001,
and it was reduced by a factor of 10 each time the validation
loss did not improve for three epochs. The network train-
ing stopped automatically when the validation loss did not
reduce for six epochs. A batch size of 32 images was cho-
sen as an optimisation between classification performance,
training time and memory usage. All networks were trained
using a NVIDIA Tesla V100.

3.3 Performance metrics

The F1 score [18] can be written in terms of true positives(
Tp,i

)
, false positives

(
Fp,i

)
and false negatives

(
Fn,i

)
, where

the suffix i indicates the target class under consideration.
For a multi-class classification with n classes, such as in the
analysis presented here with n = 3, the overall F1 score can
be calculated from the individual scores for each class in a
number of ways. Here the macro averaging scheme is used,
such that the metric is computed on a per-class basis and
then the F1 score is taken to be the unweighted mean of the
per-class scores:

F1 = 1

3

3∑

i=1

Tp,i

Tp,i + 0.5
(
Fp,i + Fn,i

) (1)

Equation (1) shows that the allowed values of the F1 score
are between zero and one, where one is the perfect score when
there are no false positives or false negatives (Fp,i = Fn,i =
0). It also considers false positives and false negatives as
equally bad in terms of calculating the score.

For each study presented, an ensemble of 25 indepen-
dently trained versions of the network was produced, with
the mean and error on the mean of the different metrics form-
ing the reported results. The use of ensembles accounts for

random fluctuations in the initialisation and training of the
networks that arise from the fact that these are stochastic pro-
cesses. It is important to note that when using a fixed random
seed the results are deterministic and reproducible on a given
system.

4 Results

4.1 Randomly initialised ResNet18

ResNet18s with random weight initialisation form the base-
line for this study against which the transfer learning results
will be compared in Sect. 4.4. The Kaiming (also known as
He) [19] initialisation scheme was developed specifically for
CNNs using non-linear activation functions such as ReLU.
The specific version of the Kaiming initialisation scheme
used in this work was the normal distribution form. The stan-
dard deviation of the distribution depends on the number of
weights in the layer (equivalent to the size of the output from
the previous layer), nw: σ = √

2/nw.
An ensemble of 25 networks were trained with differing

numbers of training events used: 1000 (1k); 2k; 3k; 5k; 7k;
10k; 15k; 20k; 30k; 40k; 50k; 75k; and 100k. Table 1 shows
the F1 scores from the testing and validation samples from
the networks trained with the above number of interactions.
As expected, the performance increases significantly as the
number of training events rises. The uncertainty on the F1
score is seen to reduce as a function of the number of train-
ing images, which is expected as the training should become
more stable with more training examples. Using the full train-
ing dataset of 100k events, an F1 score of 0.836 ± 0.004 was
measured.
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Fig. 2 An overview of the architecture, where 224×224 pixel images
of depth three are input to the ResNet18 feature extractor that outputs
a 512 element tensor. The classifier takes the 512 element tensor and
outputs three classification scores, one for each class. The number of
images per batch, nb, is shown in the tensor dimensions. For clarity, only
the convolutional and pooling layers are shown for the feature extractor.

The convolutional layers with a stride of two perform a downsampling
of a factor of two in the image size, and the residual connections are
those with the single 1×1 convolutional layers. Following the ResNet
convention, the convolutional layers are combined into groups called
Layers 1 to 4

4.2 Transfer learning with ResNet18

The pre-trained ResNet18 that forms the basis of this study
was trained on the ImageNet [20] data sample, meaning that
it was trained on photographic images with the goal of classi-
fying them into one of one thousand categories. The classifier
network was modified to provide the three required outputs
for this use case, as described in Sect. 3.1.

Samples of neutrino interaction images were then used to
fine tune the weights of the pre-trained networks. Different
networks have been trained with different numbers of training
images, ranging from one thousand to one hundred thousand

(with approximately equal fractions from each of the three
true classes). The performance has been studied as a function
of the number of ResNet18 Layers (as defined in Fig. 2) with
weights that are allowed to be fine-tuned, where the weights
of the ResNet18 layers were progressively frozen:

• AllWeights: No weights frozen, total of 11,178,051 train-
able weights.

• Freeze(1): Layer 0 weights frozen, total of 11,168,515
trainable weights remain.

• Freeze(2): Layer 0 and 1 weights frozen, total of
11,020,547 trainable weights remain.
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Table 1 The F1 scores for the
testing sample for the Kaiming
initialised networks. The values
and uncertainties given come
from the mean and error on the
mean of 25 different training
attempts

Model Initialisation Training images Testing F1 score

ResNet18 Kaiming 1k 0.528 ± 0.014

2k 0.621 ± 0.010

3k 0.661 ± 0.010

5k 0.720 ± 0.010

7k 0.747 ± 0.009

10k 0.770 ± 0.008

15k 0.787 ± 0.008

20k 0.800 ± 0.004

30k 0.816 ± 0.005

40k 0.816 ± 0.004

50k 0.822 ± 0.005

75k 0.833 ± 0.004

100k 0.836 ± 0.004

• Freeze(3): Layer 0, 1 and 2 weights frozen, total of
10,494,979 trainable weights remain.

• Freeze(4): Layer 0, 1, 2 and 3 weights frozen, total of
8,395,267 trainable weights remain.

• Classifier Only: All ResNet18 weights frozen, total of
1,539 trainable weights remain.

When using a pre-trained feature extractor, it is clear that
the classifier weights are the only ones that must be trained
in order to get performance better than random guessing.
Beyond this, training Layer 4 will likely give the biggest
step in performance because it contains approximately 75%
of the network weights. Generally, it is expected that the per-
formance will improve as the number of trainable parameters
increases. Furthermore, of interest to this use case is the evo-
lution of the features that can be extracted at each layer of the
network. Zeiler and Fergus [21] showed that early CNN lay-
ers comprise low-level geometric features (edges, corners,
etc), with deeper layers becoming increasingly more class-
specific. The expectation therefore, is that early layers may
retain a high degree of relevance when applied to this use
case, while deeper layers will increasingly contain many fea-
ture extractors of little relevance to our use case. One might
therefore expect that fine tuning can be limited to deeper lay-
ers, which an assessment of performance by layer will also
determine.

4.3 Comparison of transfer learning cases

The top section of Table 2 shows the comparison between the
networks that had different numbers of weights free for fine-
tuning when trained using the full sample of 100,000 inter-
actions. As expected, the performance is best when allowing
more weights to be fine-tuned since it gives the network more
degrees of freedom to perform the classification. Within sta-

tistical uncertainties, the results from the All Weights and
Freeze(1) categories are the same, which is to be expected
since there are very few parameters in the first convolutional
layer of the ResNet18. The best F1 score is hence reported as
0.896 ± 0.002 for fine tuning all of the network parameters.
The fact that fine tuning the initial convolutional layer has
very little effect on the CNN performance suggests that even
though it was trained on photographic images, it is extracting
generic features that are applicable to the LArTPC images.
It is notable that training only the classifier weights still
obtains a F1 score of 0.790 ± 0.002, which, when compared
to the results in Table 1, outperforms training the Kaiming-
initialised network with fewer than 20k images. Furthermore,
the addition of only the Layer 4 weights is sufficient to yield
an F1 score of 0.869 ± 0.002, out-performing the Kaiming-
initialised network with the full 100k images.

4.4 Comparison of transfer learning and random
initialisation

The F1 score measured for the transfer learning all weights
case as a function of the number of training images is shown
in the bottom section of Table 2. Even when trained with
1k events it outperforms the classifier only case with 100k
training examples. The results are shown graphically and
compared to the randomly-initialised Kaiming networks for
50k and 100k training samples in Fig. 3. It shows that, in the
case of fine tuning all of the network weights (cyan points
for testing sample, red points for validation sample), the per-
formance exceeds the Kaiming-initialised ResNet18 trained
on 100k (50k) images using only 7k (5k) images. This is a
powerful demonstration of the use of transfer learning even
when a reasonably large training sample of 100k events is
available to train a randomly-initialised CNN. Using all 100k
events in the transfer learning case improves the F1 score

123



 1099 Page 6 of 10 Eur. Phys. J. C          (2022) 82:1099 

Table 2 The testing F1 scores
for various combinations of the
transfer learning cases and
number of training images. The
reported values show the mean
value of the 25 trained networks
and the associated error on the
mean

Model Initialisation Weights scheme Training images Testing F1 score

ResNet18 Pre-trained All Weights 100k 0.896 ± 0.002

Freeze(1) 100k 0.898 ± 0.001

Freeze(2) 100k 0.892 ± 0.002

Freeze(3) 100k 0.882 ± 0.001

Freeze(4) 100k 0.869 ± 0.002

Classifier Only 100k 0.790 ± 0.002

ResNet18 Pre-trained All Weights 1k 0.794 ± 0.005

2k 0.821 ± 0.002

3k 0.824 ± 0.006

5k 0.839 ± 0.003

7k 0.847 ± 0.002

10k 0.855 ± 0.002

15k 0.862 ± 0.002

20k 0.864 ± 0.002

30k 0.872 ± 0.002

40k 0.880 ± 0.002

50k 0.880 ± 0.002

75k 0.890 ± 0.002

100k 0.896 ± 0.002

Fig. 3 The test sample (cyan)
and validation sample (red) F1
scores as a function of the
number of images used to train
the all-weights transfer learning
networks. The three grey bands
provide a visual guide to
compare the performance to:
Kaiming-initialised networks
when trained with 100,000 (top)
and 50,000 (middle) images,
and transfer learning using
100,000 images in the
classifier-only case (bottom)
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from 0.836 ± 0.004 to 0.896 ± 0.002 compared to training
the network from scratch with 100k events. The validation
F1 score is shown to demonstrate that the network was able
to generalise well to the test sample.

Figure 4 shows the distribution of F1 scores from each
of the 25 trained networks in the ensemble for the Kaiming-
initialised (black) and the transfer learning all weights (red)
cases, when trained using 100k interactions. The higher sta-
bility of the transfer learning case is shown clearly by the
narrower distribution of F1 scores.

Figure 5 shows the class accuracy1 for the three classes:
CC νμ, CC νe and NC, for the transfer learning all weights
and Kaiming-initialised networks. The accuracy for each
class in the transfer learning case exceeds the correspond-
ing class performance using the Kaiming initialisation. It
demonstrates that the improvements from transfer learning
come from improvement in all three classes.

1 Typically called efficiency in high energy physics contexts.
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Fig. 4 F1 score distributions from the ensembles of 25 trained net-
works using the transfer learning all weights method (red) and the
Kaiming-initialised networks (black). In both cases the networks were
trained using the same 100,000 events

Table 3 shows two example confusion matrices from the
Kaiming-initialised and transfer learning all weights net-
works trained on 100k images. In both cases, the network
with the best F1 score of the 25 networks in the ensemble was
chosen for presentation. The diagonal terms in these matri-
ces show the number of correctly classified events, and the
off-diagonal terms show the number of events wrongly clas-
sified as either of the other true classes. It can be seen that the
transfer learning all weights network shows more correctly
classified events and fewer incorrectly classified events for
each of the true classes.

Table 3 Confusion matrices showing the number of correctly and
incorrectly classified events for each true class. Results are shown for
the network with the highest F1 score in the ensembles with 100,000
training images for Kaiming (top) and transfer learning all weights (bot-
tom) cases

Predicted
CC νμ CC νe NC

True CC νμ 5839 386 487

CC νe 276 5586 712

NC 337 624 5753

Kaiming initialisation

Predicted
CC νμ CC νe NC

True CC νμ 6262 163 287

CC νe 111 6160 303

NC 228 367 6119

Transfer learning all weights

4.5 Comparison of classification bias with neutrino energy

To compare potential biases in classification performance
as a function of true neutrino energy we consider the most
performant networks, according to F1 score, from the ensem-
ble of 25 networks trained with 100k events for each of the
Kaiming-initialised and transfer learning all weights cases.

Classification accuracy (the fraction of correctly classified
events for a given true interaction type) on the 20k event test
sample is shown in Fig. 6. It is evident that the classifica-
tion performance does vary with energy, and the pattern of
variation is similar for both the Kaiming-initialised network

Fig. 5 The accuracy for the
three classes (CC νμ, CC νe and
NC) for the transfer learning all
weights and Kaiming-initialised
networks. The error bars show
the uncertainty on the mean
accuracy from the ensembles of
25 trained networks for each
point
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Fig. 6 The classification accuracy for each interaction type as a function of the true neutrino energy for the Kaiming-initialised (left) and transfer
learning all weights (right) cases for networks trained with 100,000 images

and the transfer learned network. Performance in the two
charged-current classes is reduced at lower energies, but the
magnitude of the bias is notably less in the transfer learned
case, with charged-current performance more nearly equiv-
alent in each energy bin. For neutral current interactions we
see a reduction in performance as energy increases, but once
again the network trained via transfer learning shows less
bias.

4.6 Comparison of classification bias with training sample
size

Given one of the potential benefits of transfer learning is the
ability to train on fewer events, it is worthwhile to explore
how the number of events affects classification performance
at the level of interaction type. To compare potential biases
in classification performance as a function of the training
sample size we consider the most performant network within
the ensemble of transfer learned networks for each size of
training sample.

First, it can be observed in Fig. 7 that the same pat-
tern of behaviour is evident across all sample sizes, that is,
charged-current classification accuracy improves as energy
increases, while neutral current classification accuracy is
reduced. However, it is also evident that the number of events
introduces its own biases for the lowest training sample sizes.
In particular, it can be seen that the magnitude of the reduc-
tion in classification accuracy for sample sizes below approx-
imately 30k events is sensitive to the particular true interac-

tion type. Above this sample size, the improvement in clas-
sification accuracy is typically small, and similar for each
interaction type.

Therefore, while the overall F1 score for transfer learning
when training with only 7k events was broadly equivalent to
that of the 100k event sample Kaiming-initialised network, it
is clear that to achieve more balanced classification accuracy
across interaction types and over a wide range of energies
one should be cautious about pushing training sample size
reduction too far without considering mitigating steps (for
example, re-balancing the representation of each interaction
type in the training sample). Though not presented here, such
biases are, of course, also evident in the Kaiming-initialised
networks, so this is not a unique feature of transfer learning.

5 Discussion

A systematic study comparing the performance of event clas-
sification in a DUNE-like LArTPC detector using standard
CNN training methods and transfer learning was performed.
It was found that the first convolutional layer of the Ima-
geNet pre-trained ResNet18 extracted generic features that
were applicable to LArTPC event images.

We have demonstrated that transfer learning can signifi-
cantly outperform training randomly-initialised CNNs in the
context of classifying neutrino interactions. We have also
demonstrated that transfer learned networks exhibit reduced
biases relative to networks trained from randomly initialised
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Fig. 7 The classification accuracy for each interaction type as a function of the training sample size for transfer learning all weights cases

weights. Fine tuning a pre-trained ResNet18 with only 7k
images gave a better F1 score than a Kaiming-initialised
ResNet18 trained on 100k images, though evidence of classi-
fication biases at such low sample sizes, whatever the training
method, indicates caution is required in the use of very small
samples. The results presented here demonstrate the poten-
tial of the transfer learning method as a way to obtain very
good CNN performance with a relatively small number of
training images.
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