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Zigzagging through acyclic orientations
of chordal graphs and hypergraphs*

Jean Cardinal� Hung P. Hoang� Arturo Merino§ Torsten Mütze¶

Abstract

In 1993, Savage, Squire, and West described an inductive construction for generating every acyclic
orientation of a chordal graph exactly once, flipping one arc at a time. We provide two generalizations of this
result. Firstly, we describe Gray codes for acyclic orientations of hypergraphs that satisfy a simple ordering
condition, which generalizes the notion of perfect elimination order of graphs. This unifies the Savage-Squire-
West construction with a recent algorithm for generating elimination trees of chordal graphs (SODA 2022).
Secondly, we consider quotients of lattices of acyclic orientations of chordal graphs, and we provide a Gray
code for them, addressing a question raised by Pilaud (FPSAC 2022). This also generalizes a recent algorithm
for generating lattice congruences of the weak order on the symmetric group (SODA 2020). Our algorithms are
derived from the Hartung-Hoang-Mütze-Williams combinatorial generation framework, and they yield simple
algorithms for computing Hamilton paths and cycles on large classes of polytopes, including chordal nestohedra
and quotientopes. In particular, we derive an efficient implementation of the Savage-Squire-West construction.
Along the way, we give an overview of old and recent results about the polyhedral and order-theoretic aspects
of acyclic orientations of graphs and hypergraphs.

In 1953, Frank Gray registered a patent [Gra53] for a method to list all binary words of length n in such a
way that any two consecutive words differ in exactly one bit, and he called it the binary reflected code. More
generally, a combinatorial Gray code [Rus16] is a listing of all objects of a combinatorial class such that any two
consecutive objects differ by a ‘small local change’, sometimes also called a ‘flip’. Over the years, Gray codes have
been designed for numerous classes of combinatorial objects, including permutations, combinations, integer and
set partitions, Catalan objects (binary trees, triangulations etc.), linear extensions of a poset, spanning trees or
matchings of a graph etc.; see the surveys [Sav97, Müt22]. This area has been the subject of intensive research
combining ideas from combinatorics, algorithms, graph theory, order theory, algebra, and discrete geometry. This
enabled recent exciting progress on long-standing problems in this area (see e.g. [SW18]), and the development of
versatile general techniques for designing Gray codes [Wil13, RSW12, HHMW20]. One of the main applications of
Gray codes is to efficiently generate a class of combinatorial objects (see e.g. [Wil09]), and many such algorithms
are described in the most recent volume of Knuth’s book ‘The Art of Computer Programming’ [Knu11].

1 The Steinhaus-Johnson-Trotter algorithm

The Steinhaus-Johnson-Trotter algorithm, also known as ‘plain changes’, is one of the classical Gray codes
for generating permutations. Specifically, it lists all permutations of [n] := {1, 2, . . . , n} so that every pair of
successive permutations differs by exactly one adjacent transposition, i.e., by swapping two neighboring entries
of the permutation. Using suitable auxiliary arrays, this algorithm can be implemented in time O(1) per visited
permutation.

The Steinhaus-Johnson-Trotter ordering of permutations can be defined inductively as follows: For n = 1 the
listing consists only of a single permutation 1. To construct the listing for permutations of [n] for n ≥ 2, we consider
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the listing for permutations of [n− 1], and we replace every permutation π in it by the sequence of permutations
obtained by inserting the new largest symbol n in all possible positions in π from right to left, or from left to right,
alternatingly. It is easy to check that this indeed gives a listing of all permutations of [n] by adjacent transpositions.
Moreover, as n! is even for n ≥ 2, the listing is cyclic, i.e., the last and first permutation differ only in an adjacent
transposition. For example, for n = 2 we get the listing 12, 21, for n = 3 we get 123, 132, 312, 321, 231, 213, and
for n = 4 we get 1234, 1243, 1423, 4123, 4132, 1432, 1342, 1324, 3124, 3142, 3412, 4312, 4321, 3421, 3241, 3214, 2314,
2341, 2431, 4231, 4213, 2413, 2143, 2134; see Figure 1. In those listings, the newly inserted symbol n is highlighted,
which allows tracking its zigzag movement.

Williams [Wil13] found a strikingly simple equivalent description of the Steinhaus-Johnson-Trotter ordering
via the following greedy algorithm: Start with the identity permutation, and repeatedly perform an adjacent
transposition with the largest possible value that yields a previously unvisited permutation.

The results in this work can be seen as far-ranging generalizations of these two alternative descriptions of the
same fundamental ordering.

2 Flip graphs, lattices, and polytopes

Any Gray code problem gives rise to a corresponding flip graph, which has as vertices the combinatorial objects
of interest, and an edge between any two objects that differ by the specified flip operation. For example, the flip
graph on binary words of length n under flips that change a single bit is the n-dimensional hypercube. Moreover,
the flip graph for permutations under adjacent transpositions discussed in the previous section is the Cayley graph
of the symmetric group generated by adjacent transpositions. Another heavily studied example is the flip graph
on binary trees under tree rotations [STT88, Pou14].

Clearly, computing a Gray code for a set of combinatorial objects amounts to traversing a Hamilton path
in the corresponding flip graph. In particular, Hamilton paths in the three aforementioned flip graphs can be
computed by the binary reflected code, the Steinhaus-Johnson-Trotter algorithm, and by an algorithm due to
Lucas, Roelants van Baronaigien, and Ruskey [LRvBR93], respectively.
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Figure 1: The 3-dimensional permutohedron with the
Steinhaus-Johnson-Trotter Hamilton path. The start and
end vertex are highlighted by a triangle and diamond,
respectively, and can be joined to a Hamilton cycle.

It turns out that many flip graphs can be
equipped with a poset structure and realized as
polytopes, i.e., they are cover graphs of certain
lattices, and 1-skeleta of certain high-dimensional
polytopes. For example, the n-dimensional hyper-
cube is the cover graph of the Boolean lattice and
the skeleton of the Cartesian product [0, 1]n. Sim-
ilarly, the flip graph on permutations under adja-
cent transpositions is the cover graph of the weak
order on the symmetric group, and the skeleton of
the permutohedron; see Figure 1. Lastly, the flip
graph on binary trees under rotations is the cover
graph of the Tamari lattice and the skeleton of the
associahedron.

Generalizations of these lattices and poly-
topes and the associated combinatorial structures
have been the subject of intensive research in al-
gebraic and polyhedral combinatorics; see Fig-
ure 4. The theory of generalized permutohe-
dra [PRW08, Pos09, AA17] and of lattice congru-
ences and their quotients [Rea12, Rea16], in par-
ticular, provides us with a rich framework that
contains all previous three examples as very spe-
cial cases of a much broader picture. Specifically, in the next three sections we discuss the generalizations shown
one level above the bottom in Figure 4, namely acyclic orientations, elimination trees and lattice quotients.
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Figure 2: (a1) An acyclic orientation D of a graph; (a2) the transitive reduction of D, which contains
precisely the flippable arcs in D; (b1) an acyclic orientation D′ of the complete graph; (b2) the transitive
reduction of D′ and the corresponding permutation.

3 From permutations to acyclic orientations

The starting point of this work are Gray codes for acyclic orientations of a graph. Given a simple graph G, an
acyclic orientation of G is a digraph D obtained by orienting every edge of G in one of two ways so that D
does not contain any directed cycles. The goal is to list all acyclic orientations of G in such a way that any two
consecutive orientations differ by reorienting a single arc, which we refer to as an arc flip.

It is easy to see that in an acyclic orientation D, the flippable arcs are precisely the arcs that are in the
transitive reduction of D, which is the minimum subset of arcs that has the same reachability relations (i.e.,
the same transitive closure) as D; see Figure 2 (a1)+(a2). If G is the complete graph with vertex set [n], then
the transitive reduction of any of its acyclic orientations D is a path, directed from the source to the sink of
the orientation. Consequently, we can interpret the vertex labels along this path as a permutation of [n]; see
Figure 2 (b1)+(b2). Furthermore, an arc flip corresponds to an adjacent transposition in this permutation.
Consequently, the flip graph on acyclic orientations of the complete graph is the skeleton of the permutohedron.
In general, the flip graph on the acyclic orientations of a graph G is the skeleton of a polytope known as the
graphical zonotope of G [Gre77, GZ83, Sta07].

In general, not all (skeletons of) graphical zonotopes admit a Hamilton path or cycle, and we do not know of
any simple conditions on the graph G for this to hold. Clearly, the flip graph on acyclic orientations is bipartite
for any graph G, and if the partition classes have sizes that differ by more than 1, then this rules out the
existence of a Hamilton path, a phenomenon that occurs for example if G is a wheel graph with an even number
of spokes [SSW93]. In this context, let us mention that counting the number of acyclic orientations of a graph is
#P-complete [Lin86].

On the positive side, Savage, Squire and West [SSW93] showed that the flip graph on acyclic orientations of G
has a Hamilton cycle if G is chordal. Their proof is a straightforward generalization of the Steinhaus-Johnson-
Trotter construction, so we describe it here, with the goal of generalizing it even further subsequently. A graph is
chordal if every induced cycle has length 3. It is well-known that every chordal graph G has a simplicial vertex v,
i.e., a vertex whose neighborhood in the graph is a clique. We remove v from the graph, and by induction we obtain
a Gray code for the acyclic orientations of G−v; see Figure 3 (a). Let k be the number of neighbors of v in G. To
construct the listing of acyclic orientations of G, we replace every acyclic orientation in the listing for G−v by the

v

G− v

G
vvvvvv
sinksourcesimplicial

k

k + 1(a) (b)

Figure 3: Illustration of the Savage-Squire-West proof. In the neighborhood of v, only the transitive
reduction is shown, whereas transitive arcs are omitted for simplicity.
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→ Section 6.1
C: Acyclic orientations of hypergraphs

in hyperfect elimination order
P: Hypergraphic polytopes
H: New result

A: time O(∆), space O(n2(n + ∆))
∆ = ∆(H) max. degree, n = |V |
→ Section 6.3

→ Section 6.2
L: Quotients of acyclic reorientation

lattices of peo-consistent digraphs
P: Quotientopes
H: New result

→ Section 6.1
C: Acyclic orientations

of chordal building sets
P: Chordal nestohedra
H: New result

→ Section 4
C: Elimination trees

of chordal graphs
P: Chordal graph associahedra
H: [MP16, CMM22]

A: time O(σ), space O(n2)
σ = σ(G) max. induced star, n = |V |
→ Section 6.3

→ Section 3
C: Acyclic orientations

of chordal graphs
P: Chordal graph zonotopes
H: [SSW93]

A: time O(logω), space O(n2)
ω = ω(G) max. clique, n = |V |
→ Section 6.3

→ Section 5
L: Quotients of

the weak order
P: Quotientopes
H: [HHMW20, HM21]

→ Section 2
C: Binary words
L: Boolean lattice
P: Hypercube
H: Binary reflected code
A: time O(1), space O(n)

n = word length

→ Section 2
C: Permutations
L: Weak order
P: Permutohedron
H: Steinhaus-Johnson-Trotter
A: time O(1), space O(n)

n = permutation length

→ Section 2
C: Binary trees
L: Tamari lattice
P: Associahedron
H: [LRvBR93]
A: time O(1), space O(n)

n = number of nodes

→ Section 5
C: Diagonal / generic

rectangulations
L: dRecn [LR12] / gRecn [Mee19]
P: PdRec [LR12] / quotientope
H: [MM21a, MM21b]
A: time O(1), space O(n)

n = number of rectangles

Figure 4: Inclusion diagram of combinatorial families (C), lattices (L), polytopes (P), Hamiltonicity
results (H), and corresponding algorithmic results (A). More general objects are above their specialized
counterparts. New results are highlighted red. Running times are per generated object, whereas the space
refers to the total space needed (without storing previous objects). Section references indicate where those
results are discussed in more detail.

sequence of k+1 acyclic orientations obtained by adding v and orienting the edges incident with v in all possible
ways (that yield an acyclic orientation). Specifically, since the neighborhood of v is a clique, whose transitive
reduction is a path, there are precisely k + 1 valid acyclic orientations obtained by adding v, and they differ in a
sequence of arc flips of arcs incident with v, and this sequence starts and ends with v being a sink or a source; see
Figure 3 (b). In the Gray code for the acyclic orientations of G, the vertex v alternates or ‘zigzags’ between being
sink or source. As the number of acyclic orientations of any graph G with at least one edge is even (consider the
involution on the set of all acyclic orientations that reorients every arc), the resulting ordering is cyclic, i.e., the
last and first acyclic orientation differ only in an arc flip. For G being a complete graph, the resulting ordering
of acyclic orientations and their corresponding permutations is exactly the Steinhaus-Johnson-Trotter ordering.

4 From permutations to elimination trees

An elimination tree T of a connected graph G is an unordered rooted tree obtained as follows: We remove
a vertex v of G which becomes the root of T , and we recurse on the connected components of G − v, whose
elimination trees become the subtrees of v in T ; see Figure 5 (a1)+(a2). The goal is to list all elimination trees
of G in such a way that any two consecutive trees differ by a rotation, which is the result of swapping the removal
order of two vertices that form a parent-child relationship in the elimination tree; see Figure 10 (a)+(b).
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Figure 5: (a1) A graph G; (a2) an elimination tree T of G; (b1) the complete graph; (b2) an elimination
tree of the complete graph and the corresponding permutation.

Clearly, every elimination tree of a complete graph with vertex set [n] is a path, which can be interpreted
as a permutation of [n] by reading the labels of the path from the root to the leaf; see Figure 5 (b1)+(b2).
Furthermore, a tree rotation corresponds to an adjacent transposition in this permutation. Consequently, the
flip graph on elimination trees of the complete graph is the skeleton of the permutohedron. In general, the
flip graph on elimination trees of a graph G is the skeleton of a polytope known as the graph associahedron
of G [CD06, Dev09, Pos09].

Manneville and Pilaud [MP16] showed that the skeleton of the graph associahedron of G admits a Hamilton
cycle for any graph G with at least two edges. In [CMM22], we present a simple algorithm for computing a
Hamilton path on the graph associahedron for the case when G is a chordal graph. This algorithm visits each
elimination tree along the Hamilton path in time O(m+n), where m and n are the number of edges and vertices
of G, and this time can be improved to O(1) if G is a tree. Furthermore, if G is chordal and 2-connected,
then the resulting Hamilton path is actually a Hamilton cycle, i.e., the first and last elimination tree differ only
in a tree rotation. The proof in [CMM22] is an application of the Hartung-Hoang-Mütze-Williams generation
framework [HHMW20, HHMW22], which generalizes the Steinhaus-Johnson-Trotter algorithm. Specifically, we
consider a simplicial vertex v in G, we remove v from the graph, and by induction we obtain a rotation Gray
code for the elimination trees of G− v; see Figure 6 (a). Let N(v) be the set of neighbors of v in G. To construct
the listing of elimination trees of G, we consider every elimination tree T in the listing for G− v. As the vertices
in N(v) form a clique in G, these vertices appear on a path P in T that starts at the root and ends at a vertex

G− v

G

leaf

simplicial

N(v)

(a)

(b)

v

v

v

v

v

v

v

rootv

P

T

k

k + 1

Figure 6: Illustration of the zigzag argument for elimination trees of a chordal graph. The vertices in the
neighborhood N(v) of v are shaded, whereas other vertices of G are white. The sloped edges in T connect
to further subtrees (not shown).
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from N(v). We replace the elimination tree T for G − v by the sequence of elimination trees of G obtained by
inserting v in all possibly ways on the path P ; see Figure 6 (b). In particular, if P has k vertices, then we obtain
k + 1 elimination trees. This insertion is done alternatingly from leaf to root or root to leaf, i.e., in the resulting
listing of elimination trees of G, the vertex v alternates or ‘zigzags’ between being root or leaf. In particular, for
G being a complete graph, the resulting ordering of elimination trees and their corresponding permutations is
exactly the Steinhaus-Johnson-Trotter ordering.

We will see that the appearance of chordal graphs in the aforementioned results on acyclic orientations and
elimination trees is not a coincidence. In fact, our first main result gives a unified proof for both the results
of [SSW93] and [CMM22] by introducing a suitable notion of chordality for hypergraphs (see Section 6.1).

5 From permutations to lattice quotients

The inversion set of a permutation π = a1 · · · an is the set of pairs (ai, aj) that appear in the ‘wrong’ order, i.e.,
the set {(ai, aj) | 1 ≤ i < j ≤ n and ai > aj}. If we order all permutations of [n] by containment of their inversion
sets, we obtain the weak order on permutations; see Figure 7 (a). The weak order forms a lattice, i.e., joins and
meets are well-defined. Note that the cover relations in this lattice are precisely adjacent transpositions, i.e., the
cover graph of this lattice is the skeleton of the permutohedron. Furthermore, the levels 0, . . . ,

(
n
2

)
correspond to

the number of inversions.

1234

4312

4321

4231 3421

41324213

4123

2431 3412 3241

2413 1432 3142 3214

1423 2143 1342 2314 3124

1243 2134 1324

2341

(a) (b)

1234

4312

4321

41324213

4123 1432 3214

1423 2143 3124

1243 2134 1324

Figure 7: (a) Weak order on permutations with the sylvester congruence, with the equivalence classes
drawn as gray bubbles; (b) its quotient is the Tamari lattice of 231-avoiding permutations.

A lattice congruence is an equivalence relation on a lattice that respects joins and meets, i.e., for any choice
of representatives from two equivalence classes, their joins and meets must lie in the same equivalence class. A
well-known example of a lattice congruence for the weak order is the sylvester congruence, defined as the transitive
closure of the rewriting rule b ca ≡ b ac , where a < b < c, i.e., whenever a permutation contains three symbols
a < b < c in the order b, c, a, with c and a directly next to each other, then this permutation belongs to the
same equivalence class as the permutation obtained by transposing c and a. Figure 7 (a) shows the equivalence
classes of this congruence, with 231-avoiding permutations as the minima of the equivalence classes. The quotient
of some lattice congruence is the lattice obtained by ‘contracting’ each equivalence class to a single element; see
Figure 7 (b). In this way, we obtain for example the Tamari lattice (Figure 7 (b)) and the Boolean lattice as
quotients of suitable lattice congruences of the weak order on permutations. Let us also mention that the lattice
of diagonal rectangulations [LR12] and the lattice of generic rectangulations [Mee19] arise as quotients of the
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weak order, and they have twisted Baxter permutations or 2-clumped permutations, respectively, as the minima
of the equivalence classes.

The cover graphs of these quotient lattices are skeleta of polytopes known as quotientopes [PS19, PPR21]. We
showed in [HHMW20, HM21] that the skeleton of any quotientope admits a Hamilton path, and this Hamilton
path can be computed by a ‘zigzag’ strategy that generalizes the Steinhaus-Johnson-Trotter algorithm.

Pilaud [Pil22] generalized this notion of quotientopes as follows: He equipped the flip graph on acyclic
orientations of a graph G with a poset structure. Specifically, he considers the containment order of the sets
of reoriented arcs with respect to some acyclic reference orientation D of G. The cover relations are given by
reorienting a single arc, and the levels of this poset correspond to the number of reoriented arcs; see Figure 8 (a).
Pilaud characterized under which conditions on D this poset is a lattice, and he introduced lattice congruences
and lattice quotients in this setting; see Figure 8 (b)+(c). Furthermore, he showed how to realize the cover graphs
of those quotients as polytopes, generalizing the constructions from [PS19, PPR21]. We saw before that if G is
a complete graph, then its acyclic orientations correspond to permutations, and arc flips correspond to adjacent
transpositions, so in this special case Pilaud’s lattice is precisely the weak order on permutations. In his paper,
Pilaud raised the problem which of these generalized quotientopes (parametrized by a reference orientation D
of some graph G) admit a Hamilton cycle. The second main result of our work addresses Pilaud’s question, by
showing that they all have a Hamilton path, which can be computed by a simple greedy algorithm, again following
the ‘zigzag’ principle (see Section 6.2).

(a) (b) (c)
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2

3

4

2143 1342 2314 3124

1234

1243 2134 1324

4312

4321

4231 3421

41324213

4123

2431 3142 3214

3124

1234

2134 1324

4312

4321

41324213

4123

3214

Figure 8: (a) Lattice of acyclic reorientations of a digraph D (reoriented arcs w.r.t. D are highlighted);
(b) one of its lattice congruences, and encoding of acyclic orientations by permutations; (c) the resulting
quotient lattice, and corresponding representative permutations.

6 Our results

We proceed to give an overview of the results of this contribution, explaining the main statements and connections
to previous work. These new results are highlighted red in Figure 4. In this extended abstract, no formal proofs
of our results are given. They can be found in the full journal version.

6.1 Acyclic orientations of hypergraphs. Our first main contribution is the generalization of the Savage-
Squire-West Gray code for acyclic orientations of chordal graphs to acyclic orientations of hypergraphs, by
introducing a suitable notion of chordality for hypergraphs. Our construction yields Hamilton paths on the
skeleta of certain hypergraphic polytopes [BBM19, AA17], and in particular on chordal nestohedra [PRW08].
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Furthermore, this generalization subsumes the construction of Gray codes for elimination trees of chordal graphs
presented in [CMM22].

Given a hypergraph H = (V, E), where E ⊆ 2V , an orientation is a mapping h : E → V such that h(A) ∈ A
for every hyperedge A of H; see Figure 9 (a). The letter h stands for ‘head’: Every hyperedge designates one of
its vertices as head. This orientation is acyclic if the digraph formed by all arcs u → v for every pair of distinct
vertices u, v ∈ V with u, v ∈ A and v = h(A) for some hyperedge A ∈ E is acyclic; see Figure 9 (b). This definition
clearly generalizes the notion of an acyclic digraph. It is a special case of a more general definition recently used
in a similar context by Benedetti, Bergeron, and Machacek [BBM19].

A1 = {e, f}

a b

c d

e f

A2 = {b, c, d}

A1

A2

A3
A4

A5

A3 = {c, d, f}

A4 = {c, d, e, f}

A5 = {a, b, c}

h(A1) = e

h(A2) = d

h(A3) = d

h(A4) = d

h(A5) = a

a

b

c

d

e f

(a) (b)

H = (V, E)

E = {A1, . . . , A5}
V = {a, b, c, d, e, f}

a

b c

d

e

f

(c)

Figure 9: (a) Acyclic orientation of a hypergraph; (b) corresponding acyclic digraph; (c) corresponding
poset (whose cover graph is the transitive reduction of (b)).

Given a chordal graph G, repeatedly removing one of its simplicial vertices yields a perfect elimination ordering
(peo) of the graph. In fact, it is well-known that a graph G admits a perfect elimination ordering if and only
if G is chordal [FG65]. We generalize the notion of perfect elimination order of chordal graphs to what we call
hyperfect elimination order of hypergraphs. We then apply the aforementioned Hartung-Hoang-Mütze-Williams
generation framework to obtain a Gray code for the acyclic orientations of a hypergraph in hyperfect elimination
order, using the ‘zigzag’ idea common to Figures 3 and 6. The flip operation in an orientation h of a hypergraph
H = (V, E) consists of picking two vertices u, v ∈ V , and for all hyperedges A ∈ E with u, v ∈ A and h(A) = u we
instead define h(A) := v (provided that the resulting orientation is acyclic); see Figure 10 (c).

The results from [CMM22] on elimination trees of chordal graphs can be recovered as a special case of our
new results as follows; see Figure 10: Given a graph G = (V,E), its graphical building set is the hypergraph
H = (V, E) such that

E := {U ⊆ V | G[U ] is connected},

where G[U ] is the subgraph of G induced by U , i.e., we consider all connected subgraphs of G as hyperedges. An
elimination tree T ofG with root v corresponds to the acyclic orientation ofH in which every hyperedge A ∈ E with
v ∈ A satisfies h(A) = v, and this condition holds recursively for all subtrees. Consequently, acyclic orientations
of H are in one-to-one correspondence with elimination trees of G, and the aforementioned flip operation on
the hypergraph corresponds to a rotation in the elimination tree. Our new Gray code on acyclic orientations of
hypergraphs in hyperfect elimination order thus yields as a special case the Gray code on elimination trees of
chordal graphs presented in [CMM22].

The notions of building set and chordal building set have been defined abstractly without reference to a
graph by Postnikov [Pos09], and Postnikov, Reiner, and Williams [PRW08], and the corresponding flip graphs
arise as skeleta of chordal nestohedra, a term also coined in [PRW08]. Connections with acyclic orientations
of hypergraphs have been investigated by Benedetti, Bergeron, and Machacek [BBM19]. We thus also obtain
a simple constructive proof that chordal nestohedra admit a Hamilton path, directly yielding Gray codes for
so-called B-forests [PRW08].
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Figure 10: (a) A graph G; (b) two elimination trees T and T ′ of G that differ in a tree rotation; (c)
corresponding two acyclic orientations hT and hT ′ of the graphical building set of G, and flip operation
between them. The orientations hT and hT ′ differ only on the highlighted hyperedges that contain both i
and j.

6.2 Quotients of acyclic reorientation lattices. Recall from Section 5 the definition of the poset of acyclic
orientations of a graph G with respect to a reference orientation D of G. Pilaud [Pil22] characterized when
this poset is a lattice. The following definitions are illustrated in Figure 11. Specifically, a digraph D is called
vertebrate if the transitive reduction of every induced subgraph of D is a forest. It is easy to see that vertebrate
implies acyclic. Furthermore, D is called filled if for any directed path v1 → · · · → vk in D, if the arc v1 → vk
belongs to D, then all arcs vi → vj , 1 ≤ i < j ≤ k, also belong to D. A digraph is called skeletal if it is both
vertebrate and filled. Pilaud [Pil22, Thm. 1+Thm. 3] showed that the acyclic reorientation poset of D is a lattice
if and only if D is vertebrate, and that this lattice is semidistributive if and only if D is filled. He also raised the
following question in his paper.

Problem 1. ([Pil22, Problem 51]) Given a skeletal (i.e., vertebrate and filled) digraph D, do all cover graphs
of lattice quotients of the acyclic reorientation lattice of D admit a Hamilton cycle?

Our second main contribution is to address Pilaud’s question, by showing that those cover graphs all
have a Hamilton path, which can be computed by a simple greedy algorithm, generalizing Steinhaus-Johnson-
Trotter. This also yields an algorithmic proof that the corresponding generalized quotientopes admit a
Hamilton path. Furthermore, our result encompasses all earlier results on quotients of the weak order on
permutations [HHMW20, HM21], which are obtained as special case whenD is an acyclic orientation of a complete
graph.

In fact, our results hold not only for skeletal digraphs D, but for a slightly larger class. Specifically, a
peo-consistent digraph D has a source or sink v (i.e., all arcs incident with v are either outgoing or incoming,
respectively) whose neighborhood is a clique, and D − v is also peo-consistent or empty. A straightforward
induction shows that peo-consistent implies vertebrate. The key fact we establish in our work is that skeletal
implies peo-consistent. We thus have the following inclusions among classes of digraphs, which are strict (see
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Figure 11: Illustration of various classes of digraphs: (b) is peo-consistent, as the neighborhood of the
source a is a clique, and D − a is also peo-consistent; it is not skeletal, as the path a → b → c → d is not
filled; (c) is vertebrate, as the transitive reduction is the path a → b → c → d; it is not peo-consistent,
as a is a source and d is a sink, but none of their neighborhoods is a clique; (d) is not vertebrate, as the
transitive reduction is the full graph, which is not a forest; (e) is a directed cycle.

Figure 11):

(6.1) skeletal ⊂ peo-consistent ⊂ vertebrate ⊂ acyclic.

It is not difficult to see that an undirected graph has a peo-consistent orientation if and only if it is chordal.
We also observe that an undirected graph admits a skeletal orientation only if it is strongly chordal [Far83].

We emphasize that our aforementioned results only guarantee a Hamilton path, whereas Pilaud’s question
asks for a Hamilton cycle. On the other hand, our results hold for a slightly larger class of graphs, and they yield
a simple algorithm. As mentioned before, in the special case of elimination trees of chordal graphs G, there are
interesting cases where the Hamilton path computed by our algorithm is actually a Hamilton cycle, i.e., the first
and last elimination tree differ only in a tree rotation. Specifically, this happens if G is chordal and 2-connected;
see [CMM22]. A special case of this is when G is a complete graph, in which case our algorithm specializes to the
Steinhaus-Johnson-Trotter algorithm for permutations, which produces a cyclic Gray code.

6.3 Efficient generation algorithms. We briefly discuss the computational efficiency of the Gray code
algorithms derived from our work. Those are summarized in the bottom part of the boxes in Figure 4. All
four algorithms mentioned at the bottom level in Figure 4 can be implemented to output each new object in
time O(1).

Our first algorithmic contribution is to turn the Savage-Squire-West Gray code for acyclic orientations of a
chordal graph G into an algorithm that generates each acyclic orientation in time O(logω) on average, where
ω = ω(G) is the clique number of G. For this algorithm, we represent each acyclic orientation as an adjacency
matrix, which allows constant-time orientation queries for each arc. In the following we write m and n for
the number of edges and vertices of G, respectively. Clearly, we have ω ≤ n, which yields the more generous
bound O(log n) for our Gray code algorithm. For comparison, Barbosa and Szwarcfiter [BS99] described an
algorithm to generate each acyclic orientation of an arbitrary graph in time O(m + n) on average. Moreover,
Conte, Grossi, Marino, and Rizzi [CGMR18] provided an algorithm that generates each acyclic orientation in
time O(m), and this bound holds in every iteration. Their approach generalizes to the setting where some
vertices can be prescribed as sources, at the cost of a higher running time. However, none of these algorithms
produces a Gray code listing, i.e., they do not yield Hamilton paths on the corresponding graphical zonotopes,
unlike our Gray code.

Secondly, we improve the running time of the algorithm for generating the elimination trees of a chordal
graph G presented in [CMM22] from O(m + n) to O(σ) time on average per generated elimination tree, where
σ = σ(G) is the number of edges of the maximum induced star of G. Note that if G is a complete graph
on n vertices, then this improvement brings the running time from O(n2) down to O(1), i.e., we recover the
constant-time feature of Steinhaus-Johnson-Trotter.

Generalizing these algorithmic techniques, we can implement our Gray code for all acyclic orientations of
a hypergraph H = (V, E) in hyperfect elimination order in time O(∆) per generated acyclic orientation, where
∆ = ∆(H) := maxv∈V |{A ∈ E | v ∈ A}| denotes the maximum degree.

For lattice congruences and their quotients, it is difficult to provide meaningful statements about running
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times because of representation issues. Specifically, for the weak order on permutations of [n], there are double-
exponentially in n many different lattice congruences [HM21, Thm. 18]. Specifying the congruence as input of
an algorithm therefore takes exponential space in general. Consequently, one cannot improve much upon a naive
specification of the congruence as a full list of equivalence classes as input of the algorithm. However, given such
a specification as input, there is no value in generating it efficiently.

7 The permutation language framework

In a recent line of work, Hartung, Hoang, Mütze, and Williams [HHMW20] introduced a far-ranging generalization
of the Steinhaus-Johnson-Trotter algorithm, which yields efficient Gray code algorithms for a large variety
of combinatorial objects, based on encoding them as permutations. So far, the framework has been applied
successfully to obtain Gray codes for pattern-avoiding permutations [HHMW22], lattice congruences of the weak
order on permutations [HM21], different families of rectangulations [MM21a, MM21b] (a rectangulation is a
subdivision of a rectangle into smaller rectangles), and elimination trees of chordal graphs [CMM22]. The methods
described in this work extend the reach of this framework, and make it applicable to generate even more general
classes of objects, namely acyclic orientations of hypergraphs, which in particular subsumes the earlier results
in [HM21] and [CMM22]. In the following we summarize the key methods and results provided by this generation
framework.

7.1 Jumps in permutations. We use Sn to denote the set of all permutations of [n]. Furthermore, we
use idn = 12 · · ·n to denote the identity permutation, and ε ∈ S0 to denote the empty permutation. A
permutation π = a1 · · · an is peak-free if it does not contain any triple ai−1 < ai > ai+1. For any π ∈ Sn−1

and any 1 ≤ i ≤ n, we write ci(π) ∈ Sn for the permutation obtained from π by inserting the new largest
value n at position i of π, i.e., if π = a1 · · · an−1 then ci(π) = a1 · · · ai−1 nai · · · an−1. Moreover, for π ∈ Sn, we
write p(π) ∈ Sn−1 for the permutation obtained from π by removing the largest entry n. Given a permutation
π = a1 · · · an with a substring ai · · · ai+d with d > 0 and ai > ai+1, . . . , ai+d, a right jump of the value ai by
d steps is a cyclic left rotation of this substring by one position to ai+1 · · · ai+dai. Similarly, given a substring
ai−d · · · ai with d > 0 and ai > ai−d, . . . , ai−1, a left jump of the value ai by d steps is a cyclic right rotation of
this substring to aiai−d · · · ai−1. For example, a right jump of the value 5 in the permutation 265134 by 2 steps
yields 261354.

7.1.1 A simple greedy algorithm. The main ingredient of the framework is the following simple greedy
algorithm to generate a set of permutations Ln ⊆ Sn. We say that a jump is minimal with respect to Ln, if every
jump of the same value in the same direction by fewer steps creates a permutation that is not in Ln.

Algorithm J (Greedy minimal jumps). This algorithm attempts to greedily generate a set of permutations
Ln ⊆ Sn using minimal jumps starting from an initial permutation π0 ∈ Ln.

J1. [Initialize] Visit the initial permutation π0.
J2. [Jump] Generate an unvisited permutation from Ln by performing a minimal jump of the largest possible

value in the most recently visited permutation. If no such jump exists, or the jump direction is ambiguous,
then terminate. Otherwise visit this permutation and repeat J2.

Note that Algorithm J is a generalization of Williams’ greedy description of the Steinhaus-Johnson-Trotter
algorithm given in Section 1. Indeed, if Ln = Sn is the set of all permutations of [n], then minimal jumps
correspond to adjacent transpositions.

Note that by the definition of step J2, Algorithm J never visits any permutation twice. The following key
result provides a sufficient condition on the set Ln to guarantee that Algorithm J succeeds to list all permutations
from Ln. This condition is captured by the following closure property of the set Ln. A set of permutations Ln ⊆ Sn

is called a zigzag language, if either n = 0 and L0 = {ε}, or if n ≥ 1 and Ln−1 := {p(π) | π ∈ Ln} is a zigzag
language satisfying either one of the following conditions:

(z1) For every π ∈ Ln−1 we have c1(π) ∈ Ln and cn(π) ∈ Ln.
(z2) We have Ln = {cn(π) | π ∈ Ln−1}.

Theorem 7.1. ([HHMW22]) Given any zigzag language of permutations Ln and initial permutation π0 = idn,
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Algorithm J visits every permutation from Ln exactly once.

It was already argued in [HHMW22] that more generally, any peak-free permutation can be used as initial
permutation π0 for Algorithm J.

We emphasize that Algorithm J can be made history-free, i.e., by introducing suitable auxiliary arrays,
step J2 can be performed without maintaining any previously visited permutations in order to decide which jump
to perform; for details see [MM21a, Sec. 5.1+8.7]. The running time of this algorithm is then only determined
by the time it takes to decide membership of a permutation in the zigzag language Ln. We should think of Ln as
a set of permutations defined by some property, such as for example ‘permutations that avoid the pattern 231’
or ‘permutations that encode acyclic orientations of some graph’ (recall Figures 7 (b) and 8 (b), respectively),
rather than an explicitly given set. After all, if the set was already provided explicitly as input, then there would
be no point in generating it; recall the discussion in Section 6.3.

7.1.2 Inductive description of the same ordering. In the same way that the Steinhaus-Johnson-Trotter
ordering can be defined both greedily or inductively, the ordering produced by Algorithm J can also be defined
inductively, as we show next.

Specifically, given a zigzag language Ln, we write J(Ln) for the ordering of all permutations from Ln produced
by Algorithm J when initialized with π0 = idn. For any π ∈ Ln−1 we let #„c (π) be the sequence of all ci(π) ∈ Ln

for i = 1, 2, . . . , n, starting with c1(π) and ending with cn(π), and we let #„c (π) denote the reverse sequence, i.e., it
starts with cn(π) and ends with c1(π). In words, those sequences are obtained by inserting into π the new largest
value n from left to right, or from right to left, respectively, in all possible positions that yield a permutation
from Ln, skipping the positions that yield a permutation that is not in Ln. It was shown in [HHMW22] that the
sequence J(Ln) can be described inductively as follows: If n = 0 then we have J(L0) = ε, and if n ≥ 1 then we
consider the finite sequence J(Ln−1) =: π1, π2, . . . and we have

J(Ln) =
#„c (π1),

#„c (π2),
#„c (π3),

#„c (π4), . . .

if condition (z1) holds, and
J(Ln) = cn(π1), cn(π2), cn(π3), cn(π4), . . .

if condition (z2) holds. In words, if condition (z1) holds then this sequence is obtained from the previous sequence
by inserting the new largest value n in all possible positions alternatingly from right to left, or from left to right,
in a ‘zigzag’ fashion. The case where condition (z2) holds is exceptional, as we only append n to each permutation
of the previous sequence.

7.1.3 How we apply Algorithm J in this work. To prove our results on acyclic orientations of hypergraphs
discussed in Section 6.1, we proceed as follows: Given a hypergraph H in hyperfect elimination order, we label its
vertices with 1, 2, . . . , n according to this ordering, and we encode any of its acyclic orientations as a permutation
on [n], in such a way that the set of permutations obtained for all acyclic orientations of H is a zigzag language.
By Theorem 7.1 we can thus apply Algorithm J to generate this zigzag language in Gray code order, and in a
final step we interpret the jumps in permutations performed by Algorithm J in terms of flip operations on acyclic
orientations of H. The key insight that makes this work is that when vertices are in hyperfect elimination order,
the posets defined by the acyclic orientations have the unique parent-child property, namely that every vertex has
at most one parent and one child in the poset.

To prove our results on quotients of acyclic reorientations lattices discussed in Section 6.2, we proceed as
follows: Given a peo-consistent digraph D, we label its vertices with 1, . . . , n according to this ordering, and we
encode any of its acyclic orientations as a permutation on [n]; see Figure 8 (b). For a given lattice congruence on
the reorientation lattice of D, we select a set of representatives, one permutation from each equivalence class, such
that those representative permutations form a zigzag language; see Figure 8 (c). We show that for peo-consistent
digraphs, the equivalence classes of any lattice congruence have a simple projection property that enables selecting
representatives in an inductive ‘zigzag’-like way. It then follows that the jumps in permutations performed by
Algorithm J correspond to steps along cover edges of the lattice quotient.
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