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Abstract

Given integers k 2≥ and a a, …, 1k1 ≥ , let a a a( , …, )k1≔

and n a a+ + k1≔ ⋯ . An a‐multiset permutation is a

string of length n that contains exactly ai symbols i for

each i k= 1, …, . In this work we consider the problem of

exhaustively generating all a‐multiset permutations by star

transpositions, that is, in each step, the first entry of the

string is transposed with any other entry distinct from the

first one. This is a far‐ranging generalization of several

known results. For example, it is known that permutations

(a a= = = 1k1 ⋯ ) can be generated by star transposi-

tions, while combinations (k = 2) can be generated by

these operations if and only if they are balanced (a a=1 2),

with the positive case following from the middle levels

theorem. To understand the problem in general, we

introduce a parameter a n a aΔ( ) − 2max{ , …, }k1≔ that

allows us to distinguish three different regimes for this

problem. We show that if aΔ( ) < 0, then a star

transposition Gray code for a‐multiset permutations does

not exist. We also construct such Gray codes for the case

aΔ( ) > 0, assuming that they exist for the case aΔ( ) = 0.

For the case aΔ( ) = 0 we present some partial positive

results. Our proofs establish Hamilton‐connectedness or
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Hamilton‐laceability of the underlying flip graphs, and

they answer several cases of a recent conjecture of Shen

and Williams. In particular, we prove that the middle

levels graph is Hamilton‐laceable.

KEYWORD S

combination, Gray code, Hamilton cycle, permutation,
transposition

1 | INTRODUCTION

Permutations and combinations are two of the most fundamental classes of combinatorial
objects. Specifically, k‐permutations are all linear orderings of k k[ ] {1, …, }≔ , and their number
is k!. Moreover, α β( , )‐combinations are all β‐element subsets of n[ ] where n α β+≔ , and their

number is ( )( ) =n

α

n

β
. Permutations and combinations are generalized by so‐called multiset

permutations, and in this paper we consider the task of listing them such that any two
consecutive objects in the list differ by particular transpositions, that is, by swapping two
elements. Such a listing of objects subject to a “small change” operation is often referred to as
Gray code [28, 30]. One of the standard references for algorithms that efficiently generate
various combinatorial objects, including permutations and combinations, is Knuth's book [19]
(see also [25]).

1.1 | Permutation generation

There is a vast number of Gray codes for permutation generation, most prominently the
Steinhaus–Johnson–Trotter algorithm [17, 40], which generates all k‐permutations by adjacent
transpositions, that is, swaps of two neighboring entries of the permutation; see Figure 1A. In
this work, we focus on star transpositions, that is, swaps of the first entry of the permutation
with any later entry. An efficient algorithm for generating permutations by star transpositions
was found by Ehrlich, and it is described as Algorithm E in Knuth's book [19, Section 7.2.1.2];
see Figure 1B. For any permutation generation algorithm based on transpositions, we can
define the transposition graph as the graph with vertex set k[ ], and an edge between i and j if
the algorithm uses transpositions between the ith and jth entry of the permutation. Clearly, the
transposition graph for adjacent transpositions is a path, whereas the transposition graph for
star transpositions is a star (hence the name “star transposition”). In fact, Kompel'maher and
Liskovec [18], and independently Slater [32], showed that all k‐permutations can be generated
for any transposition tree on k[ ]. Transposition Gray codes for permutations with additional
restrictions were studied by Compton and Williamson [8] and by Shen and Williams [34].

Several known algorithms for permutation generation use operations other than
transpositions. Specifically, Zaks [43] presented an algorithm for generating permutations by
prefix reversals; see Figure 1C. Moreover, Corbett [5] showed that all k‐permutations can be
generated by cyclic left shifts of any prefix of the permutation by one position; see Figure 1D.

2 | GREGOR ET AL.
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Another notable result is Sawada and Williams' recent solution [36] of the sigma–tau problem,
proving that all k‐permutations can be generated by cyclic left shifts of the entire permutation
by one position or transpositions of the first two elements; see Figure 1E.

All of the aforementioned results can be seen as explicit constructions of Hamilton paths in
the Cayley graph of the symmetric group, generated by different sets of generators
(transpositions, reversals, or shifts). It is an open problem whether the Cayley graph of the
symmetric group has a Hamilton path for any set of generators [26]. This is a special case of the
well‐known open problem of whether any connected Cayley graph has a Hamilton path, or
even more generally, whether this is the case for any vertex‐transitive graph [21].

1.2 | Combination generation and the middle levels conjecture

In a computer, α β( , )‐combinations can be conveniently represented by bitstrings of length
n α β+≔ , where the ith bit is 1 if the element i is in the set and 0 otherwise. For example, the
(5, 3)‐combination {1, 6, 7} is represented by the string 10000110.

In the 1980s, Buck and Wiedemann [3] conjectured that all α α( , )‐combinations can be
generated by star transpositions for every α 1≥ , that is, in every step we swap the first bit of the
bitstring representation with a later bit. Figure 2A shows such a star transposition Gray code for
(4, 4)‐combinations. Buck and Wiedemann's conjecture was raised independently by Havel
[13], as a question about the existence of a Hamilton cycle through the middle two levels of the
α(2 − 1)‐dimensional hypercube. This conjecture became known as middle levels conjecture,

and it attracted considerable attention in the literature and made its way into popular books
[9, 42], until it was answered affirmatively by Mütze [24]; see also [12].

Similarly to permutations, there are also many known methods for generating general
α β( , )‐combinations that use operations other than star transpositions, see [4, 11, 16, 29, 39].

(A) (B) (C) (D) (E)

FIGURE 1 Gray codes for 4‐permutations (SJT = Steinhaus–Johnson–Trotter). [Color figure can be viewed
at wileyonlinelibrary.com]
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In particular, α β( , )‐combinations can be generated by adjacent transpositions if and only if
α β= 1, = 1, or α and β are both odd [3, 10, 27].

1.3 | Multiset permutations

Shen and Williams [37] proposed a far‐ranging generalization of the middle levels conjecture
that connects permutations and combinations. Their conjecture is about multiset permutations.
For integers k 2≥ and a a, …, 1k1 ≥ , an a a( , …, )k1 ‐multiset permutation is a string over the
alphabet k{1, …, } that contains exactly ai occurrences of the symbol i. We refer to the sequence
a a a( , …, )k1≔ as the frequency vector, as it specifies the frequency of each symbol. The length
of a multiset permutation is n a a+ +a k1≔ ⋯ , and if the context is clear we omit the index and
simply write n n= a. If all symbols appear equally often, that is, a a α= = =k1 ⋯ , we use the
abbreviation α a a( , …, )k

k1≔ . For example, 12343313 is a (2, 1, 4, 1)‐multiset permutation, and
331232142144 is a 34‐multiset permutation.

Clearly, multiset permutations are a generalization of permutations and combinations.
Specifically, k‐permutations are 1k‐multiset permutations, and α β( , )‐combinations are
α β( , )‐multiset permutations (up to shifting the symbol names 1, 2 0, 1↦ ). Stachowiak [33]
showed that a a( , …, )k1 ‐multiset permutations can be generated by adjacent transpositions if
and only if at least two of the ai are odd.

Shen and Williams [37] conjectured that all αk‐multiset permutations can be generated by
star transpositions, for any α 1≥ and k 2≥ . We state their conjecture in terms of Hamilton
cycles in a suitably defined graph, as follows. We write a a aΠ( ) = Π( , …, )k1 for the set of all

(A) (B)

FIGURE 2 Star transposition Gray codes for (A) (4, 4)‐ and (B) (2, 2, 2)‐multiset permutations. The strings
are arranged in clockwise order, starting at 12 o'clock, with the first entry on the inner track, and the last entry
on the outer track. As every star transposition changes the first entry, the color on the inner track changes in
every step. [Color figure can be viewed at wileyonlinelibrary.com]
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a a( , …, )k1 ‐multiset permutations. Moreover, we let aG G a a( ) = ( , …, )k1 denote the graph on the
vertex set a a aΠ( ) = Π( , …, )k1 with an edge between any two multiset permutations that differ
in a star transposition, that is, in swapping the first entry of the multiset permutation with any
entry at positions n2, …, that is distinct from the first one. Figure 3 shows various examples of
the graph aG ( ). When denoting specific multiset permutations we sometimes omit commas
and brackets for brevity, for example, 1312214 Π(3, 2, 1, 1)∈ .

Conjecture 1 (Shen and Williams [37]). For any α 1≥ and k 2≥ , the graphG α( )k has a
Hamilton cycle.

In this and the following statements, the single edge G (1, 1) is also considered a cycle, as it
gives a cyclic Gray code. Note that G a a( , …, )k1 is vertex‐transitive if and only if
a a α= = k1 ⋯ ≕ . In this case, Conjecture 1 is an interesting instance of the aforementioned
conjecture of Lovász [21] on Hamilton paths in vertex‐transitive graphs.

Evidence for Conjecture 1 comes from the results mentioned in Sections 1.1 and 1.2 on
generating permutations by star transpositions and the solution of the middle levels conjecture,
respectively, formulated in terms of the graph aG ( ) below. These known results settle the
boundary cases α = 1 and k 2≥ , and α 1≥ and k = 2, respectively, of Conjecture 1.

Theorem 2 (Ehrlich; Kompel'maher and Liskovec [18] and Slater [32]). For any k 2≥ ,
the graph G (1 )k has a Hamilton cycle.

Theorem 3 (Gregor et al. [12] and Mütze [24]). For any α 1≥ , the graph G α α( , ) has a
Hamilton cycle.

FIGURE 3 Star transposition graphs aG ( ) for several small multiset permutations a. Vertices are
colored according to the first entry of the multiset permutations, and these color classes form independent sets.
In G (2, 1, 1), an odd cycle is highlighted. [Color figure can be viewed at wileyonlinelibrary.com]
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In their paper, Shen and Williams also provided an ad hoc solution for the first case of their
conjecture that is not covered by Theorems 2 and 3, namely, a Hamilton cycle in G (2, 2, 2),
which is displayed in Figure 2B.

We approach Conjecture 1 by tackling the following even more general question: For which
frequency vectors a a a= ( , …, )k1 does the graph aG ( ) have a Hamilton cycle? By renaming
symbols, we may assume w.l.o.g. that the entries of the vector a are nonincreasing, that is,

a a a .k1 2≥ ≥ ⋯ ≥ (1)

We can thus think of the vector a as an integer partition of n.

1.4 | Our results

For any i n[ ]∈ and c k[ ]∈ , we write aΠ( )i c, for the set of all multiset permutations from aΠ( )

whose ith symbol equals c. Note that every star transposition changes the first entry; see the
inner track of each of the two wheels in Figure 2. As a consequence, aG ( ) is a k‐partite graph
with partition classes a aΠ( ) , …, Π( ) k1,1 1, ; see Figure 3. Moreover, the partition class aΠ( )1,1 is a
largest one because of (1). This k‐partition of the graph aG ( ) is a potential obstacle for the
existence of Hamilton cycles and paths. Specifically, if one partition class is larger than all
others combined, then there cannot be a Hamilton cycle, and if the size difference is more than
1, then there cannot be a Hamilton path.

We capture this by defining a parameter aΔ( ) for any integer partition a a a= ( , …, )k1 as

a n a a aΔ( ) − 2 = − + .
i

k

i1 1

=2

≔  (2)

We will see that if aΔ( ) < 0, then the partition class aΠ( )1,1 of the graph aG ( ) is larger than all
others combined, excluding the existence of Hamilton cycles. On the other hand, if aΔ( ) 0≥ ,
then every partition class of the graph aG ( ) is at most as large as all others combined (equality
holds if aΔ( ) = 0), which does not exclude the existence of a Hamilton cycle. The cases with
aΔ( ) = 0 lie on the boundary between the two regimes, and they are the hardest in terms of

proving Hamiltonicity. These cases can be seen as generalizations of the middle levels
conjecture, namely, the case a α α= ( , ) captured by Theorem 3, which also satisfies aΔ( ) = 0.

Theorem 4. For any integer partition a a a= ( , …, )k1 with aΔ( ) < 0 the graph aG ( ) does
not have a Hamilton cycle, and it does not have a Hamilton path unless a = (2, 1).

For k = 2 symbols, the condition aΔ( ) < 0 is equivalent to a a>1 2, that is, there is no star
transposition Gray code for “unbalanced” combinations.

We now discuss the cases aΔ( ) 0≥ . Our first main goal is to reduce all cases with aΔ( ) > 0

to cases with aΔ( ) = 0. For doing so, it is helpful to consider stronger notions of Hamiltonicity.
Specifically, we consider Hamilton‐connectedness and Hamilton‐laceability, which have been
heavily studied (see [1, 2, 6, 14, 15, 31]). A graph is called Hamilton‐connected if there is a
Hamilton path between any two distinct vertices. A bipartite graph is called Hamilton‐laceable
if there is a Hamilton path between any pair of vertices from the two partition classes. In
general, the graphs aG ( ) are not bipartite, so we say that aG ( ) is 1‐laceable if there is a

6 | GREGOR ET AL.

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22915 by T

est, W
iley O

nline L
ibrary on [10/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Hamilton path between any vertex in aΠ( )1,1 and any vertex not in aΠ( )1,1, that is, between any
vertex with first symbol 1 and any vertex with first symbol distinct from 1.

This approach is inspired by the following result of Tchuente [38], who strengthened
Theorem 2 considerably. Note that the graph G (1 )k is bipartite.

Theorem 5 (Tchuente [38]). For any k 4≥ , the graph G (1 )k is Hamilton‐laceable.

The key insight is that proving a stronger property makes the proof easier and shorter,
because the inductive statement is more powerful and flexible. Encouraged by this, we raise the
following conjecture about graphs aG ( ) with aΔ( ) = 0. It is another natural and far‐ranging
generalization of the middle levels conjecture, which we support by extensive computer
experiments and by proving some special cases.

Conjecture 6. For any integer partition a a a= ( , …, )k1 with aΔ( ) = 0 the graph aG ( ) is
Hamilton‐1‐laceable, unless a = (2, 2).

The exceptional graph G (2, 2) mentioned in this conjecture is a 6‐cycle; see Figure 3.
Assuming the validity of this conjecture, we settle all cases aG ( ) with aΔ( ) > 0 in the strongest
possible sense. While being a conditional result, the main purpose of this theorem is to reduce
all cases aΔ( ) 0≥ to the boundary cases aΔ( ) = 0.

Theorem 7. Conditional on Conjecture 6, for any integer partition a a a= ( , …, )k1 with
aΔ( ) > 0 the graph aG ( ) is Hamilton‐connected, unless a = (1, 1, 1) or a = 1k for k 4≥ ,

and possibly unless a α α= ( , , 1) for α 3≥ .

The dependence of Theorem 7 on Conjecture 6 can be captured more precisely. Specifically,
aG ( ) with aΔ( ) > 0 is shown to be Hamilton‐connected, assuming that bG ( ) is Hamilton‐1‐

laceable for all integer partitions b with bΔ( ) = 0 that are majorized componentwise by a.
The three exceptions mentioned in Theorem 7 are well understood: Specifically,G (1, 1, 1) is

a 6‐cycle; see Figure 3. Furthermore,G (1 )k for k 4≥ is Hamilton‐laceable by Theorem 5. Lastly,
we will show that G α α( , , 1) for α 3≥ satisfies a variant of Hamilton‐laceability, which also
guarantees a Hamilton cycle. In fact, we believe thatG α α( , , 1) are Hamilton‐connected, but we
cannot prove it.

We provide the following evidence for Conjecture 6. First of all, with computer help we verified
that aG ( ) is indeed Hamilton‐1‐laceable for all integer partitions a (2, 2)≠ with aΔ( ) = 0 that
satisfy n 8≤ , that is, for a {(1, 1), (2, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1), (4, 4), (4, 3, 1), (4, 2, 2),∈

(4, 2, 1, 1), (4, 1, 1, 1, 1)}. Furthermore, we prove the case of k = 2 symbols unconditionally. Note
that for k = 2, Hamilton‐1‐laceability is the same as Hamilton‐laceability. Recall that G α α( , ) is
isomorphic to the subgraph of the α(2 − 1)‐dimensional hypercube induced by the middle two
levels, so the following result is a considerable strengthening of Theorem 3, the middle levels
theorem.

Theorem 8. For any α 3≥ , the graph G α α( , ) is Hamilton‐laceable.

We also have the following (unconditional) result for k = 3 symbols.

Theorem 9. For any α 2≥ , the graph G α α( , − 1, 1) has a Hamilton cycle.

GREGOR ET AL. | 7
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Lastly, we consider integer partitions a a a k= ( , …, ), 3k1 ≥ , with aΔ( ) 0≥ and an upper bound
on the part size, that is, a α1 ≤ for some constant α. By the remarks after Theorem 7, the inductive
proof of the theorem for such integer partitions only relies on Conjecture 6 being satisfied for integer
partitions with the same upper bound on the part size. For any fixed bound α, there are only finitely
many such partitions with aΔ( ) = 0 that can be checked by computer. For example, for α = 4 these
are a {(2, 1, 1), (3, 2, 1), (3, 1, 1, 1), (4, 3, 1), (4, 2, 2), (4, 2, 1, 1), (4, 1, 1, 1, 1)}∈ . This yields the
following (unconditional) result.

Theorem 10. For α {2, 3, 4}∈ and any integer partition a a a= ( , …, )k1 with aΔ( ) > 0

and a α=1 , the graph aG ( ) is Hamilton‐connected.

In words, Theorem 10 settles all integer partitions a whose largest part a1 is at most 4. In
particular, this settles the cases α {2, 3, 4}∈ and k 2≥ of Shen and Williams' Conjecture 1 in a
rather strong sense.

1.5 | Proof ideas

In this section, we give a high‐level overview of the main ideas and techniques used in our proofs.

1.5.1 | The case aΔ( ) < 0

The main idea for proving Theorem 4 is that if aΔ( ) < 0, then the partition class aΠ( )1,1 of the
graph aG ( ) is larger than all others combined, which excludes the existence of a Hamilton
cycle. To exclude the existence of a Hamilton path, we show that the size difference is strictly
more than 1, unless a = (2, 1). Note that the graph G (2, 1) is the path on three vertices, so in
this case the size difference is precisely 1. These arguments are based on straightforward
algebraic manipulations involving multinomial coefficients.

1.5.2 | The case aΔ( ) > 0

To prove Theorem 7, it is convenient to think of an integer partition a a a= ( , …, )k1 as an
infinite nonincreasing sequence a a( , , …)1 2 , with only k nonzero entries at the beginning.
Given two such integer partitions a a a= ( , , …)1 2 and b b b= ( , , …)1 2 , we write b a≺ if b ai i≤

for all i 1≥ . Integer partitions with the partial order ≺ form a lattice, which is the
sublattice of the infinite lattice cut out by the hyperplanes defined by (1); see Figure 4.
The cover relations in this lattice are given by decrementing any of the ai for which
a a>i i+1. We write b a≺⋅ for partitions a b≠ if b a≺ and there is no c a b{ , }∉ with
b c a≺ ≺ .

In this lattice of integer partitions, the hyperplane defined by aΔ( ) = 0 separates the cases
where Hamiltonicity is impossible, which lie on the side of the hyperplane where aΔ( ) < 0

(Theorem 4), from the cases where Hamiltonicity can be established more easily, which lie on
the side of the hyperplane where aΔ( ) > 0 (Theorem 7). The cases aΔ( ) = 0 on the hyperplane
are the hardest ones (Conjecture 6).

8 | GREGOR ET AL.
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Our proof of Theorem 7 proceeds by induction in this partition lattice and establishes the
Hamiltonicity of aG ( ) by using the Hamiltonicity of bG ( ) for all integer partitions b a⋅ ,
where Conjecture 6 serves as the base case of the induction. This is based on the observation
that fixing one of the symbols at positions n2, …, in aG ( ) yields subgraphs that are isomorphic
to bG ( ) for b a⋅ .

FIGURE 4 The lattice of integer partitions a a a= ( , …, )k1 with largest part a 31 ≤ . The coordinates are
projected into three dimensions depending on which value is increased. [Color figure can be viewed at
wileyonlinelibrary.com]

GREGOR ET AL. | 9
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Specifically, for any a a a i n= ( , …, ), = 2, …,k1 , and c k[ ]∈ , the subgraph of aG ( ) induced
by the vertex set aΠ( )i c, is isomorphic to bG ( ), where b is the partition obtained from a by
decreasing ai by 1 (and possibly sorting the resulting numbers nonincreasingly); see Figure 5.

Moreover, for any b a⋅ we have b aΔ( ) = Δ( ) − 1 or b aΔ( ) = Δ( ) + 1. In particular, if
aΔ( ) > 0, then we have bΔ( ) 0≥ . For example, the vertex set of aG ( ) for a = (3, 2, 2)

( aΔ( ) = 1) can be partitioned into one copy of bG ( ) for b = (2, 2, 2) (if the fixed symbol is
c = 1; bΔ( ) = 2) and two copies of bG ( ′) for b′ = (3, 2, 1) (if the fixed symbol is c = 2 or c = 3;
bΔ( ′) = 0). Therefore, we may construct a Hamilton path inG (3, 2, 2) by gluing together paths

in each of these three subgraphs which exist by induction.
While conceptually simple, implementing this idea incurs considerable technical obstacles,

in particular for some of the graphs aG ( ) with aΔ( ) = 1, that is, instances that are very close to
the hyperplane aΔ( ) = 0. The proof is split into several interdependent lemmas, and it is the
technically most demanding part of our paper.

Theorem 10 follows immediately from the inductive proof of Theorem 7 and by settling
finitely many cases with computer help.

1.5.3 | The case aΔ( ) = 0

Our proofs of Theorems 8 and 9 build on ideas introduced in the papers [12, 22].
Specifically, the first step in proving Theorem 8 is to build a cycle factor in the graph G α α( , ),

that is, a collection of disjoint cycles in the graph that together visit all vertices. We then choose
vertices x and y from the two partition classes of the graph that we want to connect by a Hamilton
path. In this we can take into account automorphisms of G α α( , ), that is, for proving laceability
only certain pairs of vertices x and y in the two partition classes have to be considered. In the next
step, we join a small subset of cycles from the factor, including the ones containing x and y, to a
short path between x and y. This is achieved by taking the symmetric difference of the edge set of
the cycle factor with a carefully chosen path P from x to y that alternately uses edges on one of the
cycles from the factor and edges that go between two such cycles; see Figure 6A,B. In the last step,
we join the remaining cycles of the factor to the path between x and y, until we end with a
Hamilton path from x to y. Each such joining is achieved by taking the symmetric difference of the
cycle factor with a suitably chosen 6‐cycle; see Figure 6B,C.

It was shown in [12] that the cycles of the aforementioned cycle factor in G α α( , ) are
bijectively equivalent to plane trees with α vertices, and the joining operations via 6‐cycles can
be interpreted combinatorially as local change operations between two such plane trees. To
prove Theorem 9, we first generalize the construction of this cycle factor in the graphG α α( , ) to

FIGURE 5 Decomposing G (2, 1, 1) into three subgraphs by fixing the last symbol. [Color figure can be
viewed at wileyonlinelibrary.com]
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a cycle factor in any graph a aG a a( ), = ( , …, )k1 , with aΔ( ) = 0. It turns out that the cycles of
this generalized factor can be interpreted combinatorially as vertex‐labeled plane trees, where
exactly ai vertices have the label i for i k= 2, …, . If a α α= ( , ), then all vertex labels are the
same, so we can consider the trees as unlabeled. Moreover, the joining 6‐cycles in G α α( , )

generalize nicely to joining 12‐ or 6‐cycles in aG ( ) with aΔ( ) = 0, and they correspond to local
change operations involving sets T of labeled plane trees with T {2, 3, 5, 6}∈  , depending on
the location of vertex labels. For proving Theorem 9, we consider the special case
a α α= ( , − 1, 1), that is, exactly one vertex in the plane trees is labeled differently from all
other vertices, and we show that there is a choice of joining cycles so that the symmetric
difference with the cycle factor yields a Hamilton cycle in the graph aG ( ).

1.6 | Outline of this paper

In Section 2 we collect definitions and observations that will be used throughout this paper. The proof
of Theorem 4 is presented in Section 3. In Section 4, we prove Theorems 7 and 10. The proofs of
Theorems 8 and 9 are presented in Section 5. This section can be read independently from the
previous sections, but it relies on results from the previous papers [12, 22]. We conclude in Section 6
with some open questions and possible directions for future work.

2 | PRELIMINARIES

The following definitions and lemmas will be used repeatedly in this paper.

2.1 | Fixing symbols

For any sequence of nonnegative integers a a a a= ( , , …, )k1 2 , we let φ a( ) be the partition
obtained by sorting the sequence a nonincreasingly. For instance, we have
φ (2, 3, 1, 1, 4) = (4, 3, 2, 1, 1).

As mentioned before, aΠ( )i c, is the set of all multiset permutations from aΠ( ) whose ith
symbol equals c. We write a a aG G( ) ( )[Π( ) ]i c i c, ,≔ for the subgraph of aG ( ) induced by the
vertex set aΠ( )i c, . We observed before that aΠ( ) c1, is an independent set for all c k[ ]∈ , and that
aG i n( ) , = 2, …,i c, , is isomorphic to bG ( ) for b a a aφ a a a a( ′) , ′ ( , …, , − 1, ,c c c1 −1 +1≔ ≺⋅ ≔

(A) (B) (C)

FIGURE 6 Strategy of the proof of Theorem 8. [Color figure can be viewed at wileyonlinelibrary.com]
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a…, )k . We also allow repeating this operation and define a aG G( ) ( ( ) )i j c d i c j d( , ),( , ) , ,≔ for
i j n, [ ]∈ with i j≠ and c d k, [ ]∈ with c d≠ or a a= 2c d ≥ .

Our first lemma follows directly from the definition (2).

Lemma 11. If b a≺⋅ , then we have b aΔ( ) = Δ( ) − 1, except if a and b differ in the
largest part, in which case b aΔ( ) = Δ( ) + 1.

2.2 | Partition lemmas

The next lemma quantifies the size of the k partition classes of the graph aG ( ) discussed in
Section 1.4.

Lemma 12. For any integer partition a a a= ( , …, )k1 , the graph G a a( , …, )k1 is k‐partite,
with the partition classes a aΠ( ) , …, Π( ) k1,1 1, given by fixing the first symbol, and the size of
the ith partition class is

as
n

a a a a a

n

a a a a a
Π( ) =

− 1

, …, , − 1, , …,
=

( − 1)!

! ! ( − 1) ! ! !
.i

i

i i i k i i i k

1,

1 −1 +1 1 −1 +1

≔
⋯ ⋯

  







(3)

Moreover, we have s sk1 ≥ ⋯ ≥ , in particular, the first partition class is a largest one.
Lastly, if aΔ( ) < 0, then the first partition class is larger than all others combined, if
aΔ( ) = 0 then the first partition class has the same size as all others combined, and if
aΔ( ) > 0 then every partition class is smaller than all others combined.

Proof. As every star transposition changes the first symbol, the sets a aΠ( ) , …, Π( ) k1,1 1,

are independent sets in the graph aG ( ). The multinomial coefficient in (3) describes the
number of ways of arranging n − 1 symbols at positions n2, …, , with only a − 1i

occurrences of the symbol i remaining (one symbol i is fixed at the first position).
This proves the first part of the lemma. The monotonicity s sk1 ≥ ⋯ ≥ follows
immediately from (1) and (3). Using the definition (3), the equation s s> i

k
i1 =2 can be

rearranged to a n2 >1 , which by the definition (2) is equivalent to aΔ( ) < 0. Reversing
the direction of inequalities or replacing them by equality completes the proof of the
second part of the lemma. □

The following result complements Lemma 12 by showing that some of the graphs aG ( ) are
not only k‐partite, but also bipartite even for k 3≥ distinct symbols. An inversion in a
permutation is a pair of entries where the first entry is larger than the second.

Lemma 13. For any integer partition a a a= ( , …, )k1 with k 3≥ parts, the graph aG ( ) is
not bipartite unless a a= = = 1k1 ⋯ . If a a= = = 1k1 ⋯ , then the two partition classes
are given by the parity of the number of inversions of the permutations, and they have the
same size.

12 | GREGOR ET AL.
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Proof. Note that if b a≺ , then bG ( ) is a subgraph of aG ( ). Specifically, if b a<i i, then
we may fix a b−i i occurrences of i on one of the positions n2, …, a in the graph aG ( ).
Consequently, unless a a= = = 1k1 ⋯ , the graph G (2, 1, 1) is a subgraph of aG ( ). As
G (2, 1, 1) contains a 7‐cycle (highlighted in Figure 3), a graph containing it as a subgraph
is not bipartite.

We proceed to show that G (1 )k is bipartite. This follows directly from the observation
that every transposition of two entries of a permutation changes the parity of the number
of inversions. Moreover, permuting the first two entries is a bijection between
permutations with an even or odd number of inversions, so both partition classes have
the same size. □

The next lemma shows that Hamilton paths in aG ( ) with aΔ( ) = 0 have a very rigid
structure.

Lemma 14. Let a a a= ( , …, )k1 be an integer partition with aΔ( ) = 0. Then on every
Hamilton path in aG ( ) whose end vertices differ in the first entry, every second vertex of the
path is from aΠ( )1,1, and every other vertex on the path is not from aΠ( )1,1.

In terms of star transpositions, this means that the symbol 1 is swapped in every step, either
in or out of the first position.

Proof. By Lemma 12, the partition class aΠ( )1,1 of the graph aG ( ) has the same size as
all others combined. Consequently, one of the end vertices of any Hamilton path must be
in this largest class. By the assumption that the other end vertex is not in aΠ( )1,1, the
Hamilton path is forced to visit aΠ( )1,1 in every second step. □

2.3 | Hamiltonicity notions

In our proofs we will use Hamilton‐connectedness, Hamilton‐laceability, and Hamilton‐1‐laceability
heavily, and also other strengthenings of the notion of containing a Hamilton cycle. It will be
convenient to introduce shorthand notations for graphs satisfying these properties.

To this end, we let  denote the family of all graphs aG ( ) for any integer partition
a a a= ( , …, )k1 , where k 2≥ and a a 1k1 ≥ ⋯ ≥ ≥ . We also define the following subsets of  :

 All graphs in  that have a Hamilton path, that is, a path that visits every vertex exactly
once.

 All graphs in  that have a Hamilton cycle, that is, a cycle that visits every vertex exactly
once.

 All graphs in  such that for every edge of the graph, there is a Hamilton cycle containing
this edge.1

 All graphs in  that are Hamilton‐laceable, that is, bipartite graphs such that for any two
vertices from the two partition classes, there is a Hamilton path between them.

1This property is sometimes called “edge‐Hamiltonian,” “strongly Hamiltonian,” or “positively Hamiltonian.”

GREGOR ET AL. | 13
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1 All graphs in  that are Hamilton‐1‐laceable, that is, for which there is a Hamilton path
between any vertex in aΠ( )1,1 and any vertex not in aΠ( )1,1. Recall that aΠ( )1,1 are the
multiset permutations in aΠ( ) whose first symbol is 1.

 All graphs in  that are Hamilton‐connected, that is, for which there is a Hamilton path
between any two distinct vertices.

To handle the graphs aG ( ) with a α α= ( , , 1) in our proofs, we need yet another
Hamiltonicity notion. While we conjecture that these graphs aG ( ) are Hamilton‐connected, we
are unable to prove this based on Conjecture 6. This is because all integer partitions b with
b a⋅ , namely, b α α= ( , − 1, 1) and b α α= ( , ) satisfy aΔ( ) = 0, which makes these graphs
aG ( ) particularly difficult to deal with. We will content ourselves by showing that aG ( ) satisfies

the following variant of Hamilton‐laceability, which we denote by 12 .
Roughly speaking, the set 12 contains the graphs from  that admit Hamilton paths

between pairs of vertices x and y with particular combinations of first symbols s and t , subject
to the constraint that another position ı̂ > 1 contains a particular combination of values p and
q. The required combinations of symbols are summarized in Figure 7, and they are formally
defined as follows. For ℓ {3, 4}∈ and any s {1, 2}∈ and t {1, 2, ℓ}∈ we define

p s t
t s

t
q s t s( , )

ℓ if { , ℓ},

otherwise
and ( , ) .ℓ ℓ≔

∈
≔


(4)

The set 12 contains all graphs in  for which there is a Hamilton path between any vertex
x with first symbol s {1, 2}∈ and any vertex y distinct from x with first symbol
t {1, 2, ℓ}, ℓ {3, 4}∈ ∈ , for which there is a position ı̂ > 1 such that x y p s t q s t( , ) = ( ( , ), ( , ))ı̂ ı̂ ℓ ℓ .

FIGURE 7 Definition of 12 . [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Hamiltonicity notions ordered by inclusion.
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Even though the vertices of G α α( , , 1) have no symbol 4, we still allow ℓ = 4 in this
definition, as this graph may arise, for example, from G α α( , , 1, 1) by fixing the symbol 3,
yielding a graph with symbols {1, 2, 4} that is isomorphic to G α α( , , 1).

The obvious containment relations that follow from these definitions are shown in Figure 8.
It is not clear whether 1 ⊆ , because for k 3≥ a graph in 1 has edges between the partition
classes where the first symbol is distinct from 1. It is also not clear whether 1 ⊆ , because of
the graphs G k(1 ), 3k ≥ , which by Lemma 13 are bipartite but these partition classes are not
given by fixing the first symbol. Recall that we consider a single edge, that is, the graphG (1, 1),
as a cycle (otherwise  ⊆ and 1 ⊆ would be violated).

3 | PROOF OF THEOREM 4

In this section we present the proof of Theorem 4, implementing the idea outlined in
Section 1.5.1.

Proof of Theorem 4. If aΔ( ) < 0, then by Lemma 12, the partition class aΠ( )1,1 of the
graph aG ( ) is larger than all others combined, so there cannot be a Hamilton cycle. This
proves the first part of the theorem.

To prove the second part, we first show that if aΔ( ) < 0, then the sizes of the partition
classes defined in (3) satisfy s s− > 1i

k
i1 =2 , unless a = (2, 1). Clearly, if one partition

class of aG ( ) is by strictly more than 1 larger than all others combined, then there cannot
be a Hamilton path. Note also that the graph G (2, 1) is the path on three vertices, which
indeed has a Hamilton path. We have seen that aΔ( ) < 0 implies s s− > 0i

k
i1 =2 , and we

now argue that this difference equals 1 if and only if a = (2, 1). We clearly have

n

a a

n

a, …,
.

k1 1

≥














 (5)

Moreover, from (3) we see that

s
a

n

n

a a
=

, …,
.

k
1

1

1







 (6)

Combining these observations we get

s s s s s
n

a a

a n

n

n

a a

a n

n

n

a
a n

n

a

n

a

n a

1 = − = 2 − = 2 −
, …,

=
2 −

, …,

2 −
= (2 − )

− 1 − 2

− 1

− + 1

2
.

i

k

i

i

k

i
k k

1

=2

1

=1

(3)
1

1

(6) 1

1

(5)
1

1
1

1 1

1≥ ⋅ ⋅ ⋯

  























The resulting product of fractions is nondecreasing, that is, we have
n

a

n

a

n a− 1 − 2

− 1

− + 1

21 1

1≤ ≤ ⋯ ≤ because n a + 11≥ . We thus obtain the inequality
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a n
n

a
1 (2 − )

− 1
.

a

1
1

−11

≥






 (7)

As aa n2 − = −Δ( )1 and aΔ( ) < 0 we have a n2 − > 01 , and as this is an integer we have
a n2 − 11 ≥ . As n a + 11≥ we also have 1

n

a

− 1

1
≥ . From (7) we conclude that a n2 − = 11

and = 1
n

a

− 1

1
, which implies a = 21 and n = 3, that is, a = (2, 1).

This completes the proof. □

4 | PROOFS OF THEOREMS 7 AND 10

In this section we prove Theorems 7 and 10. The proofs are split into several auxiliary lemmas,
which we present first. We then describe the computer experiments we did for settling the base
cases of our induction proofs. We then present the proofs of Theorems 7 and 10, using the base
cases and the lemmas. Finally, we present the proofs of all auxiliary lemmas.

4.1 | Auxiliary lemmas

We will use the following auxiliary lemmas; see Figure 9. These lemmas establish the
Hamiltonicity of aG ( ) for all integer partition a with aΔ( ) 1≥ , conditional on the
Hamiltonicity of bG ( ) for various integer partitions b a≺ that satisfy bΔ( ) 0≥ . The main
technical achievement here is to partition all possible cases of frequency vectors a with
aΔ( ) 1≥ into disjoint cases, such that the induction proofs of Theorems 7 and 10 which apply

these lemmas only rely on previously established cases.
Lemma 15 covers most graphs aG ( ) with aΔ( ) 2≥ , while three special cases of these graphs

are covered by Lemmas 17, 18, and 22. Similarly, Lemma 16 covers most graphs aG ( ) with
aΔ( ) = 1, while three special cases of these are covered by Lemmas 19–21.

FIGURE 9 Relations between our results and auxiliary lemmas, and the different Hamiltonicity notions we
establish for them. Arrows indicate dependencies in the proof of Theorem 7. [Color figure can be viewed at
wileyonlinelibrary.com]
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Lemma 15. Let a a a= ( , …, )k1 be an integer partition with aΔ( ) 2≥ with
a a(1, 1, …, 1), (2, 1, 1, …, 1)≠ ≠ , and a α α α α α{( , , 2), ( , , 1, 1) 3}∉ ≥ . If for all b a⋅
we have bG ( ) ∈ , then we have aG ( ) ∈ .

Lemma 16. Let a a a= ( , …, )k1 be an integer partition with aΔ( ) = 1 with
a {(1, 1, 1), (3, 1, 1, 1, 1)}∉ and a α α α α α α α{( , , 1), ( , − 1, 2), ( , − 1, 1, 1) 2}∉ ≥ . If
for all b a⋅ with bΔ( ) = 0 we have bG ( ) 1∈ , and for the unique b a⋅ with
bΔ( ) = 2 we have that all c b⋅ satisfy cG ( ) ∈ , then we have aG ( ) ∈ .

Lemma 17. Consider the integer partition a α α= ( , , 2) for α 3≥ , which satisfies
aΔ( ) = 2. If b aα α= ( , , 1) ≺⋅ satisfies bG ( ) 12∈ and b aα α= ( , − 1, 2) ≺⋅ satisfies
bG ( ) ∈ , then we have aG ( ) ∈ .

Lemma 18. Consider the integer partition a α α= ( , , 1, 1) for α 3≥ , which satisfies
aΔ( ) = 2. If b aα α= ( , , 1) ≺⋅ satisfies bG ( ) 12∈ and b aα α= ( , − 1, 1, 1) ≺⋅ satisfies
bG ( ) ∈ , then we have aG ( ) ∈ .

Lemma 19. Consider the integer partition a α α= ( , − 1, 2) for α 3≥ , which satisfies
aΔ( ) = 1. If b aφ α α= (( , − 2, 2)) ≺⋅ and b aα α= ( , − 1, 1) ≺⋅ satisfy bG ( ) 1∈ , and if

c aα α= ( − 1, − 1, 1) ≺ satisfies cG ( ) 12∈ and c aφ α α= (( − 1, − 2, 2)) ≺ satisfies
cG ( ) ∈ , then we have aG ( ) ∈ .

Lemma 20. Consider the integer partition a α α= ( , − 1, 1, 1) for α 3≥ , which satisfies
aΔ( ) = 1. If b aα α= ( , − 2, 1, 1) ≺⋅ and b aα α= ( , − 1, 1) ≺⋅ satisfy bG ( ) 1∈ , and if

c aα α= ( − 1, − 1, 1) ≺ satisfies cG ( ) 12∈ and c aα α= ( − 1, − 2, 1, 1) ≺ satisfies
cG ( ) ∈ , then we have aG ( ) ∈ .

Lemma 21. Consider the integer partition a α α= ( , , 1) for α 3≥ , which satisfies
aΔ( ) = 1. If b aα α= ( , ) ≺⋅ satisfies bG ( ) ∈ and b aα α= ( , − 1, 1) ≺⋅ satisfies
bG ( ) 1∈ , then we have aG ( ) 12∈ .

Lemma 22. Consider the integer partition a = (2, 1 )k−1 for k 5≥ , which satisfies
aΔ( ) 2≥ . Then we have aG ( ) ∈ .

4.2 | Base cases

We performed computer experiments to settle the base cases for our inductive proofs, and also
for collecting evidence for Conjecture 6. The results of these experiments are summarized in
Table 1. The second‐to‐last column contains the number of nonisomorphic pairs of vertices of
the graph that need to be checked when testing for 1 or .

We restrict our attention to integer partitions a with aΔ( ) = 0 and aΔ( ) = 1. The results in
Table 1 confirm Conjecture 6 for all integer partitions a (2, 2)≠ with aΔ( ) = 0 that satisfiesn 8≤ .
Some of these results will be used in our proofs of Theorems 7–10, as indicated in the last column
of the table. The last three instances in Table 1 were too large to test for Hamilton‐connectedness,
but they are Hamilton‐connected by Theorem 10.

GREGOR ET AL. | 17

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22915 by T

est, W
iley O

nline L
ibrary on [10/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4.3 | Proof of Theorem 7

With the help of Lemmas 15–22, proving Theorem 7 is relatively straightforward.

Proof of Theorem 7. This proof is illustrated in Figure 9. Conjecture 6 asserts that for all
integer partitions a (2, 2)≠ with aΔ( ) = 0 we have aG ( ) 1∈ , and we now assume that
this is indeed the case. We show that under this assumption the following eleven
statements hold. Consider the following statements about integer partitions a with
aΔ( ) = 1:

(1a) For a = (1, 1, 1) we have aG ( ) ∈ ;
(1b) For a {(2, 1, 1, 1), (2, 2, 1), (3, 1, 1, 1, 1)}∈ we have aG ( ) ∈ ;

TABLE 1 Base cases settled by computer.

n Partition a aΔ( ) Hamiltonicity of G a( ) Vertices Vertex pairs Used in proof of

2 (1, 1) 0  2 1

3 (1, 1, 1) 1  but not  6 2

4 (2, 2) 0  but not  6 2

(2, 1, 1) 0 1 but not  12 6 Theorems 9 and 10

5 (2, 2, 1) 1  30 23 Theorems 7 and 10

(2, 1, 1, 1) 1  60 31 Theorem 7

6 (3, 3) 0 =1  but not  20 3 Theorems 8 and 10

(3, 2, 1) 0 1 but not  60 26 Theorems 9 and 10

(3, 1, 1, 1) 0 1 but not  120 16 Theorem 10

7 (3, 3, 1) 1  140 38 Theorem 10

(3, 2, 2) 1  210 65

(3, 2, 1, 1) 1  420 209

(3, 1, 1, 1, 1) 1  840 79 Theorem 7

8 (4, 4) 0 =1  but not  70 4 Theorems 8 and 10

(4, 3, 1) 0 1 but not  280 40 Theorem 10

(4, 2, 2) 0 1 but not  420 32 Theorem 10

(4, 2, 1, 1) 0 1 but not  840 100 Theorem 10

(4, 1, 1, 1, 1) 0 1 but not  1680 36 Theorem 10

9 (4, 4, 1) 1  630 53 Theorem 10

(4, 3, 2) 1  1260 219

(4, 3, 1, 1) 1  2520 347

(4, 2, 2, 1) 1  but nothing more tested 3780 565

(4, 2, 1, 1, 1) 1  but nothing more tested 7560 685

(4, 1, 1, 1, 1, 1) 1  but nothing more tested 15,120 173
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(1c) For any a α α α{( , , 1) 3}∈ ≥ we have aG ( ) 12∈ ;
(1d) For any a α α α{( , − 1, 2) 3}∈ ≥ we have aG ( ) ∈ ;
(1e) For any a α α α{( , − 1, 1, 1) 3}∈ ≥ we have aG ( ) ∈ ;
(1f) For any a that satisfies a {(1, 1, 1), (3, 1, 1, 1, 1)}∉ and a α α α{( , , 1), ( ,∉

α α α α− 1, 2), ( , − 1, 1, 1) 2}≥ we have aG ( ) ∈ .

Consider the following statements about integer partitions a with aΔ( ) 2≥ :

(2a) For any a k= 1 , 4k ≥ , we have aG ( ) ∈ ;
(2b) For any a k= (2, 1 ), 5k−1 ≥ , we have aG ( ) ∈ ;
(2c) For any a α α α{( , , 2) 3}∈ ≥ , we have aG ( ) ∈ ;
(2d) For any a α α α{( , , 1, 1) 3}∈ ≥ , we have aG ( ) ∈ ;
(2e) For any a that satisfies a a(1, 1, …, 1), (2, 1, 1, …, 1)≠ ≠ and

a α α α α α{( , , 2), ( , , 1, 1) 3}∉ ≥ , we have aG ( ) ∈ .

Note that the cases considered in these statements are mutually exclusive and cover
all possibilities.

Recall thatG (1, 1, 1) is a 6‐cycle, so (1a) holds trivially and unconditionally. Also, (1b)
holds unconditionally by Table 1. Moreover, (2a) and (2b) hold unconditionally by
Theorem 5 and Lemma 22, respectively. Statement (1c) holds by Lemma 21, using that
for a α α= ( , , 1) with α 3≥ , the partition b aα α= ( , ) ≺⋅ satisfies bG ( ) ∈ by
Theorem 8, and the partition b aα α= ( , − 1, 1) ≺⋅ satisfies bG ( ) 1∈ by Conjecture 6.

We prove the remaining statements by induction on n a= i
k

i=1 .
Statement (1d) holds by Lemma 19, using that for a α α= ( , − 1, 2) with α 3≥ , the

partitions b aφ α α= (( , − 2, 2)) ≺⋅ and b aα α= ( , − 1, 1) ≺⋅ satisfy bG ( ) 1∈ by
Conjecture 6, the partition c aα α= ( − 1, − 1, 1) ≺ satisfies cG ( ) 12∈ if α 4≥ by
induction and (1c) and cG G( ) = (2, 2, 1) 12 ∈ ⊆ if α = 3 by Table 1, and the
partition c aφ α α= (( − 1, − 2, 2)) ≺ satisfies cG ( ) ∈ if α 4≥ by induction and (1d)
and cG G( ) = (2, 2, 1) ∈ if α = 3.

Statement (1e) holds by Lemma 20, using that for a α α= ( , − 1, 1, 1) with α 3≥ , the
partitions b aα α= ( , − 2, 1, 1) ≺⋅ and b aα α= ( , − 1, 1) ≺⋅ satisfy bG ( ) 1∈ by
Conjecture 6, the partition c aα α= ( − 1, − 1, 1) ≺ satisfies cG ( ) 12∈ if α 4≥ by
induction and (1c) and cG G( ) = (2, 2, 1) ∈ if α = 3 by Table 1, and the partition
c aα α= ( − 1, − 2, 1, 1) ≺ satisfies cG ( ) ∈ if α 4≥ by induction and (1e) and
cG G( ) = (2, 1, 1, 1) ∈ if α = 3.
Statement (2c) holds by Lemma 17, using that for a α α= ( , , 2) with α 3≥ , the

partition b aα α= ( , , 1) ≺⋅ satisfies bG ( ) 12∈ by induction and (1c), and the partition
b aα α= ( , − 1, 2) ≺⋅ satisfies bG ( ) ∈ by induction and (1d).

Statement (2d) holds by Lemma 18, using that for a α α= ( , , 1, 1) with α 3≥ , the
partition b aα α= ( , , 1) ≺⋅ satisfies bG ( ) 12∈ by induction and (1c), and the partition
b aα α= ( , − 1, 1, 1) ≺⋅ satisfies bG ( ) ∈ by induction and (1e).

To prove statement (1f), consider a partition a a a= ( , …, )k1 satisfying the conditions of
(1f). Note that n a= 9i

k
i=1 ≥ , as the only partitions with n {2, …, 8}∈ and aΔ( ) = 1 are

a {(1, 1, 1), (2, 2, 1), (2, 1, 1, 1), (3, 3, 1), (3, 2, 2), (3, 2, 1, 1), (3, 1, 1, 1, 1)}∈ , which are
excluded by the conditions of (1f). From (2) and aΔ( ) = 1 we obtain a n= ( − 1) 2 41 ∕ ≥

and a a+ 1 = i
k

i1 =2 . The latter equation implies a a< − 12 1 , as otherwise
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a a a+ 1 ( − 1) + i
k

i1 1 =3≥  , or equivalently, a 2i
k

i=3 ≤ , that is, we would have
a α α α α α α{( , , 1), ( , − 1, 2), ( , − 1, 1, 1)}∈ for α a 41≔ ≥ , which is impossible by the
conditions of (1f). We thus obtain a a − 22 1≤ and a 3i

k
i=3 ≥ , in particular k 3≥ .

We now check that the preconditions of Lemma 16 are met. Consider any partition
b a≺⋅ that has the same first entry as a. By Lemma 11 we have bΔ( ) = 0. From n 9a ≥

we obtain that n 8b ≥ , implying that b (2, 2)≠ . Consequently, by Conjecture 6 we have
bG ( ) 1∈ .
Now consider the partition b a a a= ( − 1, , …, )k1 2 , which satisfies
b aΔ( ) = Δ( ) + 1 = 2 by Lemma 11. We show that all c b≺⋅ satisfy cG ( ) ∈ . From

n 9a ≥ we obtain that n 8b ≥ and n 7c ≥ . Clearly, any c b≺⋅ satisfies cΔ( ) {1, 3}∈ by
Lemma 11. Specifically, the partition c a a a= ( − 2, , …, )k1 2 satisfies cΔ( ) = 3, but we
have c 1k≠ for k 4≥ because of a − 2 21 ≥ , so by induction and (2b) + (2e) we have
cG ( ) ∈ . Moreover, any other partition c b≺⋅ that has the same first entry as b satisfies
cΔ( ) = 1, but we have c (1, 1, 1)≠ and c α α( , , 1)≠ for α 3≥ because of a 3i

k
i=3 ≥ , so

by induction and (1b) + (1d) + (1e) + (1f) we have cG ( ) ∈ .
We argued that the preconditions for applying Lemma 16 are met, and this lemma

therefore yields aG ( ) ∈ , proving (1f).
It remains to prove statement (2e). Consider a partition a a a= ( , …, )k1 satisfying the

conditions of (2e). Note that n a= 6i
k

i=1 ≥ , as there are no partitions with n {2, …, 5}∈

and aΔ( ) = 2. Note that a a 21 2≥ ≥ by the assumptions a (1, 1, …, 1)≠ and
a (2, 1, 1, …, 1)≠ in (2e). Moreover, if a {(2, 2, 2), (2, 2, 1, 1)}∉ then we have a a>1 2

by the assumptions a α α α α α{( , , 2), ( , , 1, 1) 3}∉ ≥ . From the equation
a a+ 2 = i

k
i1 =2 and a a1 2≥ we obtain a 2i

k
i=3 ≥ , in particular k 3≥ . Moreover, if

a {(2, 2, 2), (2, 2, 1, 1)}∉ then we can use the strict inequality a a>1 2 instead and obtain
a 3i

k
i=3 ≥ .

We now verify that the preconditions of Lemma 15 are met, that is, we consider all
partitions b a≺⋅ . From n 5a ≥ we obtain that n 4b ≥ . If a a>1 2 then consider the
partition b a a a= ( − 1, , …, )k1 2 , which satisfies b aΔ( ) = Δ( ) + 1 3≥ by Lemma 11, but
b 1k≠ for k 4≥ because of a 22 ≥ . Consequently, by induction and (2b) + (2e) we have
bG ( ) ∈ . Now suppose that a {(2, 2, 2), (2, 2, 1, 1)}∉ and consider any partition b a≺⋅

that has the same first entry as a, then by Lemma 11 we have b aΔ( ) = Δ( ) − 1 1≥ , but
we have b (1, 1, 1)≠ and b α α( , , 1)≠ for α 3≥ because of a − 1 2i

k
i=3 ≥ ,

and b 1k≠ for k 4≥ and b (2, 1 )k−1≠ for k 5≥ because of a 22 ≥ , so by induction
and (1b) + (1d) + (1e) + (1f) + (2b) + (2c) + (2d) + (2e) we have bG ( ) ∈ .
Lastly, if a {(2, 2, 2), (2, 2, 1, 1)}∈ then there two partitions b a≺⋅ , namely,
b {(2, 2, 1), (2, 1, 1, 1)}∈ , and both satisfy bG ( ) ∈ by (1b).

As the preconditions of Lemma 15 are satisfied, the lemma yields aG ( ) ∈ ,
proving (2e).

This completes the proof of Theorem 7. □

4.4 | Proof of Theorem 10

Proof of Theorem 10. From Table 1 we see that Conjecture 6 holds for all
10 integer partitions a (2, 2)≠ with aΔ( ) = 0 whose first entry a1 is at most 4.
Specifically, these are the partitions a {(1, 1), (2, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1), (4, 4),∈
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(4, 3, 1), (4, 2, 2), (4, 2, 1, 1), (4, 1, 1, 1, 1)}. For any integer partition a with a 41 ≤ , we
have that all integer partitions b a≺ also satisfy b 41 ≤ . Consequently, the statements
(1a)–(1f) and (2a)–(2e) in the proof of Theorem 7 hold unconditionally for all such
integer partitions. As a {2, 3, 4}1 ∈ we have a (1, 1, 1)≠ and a 1k≠ for k 4≥ , and as
aG ( ) ∈ for a {(3, 3, 1), (4, 4, 1)}∈ by Table 1, we conclude that aG ( ) ∈ . □

4.5 | Proofs of auxiliary lemmas

To prove Lemmas 15–22, we follow the ideas outlined in Section 1.5.2, namely, to partition the
graph aG ( ) into subgraphs that are isomorphic to bG ( ) for integer partitions b a≺ , by fixing
symbols at one or more of the positions n2, …, . This allows us to construct a Hamilton path in
the entire graph aG ( ) by gluing together the Hamilton paths obtained in the various subgraphs
bG ( ) for b a≺ . The main difficulty is to ensure that the paths in the subgraphs bG ( ) under

various constraints “fit together,” and that the constraints imposed on them at the gluing
vertices are not too severe to rule out their existence.

Proof of Lemma 15. As a (1, 1, …, 1)≠ and a (2, 1, 1, …, 1)≠ , we know that
a a 21 2≥ ≥ . Moreover, from (2) we know that aa a+ Δ( ) = i

k
i1 =2 . Using aΔ( ) 2≥

and a a1 2≥ in this equation yields a 2i
k

i=3 ≥ , in particular k 3≥ .
Let x y, be two distinct vertices in aG ( ). As x y≠ there is a position ı̂ > 1 such that

x yı̂ ı̂≠ . As a a 21 2≥ ≥ and a 2i
k

i=3 ≥ , there are two indices i i n, [ ] \ {1, ı̂}1 2 ∈ such that
x xi i1 2
≠ . Similarly, there are two indices i i n, [ ] \ {1, ı̂}3 4 ∈ such that y yi i3 4

≠ .
We fix any permutation π on k[ ] such that π x=1 ı̂ and π y=k ı̂, and we choose a

sequence of multiset permutations au v j k, Π( ), = 1, …,j j ∈ , satisfying the following
conditions; see Figure 10:

(i) u x v x= , =i i
1 1

1 2
, and v y u y= , =k

i
k

i3 4
;

(ii) u v π u v π= = , = =j j
j

j j
j1 ı̂

−1
−1 ı̂ 1

−1 , and u v=i
j

i
j−1 for all j k2 ≤ ≤ and i n[ ] {1, ı̂}∈ ⧹ .

As u π=j j1 −1 and v π=j j1 +1 by (ii), we have u vj j≠ for all j k1 < < . Moreover, by (i)
and the choice of i i,1 2 and i i,3 4 we also have u v1 1≠ and u vk k≠ , respectively.

For j k= 1, …, we define a a a a′ ( , …, − 1, …, )π k1 j
≔ and b a aφ ( ′)≔ ≺⋅ , and we

consider a Hamilton path Pj in the graph a bG G( ) ( )πı̂ , j ≃ from uj to v j, which exists by
the assumption bG ( ) ∈ . By (ii), for all j k2 ≤ ≤ , the permutation uj differs from v j−1

by a transposition of the entries at positions 1 and ı̂, implying that the concatenation
P P Pk1 2 ⋯ is a Hamilton path in aG ( ) from x to y. □

The strategy for proving Lemmas 17 and 18 is the same as for the proof of Lemma 15. The
crucial difference is that now one or two building blocks for partitions b a≺⋅ are only assumed
to satisfy the weaker property bG ( ) 12∈ , and not bG ( ) ∈ , so we have to work around this
by imposing extra conditions on those building blocks.

Proof of Lemma 17. Let x y, be two distinct vertices in aG ( ). As x y≠ there is a position
ı̂ > 1 such that x yı̂ ı̂≠ . As the symbols 1 and 2 both appear with the same frequency α,
we may assume w.l.o.g. that either x y( , ) = (1, 2)ı̂ ı̂ or x y( , ) = (1, 3)ı̂ ı̂ .
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We first consider the case x y( , ) = (1, 2)ı̂ ı̂ . As α 3≥ , there are two indices
i i n, [ ] {1, ı̂}1 2 ∈ ⧹ such that x 2i1 ≠ and x = 2i2 , in particular x xi i1 2

≠ . Similarly, there
are two indices i i n, [ ] {1, ı̂}3 4 ∈ ⧹ such that y 1i3

≠ and y = 1i4
, in particular y yi i3 4

≠ . We
choose multiset permutations au v j, Π( ), = 1, 2, 3j j ∈ , satisfying the following
conditions; see Figure 11A:

(i) u x v x= , = = 2i i
1 1

1 2
, and v y u y= , = = 1i i

3 3
3 4

;
(ii) u v u v u v u v= = 1, = = 3, = = 3, = = 21

2
ı̂
1

ı̂
2

1
1

1
3

ı̂
2

ı̂
3

1
2 , and u v=i

j
i
j−1 for j = 2, 3 and

all i n[ ] {1, ı̂}∈ ⧹ ;
(iii) u v( , ) = (2, 1)i i

2 2
1 1

.

Note that u v1 1≠ and u v3 3≠ holds by (i) and the choice of i i,1 2 and i i,3 4, respectively,
and u v1

2
1
2≠ by (ii). Consequently, we have u vj j≠ for j = 1, 2, 3.

We consider a Hamilton path P1 in aG ( )ı̂ ,1 from u1 to v1, and a Hamilton path P3 in
aG ( )ı̂ ,2 from u3 to v3, which exist by the assumption G α α( , − 1, 2) ∈ . We also

consider a Hamilton path P2 in aG ( )ı̂ ,3 from u2 to v2, which exists by the assumption
G α α( , , 1) 12∈ , using that u v( , ) = (1, 2)1

2
1
2 and u v p q( , ) = (2, 1) = ( (1, 2), (1, 2))i i

2 2
3 31 1

by

(ii) + (iii) and (4). The concatenation P P P1 2 3 is a Hamilton path in aG ( ) from x to y.
It remains to consider the case x y( , ) = (1, 3)ı̂ ı̂ . We define t y {1, 2, 3}1≔ ∈ and

p p t(2, ) {1, 3}3≔ ∈ . As α 3≥ , there are two indices i i n, [ ] {1, ı̂}1 2 ∈ ⧹ such that x xi i1 2
≠ .

Similarly, there is an index i n[ ] {1, ı̂}3 ∈ ⧹ such that y = 2i3
. We choose multiset

permutations au v j, Π( ), = 1, 2, 3j j ∈ , satisfying the following conditions; see Figure 11B:

(i) u x v x= , =i i
1 1

1 2
, and v y=3 ;

(ii) u v u v u v u v= = 1, = = 2, = = 2, = = 31
2

ı̂
1

ı̂
2

1
1

1
3

ı̂
2

ı̂
3

1
2 , and u v=i

j
i
j−1 for j = 2, 3 and

all i n[ ] {1, ı̂}∈ ⧹ ;
(iii) u p=i

3
3

.

FIGURE 10 Illustration of the proof of Lemma 15. [Color figure can be viewed at wileyonlinelibrary.com]
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Note that u v1 1≠ by (i) and the choice of i i u v, ,1 2 1
2

1
2≠ by (ii), and u v3 3≠ by (iii), the

choice of i3 and the fact that p 2≠ . Consequently, we have u vj j≠ for j = 1, 2, 3.
We consider a Hamilton path P1 in G a( )ı̂ ,1 from u1 to v1, and a Hamilton path P2 in
aG ( )ı̂ ,2 from u2 to v2, which exist by the assumption G α α( , − 1, 2) ∈ . We also

consider a Hamilton path P3 in aG ( )ı̂ ,3 from u3 to v3, which exists by the assumption
G α α( , , 1) 12∈ , using that u v t( , ) = (2, )1

3
1
3 and u v p p t q t( , ) = ( , 2) = ( (2, ), (2, ))i i

3 3
3 33 3

by

(i)–(iii) and (4). The concatenation P P P1 2 3 is a Hamilton path in aG ( ) from x to y. □

Proof of Lemma 18. Let x y, be two distinct vertices in aG ( ). As x y≠ there is a position
ı̂ > 1 such that x yı̂ ı̂≠ . As the symbols 1 and 2 both appear with the same frequency α,
and the symbols 3 and 4 both appear with the same frequency 1, we may assume w.l.o.g.
that either x y x y( , ) = (1, 2), ( , ) = (1, 3)ı̂ ı̂ ı̂ ı̂ , or x y( , ) = (3, 4)ı̂ ı̂ .

We first consider the case x y( , ) = (1, 2)ı̂ ı̂ . Let i2 be the unique index such that x = 4i2 ,
and let i4 be the unique index such that y = 3i4

. As α 3≥ and hence n α2 + 2 8≥ ≥ ,
there is an index i n i[ ] {1, ı̂, }1 2∈ ⧹ and an index i n i i[ ] {1, ı̂, , }3 4 1∈ ⧹ , and they will satisfy
x 4i1 ≠ and y 3i3

≠ . We choose multiset permutations au v j, Π( ), = 1, 2, 3, 4j j ∈ ,
satisfying the following conditions; see Figure 12A:

(i) u x v x= , = = 4i i
1 1

1 2
, and v y u y= , = = 3i i

4 4
3 4

;
(ii) u v u v u v u v u v u v= = 1, = = 3, = = 3, = = 4, = = 4, = = 21

2
ı̂
1

ı̂
2

1
1

1
3

ı̂
2

ı̂
3

1
2

1
4

ı̂
3

ı̂
4

1
3 ,

and u v=i
j

i
j−1 for j = 2, 3, 4 and all i n[ ] {1, ı̂}∈ ⧹ ;

(iii) u v u v( , ) = (4, 1), ( , ) = (2, 3)i i i i
2 2 3 3
1 1 3 3

.

Note that u v1 1≠ and u v4 4≠ by (i) and the choice of i i,1 2 and i i,3 4, respectively, and
u vj j
1 1≠ for j = 2, 3 by (ii). Consequently, we have u vj j≠ for j = 1, 2, 3, 4.
We consider a Hamilton path P1 in aG ( )ı̂ ,1 fromu1 to v1, and a Hamilton path P4 in aG ( )ı̂ ,2

from u4 to v4, which exist by the assumption G α α( , − 1, 1, 1) ∈ . We also consider a
Hamilton path P2 in aG ( )ı̂ ,3 from u2 to v2, which exists by the assumptionG α α( , , 1) 12∈ ,
using that u v( , ) = (1, 4)1

2
1
2 and u v p q( , ) = (4, 1) = ( (1, 4), (1, 4))i i

2 2
4 41 1

by (ii) + (iii) and (4).

Note here that in aG ( )ı̂ ,3 , the symbol 4 takes the role of 3 inG α α( , , 1). Finally, we consider a
Hamilton path P3 in aG ( )ı̂ ,4 from u3 to v3, which exists by the assumptionG α α( , , 1) 12∈ ,

(A) (B)

FIGURE 11 Illustration of the proof of Lemma 17. [Color figure can be viewed at wileyonlinelibrary.com]
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using that u v( , ) = (3, 2)1
3

1
3 and u v q p( , ) = (2, 3) = ( (2, 3), (2, 3))i i

3 3
3 33 3

by (ii) + (iii) and (4).

The concatenation P P P P1 2 3 4 is a Hamilton path in aG ( ) from x to y.
We now consider the case x y( , ) = (1, 3)ı̂ ı̂ . We define t y {1, 2, 4}1≔ ∈ and

p p t(2, ) {1, 4}4≔ ∈ . Let i i n, [ ] {1, ı̂}1 2 ∈ ⧹ be such that x 2i1 ≠ and x = 2i2 . Similarly,
let i n[ ] {1, ı̂}3 ∈ ⧹ be such that y = 2i3

. We choose multiset permutations
au v j, Π( ), = 1, 2, 3, 4j j ∈ , satisfying the following conditions; see Figure 12B:

(i) u x v x= , = = 2i i
1 1

1 2
, and v y=4 ;

(ii) u v u v u v u v u v u v= = 1, = = 4, = = 4, = = 2, = = 2, = = 31
2

ı̂
1

ı̂
2

1
1

1
3

ı̂
2

ı̂
3

1
2

1
4

ı̂
3

ı̂
4

1
3 and

u v=i
j

i
j−1 for j = 2, 3, 4 and all i n[ ] {1, ı̂}∈ ⧹ ;

(iii) u v( , ) = (2, 1)i i
2 2
1 1

and u p=i
4
3

.

Note that u v1 1≠ by (i) and the choice of i i u v, , j j
1 2 1 1≠ for j = 2, 3 by (ii), and u v4 4≠ by

(iii), the choice of i3 and the fact that p 2≠ . Consequently, we have u vj j≠ for j = 1, 2, 3, 4.
We consider a Hamilton path P1 in aG ( )ı̂ ,1 from u1 to v1, and a Hamilton path P3 in
aG ( )ı̂ ,2 from u3 to v3, which exist by the assumption G α α( , − 1, 1, 1) ∈ . We also

consider a Hamilton path P2 in aG ( )ı̂ ,4 from u2 to v2, which exists by the assumption
G α α( , , 1) 12∈ , using that u v( , ) = (1, 2)1

2
1
2 and u v p q( , ) = (2, 1) = ( (1, 2), (1, 2))i i

2 2
3 31 1

by

(ii) + (iii) and (4). Finally, we consider a Hamilton path P3 in aG ( )ı̂ ,3 from u4 to v4,
which exists by the assumption G α α( , , 1) 12∈ , using that u v t( , ) = (2, )1

4
1
4 and

u v p p t q t( , ) = ( , 2) = ( (2, ), (2, ))i i
4 4

4 43 3
by (i)–(iii) and (4). The concatenation P P P P1 2 3 4 is

a Hamilton path in aG ( ) from x to y.
It remains to consider the case x y( , ) = (3, 4)ı̂ ı̂ . We define t y {1, 2, 3}1≔ ∈ and

p p t(2, ) {1, 3}3≔ ∈ . Moreover, we define t x′ {1, 2, 4}1≔ ∈ and p p t′ (1, ′) {2, 4}
4

≔ ∈ .
Let i n[ ] {1, ı̂}1 ∈ ⧹ be such that x = 1i1 , and let i n[ ] {1, ı̂}3 ∈ ⧹ be such that y = 2i3

. We
choose multiset permutations au v j, Π( ), = 1, 2, 3, 4j j ∈ , satisfying the following
conditions; see Figure 12C:

(i) u x=1 and v y=4 ;
(ii) u v u v u v u v u v u v= = 3, = = 1, = = 1, = = 2, = = 2, = = 41

2
ı̂
1

ı̂
2

1
1

1
3

ı̂
2

ı̂
3

1
2

1
4

ı̂
3

ı̂
4

1
3 ,

and u v=i
j

i
j−1 for j = 2, 3, 4 and all i n[ ] {1, ı̂}∈ ⧹ ;

(A) (B) (C)

FIGURE 12 Illustration of the proof of Lemma 18. [Color figure can be viewed at wileyonlinelibrary.com]
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(iii) v p= ′i
1
1

and u p=i
4
3

.

Note that u vj j
1 1≠ for j = 2, 3 by (ii), and u v1 1≠ and u v4 4≠ by (iii), the choice of i i,1 3

and the fact that p′ 1≠ and p 2≠ , respectively. Consequently, we have u vj j≠ for
j = 1, 2, 3, 4.

We consider a Hamilton path P2 in aG ( )ı̂ ,1 from u2 to v2, and a Hamilton path P3 in
aG ( )ı̂ ,2 from u3 to v3, which exist by the assumption G α α( , − 1, 1, 1) ∈ . We also

consider a Hamilton path P1 in aG ( )ı̂ ,3 from u1 to v1, which exists by the assumption
G α α( , , 1) 12∈ , using that u v t( , ) = ( ′, 1)1

1
1
1 and u v p q t p t( , ) = (1, ′) = ( (1, ′), (1, ′))i i

1 1
4 41 1

by (i)–(iii) and (4). Finally, we consider a Hamilton path P4 in aG ( )ı̂ ,4 from u4 to v4, which
exists by the assumption G α α( , , 1) 12∈ , using that u v t( , ) = (2, )1

4
1
4 and

u v p p t q t( , ) = ( , 2) = ( (2, ), (2, ))i i
4 4

3 33 3
by (i)–(iii) and (4). The concatenation P P P P1 2 3 4 is

a Hamilton path in aG ( ) from x to y. □

The following lemma will be used in the proof of Lemma 16. It guarantees the existence of
two multiset permutations π and ρ that are the first and last vertices of Hamilton paths in
subgraphs of aG ( ) obtained by fixing symbols, in such a way that π and ρ satisfy a number of
extra conditions. In the proof of Lemma 16 we will encounter six different kinds of conditions,
which are captured by the six cases in the lemma.

Lemma 23. For any odd k 3≥ and kℓ ( − 1) 2≔ ∕ and any a b c k, , [ ]∈ with a b≠ and
c 1≠ , there are permutations π ρ, on k[ ] satisfying any chosen of the following sets of
conditions:

(oa) π ρ a ρ b π ρ= 1, = , = ,k j j1 1 2 ≠ , and π ρj j2 +1 +1≠ for all j1 ℓ≤ ≤ ;
(ob1) π π c ρ π ρ= 1, = , = 1,k j j1 1 2 ≠ , and π ρj j2 +1 +1≠ for all j π ρ1 < ℓ, k k−1≤ ≠ ;
(ob2) π π c ρ π ρ π ρ= 1, = , = 1, = ,k j j1 2 1 3 2 ≠ , and π ρj j2 +1 +1≠ for all j1 ℓ≤ ≤ .

For any even k 4≥ and kℓ 2≔ ∕ and any a b c k, , [ ]∈ with a b≠ and c 1≠ , there are
permutations π ρ, on k[ ] satisfying any chosen of the following sets of conditions:

(ea) π ρ a ρ b π ρ π ρ= 1, = , = , = ,k k j j1 1 3 −1 2 ≠ , and π ρj j2 +1 +1≠ for all j π ρ1 < ℓ, k k≤ ≠ ;
(eb1) π π c ρ π ρ π ρ= 1, = , = 1, = ,k k j j1 1 3 2 ≠ , and π ρj j2 +1 +1≠ for all j1 < ℓ≤ ;
(eb2) π π c ρ π ρ= 1, = , = 1,k j j1 1 2 ≠ , and π ρj j2 +1 +1≠ for all j π ρ1 < ℓ, k k≤ ≠ .

Proof. For any of the given sets of conditions, we can define a graph H that captures the
conditions on π and ρ as follows: We start with a complete bipartite graph with vertex
partitions k[ ] and k[ ]. For any constraint of the form π ρ=i j we remove both end vertices i
and j from the graph. Similarly, for any pair of constraints of the form π x=i and ρ x=j
we remove both end vertices i and j from the graph. Moreover, for any constraint of the
form π ρi j≠ we remove the edge i j( , ) from the graph (keeping the end vertices). Lastly,
for any pair of constraints of the form π x=i and ρ y=j for x y≠ we remove the edge
i j( , ) from the graph.
Note that there are permutations π and ρ satisfying one of the given sets of conditions,

if and only if the corresponding graph H admits a perfect matching. Specifically, the
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matched pairs of vertices are the entries from π and ρ that will be assigned the same
value.

The existence of a perfect matching in H defined before can be verified directly for
k 5≤ ; see Figure 13. For k 6≥ we argue via Hall's theorem: We let s denote the sizes of
the two partition classes of H . By the given equality constraints, at most two pairs of
vertices are removed from the initial complete bipartite graph, so we have s k − 2 4≥ ≥ .
Moreover, the given inequality constraints involve each πi and ρj at most twice, so all
vertices of H have degree at least s − 2. Let A be a subset of vertices of one partition
class, and let A′ be the set of all of its neighbors in the other partition class of H . As all
vertices of H have degree at least s − 2, we know that A s′ − 2≥  whenever A > 0  , so it
suffices to check Hall's condition for A s − 1≥  . If A A′ <   , then there is a vertex on the

FIGURE 13 Illustration of the graph H defined in the proof of Lemma 23. The pairs of vertices connected
by thick solid lines are removed from the initial complete bipartite graph, and the thin edges are also removed
(keeping the end vertices). From the two pairs of vertices connected by thick dashed lines, one pair of vertices is
removed if a = 1 or b = 1, and both edges are removed if a 1≠ and b 1≠ (keeping the end vertices). [Color
figure can be viewed at wileyonlinelibrary.com]
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same side of the partition as A′ that is not connected to any vertex in A, that is, this
vertex has degree at most s A s s s− − ( − 1) = 1 < − 2≤  , a contradiction as s 4≥ .
This proves that A A′ ≥   , so Hall's condition is satisfied and the graph H has a perfect
matching.

This completes the proof of the lemma. □

We now outline our strategy for proving Lemma 16. In the preceding proof of Lemma 15,
we split aG ( ) into subgraphs bG ( ) with b a≺⋅ by fixing one of the symbols. If we follow the
same approach for an integer partition a as in Lemma 16 with aΔ( ) = 1, then by Lemma 11 all
partitions b a≺⋅ satisfy bΔ( ) = 0, except the unique partition b a≺⋅ obtained from a by
decreasing the first entry, which satisfies bΔ( ) = 2 (by the assumptions of Lemma 16, the first
entry of a is the unique largest one). All subgraphs bG ( ) with bΔ( ) = 0 are not Hamilton‐
connected, but only 1‐laceable, so any Hamilton path in them starts with a vertex with first
symbol 1 and ends with a vertex with first symbol distinct from 1. When constructing a
Hamilton path in aG ( ), we process those subgraphs in pairs, so that the path through any pair
starts and ends with a vertex with first symbol 1, and every such pair is surrounded by vertices
with fixed symbol equal to 1. As a consequence, we need to further partition the unique
subgraph bG ( ) with bΔ( ) = 2 by fixing yet another symbol, and split it into subgraphs cG ( )

with c b≺ ⋅ , all of which satisfy cΔ( ) 1≥ and cG ( ) ∈ by the assumptions of the lemma, and
those building blocks are inserted between the aforementioned pairs. The precise order in
which the building blocks for a Hamilton path in aG ( ) are arranged depends on the parity of
the number k of symbols, and on the start and end vertices of the desired Hamilton path, which
results in several cases.

Proof of Lemma 16. As a {(1, 1, 1), (2, 1, 1, 1), (2, 2, 1)}∉ we know that a 31 ≥ , and
combining this with a aa a+ Δ( ) = , Δ( ) = 1i

k
i1 =2 and a a1 2≥ yields a 4i

k
i=2 ≥ and

a 1i
k

i=3 ≥ , in particular k 3≥ (recall (2)). Moreover, we have a a>1 2 by the assumption
that a α α( , , 1)≠ for α n( − 1) 2≔ ∕ .

Let x y, be two distinct vertices in aG ( ). If there is an index i > 1 with x = 1i and
y 1i ≠ , then we let ı̌ be this index. Otherwise we fix an arbitrary index ı̌ > 1 with
x y= = 1ı̌ ı̌ , which is possible as a 31 ≥ .

We first consider the case that k 3≥ is odd, and we introduce the abbreviation
kℓ ( − 1) 2 1≔ ∕ ≥ . We now distinguish two cases, depending on the value of y ı̌.

Case (oa): y = 1ı̌ . As x y≠ there is a position nı̂ [ ] {1, ı̌}∈ ⧹ such that x yı̂ ı̂≠ , and by
our choice of ı̌, we can assume that x y, > 1ı̂ ı̂ .2

As k a3, 31≥ ≥ , and a 4i
k

i=2 ≥ , there are two indices i i n, [ ] {1, ı̂, ı̌}1 2 ∈ ⧹ such that
x xi i1 2
≠ . Similarly, there are two indices i i n, [ ] {1, ı̂, ı̌}3 4 ∈ ⧹ such that y yi i3 4

≠ .
By Lemma 23 (oa) there are two permutations π ρ, on k[ ] satisfying the following

conditions:

(1) π x ρ x= = 1, =1 ı̌ 1 ı̂, and ρ y=k ı̂;
(2) π ρj j2 ≠ and π ρj j2 +1 +1≠ for all j1 ℓ≤ ≤ .

2The assumption x y, > 1ı̂ ı̂ will not be used in this proof, but in the proof of Lemma 19.
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We choose multiset permutations au v j k, Π( ), = 1, …,j j ∈ , and u v uˆ , ˆ , ˇ ,j j j

av jˇ Π( ), = 1, …, ℓj ∈ , satisfying the following conditions; see Figure 14 (oa):

(i) u x v x= , =i i
1 1

1 2
, and v y u y= , =k

i
k

i3 4
;

(ii) conditions ϕ ϕ( ), ( )j j
1 2 , and ϕ( )j

3 for all j1 ℓ≤ ≤ ;
(iii) condition ϕ( )j

4 for all j kℓ < < ;
(iv) condition ψ( )ℓ+1 ,

where we use the following abbreviations:

FIGURE 14 Illustration of the proof of Lemma 16 in the case when k is odd. [Color figure can be viewed at
wileyonlinelibrary.com]
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ϕ( ):j
1 u v u v π u v ρˆ = = 1, ˆ = = , ˆ = =j j j j

j
j j

j1 ı̌ ı̌ 1 2 ı̂ ı̂ , and u vˆ =i
j

i
j for all i n[ ] {1, ı̌, ı̂}∈ ⧹ ;

ϕ( ):j
2 u v π u v πˇ = ˆ = , ˇ = ˆ =j j

j
j j

j1 ı̌ 2 ı̌ 1 2 +1, and u vˇ = ˆi
j

i
j for all i n[ ] {1, ı̌}∈ ⧹ ;

ϕ( ):j
3 u v π u v u v ρ= ˇ = , = ˇ = 1, = ˇ =j j

j
j j j j

j1
+1

ı̌ 2 +1 ı̌
+1

1 ı̂
+1

ı̂ +1, and u v= ˇi
j

i
j+1 for all

i n[ ] {1, ı̌, ı̂}∈ ⧹ ;
ϕ( ):j
4 u v ρ u v ρ u v= = , = = , = = 1j j

j
j j

j
j j

1
+1

ı̂ ı̂
+1

1 +1 ı̌
+1

ı̌ , and u v=i
j

i
j+1 for all

i n[ ] {1, ı̌, ı̂}∈ ⧹ ;
ψ( ):j u vj j

ı̃ ı̃≠ for some nı̃ [ ] {1, ı̌, ı̂}∈ ⧹ .

Observe that condition ϕ( )j
1 requires that both v j and û j contain the symbols π j2 and ρj,

and condition ϕ( )j
3 requires that both v̌ j and uj+1 contain the symbols π j2 +1 and ρj+1, and

this is possible for all j1 ℓ≤ ≤ as π and ρ satisfy condition (2) from before, which
ensures that these two symbols are distinct. Also note that u v1 1≠ and u vk k≠ by (i) and
the choice of i i,1 2 and i i,3 4, respectively, and u vj j

1 1≠ for all j k1 < < by (ii) + (iii) + (iv).
Moreover, we have u vˆ ˆj j

1 1≠ and u vˇ ˇj j
1 1≠ for all j1 ℓ≤ ≤ by (ii).

For j k= 1, …, we define b ca a a a a a( − 1, , …, ), ′ ( − 1, …, − 1, …, )k ρ k1 2 1 j
≔ ≔ , and

c cφ ( ′)≔ , which satisfy c b a≺⋅ ≺⋅ and bΔ( ) = 2 and cΔ( ) = 1, and we consider a
Hamilton path Pj in a cG G( ) ( )ρ(ı̌ , ı̂),(1, )j ≃ from uj to v j, which exists by the assumption
cG ( ) ∈ .
For j = 1, …, ℓ we define a a a a′ ( , …, − 1, …, )π k1 j2

≔ and b aφ ( ′)≔ , which satisfies

b a≺⋅ and bΔ( ) = 0, and we consider a Hamilton path P̂j in the graph a bG G( ) ( )πı̌ , j2 ≃

from û j to v̂ j, which exists by the assumption bG ( ) 1∈ , using that aû Π( )j 1,1∈ and
av̂ Π( )j 1,1∉ (recall that û = 1j

1 and v πˆ = 1j
j1 2 +1 ≠ by (ii)).

Similarly, for j = 1, …, ℓ we define a a a a′ ( , …, − 1, …, )π k1 j2 +1
≔ and b aφ ( ′)≔ , and

we consider a Hamilton path P̌j in the graph a bG G( ) ( )πı̌ , j2 +1 ≃ from ǔ j to v̌ j, which exists
by the assumption bG ( ) 1∈ , using that aǔ Π( )j 1,1∉ and av̌ Π( )j 1,1∈ (recall that
u πˇ = 1j

j1 2 ≠ and v̌ = 1j
1 by (ii)).

The concatenation P P P P P P P P P P P P( ˆ ˇ )( ˆ ˇ ) ( ˆ ˇ ) k1 1 1 2 2 2 ℓ ℓ ℓ ℓ+1 ℓ+2⋯ ⋯ is a Hamilton path in
aG ( ) from x to y.
Case (ob): y 1ı̌ ≠ . We choose an index nı̂ [ ] {1, ı̌}∈ ⧹ for which x = 1ı̂ , and two indices

i i n, [ ] {1, ı̂, ı̌}1 2 ∈ ⧹ such that x xi i1 2
≠ . We consider two subcases depending on the value

of y1.
Case (ob1): y = 11 . By Lemma 23 (ob1) there are two permutations π ρ, on k[ ]

satisfying the following conditions:

(1) π x π y ρ x= = 1, = , = = 1k1 ı̌ ı̌ 1 ı̂ ;
(2) π ρj j2 ≠ and π ρj j2 +1 +1≠ for all j1 < ℓ≤ , and π ρk k−1 ≠ .

We choose multiset permutations au v j k, Π( ), = 1, …,j j ∈ , and u vˆ , ˆ ,j j

au v jˇ , ˇ Π( ), = 1, …, ℓj j ∈ , satisfying the following conditions; see Figure 14 (ob1):

(i) u x v x= , =i i
1 1

1 2
, and v yˇ =ℓ ;

(iia) conditions ϕ ϕ ϕ( ), ( ), ( )j j j
1 2 3 for all j1 < ℓ≤ , and condition ϕ( )ℓ

2 ;
(iib) u v u v π u v ρˆ = = 1, ˆ = = , ˆ = =k k

k
k

k1
ℓ

ı̌ ı̌
ℓ

1 −1 ı̂
ℓ

ı̂ , and u vˆ =i i
kℓ for all i n[ ] {1, ı̌, ı̂}∈ ⧹ ;

(iii) condition ϕ( )j
4 for all j kℓ <≤ ;

(iv) condition ψ( )j for j k{ℓ, }∈ .
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The argument that all pairs u v j k( , ), = 1, …,j j , and u v( ˆ , ˆ )j j and u v j( ˇ , ˇ ), = 1, …, ℓj j ,
are distinct, is straightforward.

As before in case (oa), we consider Hamilton paths Pj from uj to v j for all j k= 1, …, ,
Hamilton paths P̂j and P̌j from û j to v̂ j, or from ǔ j to v̌ j, respectively, for all j = 1, …, ℓ.
The concatenation P P P P P P P P P P P P P P( ˆ ˇ )( ˆ ˇ ) ( ˆ ˇ ) ( ˆ ˇ )k1 1 1 2 2 2 ℓ−1 ℓ−1 ℓ−1 ℓ ℓ+1 ℓ ℓ⋯ ⋯ is a Hamilton path
in aG ( ) from x to y.

Case (ob2): y 11 ≠ . By Lemma 23 (ob2) there are two permutations π ρ, on k[ ]

satisfying the following conditions:

(1) π x π y ρ x= = 1, = , = = 11 ı̌ 2 ı̌ 1 ı̂ , and π ρ= k3 ;
(2) π ρj j2 ≠ and π ρj j2 +1 +1≠ for all j1 ℓ≤ ≤ .

We choose two multiset permutations au vˆ , ˆ Π( )1 1 ∈ such that
u u x u u πˆ = 1, ˆ = , ˆ = 1, ˆ =i i1
1 1

ı̂
1

ı̌
1

21 2
, and v yˆ =1 . We define a a a a′ ( , …, − 1, …, )π k1 2

≔ and
b aφ ( ′)≔ , which satisfies b a≺⋅ and bΔ( ) = 0, and we consider a Hamilton path Q in
the graph a bG G( ) ( )πı̌ , 2 ≃ from û1 to v̂1, which exists by the assumption bG ( ) 1∈ , using
that aû Π( )1 1,1∈ and av̂ Π( )1 1,1∉ (recall that û = 11

1 and v yˆ = 11
1

1 ≠ ). Let z be the first
vertex along this path from û1 to v̂1 for which z π=ı̂ 3, and let z′ be the predecessor of z on
the path. By the definition of z we have z π′ı̂ 3≠ , and consequently z π′ =1 3. By
Lemma 14, we thus obtain z z′ = = 1ı̂ 1 . Let Q′ be the subpath of Q from û1 to z′, and let
Q″ be the subpath of Q from z to v̂1.

We choose multiset permutations au v j k, Π( ), = 1, …,j j ∈ , and au vˆ , ˆ Π( ),j j ∈

j = 2, …, ℓ, and au v jˇ , ˇ Π( ), = 1, …, ℓj j ∈ , satisfying the following conditions; see
Figure 14 (ob2):

(i) u x=1 , and conditions χ( )1 and χ( )k
2 ;

(ii) conditions ϕ( )j
1 and ϕ( )j

2 for all j1 < ℓ≤ , and condition ϕ( )j
3 for all j1 ℓ≤ ≤ ;

(iii) condition ϕ( )j
4 for all j kℓ < < ;

(iv) condition ψ( )j for j k{ℓ + 1, }∈ ,

where we introduce the abbreviations:

χ( ):1 v u π v u v u= ˆ = , = ˆ = 1, = ˆi i1
1

ı̌
1

2 ı̌
1

1
1 1 1, and u z π u z π u zˇ = ′ = , ˇ = ′ = , ˇ = ′i i1

1
ı̌ 2 ı̌

1
1 3

1 for
all i n[ ] {1, ı̌}∈ ⧹ ;

χ( )j
2 : v z π v z v z= = , = = 1, =j j

i
j

i1 ı̌ 2 ı̌ 1 for all i n[ ] {1, ı̌}∈ ⧹ .

The argument that all pairs u v j k( , ), = 1, …,j j , and u v j( ˆ , ˆ ), = 2, …, ℓj j , and
u v j( ˇ , ˇ ), = 1, …, ℓj j , are distinct, is straightforward.
As before in case (oa), we consider Hamilton paths Pj from uj to v j for all j k= 1, …, ,

Hamilton paths P̂j from û j to v̂ j for all j = 2, …, ℓ, and Hamilton paths P̌j from ǔ j to v̌ j for
all j = 1, …, ℓ.

The concatenation P Q P P P P P P P P P P P P Q( ′ ˇ )( ˆ ˇ )( ˆ ˇ ) ( ˆ ˇ ) ″k1 1 2 2 2 3 3 3 ℓ ℓ ℓ ℓ+1⋯ ⋯ is a Hamilton path
in aG ( ) from x to y.

It remains to consider the case that k 4≥ is even, and we introduce the abbreviation
kℓ 2 2≔ ∕ ≥ . We now distinguish two cases, depending on the value of y ı̌.
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Case (eb): y 1ı̌ ≠ . We choose an index nı̂ [ ] {1, ı̌}∈ ⧹ for which x = 1ı̂ , and two indices
i i n, [ ] {1, ı̂, ı̌}1 2 ∈ ⧹ such that x xi i1 2

≠ . We consider two subcases depending on the value
of y1.

Case (eb2): y 11 ≠ . By Lemma 23 (eb2) there are two permutations π ρ, on k[ ]

satisfying the following conditions:

(1) π x π y= = 1, =k1 ı̌ ı̌, and ρ x= = 11 ı̂ ;
(2) π ρj j2 ≠ and π ρj j2 +1 +1≠ for all j1 < ℓ≤ , and π ρk k≠ .

We choose multiset permutations au v j k, Π( ), = 1, …,j j ∈ , and au vˆ , ˆ Π( ),j j ∈

j = 1, …, ℓ, and au v jˇ , ˇ Π( ), = 1, …, ℓ − 1j j ∈ , satisfying the following conditions; see
Figure 15 (eb2):

(i) u x v x= , =i i
1 1

1 2
, and v yˆ =ℓ ;

(iia) conditions ϕ ϕ( ), ( )j j
1 2 , and ϕ( )j

3 for all j1 < ℓ≤ ;
(iib) u v u v π u v ρˆ = = 1, ˆ = = , ˆ = =k k

k
k

k1
ℓ

ı̌ ı̌
ℓ

1 ı̂
ℓ

ı̂ , and u vˆ =i i
kℓ for all i n[ ] {1, ı̌, ı̂}∈ ⧹ ;

(iii) condition ϕ( )j
4 for all j kℓ <≤ ;

(iv) condition ψ( )j for j k{ℓ, }∈ .

The argument that all pairs u v j k( , ), = 1, …,j j , and u v j( ˆ , ˆ ), = 1, …, ℓj j , and
u v j( ˇ , ˇ ), = 1, …, ℓ − 1j j , are distinct, is straightforward.
For j k= 1, …, we define b ca a a a a a( − 1, , …, ), ′ ( − 1, …, − 1, …, )k ρ k1 2 1 j

≔ ≔ , and

c cφ ( ′)≔ , which satisfy c b a≺ ⋅ ≺⋅ and bΔ( ) = 2 and cΔ( ) = 1, and we consider a
Hamilton path Pj in a cG G( ) ( )ρ(ı̌ , ı̂),(1, )j ≃ from uj to v j, which exists by the assumption
cG ( ) ∈ .
For j = 1, …, ℓ we define a a a a′ ( , …, − 1, …, )π k1 j2

≔ and b aφ ( ′)≔ , which satisfies

b a≺⋅ and bΔ( ) = 0, and we consider a Hamilton path P̂j in the graph a bG G( ) ( )πı̌ , j2 ≃

from û j to v̂ j, which exists by the assumption bG ( ) 1∈ , using that aû Π( )j 1,1∈ and
av̂ Π( )j 1,1∉ (recall that û = 1j

1 and v πˆ = 1j
j1 2 +1 ≠ for j = 1, …, ℓ − 1 by (ii) and û = 11

ℓ

and v yˆ = 11
ℓ

1 ≠ by (iib) and (i), respectively).
Similarly, for j = 1, …, ℓ − 1 we define a a a a′ ( , …, − 1, …, )π k1 j2 +1

≔ and b aφ ( ′)≔ ,

and we consider a Hamilton path P̌j in the graph a bG G( ) ( )πı̌ , j2 +1 ≃ from ǔ j to v̌ j, which
exists by the assumption bG ( ) 1∈ , using that aǔ Π( )j 1,1∉ and av̌ Π( )j 1,1∈ (recall that
u πˇ = 1j

j1 2 ≠ and v̌ = 1j
1 by (iia)).

The concatenation P P P P P P P P P P P P P P( ˆ ˇ )( ˆ ˇ ) ( ˆ ˇ ) ˆ
k k1 1 1 2 2 2 ℓ−1 ℓ−1 ℓ−1 ℓ ℓ+1 −1 ℓ⋯ ⋯ is a Hamilton

path in aG ( ) from x to y.
Case (eb1): y = 11 . By Lemma 23 (eb1) there are two permutations π ρ, on k[ ]

satisfying the following conditions:

(1) π x π y ρ x= = 1, = , = = 1k1 ı̌ ı̌ 1 ı̂ , and π ρ= k3 ;
(2) π ρj j2 ≠ and π ρj j2 +1 +1≠ for all j1 < ℓ≤ .

We choose two multiset permutations au vˆ , ˆ Π( )1 1 ∈ such that u uˆ = 1, ˆ =i1
1 1

1

x u ρ u π v π, ˆ = = 1, ˆ = , ˆ =i kı̂
1

1 ı̌
1

2 1
1

2
, and v πˆ =ı̌

1
2. We define a a a a′ ( , …, − 1, …, )π k1 2

≔

and b aφ ( ′)≔ , which satisfies b a≺⋅ and bΔ( ) = 0, and we consider a Hamilton path
Q in the graph a bG G( ) ( )πı̌ , 2 ≃ from û1 to v̂1, which exists by the assumption bG ( ) 1∈ ,
using that aû Π( )1 1,1∈ and av̂ Π( )1 1,1∉ (recall that û = 11

1 and v πˆ = 1k1
1 ≠ ). Let z be the

GREGOR ET AL. | 31

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22915 by T

est, W
iley O

nline L
ibrary on [10/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



first vertex along this path from û1 to v̂1 for which z π=ı̂ 3, and let z′ be the predecessor of
z on the path. By the definition of z we have z π′ı̂ 3≠ , and consequently z π′ =1 3. By
Lemma 14, we thus obtain z z′ = = 1ı̂ 1 . Let Q′ be the subpath of Q from û1 to z′, and let
Q″ be the subpath of Q from z to v̂1.

We choose multiset permutations au v j k, Π( ), = 1, …,j j ∈ , and au vˆ , ˆ Π( ),j j ∈

j = 2, …, ℓ − 1, and au v jˇ , ˇ Π( ), = 1, …, ℓj j ∈ , satisfying the following conditions; see
Figure 15 (eb1):

(i) u x v y= , ˇ =1 ℓ , and conditions χ χ( ), ( )k
1 2 , and χ( )3 ;

FIGURE 15 Illustration of the proof of Lemma 16 in the case when k is even. [Color figure can be viewed at
wileyonlinelibrary.com]
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(ii) conditions ϕ( )j
1 and ϕ( )j

2 for all j1 < < ℓ, and condition ϕ( )j
3 for all j1 < ℓ≤ ;

(iii) condition ϕ( )j
4 for all j kℓ <≤ ;

(iv) condition ψ( )j for j k{ℓ, }∈ ,

where we introduce the abbreviation:

χ( ):3 u v π u v π u vˇ = ˆ = , ˇ = ˆ = , ˇ = ˆk i i1
ℓ

ı̌
1

2 ı̌
ℓ

1
1 ℓ 1 for all i n[ ] {1, ı̌}∈ ⧹ .

The argument that all pairs u v j k( , ), = 1, …,j j , and u v j( ˆ , ˆ ), = 2, …, ℓ − 1j j , and
u v j( ˇ , ˇ ), = 1, …, ℓj j , are distinct, is straightforward.
As before in case (eb2), we consider Hamilton paths Pj from uj to v j for all j k= 1, …, ,

Hamilton paths P̂j from û j to v̂ j for all j = 2, …, ℓ − 1, and Hamilton paths P̌j from ǔ j to
v̌ j for all j = 1, …, ℓ − 1. In addition, we consider a Hamilton path P̌ℓ from ǔℓ to v̌ℓ,
which exists by the assumption bG ( ) 1∈ , using that aǔ Π( )ℓ 1,1∉ and av̌ Π( )ℓ 1,1∈

(recall that u πˇ = 11
ℓ

2 ≠ and v yˇ = = 11
ℓ

1 by (i)).
The concatenation P Q P P P P P P P P P P P P P P Q P( ′ ˇ )( ˆ ˇ )( ˆ ˇ ) ( ˆ ˇ ) ″ ˇk k1 1 2 2 2 3 3 3 ℓ−1 ℓ−1 ℓ−1 ℓ ℓ+1 −1 ℓ⋯ ⋯ is a

Hamilton path in aG ( ) from x to y.
Case (ea): y = 1ı̌ . As x y≠ there is a position nı̂ [ ] {1, ı̌}∈ ⧹ such that x yı̂ ı̂≠ , and by

our choice of ı̌, we can assume that x y, > 1ı̂ ı̂ . 3

We fix two indices i i n, [ ] {1, ı̂, ı̌}1 2 ∈ ⧹ such that x xi i1 2
≠ , and two indices

i i n, [ ] {1, ı̂, ı̌}3 4 ∈ ⧹ such that y yi i3 4
≠ .

By Lemma 23 (ea) there are two permutations π ρ, on k[ ] satisfying the following
conditions:

(1) π x ρ x ρ y= = 1, = , =k1 ı̌ 1 ı̂ ı̂, and π ρ= k3 −1;
(2) π ρj j2 ≠ and π ρj j2 +1 +1≠ for all j1 < ℓ≤ , and π ρk k≠ .

We choose two multiset permutations au vˆ , ˆ Π( )1 1 ∈ as before in case (eb1), and we
construct a Hamilton pathQ from û1 to v̂1 and its subpathsQ′ from û1 to z′ andQ″ from z

to v̂1, as before.
We choose multiset permutations au v j k, Π( ), = 1, …,j j ∈ , and au vˆ , ˆ Π( ),j j ∈

j = 2, …, ℓ − 1, and au v jˇ , ˇ Π( ), = 1, …, ℓj j ∈ , satisfying the following conditions; see
Figure 15 (ea):

(i) u x v y u x= , = , =k
i
k

i
1

3 4
, and conditions χ χ( ), ( )k

1
−1
2 , and χ( )3 ;

(iia) conditions ϕ( )j
1 and ϕ( )j

2 for all j1 < < ℓ, and condition ϕ( )j
3 for all j1 < ℓ≤ ;

(iib) u v π u v u v ρ u v= ˇ = , = ˇ = 1, = ˇ = , = ˇk
k

k k
k i

k
i1 ı̌

ℓ
ı̌ 1

ℓ
ı̂ ı̂

ℓ ℓ for all i n[ ] {1, ı̌, ı̂}∈ ⧹ ;
(iii) condition ϕ( )j

4 for all j kℓ < − 1≤ ;
(iv) condition ψ( )j for j k{ℓ, − 1}∈ .

The argument that all pairs u v j k( , ), = 1, …,j j , and u v j( ˆ , ˆ ), = 2, …, ℓ − 1j j , and
u v j( ˇ , ˇ ), = 1, …, ℓj j , are distinct, is straightforward.

3The assumption x y, > 1ı̂ ı̂ will not be used in this proof, but in the proof of Lemma 20.
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As before in case (eb1), we consider Hamilton paths Pj from uj to v j for all j k= 1, …, ,
Hamilton paths P̂j from û j to v̂ j for all j = 2, …, ℓ − 1, and Hamilton paths P̌j from ǔ j to
v̌ j for all j = 1, …, ℓ.

The concatenation P Q P P P P P P P P P P P P P P Q P P( ′ ˇ )( ˆ ˇ )( ˆ ˇ ) ( ˆ ˇ ) ″ ˇk k k1 1 2 2 2 3 3 3 ℓ−1 ℓ−1 ℓ−1 ℓ ℓ+1 −2 −1 ℓ⋯ ⋯

is a Hamilton path in aG ( ) from x to y.
This completes the proof of Lemma 16. □

The strategy for proving Lemmas 19 and 20 is the same as for the proof of Lemma 16. The
crucial difference is that now one or two building blocks c b≺⋅ for the unique b a≺⋅ with
bΔ( ) = 2 are only assumed to satisfy the weaker property cG ( ) 12∈ , and not cG ( ) ∈ , so we

have to work around this by imposing extra conditions on those building blocks.

Proof of Lemma 19. We proceed exactly as in the proof of Lemma 16 for k = 3, choosing
indices ı̌, ı̂ and distinguishing cases (oa), (ob1), and (ob2) depending on the values of y ı̌
and y1, as before.

Case (oa): y = 1ı̌ . By the assumption that x y, > 1ı̂ ı̂ we can now assume w.l.o.g. that
x = 2ı̂ and y = 3ı̂ . We define the permutations π (1, 2, 3)≔ and ρ (2, 1, 3)≔ . We set
t y {1, 2, 3}1≔ ∈ and p p t(1, ) {2, 3}3≔ ∈ , and we choose au v j, Π( ), = 1, 2, 3j j ∈ , and

au v u vˆ , ˆ , ˇ , ˇ Π( )1 1 1 1 ∈ , as in case (oa) in the proof of Lemma 16 for k = 3, subject to the
conditions (ii)–(vi) as before and the following condition (i') instead of (i); see Figure 16 (oa):

(i') u x v x= , =i i
1 1

1 2
, and v y u p= , =i

3 3
3

, where i3 is chosen such that y = 1i3
.

For j = 1, 2, 3 we consider a Hamilton path Pj in aG ( )ρ(ı̌ , ı̂),(1, )j from uj to v j. For
j = 1, 2 such a path exists by the assumptionG φ α α( ( − 1, − 2, 2)) ∈ . For j = 3 such

FIGURE 16 Illustration of the proof of Lemma 19. [Color figure can be viewed at wileyonlinelibrary.com]
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a path exists by the assumptionG α α( − 1, − 1, 1) 12∈ , using that u v t( , ) = (1, )1
3

1
3 and

u v p p t q t( , ) = ( , 1) = ( (1, ), (1, ))i i
3 3

3 33 3
by (i') and (4).

We also consider a Hamilton path P̂1 in a aG G( ) = ( )πı̌ , ı̌ ,22 from û1 to v̂1, which exists
by the assumption G φ α α( ( , − 2, 2)) 1∈ , and a Hamilton path P̌1 in a aG G( ) = ( )πı̌ , ı̌ ,33

from ǔ1 to v̌1, which exists by the assumption G α α( , − 1, 1) 1∈ .
The concatenation P P P P Pˆ ˇ

1 1 1 2 3 is a Hamilton path in aG ( ) from x to y.
Case (ob1): y 1ı̌ ≠ and y = 11 . We let π π π π= ( , , )1 2 3 be the permutation defined by

π x= = 11 ı̌ and π y=3 ı̌, and we define ρ (1, 2, 3)≔ .
We choose au v j, Π( ), = 1, 2, 3j j ∈ , and au v u vˆ , ˆ , ˇ , ˇ Π( )1 1 1 1 ∈ , as in case (ob1) in the

proof of Lemma 16 for k = 3, subject to the conditions (i)–(iii) as before and the following
condition (iv') instead of (iv); see Figure 16 (ob1):

(iv') u = 3ı̃
3 and v = 2ı̃

3 for some nı̃ [ ] {1, ı̌, ı̂}∈ ⧹ .

We consider Hamilton paths P P P, ,1 2 3 and P Pˆ , ˇ1 1 as before. The path P3 from u3 to v3

exists by the assumption G α α( − 1, − 1, 1) 12∈ , using that u v π( , ) = (2, )1
3

1
3

2 and

u v p π q π( , ) = (3, 2) = ( (2, ), (2, ))ı̃
3

ı̃
3

3 2 3 2 by (iv') and (4).

The concatenation P P P P Pˆ ˇ1 2 3 1 1 is a Hamilton path in aG ( ) from x to y.
Case (ob2): y 1ı̌ ≠ and y 11 ≠ . We let π π π π= ( , , )1 2 3 be the permutation defined by

π x= = 11 ı̌ and π y=2 ı̌, and we define ρ π≔ . We choose au vˆ , ˆ Π( )1 1 ∈ as in case (ob2) in
the proof of Lemma 16 for k = 3, and we construct the Hamilton pathQ and its subpaths
Q′ and Q″ exactly as before. Also, we choose au v j, Π( ), = 1, 2, 3j j ∈ , and au vˇ , ˇ Π( )1 1 ∈ ,
as in the previous proof, subject to conditions (i)–(iii) as before and the following
condition (iv') instead of (iv); see Figure 16 (ob2):

(iv') If π = 32 , we require that u = 3ı̃
2 and v = 2ı̃

2 for some nı̃ [ ] {1, ı̌, ı̂}∈ ⧹ and condition
ψ( )3 . If π = 33 , on the other hand, we require that u = 3ı̃

3 and v = 2ı̃
3 for some

nı̃ [ ] {1, ı̌, ı̂}∈ ⧹ with z = 2ı̃ and condition ψ( )2 .

We consider Hamilton paths P P P, ,1 2 3 and P̌1 as before. If j {2, 3}∈ is such that π = 3j ,
then the path Pj from uj to v j exists by the assumption G α α( − 1, − 1, 1) 12∈ , using

that u v( , ) = (2, 2)j j
1 1 (clearly, π = 23 if π = 32 and π = 22 if π = 33 ) and

u v p q( , ) = (3, 2) = ( (2, 2), (2, 2))j j
ı̃ ı̃ 3 3 by (iv') and (4).

The concatenation P Q P P P Q′ ˇ ″1 1 2 3 is a Hamilton path in aG ( ) from x to y. □

Proof of Lemma 20. We proceed exactly as in the proof of Lemma 16 for k = 4, choosing
indices ı̌, ı̂ and distinguishing cases (eb2), (eb1), and (ea) depending on the values of y ı̌
and y1, as before.

Case (eb2): y 1ı̌ ≠ and y 11 ≠ . If y = 2ı̌ we define the permutations
π y(1, 3, 4, ) = (1, 3, 4, 2)ı̌≔ and ρ (1, 2, 3, 4)≔ , whereas if y {3, 4}ı̌ ∈ we define
π y y(1, 7 − , 2, )ı̌ ı̌≔ and ρ (1, 3, 4, 2)≔ . We choose au v j, Π( ), = 1, 2, 3, 4j j ∈ , and

au v jˆ , ˆ Π( ), = 1, 2j j ∈ , and au vˇ , ˇ Π( )1 1 ∈ , as in case (eb2) in the proof of Lemma 16 for
k = 4, subject to the conditions (i)–(iii) as before and the following condition (iv') instead
of (iv); see Figure 17 (eb2):
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FIGURE 17 Illustration of the proof of Lemma 20. [Color figure can be viewed at wileyonlinelibrary.com]
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(iv') For j {2, 3}∈ such that ρ = 3j we require that u v u= 4, = 2, = 2j j j
ı̃ ı̃ ı̃

+1 , and

v = 3j
ı̃
+1 for some nı̃ [ ] {1, ı̌, ı̂}∈ ⧹ , and condition ψ( )4 if j = 2.

For j = 1, 2, 3, 4 we consider a Hamilton path Pj in aG ( )ρ(ı̌ , ı̂),(1, )j from uj to v j. For the
two values of j with ρ {1, 2}j ∈ such a path exists by the assumption

G α α( − 1, − 2, 1, 1) ∈ . For the two values of j with ρ {3, 4}j ∈ such a path

exists by the assumption G α α( − 1, − 1, 1) 12∈ , using that u v( , ) = (2, 4)j j
1 1 and

u v p q( , ) = (4, 2) = ( (2, 4), (2, 4))j j
ı̃ ı̃ 4 4 if ρ = 3j and u v( , ) = (3, 2)j j

1 1 and

u v q p( , ) = (2, 3) = ( (2, 3), (2, 3))j j
ı̃ ı̃ 3 3 if ρ = 4j , by (iv') and (4).

For j = 1, 2 we consider a Hamilton path P̂j in aG ( )πı̌ , j2 from û j to v̂ j and a Hamilton
path P̌1 in aG ( )πı̌ , 3 from ǔ1 to v̌1, which exist by the assumptions G α α( , − 2, 1, 1) 1∈
and G α α( , − 1, 1) 1∈ .

The concatenation P P P P P P Pˆ ˇ ˆ
1 1 1 2 3 4 2 is a Hamilton path in aG ( ) from x to y.

Case (eb1): y 1ı̌ ≠ and y = 11 . If y = 2ı̌ we define the permutations
π y(1, 3, 4, ) = (1, 3, 4, 2)ı̌≔ and ρ (1, 3, 2, 4)≔ , whereas if y {3, 4}ı̌ ∈ we define
π y y(1, 2, 7 − , )ı̌ ı̌≔ and ρ y y(1, , 2, 7 − )ı̌ ı̌≔ . We choose au vˆ , ˆ Π( )1 1 ∈ as in case
(eb1) in the proof of Lemma 16 for k = 4, and we construct the Hamilton path Q and its
subpaths Q′ and Q″ exactly as before. Also, we choose au v j, Π( ), = 1, 2, 3, 4j j ∈ , and

au v jˇ , ˇ Π( ), = 1, 2j j ∈ , as in the previous proof, subject to the conditions (i)–(iii) as
before and the following condition (iv') instead of (iv); see Figure 17 (eb1):

(iv') We require that u v π u π= 2, = , =ı̃
2

ı̃
2

3 ı̃
4

2, and v π=ı̃
4

4 for some nı̃ [ ] {1, ı̌, ı̂}∈ ⧹

with z π=ı̃ 4.

We consider Hamilton paths P P P P, , ,1 2 3 4 and P Pˇ , ˇ1 2 as before. The paths P j, {2, 4}j ∈ ,
from uj to v j exist by the assumptionG α α( − 1, − 1, 1) 12∈ , using that u v π( , ) = ( , 2)1

2
1
2

3

and u v π q π p π( , ) = (2, ) = ( (2, ), (2, ))π πı̃
2

ı̃
2

3 3 33 3
, and that u v π( , ) = (2, )1

4
1
4

2 and

u v π π( , ) = ( , )ı̃
4

ı̃
4

2 4 , which equals p π q π( (2, ), (2, ))3 2 3 2 if π = 32 and q π p π( ( , 2), ( , 2))π π2 24 4

if π = 22 by (iv') and (4).
The concatenation P Q P P P P Q P′ ˇ ″ ˇ1 1 2 3 4 2 is a Hamilton path in aG ( ) from x to y.
Case (ea): y = 1ı̌ . By the assumption that x y, > 1ı̂ ı̂ and the fact that the symbols 3 and

4 both occur exactly once, we can now assume w.l.o.g. that x y( , ) {(2, 3), (3, 4)}ı̂ ı̂ ∈ , and
we treat these two cases separately.

Case (ea1): x y( , ) = (2, 3)ı̂ ı̂ . We define the permutations π (1, 3, 4, 2)≔ and
ρ (2, 1, 4, 3)≔ , and we also define t y {1, 2, 4}1≔ ∈ and p p t(2, ) {1, 4}4≔ ∈ . We fix
indices i i i n, , [ ] {1, ı̌, ı̂}1 2 3 ∈ ⧹ with x xi i1 2

≠ and y = 2i3
.

We choose au vˆ , ˆ Π( )1 1 ∈ as in case (ea) in the proof of Lemma 16 for k = 4, and we
construct the Hamilton path Q and its subpaths Q′ and Q″ exactly as before. Also, we
choose au v j, Π( ), = 1, 2, 3, 4j j ∈ , and au v jˇ , ˇ Π( ), = 1, 2j j ∈ , as in the previous proof,
subject to the conditions (ii)–(iii) as before and the following condition (i') instead of (i)
and (iv') instead of (iv); see Figure 17 (ea1):

(i') u x v y u p= , = , =i
1 4 4

3
, and conditions χ χ( ), ( )1

3
2 , and χ( )3 ;

(iv') We require that u = 3ı̃
3 and v = 1ı̃

3 for some nı̃ [ ] {1, ı̌, ı̂}∈ ⧹ with z = 1ı̃ .
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We consider Hamilton paths P P P P, , ,1 2 3 4 and P Pˇ , ˇ1 2 as before. The paths P j, {3, 4}j ∈ , from
uj to v j exist by the assumption G α α( − 1, − 1, 1) 12∈ , using that u v( , ) = (1, 3)1

3
1
3 and

u v p q( , ) = (3, 1) = ( (1, 3), (1, 3))ı̃
3

ı̃
3

3 3 and u v t( , ) = (2, )1
4

1
4 and u v p( , ) = ( , 2) =i i

4 4
3 3

p t q t( (2, ), (2, ))4 4 by (i') + (iv') and (4).
Case (ea2): x y( , ) = (3, 4)ı̂ ı̂ . This case is treated very differently than case (ea2) in the

proof of Lemma 16. We define the permutations π (1, 2, 3, 4)≔ and ρ (3, 1, 2, 4)≔ , and
we also define t y {1, 2, 3}1≔ ∈ and p p t(2, ) {1, 3}3≔ ∈ , and t x′ {1, 2, 4}1≔ ∈ and
p p t′ (2, ′) {1, 4}4≔ ∈ . We fix indices i i n, [ ] {1, ı̌, ı̂}1 3 ∈ ⧹ with x = 2i1 and y = 2i3

.
We choose two multiset permutations au vˇ , ˇ Π( )1 1 ∈ such that u uˇ = 1, ˇ =1

1
ı̂
1

ρ u π v π= 1, ˇ = = 3, ˇ = = 42 ı̌
1

3 1
1

4 , and v πˇ = = 3ı̌
1

3 . We consider a Hamilton path Q in
the graph a aG G( ) = ( )πı̌ , ı̌ ,33 from ǔ1 to v̌1, which exists by the assumption
G α α( , − 1, 1) 1∈ , using that aǔ Π( )1 1,1∈ and av̌ Π( )1 1,1∉ (recall that ǔ = 11

1 and
v̌ = 4 11
1 ≠ ). Let z be the first vertex along this path from ǔ1 to v̌1 for which z π= = 2ı̂ 2 ,

and let z′ be the predecessor of z on the path. By the definition of z we have z π′ = 2ı̂ 2≠ ,
and consequently z π′ = = 21 2 . By Lemma 14, we thus obtain z z′ = = 1ı̂ 1 . Let Q′

be the backward subpath of Q from z′ to ǔ1, and let Q″ be the backward subpath of Q
from v̌1 to z.

We choose multiset permutations au v j, Π( ), = 1, 2, 3, 4j j ∈ , and au vˆ , ˆ Π( ),j j ∈

j = 1, 2, satisfying the following conditions; see Figure 17 (ea2):

(i) u x v p= , = ′i
1 1

1
, and v y u p= , =i

4 4
3

;
(ii) v z π v z π v zˆ = ′ = = 3, ˆ = ′ = = 2, ˆ = ′i i1

1
ı̌ 3 ı̌

1
1 2

1 , u u π u u u u= ˇ = = 3, = ˇ = 1, = ˇi i1
2

ı̌
1

3 ı̌
2

1
1 2 1,

v v π v v π v vˆ = ˇ = = 3, ˆ = ˇ = = 4, ˆ = ˇi i1
2

ı̌
1

3 ı̌
2

1
1

4
2 1, and u z π u z= = = 3, = = 1,1

3
ı̌ 3 ı̌

3
1

u z=i i
3 for all i n[ ] {1, ı̌}∈ ⧹ ;

(iii) conditions ϕ ϕ( ), ( )1
1

2
1 and ϕ( )3

4 .

The argument that all pairs u v j( , ), = 1, 2, 3, 4j j , and u v j( ˆ , ˆ ), = 1, 2j j , are distinct, is
straightforward.

For j = 1, 2, 3, 4 we define b ca a a a α α( − 1, , , ) = ( − 1, − 1, 1, 1), ′1 2 3 4≔ ≔

a a a( − 1, …, − 1, …, )ρ1 4j
, and c cφ α α α α( ′) {( − 1, − 1, 1) ( − 1, − 2, 1, 1)}≔ ∈ ,

which satisfy c b a≺⋅ ≺⋅ and bΔ( ) = 2 and cΔ( ) = 1, and we consider a Hamilton
path Pj in a cG G( ) ( )ρ(ı̌ , ı̂),(1, )j ≃ from uj to v j. For j {2, 3}∈ these paths exist by the
assumption G α α( − 1, − 2, 1, 1) ∈ . For j {1, 4}∈ these paths exist by the assumption
G α α( − 1, − 1, 1) 12∈ , using that u v t( , ) = ( ′, 2)1

1
1
1 and u v p q t( , ) = (2, ′) = ( (2, ′),i i

1 1
41 1

p t(2, ′))4 and u v t( , ) = (2, )1
4

1
4 and u v p p t q t( , ) = ( , 2) = ( (2, ), (2, ))i i

4 4
3 33 3

by (i) and (4).

For j = 1, 2 we define a a a a′ ( , …, − 1, …, )π1 4j2
≔ and b aφ α α( ′) {( , − 2, 1, 1),≔ ∈

α α( , − 1, 1)}, which satisfies b a≺⋅ and bΔ( ) = 0, and we consider a Hamilton path P̂j in
the graph a bG G( ) ( )πı̌ , j2 ≃ from û j to v̂ j, which exists by the assumption bG ( ) 1∈ ,
using that aû Π( )j 1,1∈ and v aˆ Π( )j 1,1∉ (recall that û = 1j

1 and v̂ = 3 1j
1 ≠ by (ii) + (iii)).

The concatenation P P Q P P Q P Pˆ ′ ˆ ″1 1 2 2 3 4 is a Hamilton path in aG ( ) from x to y. □

The proofs of Lemmas 21 and 22 follow the same strategy as the proof of Theorem 5.

Proof of Lemma 21. As the symbols 1 and 2 both appear with the same frequency α, it
suffices to prove that aG ( ) has property 12 for s = 1. Let x y, be two distinct vertices in
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aG ( ) such that x = 11 and y t=1 for which there is a position ı̂ > 1 with
x y p t q t( , ) = ( (1, ), (1, ))ı̂ ı̂ 3 3 .
We first consider the case t {1, 3}∈ . In this case we have

x y p t q t( , ) = ( (1, ), (1, )) = (3, 1)ı̂ ı̂ 3 3 by (4). We choose multiset permutations
au v j, Π( ), = 1, 2, 3j j ∈ , satisfying the following conditions; see Figure 18A:

(i) u x=1 and v y=3 ;
(ii) u v u v u v u v= = 3, = = 2, = = 2, = = 11

2
ı̂
1

ı̂
2

1
1

1
3

ı̂
2

ı̂
3

1
2 , and u v=i

j
i
j−1 for j = 2, 3 and

all i n[ ] {1, ı̂}∈ ⧹ .

Note that u v u v,1
1

1
1

1
2

1
2≠ ≠ , and u v1

3
1
3≠ by (i) + (ii). Consequently, we have u vj j≠

for j = 1, 2, 3.
We define b aα α( , )≔ ≺⋅ , and we consider a Hamilton path P1 in the graph
a bG G( ) ( )ı̂ ,3 ≃ from u1 to v1, which exists by the assumption bG ( ) ∈ , using that u1 and

v1 belong to the two distinct partition classes of the graph aG ( )ı̂ ,3 by Lemma 12 (recall
that u v( , ) = (1, 2)1

1
1
1 ). We define b aα α( , − 1, 1)≔ ≺⋅ , and we consider a Hamilton path

P2 in the graph a bG G( ) ( )ı̂ ,2 ≃ from u2 to v2, which exists by the assumption bG ( ) 1∈ ,
using that au Π( )2 1,1∉ and av Π( )2 1,1∈ (recall that u v( , ) = (3, 1)1

2
1
2 ). We define

a α α′ ( − 1, , 1)≔ and b a aφ α α( ′) = ( , − 1, 1)≔ ≺⋅ , and we consider a Hamilton path
P3 in the graph a bG G( ) ( )ı̂ ,1 ≃ from u3 to v3, which exists by the assumption bG ( ) 1∈ ,
using that au Π( )3 1,2∈ and av Π( )3 1,2∉ (recall that u v t( , ) = (2, )1

3
1
3 and t {1, 3}∈ ). Note

here that in aG ( )ı̂ ,1 , the symbol 2 is the most frequent one and takes the role of 1 in bG ( ).
The concatenation P P P1 2 3 is a Hamilton path in aG ( ) from x to y.
It remains to consider the case t = 2. In this case we have

x y p t q t( , ) = ( (1, ), (1, )) = (2, 1)ı̂ ı̂ 3 3 by (4). We choose multiset permutations
au v j, Π( ), = 1, 2, 3j j ∈ , satisfying the following conditions; see Figure 18B:

(i) u x=1 and v y=3 ;
(ii) u v u v u v u v= = 2, = = 3, = = 3, = = 11

2
ı̂
1

ı̂
2

1
1

1
3

ı̂
2

ı̂
3

1
2 , and u v=i

j
i
j−1 for j = 2, 3 and

all i n[ ] {1, ı̂}∈ ⧹ .

Note that u v u v,1
1

1
1

1
2

1
2≠ ≠ , and u v1

3
1
3≠ by (i) + (ii). Consequently, we have u vj j≠

for j = 1, 2, 3.

(A) (B)

FIGURE 18 Illustration of the proof of Lemma 21. [Color figure can be viewed at wileyonlinelibrary.com]
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We consider a Hamilton path P1 in aG ( )ı̂ ,2 from u1 to v1, which exists by the assumption
G α α( , − 1, 1) 1∈ , using that au Π( )1 1,1∈ and av Π( )1 1,1∉ (recall that u v( , ) = (1, 3)1

1
1
1 ).

We also consider a Hamilton path P2 in aG ( )ı̂ ,3 fromu2 to v2, which exists by the assumption
G α α( , ) ∈ , using that u2 and v2 belong to the two distinct partition classes of the graph

aG ( )ı̂ ,3 by Lemma 12 (recall that u v( , ) = (2, 1)1
2

1
2 ). Finally, we consider a Hamilton path P3

in aG ( )ı̂ ,1 from u3 to v3, which exists by the assumption G α α( , − 1, 1) 1∈ , using that
au Π( )3 1,2∉ and av Π( )3 1,2∈ (recall that u v( , ) = (3, 2)1

3
1
3 ).

The concatenation P P P1 2 3 is a Hamilton path in aG ( ) from x to y. □

Proof of Lemma 22. We argue by induction on k 5≥ , using as a base case that
G (2, 1, 1, 1) ∈ by Table 1. Let x y, be two distinct vertices in aG ( ). As x y≠ there is a
position ı̂ > 1 such that x yı̂ ı̂≠ . As k 5≥ , there is an index i n[ ] {1, ı̂}1 ∈ ⧹ such that
x x x y{ , , }i 1 ı̂ ı̂1
∉ . Similarly, there is an index i n[ ] {1, ı̂}k ∈ ⧹ such that y y x y x{ , , , }i i1 ı̂ ı̂k 1

∉ .
We fix any permutation π on k[ ] such that π x π x π y= , = , =i k i1 ı̂ 2 −1 k1

, and π y=k ı̂. For
convenience, we also define π x0 1≔ and π yk+1 1≔ . We let ȷ kˆ [ ]∈ be such that π = 1ȷ̂ .
Then we choose a sequence of multiset permutations au v j k, Π( ), = 1, …,j j ∈ , satisfying
the following conditions; see Figure 19:

(i) u x=1 and v y=k ;
(ii) u v π u v π= = , = =j j

j
j j

j1 ı̂
−1

−1 ı̂ 1
−1 , and u v=i

j
i
j−1 for all j k2 ≤ ≤ and i n[ ] {1, ı̂}∈ ⧹ .

FIGURE 19 Illustration of the proof of Lemma 22. [Color figure can be viewed at wileyonlinelibrary.com]
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(iii) u v=i
ȷ

i
ȷˆ ˆ for all i n i[ ] {1, ı̂, }ȷ̂∈ ⧹ , where i n[ ] {1, ı̂}ȷ̂ ∈ ⧹ is chosen such that u π=i

j
ȷ

ˆ
ˆ +1ȷ̂

and v π=i
j

ȷ
ˆ

ˆ−1ȷ̂
(in particular, if ȷ̂ = 1 then we have i i=ȷ̂ 1, and if ȷ kˆ = then we

have i i=ȷ kˆ ).

Recall that π π0 2≠ by the choice of i1, and π πk k+1 −1≠ by the choice of ik.
Consequently, using that u π=j j1 −1 and v π=j j1 +1 by (ii) we obtain that u vj j≠ for all

j k1 ≤ ≤ .
For j k= 1, …, we define a a a a′ ( , …, − 1, …, )π k1 j

≔ and b aφ ( ′)≔ . Note that

b = (2, 1 )k−2 for all j k j[ ] {ˆ }∈ ⧹ , whereas b = 1k for j ȷ= ˆ. In the first case, there is a
Hamilton path Pj in the graph a bG G G( ) ( ) = ((2, 1 ))π kı̂ , −2j ≃ from uj to v j by induction. In
the second case, there is a Hamilton path Pj in the graph a bG G G( ) ( ) = (1 )kı̂ ,1 ≃ from uj to
v j by Theorem 5, using that uj and v j differ only in one transposition by (ii) + (iii), that is,
they belong to two distinct partition classes of the graph aG ( )ı̂ ,1 by Lemma 13. The
concatenation P P Pk1 2 ⋯ is a Hamilton path in aG ( ) from x to y. □

5 | PROOF OF THEOREMS 8 AND 9

In this section we prove Theorems 8 and 9. For this, we focus entirely on integer partitions
a a a= ( , …, )k1 that satisfy aΔ( ) = 0. By (2), this is equivalent to a a= i

k
i1 =2 , that is, the first

symbol appears equally often as all other symbols combined. On the basis of this observation, we
will first reparametrize the problem for convenience, changing the meaning of the variables an k, , .

5.1 | Reparametrizing the problem

The following notations are illustrated in Figure 20.
For any n 1≥ and k 1≥ , we consider multiset permutations with n symbols 0, and with n

nonzero symbols from the set k{1, …, }. Specifically, the number of each nonzero symbol i k[ ]∈ is
given by a 1i ≥ , where n a a= + + k1 ⋯ and a a a… k1 2≥ ≥ ≥ . We write a a a aΠ ( ), ( , …, )n k1≔ ,
to denote those multiset permutations. For any ax Π ( )n∈ , we write x− for the string obtained

FIGURE 20 The graph from Figure 5 in the reparametrized notation. [Color figure can be viewed at
wileyonlinelibrary.com]
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from x by omitting the first entry, and we define a ax xΠ ( ) { Π ( )}n n
− −≔ ∈ . Given any

ax Π ( )n
−∈ , we can uniquely infer the omitted symbol, and we refer to it as the suppressed symbol,

denoted s x k( ) {0, …, }∈ . Clearly, ax y, Π ( )n∈ differ in a star transposition if and only if
ax y, Π ( )n

− − −∈ differ in exactly one position. We also write aΠ ( )n
−0 and aΠ ( )n

−1 for all multiset
permutations from aΠ ( )n

− with suppressed symbol 0 or suppressed symbol distinct from 0,
respectively. We write aG ( )n for the graph with vertex set aΠ ( )n

−, with an edge between any two
multiset permutations that differ in exactly one position. By Lemma 14, any Hamilton cycle in

aG ( )n will alternately visit the vertex sets aΠ ( )n
−0 and aΠ ( )n

−1.

5.2 | Proof of Theorem 8

We now consider the graph G G n G n n( ) ( , )n n≔ ≃ for n 3≥ . The fact that it is Hamilton‐
laceable for n = 3 and n = 4 follows from Table 1. For the rest of this section, we will therefore
assume that n 5≥ . We follow the proof strategy outlined in Section 1.5.3.

5.2.1 | Translation into the hypercube

We introduce the abbreviations B nΠ ( )n n
−1≔ and B n′ Π ( )n n

−0≔ for the sets of bitstrings of
length n2 − 1 with exactly n − 1 or n many 1s, respectively. Note that the graph Gn is the
subgraph of the n(2 − 1)‐dimensional hypercube induced by the “middle levels” Bn and B′n. In
the following we will show that G n, 5n ≥ , is Hamilton‐laceable.

We first reduce the number of different pairs of vertices x B y B, ′n n∈ ∈ that we need to
connect by a Hamilton path to only to n cases, one for each possible Hamming distance
d d x y( , )≔ , where d n1 2 − 1≤ ≤ is odd. The Hamming distance d x y( , ) is the number of bits
in which x and y differ.

Lemma 24. For any two pairs of vertices x y x y B B( , ), ( , ) × ′n n1 1 2 2 ∈ with
d x y d x y( , ) = ( , )1 1 2 2 there is an automorphism ψ ofGn such that ψ x x( ) =1 2 and ψ y y( ) =1 2.

Proof. Take an arbitrary permutation ψ1 of coordinates such that ψ x x( ) =1 1 2 and define
z ψ y( )1 1≔ . Since d x y d x z d( , ) = ( , ) =:2 2 2 , both y2 and z share with x2 exactly
n d(2 − 1 − ) 2∕ coordinates set to 1. Moreover, both y2 and z have exactly d( + 1) 2∕

coordinates set to 1 where x2 has a 0. Clearly, there is a permutation ψ2 that maps these
two sets of coordinates of z to the corresponding sets of y2 and preserves the other
coordinates. As ψ z y( ) =2 2 and ψ x x( ) =2 2 2, the desired automorphism is the composition
of ψ1 and ψ2. □

5.2.2 | Cycle factor construction

We now recall the construction of a cycle factor n in the graph Gn described in [22]. For any
bitstring x and any integer ℓ, we write σ x( )ℓ for the bitstring obtained from x by cyclic left
rotation by ℓ steps. If ℓ is negative, then this is a right rotation by ℓ  steps. We write Dn for the
set of all Dyck words, that is, binary strings of length n2 − 2 with n − 1 many 0s and 1s, such
that in every prefix, there are at least as many 1s as 0s. We also define D Dn n1≔ ≥ . Any Dyck
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word x can be decomposed uniquely as x u v= 1 0 for u v D, ∈ , and as x u v= 1 0 for
u v D, ∈ . Moreover, any Dyck word x u v D= 1 0 n∈ can be interpreted as an (ordered) rooted
treeT with n vertices as follows; see Figure 21A: The leftmost child of the root ofT leads to the
subtree defined by u, and the remaining children of the root ofT form the subtree defined by v.
A tree rotation operation transforms the tree x u v= 1 0 into ρ x u v( ) 1 0≔ ; see Figure 21A.
For any rooted tree x D∈ we write x ρ x i[ ] { ( ) 0}i≔ ≥ for the set of all trees obtained from x by
tree rotation. The set x[ ] can be interpreted as the underlying plane tree obtained from x by
“forgetting” the root. We write Tn for the set of all plane trees with n vertices.

For any bitstring x Bn∈ there is a unique integer x nℓ ℓ( ), 0 ℓ 2 − 2≔ ≤ ≤ , such that the
first n2 − 2 bits of σ x( )ℓ are a Dyck word. Similarly, for any bitstring y B′n∈ there is a unique
integer y nℓ ℓ( ), 0 ℓ 2 − 2≔ ≤ ≤ , such that the last n2 − 2 bits of σ y( )ℓ are a Dyck word. We
refer to xℓ( ) as the shift of x or y, respectively. Moreover, we write t x D( ) n∈ for the first n2 − 2

bits of σ x( )ℓ , and t y( ) for the last n2 − 2 bits of σ y( )ℓ , and we interpret them as a rooted
tree with n vertices.

For any vertex x Bn∈ we define vertices f x g x B( ), ( ) ′n∈ by considering the unique
decomposition σ x t x u v( ) = ( ) 0 = 1 0 0ℓ , where n0 ℓ 2 − 2≤ ≤ and u v D, ∈ , and by setting

f x σ u v B g x σ u v B( ) (1 1 0) ′, ( ) (1 0 1) ′.n n
−ℓ −ℓ≔ ∈ ≔ ∈ (8a)

Clearly, f x( ) and g x( ) are two distinct neighbors of x in the graph Gn. For any vertex
y B′n∈ we define vertices f y g y B( ), ( ) n∈ by considering the unique decomposition
σ y t y u v( ) = 1 ( ) = 1 1 0ℓ , where n0 ℓ 2 − 2≤ ≤ and u v D, ∈ , and by setting

f y σ u v B g y σ u v B( ) (0 1 0) , ( ) (1 0 0) .n n
−ℓ −ℓ≔ ∈ ≔ ∈ (8b)

(A)

(B)

FIGURE 21 (A) Correspondence between cycles in n and tree rotation. The Gray boxes highlight the Dyck
substrings. Part (B) of the figure is explained in Section 5.3.1. [Color figure can be viewed at
wileyonlinelibrary.com]
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Clearly, f y( ) and g y( ) are two distinct neighbors of x in the graph Gn. The definition of these
mappings is illustrated in Figures 21A and 27A. For any x B B′n n∈ ∪ we define
C x x f x f x( ) ( , ( ), ( ), …)2≔ .

The following lemma was shown in [22].

Lemma 25 (Merino et al. [22]). Let n 1≥ .

(i) For any x B B′n n∈ ∪ we have g f x x( ( )) = and f g x x( ( )) = , that is, f and g are
inverse mappings. Consequently, M x f x x B{( , ( )) }n≔ ∈ and N g x x x B{( ( ), ) }n≔ ∈
are two disjoint perfect matchings in the graph Gn and

M N C x x B B= { ( ) ′}n n n ≔ ∪ ∈ ∪ is a cycle factor of Gn.

(ii) For any x Bn∈ we have t f f x ρ t x( ( ( ))) = ( ( )) and f f x xℓ( ( ( ))) = ℓ( ) + 1

nmod (2 − 1). In words, the next vertex from Bn that follows after x on the same
cycle of n is obtained by rotating the tree t x( ) and incrementing the shift.

(iii) For any x Bn∈ we have C x B σ x i n x t x( ) = { ( ′0) 0 2 − 2 ′ [ ( )]}n
i∩ ≤ ≤ ∈  . Conse-

quently, the cycles of n are in bijection to the set Tn of plane trees with n vertices.

Properties (ii) and (iii) are illustrated in Figures 21A and 27A. One can check that the
perfect matchings M and N defined in part (i) of the lemma are in fact the n( − 2)‐lexical and
n( − 1)‐lexical matchings defined in [20] and used in [12]. We will think of the cycles of n as
being oriented in the direction of applying f , oppositely to g f= −1.

The following property of the cycle factor n was established in [12].

Lemma 26 (Gregor et al. [12]). The mapping h B B B B: ′ ′n n n n∪ → ∪ defined by
x x x x x x( , …, ) ( , , …, , )n n n n1 2 −1 2 −2 2 −3 1 2 −1↦ , where overline denotes complementation, is an
automorphism of Gn that maps n onto itself.

5.2.3 | Gluing cycles

We now describe how to join the cycles of the factor n to a single Hamilton cycle, by taking the
symmetric difference with suitably chosen 6‐cycles.

We consider two Dyck words x y D, n∈ of the form

x u v y u v u v D= 1 1 0 0 , = 1 0 1 0 , with , .∈ (9)

We refer to such a pair x y( , ) as a gluing pair, and we write n for the set of all gluing pairs.
The rooted trees corresponding to x and y are shown in Figure 22. Note that the tree y is
obtained from x by removing the leftmost edge that leads from the leftmost child of the root of
x to a leaf, and reattaching this edge as the leftmost child of the root.

For any gluing pair x y( , ) n∈ we define x f x( 0)i i≔ and y f y( 0)i i≔ for i 0≥ . Using the
definition (8), a straightforward calculation yields the vertices shown in Figure 23.

Note that

C x y x x x x y y( , ) ( , , , , , )0 1 6 5 0 1≔ (10)
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is a 6‐cycle in the graph Gn; see Figure 23. This 6‐cycle has the edges x x( , )0 1 and x x( , )6 5 in
common with the cycle C x( )0 , and the edge y y( , )0 1 in common with the cycle C y( )0 . One can
check that the symmetric difference of the edge sets C x C y C x y( ( ) ( ))Δ ( , )0 0∪ is a single cycle
on the vertex set of C x C y( ) ( )0 0∪ . In other words, the cycle C x y( , ) glues together two cycles
from the cycle factor to a single cycle. For any set of gluing pairs n ⊆ we write
C C x y x y( ) { ( , ) ( , ) } ≔ ∈ .

The following results about the cycle factor n and the set of gluing pairs n were proved in [12];
see this paper for illustrations.

Lemma 27 (Gregor et al. [12]). For any two gluing pairs x y x y( , ), ( ′, ′) n∈ , the 6‐cycles
C x y( , ) and C x y( ′, ′) are edge‐disjoint. For any two gluing pairs x y x y( , ), ( , ′) n∈ , the two
pairs of edges that the two 6‐cycles C x y( , ) and C x y( , ′) have in common with the cycle
C x( )0 are not interleaved.

Lemma 28 (Gregor et al. [12]). For any n 4≥ , there is a set n n ⊆ of gluing pairs of
cardinality T= − 1 = − 1n n n       , such that x y x y{([ ], [ ]) ( , ) }n∈ is a spanning tree
on the set of plane trees Tn, implying that the symmetric difference CΔ ( )n n  is a Hamilton
cycle in Gn.

5.2.4 | Alternating path

In the following, we describe how to join two vertices x B y B, ′n n∈ ∈ with Hamming distance
d x y d( , ) = in the graph Gn via some cycles from n to a short path between x and y.

We say that a path P between two vertices x and y of Gn is n ‐alternating if it alternately
uses edges and nonedges of n , starting and ending with an edge of n , and the symmetric
difference PΔ n yields a path between x and y that contains all vertices of the intersected

FIGURE 22 A gluing pair x y( , ) with corresponding rooted trees. [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 23 The vertices x y,i i and the cycle C x y( , ). [Color figure can be viewed at wileyonlinelibrary.com]
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cycles; see Figure 24. Note that the resulting path will then also contain all vertices of P. In
other words, the path P glues together all intersected cycles to a single path between x and y,
while the nonintersected cycles are unchanged. Note that P is allowed to intersect a single cycle
of n multiple times. The n ‐alternating paths we use in our proof are obtained as subpaths of
one fixed n ‐alternating path between two complementary vertices with maximum possible
Hamming distance n2 − 1.

Lemma 29. For n 5≥ , let P be the path defined in Figure 25 between the two vertices
x Bn1 ∈ and y B′n n∈ . For every i n= 1, …, , the subpath of P between x Bn1 ∈ and y B′i n∈ is
a n ‐alternating path and d x y i( , ) = 2 − 1i1 .

Proof. By counting the positions in which xi and yi differ from x1, it is straightforward to
check that d x x i( , ) = 2 − 2i1 and d x y i( , ) = 2 − 1i1 for all i n= 1, …, . Note that the
Hamming distance from x1 increases monotonically along P, with the only exception
being the step being from x′ to y′, which satisfy d x x n( , ′) = 2 − 41 and d x y n( , ′) = 2 − 51 .
Next, we observe that every edge x y( , )i i for i n= 1, …, and the edge x y( ′, ′) belong to a
cycle from n . Specifically, by (8a) we have y f x= ( )i i for all i n= 1, …, − 4 and
y g x f x= ( ) = ( )i i i

−1 for i n n= − 3, …, , and y f x′ = ( ′). Furthermore, all other edges of P
are not on a cycle from n , which can be verified by (8a).

We now determine which cycles of n the path P intersects. For this we consider the
rooted trees t x( )i for i n= 1, …, and t x( ′); see Figure 25. For any i 1≥ we define the
rooted tree s D(10)i

i
i

−1≔ ∈ , which is the star with i vertices rooted at the center vertex.
With this abbreviation we obtain

t x s t x s t x s

t x s s i n t x s

t x t x s

( ) = 110010, ( ) = 110 010, ( ) = 10110 0,

( ) = 1 0 110010 for = 2, …, − 4, ( ) = 1100 10,

( ) = ( ′) = .

n n n n n

i i n i n n

n n

1 −3 −3 −3 −3

− −3 −1 −3

−2

(11)

Note that t x t x t x[ ( )] = [ ( )] = [ ( )]n n1 −3 is the same underlying plane tree, so the vertices
x x, n1 −3 and xn lie on the same cycle of n by Lemma 25 (iii). Similarly,
t x t x s( ) = ( ′) =n n−2 , so the vertices xn−2 and x′ lie on the same cycle of n . From (11)
we see that the tree t x( )1 has diameter 3 and t x( )n−2 has diameter 2, so these two cycles

FIGURE 24 Example of a n ‐alternating path between x and y. [Color figure can be viewed at
wileyonlinelibrary.com]
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are distinct. We claim that the remaining vertices xi for i n= 2, …, − 4 and xn−1 all lie on
their own cycle of n that is also distinct from the previous two cycles. To see this, we use
again Lemma 25 (iii), noting that t x( )i and t x( )n−1 have diameter 4, t x t x[ ( )] [ ( )]i j≠ for
any two distinct indices i j n, {2, …, − 4}∈ , and moreover t x( )n−1 has two adjacent
vertices of degree 2 unlike t x( )i for i n= 2, …, − 4.

Consequently, the entire path P intersects the cycleC C x C x C x( ) = ( ) = ( )n n3 1 −3≔ three
times, the cycle C C x C x( ) = ( ′)n2 −2≔ twice, and every other (intersected) cycle only once.

We now check that the symmetric differences P C P CΔ , Δ2 3, and P C CΔ( )2 3∪ yield a
single path containing all vertices of C C,2 3, or C C2 3∪ , respectively. For P CΔ 2 this can be
seen easily, by noting that the first edge x y( , )n n−2 −2 of P intersecting C2 is a backward
edge of C2 (i.e., y g x f x= ( ) = ( )n n n−2 −2

−1
−2 ), whereas the second edge x y( ′, ′) of P

intersecting C2 is a forward edge of C2 (i.e., y f x′ = ( ′)). The intersection pattern between
P and C3 is shown in Figure 26A. This figure shows the cycle C3 with all relevant vertices
x Bn∈ that lie on this cycle, the corresponding rooted trees t x( ) and the corresponding
shifts xℓ( ), as given by Lemma 25(ii). The shifts x xℓ( ) = 0, ℓ( ) = 0n1 −3 and
x nℓ( ) = 2 − 5n are given by the definition of P, and result in the shown location of

the three edges of P on C3. One can check that P CΔ 3 is indeed a single path that contains
all vertices of C3. Moreover, the two intersections of P with C2 (in the edges x y( , )n n−2 −2

and x y( ′, ′)) are not separated by intersections with C3, implying that P C CΔ( )2 3∪ is also
a single path containing all vertices of C C2 3∪ ; see Figure 26B.

FIGURE 25 Definition of the n ‐alternating path P in Lemma 29. The Gray boxes highlight the Dyck substrings
of the path vertices from Bn. The corresponding rooted trees are shown to the right, as well as the shifts and the
Hamming distance from the first vertex x1. The subtrees si are stars with i vertices rooted at the center vertex. [Color
figure can be viewed at wileyonlinelibrary.com]

GREGOR ET AL. | 47

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22915 by T

est, W
iley O

nline L
ibrary on [10/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


So far we have shown that the path P is n ‐alternating. However, the statement of the
lemma is stronger, and asserts that every subpathQ P⊆ between x1 and yi for i n= 1, …,

is also n ‐alternating. The only nontrivial cases to consider are whenQ intersectsC2 orC3
twice, which happens precisely when Q ends at y y,n n−1 −2 or yn−3, and those can be
checked to work in Figure 26C.

This completes the proof of the lemma. □

5.2.5 | Proof of Theorem 8

We are now in a position to present the proof of Theorem 8.

(A)

(B)

(C)

FIGURE 26 The intersection of the path P and subpathsQ P⊆ with the cycles C2 and C3. [Color figure can
be viewed at wileyonlinelibrary.com]
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Proof of Theorem 8. We need to show that G G n G n n n= ( ) ( , ), 3n n ≃ ≥ , is Hamilton‐
laceable. The cases n = 3 and n = 4 are covered by Table 1, so we will assume that n 5≥ .
Let d be an odd integer with d n1 2 − 2≤ ≤ . Moreover, let n be the cycle factor in Gn
defined in Lemma 25 (i), and let Q be the path given by Lemma 29 between vertices
x Bn∈ and y B′n∈ with d x y d( , ) = . Now consider the cyclically shifted path
Q σ Q′ ( )−4≔ , connecting x σ x′ ( )−4≔ and y σ y′ ( )−4≔ , which also satisfy
d x y d( ′, ′) = . By Lemma 24, the theorem is proved by exhibiting a Hamilton path
from x′ to y′, which we will do in the following. All except possibly the last vertex of Q
have a 0‐bit at position n2 − 5; see the highlighted column in Figure 25. It follows that all
except possibly the last vertex of Q′ have a 0‐bit at their last position. As Q is n ‐
alternating by Lemma 29 and the definition of f in (8) is invariant under cyclic rotation
of bitstrings, the path Q′ is also n ‐alternating. Let r denote the number of cycles of n
intersected by the pathQ′. Then the symmetric differenceQ′Δ n is a path between x′ and
y′ plus a set of r−n  cycles, and together they visit all vertices of Gn.

Now consider a set n n ⊆ of gluing pairs with the properties guaranteed by
Lemma 28 and the corresponding 6‐cycles C C x y x y( ) = { ( , ) ( , ) }n n  ≔ ∈ . We
consider the image h′ ( ) ≔ of those 6‐cycles under the automorphism h stated in
Lemma 26. As this automorphism maps n onto itself, we have that Δ ′n  is a Hamilton
cycle in Gn. From Figure 23 we see that for every 6‐cycle C x y( , ) ∈ , the last bit of all
vertices x x y y, …, , ,0 6 0 1 is 0, and by the definition of h, the last bit of the corresponding
vertices in h ( ) = ′  is 1. Consequently, all edges between these vertices are disjoint
from the pathQ′. As r cycles of n are already joined byQ′, we can discard r − 1 of the 6‐
cycles from the set ′ to obtain a set ″ of 6‐cycles of cardinality

r r″ = − ( − 1) = −n n′        such that Q( ′Δ )Δ ″n  is a Hamilton path in Gn
between x′ and y′. This completes the proof of the theorem. □

5.3 | Proof of Theorem 9

The basic strategy for proving Theorem 9 is very similar to the proof of Theorem 8. We first
construct a cycle factor in the graph, and we then join its cycles to a single Hamilton cycle. The
construction of the cycle factor and of the gluing cycles is achieved by carefully generalizing the
constructions described in Sections 5.2.2 and 5.2.3. These two steps work for any graph aG ( )n ,
and only the last step of constructing a Hamilton cycle is done specifically for the case
a n= ( − 1, 1) required for Theorem 9.

5.3.1 | A cycle factor in aG ( )n

For any n 1≥ and any integer partition a of n, we now describe how to construct a cycle factor
a( )n in aG ( )n .
Given any string x over the alphabet k{0, 1, …, }, we write x for the bitstring obtained from x

by replacing all nonzero symbols by 1. The mappings tℓ, and f defined in Section 5.2.2 on
bitstrings can be generalized to operate on multiset permutations in the natural way.
Specifically, for any ax Π ( )n

−∈ , we define x xℓ( ) ℓ( )≔ . Moreover, t x( ) is the substring of x of
length n2 − 2 starting at position xℓ( ) + 1 (modulo the length n2 − 1). Similarly,
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af x( ) Π ( )n
−∈ is obtained by considering the position i in which x and f x( ) differ, and by

replacing the symbol at position i in x by the suppressed symbol s x( ).
For example, for x = 00230 Π (1, 1, 1)3

−∈ we have s x x x( ) = 1, = 00110, ℓ( ) = 2  and
t x( ) = 1100 . Consequently, we obtain xℓ( ) = 2 and t x( ) = 2300. Moreover, f x( ) = 10110
differs in the first bit from x, and therefore f x s x( ) = ( )0230 = 10230.

For any ax Π ( )n
−∈ we define the cycle C x x f x f x( ) ( , ( ), ( ), …)2≔ , and we define the cycle

factor a aC x x( ) { ( ) Π ( )}n n
− ≔ ∈ .

We also define a aD x x x D( ) { 0 Π ( ) }n n n
−1 ≔ ∈ ∈ . We can interpret any ax D ( )n∈ as a

vertex‐labeled rooted tree with n vertices, which has precisely ai vertices labeled i for all
i k= 1, …, (recall that n a= i

k
i=1 ); see Figures 21 and 27. For this recall the interpretation of

the Dyck word x Dn ∈ as a rooted tree with n vertices, which can be expressed iteratively as
follows: We start by adding a root vertex. We then read x from left to right, and for every 1‐bit
encountered we add a new rightmost child below the current vertex and we move to this vertex,
and for every 0‐bit encountered we move from the current vertex to its parent, without adding
any new vertices. Now the tree corresponding to x is obtained as follows: We start by adding a
root vertex with label s x( 0). We then read the string x from left to right, and for every nonzero
symbol i > 0 encountered we add a new rightmost child with label i below the current vertex
and we move to this vertex, and for every symbol 0 encountered we move from the current
vertex to its parent, without adding any new vertices.

Tree rotations also generalize straightforwardly to the labeled setting. Specifically, for
ax b u v D= 0 ( )n∈ with u v D,  ∈ and a b k, [ ]∈ such that a s x= ( 0) we define

ρ x u a v( ) 0≔ , which corresponds to rotating the tree together with its vertex labels (note
that s ρ x b( ( ) 0) = ).

With these definitions the properties asserted in Lemma 25 about the factor n generalize
straightforwardly to the labeled version a( )n . Specifically, if ax = Π ( )n

−1, then the tree
t f f x( ( ( ))) is obtained from t x( ) by a labeled tree rotation ρ; see Figure 21B (and the shift is
incremented, as before). Consequently, the cycles of a( )n are in bijective correspondence with
vertex‐labeled plane trees with n vertices, exactly ai of which have the label i for all i k= 1, …, . For
example, the cycle factor (1, 1, 1)3 shown in Figure 27 has three cycles which correspond to all
plane trees with three vertices with vertex labels 1, 2, 3, namely, the path P3 on three vertices with
either 1, 2, or 3 as the center vertex. The cycle factor (2, 1)3 on the other hand, has only two cycles,
corresponding to P3 with the label 2 either at the center vertex or at a leaf. For comparison, the
cycle factor (3)3 has only a single cycle corresponding to P3 with all vertices labeled 1.

5.3.2 | Labeled gluing cycles

We generalize the construction of gluing cycles described in Section 5.2.3 to the labeled case.
Specifically, we consider six Dyck words ax x x x y y D, , , , , ( )n1 2 3 4 1 2 ∈ of the form

x b c u v y b c u v

x c b u v y b a u v

x b a u v

x a b u v u v D a b c k

= 0 0 , = 0 0 ,

= 0 0 , = 0 0 ,

= 0 0 ,

= 0 0 , with , and , , [ ].

1 1

2 2

3

4   ∈ ∈

(12)

Note that s x s x s y a( ) = ( ) = ( ) =1 2 1 and s x s x s y c( ) = ( ) = ( ) =3 4 2 . We refer to such a 6‐tuple
x x x x y y( , , , , , )1 2 3 4 1 2 as a gluing tuple, and we write a( )n for the set of all gluing tuples. Note that
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by this definition we have s x s x s y a( ) = ( ) = ( ) =1 2 1 and s x s x s y c( ) = ( ) = ( ) =3 4 2 . Also note
that x x x x x= = = =:1 2 3 4   and y y y= =:1 2  , and that x y( , ) is a gluing pair as defined in (9),
that is, the rooted trees corresponding to x x x x y y, , , , ,1 2 3 4 1 2, which are shown in Figure 28, are
vertex‐labeled versions of the two trees shown in Figure 22. Observe also that some of the
values a b c, , may coincide, which leads to different possible coincidences between the xj or yj;
see Figure 28.

For a gluing tuple ax x x x y y( , , , , , ) ( )n1 2 3 4 1 2 ∈ we define x f x( 0)j
i i

j≔ for j = 1, 2, 3, 4 and

i 0≥ , and y f y( 0)j
i i

j≔ for j = 1, 2 and i 0≥ . It can be verified from Figure 28 that the

sequence of vertices

( )C x x x x y y x x x x y y x x x x y y( , , , , , ) , , , , , , , , , , ,1 2 3 4 1 2 1
0

1
1

2
6

2
5

1
0

1
1

3
0

3
1

4
6

4
5

2
0

2
1≔ (13)

is cyclic, and any two consecutive vertices differ in one position. This sequence is obtained by
applying the flip sequence of the 6‐cycle in (10) two times. For any set of gluing tuples

a( )n ⊆ we write C C x x x x y y x x x x y y( ) { ( , , , , , ) ( , , , , , ) }1 2 3 4 1 2 1 2 3 4 1 2 ≔ ∈ . Note that
C x x x x y y( , , , , , )1 2 3 4 1 2 is a 12‐cycle if a c≠ and a 6‐cycle if a c= . Moreover, this cycle can be

FIGURE 27 Construction of the cycle factor a( )n in the graph aG ( )n (right‐hand side) from the cycle factor

n in the graph Gn (left‐hand side). [Color figure can be viewed at wileyonlinelibrary.com]
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used to join either 2, 3, 5, or 6 different cycles from a( )n , depending on the coincidences
between the values a b c, , , as shown in Figure 28.

By Lemma 27, any two distinct cycles from aC ( ( ))n are edge‐disjoint, and if two of them
intersect one cycle of a( )n twice each, then the two pairs of edges on this cycle are not
interleaved. Note that the cycles C x x x x y y( , , , , , )1 2 3 4 1 2 and C x x x x y y( , , , , , )3 4 1 2 2 1 have the exact
same set of vertices and edges, so they are the same cycle.

5.3.3 | Proof of Theorem 9

The following lemma, proved in [22], strengthens Lemma 28 from before. To state the lemma,
we need a few more definitions. As before, we write s D(10)n

n
n

−1≔ ∈ for the star with n

vertices, rooted at the center vertex. Given a (rooted or plane) tree x , the potential of a vertex of
x is the sum of distances from that vertex to all other vertices of x . Moreover, the potential of x ,
denoted by φ x( ), is the minimum potential of all vertices of x . For example, φ s n( ) = − 1n .

FIGURE 28 Definition of the cycle C x x y x x y( , , , , , )1 2 1 3 4 2 . [Color figure can be viewed at
wileyonlinelibrary.com]

52 | GREGOR ET AL.

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22915 by T

est, W
iley O

nline L
ibrary on [10/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


Lemma 30 (Merino et al. [22]). For any n 4≥ , there is a set n n ⊆ of gluing pairs of
cardinality T= − 1 = − 1n n n       , such that x y x y{([ ], [ ]) ( , ) }n∈ is a spanning tree
on the set of plane trees Tn, implying that the symmetric difference CΔ ( )n n  is a Hamilton
cycle in Gn. Moreover, for every gluing pair x y( , ) n∈ we have φ y φ x( ) = ( ) − 1, and for
every plane tree T T s{[ ]}n n∈ ⧹ there is exactly one gluing pair x y( , ) n∈ with T x= [ ] and
φ y φ x( ) = ( ) − 1.

The spanning tree described in this lemma is illustrated in Figure 29 for n = 7.
We are now ready to present the proof of Theorem 9.

Proof of Theorem 9. The graphs G (2, 1, 1) and G (3, 2, 1) have a Hamilton cycle by
Table 1. In the remainder of the proof we construct a Hamilton cycle in
G n G n n( − 1, 1) ( , − 1, 1)n ≃ for n 4≥ . We define a n( − 1, 1)≔ .

FIGURE 29 Illustration of Lemma 30 and the proof of Theorem 9. The figure shows all plane trees with 7
vertices, arranged in levels according to their potential. The vertices with minimum potential are highlighted.
The number next to each tree specifies the number of distinct plane trees obtained by marking a single vertex (in
each orbit of symmetric vertices, one is drawn black and the others white). Each gluing pair x y( , ) n n ∈ ⊆ is
visualized by indicating the placement of roots at the plane trees x[ ] and y[ ] by a small filled or nonfilled arrow,
respectively. The bubbles indicate gluing tuples from n′ ( − 1, 1)n n ⊆ that join the 5 marked plane trees with
the mark placed at one vertex within the bubbles in each tree. An example of two gluing tuples that are used for
the four marked paths with potential 12 is depicted in the box. [Color figure can be viewed at
wileyonlinelibrary.com]
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We start with the cycle factor a( )n constructed in Section 5.3.1. Its cycles are in
bijective correspondence to plane trees that have a single vertex labeled 2, and all other
vertices labeled 1. We say that this label‐2 vertex is marked, and we refer to these trees as
marked plane trees. We construct a set of gluing tuples a′ ( )n n ⊆ such that

a C( )Δ ( ′ )n n  is a Hamilton cycle in aG ( )n .

We let n n ⊆ be the set of gluing pairs given by Lemma 30. The set a′ ( )n n ⊆ is
constructed from n by considering the potential of the trees of these gluing pairs. Note
that the path on n vertices has the highest potential p nˆ 42≔ ∕ , whereas the star s[ ]n has
the lowest potential p nˇ − 1≔ . Roughly speaking, we consider all plane trees with
decreasing potential p p p p= ˆ , ˆ − 1, …, ˇ, and we add gluing tuples from a( )n derived
from gluing pairs of n step by step, such that all cycles of a( )n corresponding to marked
plane trees with potential at least p are joined together.

Formally, for p p p p= ˆ , ˆ − 1, …, ˇ, we inductively construct a set a′ ( )n p n, ⊆ of gluing
tuples such that a C( )Δ ( ′ )n n p,  is a cycle factor in aG ( )n with the property that every

vertex is contained in a cycle together with all vertices x x x{ ˜ 0 ˜ [ ]}∈ for some ax D ( )n∈

with φ x p( ) ≤ . Note that there are precisely two marked plane trees with minimal
potential p p n= ˇ = − 1, namely, the star s[ ]n with either the center vertex or a leaf
marked, that is, these are s[ ′]n and s[ ″]n where as D′ (10) ( )n

n
n

−1≔ ∈ and

as D″ (20)(10) ( )n
n

n
−2≔ ∈ . We will show that as s′ 0, ″ 0 Π ( )n n n

−1∈ lie on the same
cycle, and these conditions imply that a C( )Δ ( ′ )n n p, ˇ  is a Hamilton cycle in aG ( )n .

The induction basis is ′n p, ˆ ≔ ∅. For the induction step p p − 1→ , suppose that
p p p′ , ˆ > ˇn p, ≥ , with the properties as stated before is given. Then ′n p, −1 is obtained by

adding gluing tuples from a( )n to the set ′n p, as follows.
We consider each plane tree T with n vertices and potential p, and we consider the

unique gluing pair x y( , ) n∈ with T x= [ ] and φ y φ x( ) = ( ) − 1. We then consider all
rooted trees obtained from x by marking one vertex, that is, the set

aX x D x x′ { ′ ( ) ′ = }n
≔ ∈  . Two marked rooted trees x x X′, ″ ′∈ are equivalent, if x′ 0

and x″ 0 lie on the same cycle in the factor a C( )Δ ( ′ )n n p,  , and we partition the set X ′

into equivalence classes X X X′ = ′ ′r1 ∪ ⋯ ∪ accordingly. Note that x x′, ″ can be
equivalent either because these trees have the same underlying marked plane tree,
that is, x x[ ′] = [ ″], or because cycles theC x( ′ 0) andC x( ″ 0) have been joined previously.

By (9) we have x u v= 1 1 0 0 and y u v= 1 0 1 0 for some u v D, ∈ . We consider the
three trees ax x x D, , ( )n3 2 1 ∈ obtained from x by marking the root of x , or the leftmost
descendants in distance 1 or 2 from the root, respectively, and the two trees ay y D, ( )n2 1 ∈

obtained from y by marking the root of y, or its second child from left to right, respectively
(these are the five trees marked by (*) in Figure 28). By these definitions we have

x u v y u v

x u v y u v

x u v

= 1 2 0 0 , = 1 0 2 0 ,

= 2 1 0 0 , = 1 0 1 0 ,

= 1 1 0 0 .

1 1

2 2

3

We then add the gluing tuple x x x x y y( , , , , , )1 2 3 3 1 2 to the set ′n p, −1 . The corresponding
12‐cycle C x x x x y y( , , , , , )1 2 3 3 1 2 intersects five cycles from the factor a( )n , corresponding
to the marked plane trees x x x y[ ], [ ], [ ], [ ]1 2 3 1 , and y[ ]2 ; see Figure 29. There is one special
case, namely, if v u= 1 0 , in which case x x[ ] = [ ]2 3 , and then the 12‐cycle intersects only
four cycles from the factor a( )n , but one can check that the symmetric difference is still
a single cycle; see Figure 30A.
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In addition to the aforementioned gluing tuple, which is added in every case, we add
further gluing tuples to the set ′n p, −1 , depending on X′. Specifically, for every
equivalence class X i r′, [ ]i ∈ , that contains none of x x x, ,1 2 3, we select one tree x X′ ′i∈ ,
and we let ay D′ ( )n∈ be the string obtained from x′ by swapping the second and third
entry, that is, x u v y u v′ = 110 0 , ′ = 101 0 with u v D,  ∈ such that the concatenation uv

contains a single occurrence of 2. We then add the gluing tuple x x x x y y( ′, ′, ′, ′, ′, ′) to the
set ′n p, . The corresponding 6‐cycle C x x x x y y( ′, ′, ′, ′, ′, ′) intersects two cycles from the
factor a( )n , corresponding to the marked plane trees x[ ′] and y[ ′].

By the construction of ′n p, −1 , each equivalence class X i r′, [ ]i ∈ , contains at most two
of the xi, and if this happens then X x x x x x′ { , , } = { , }i 1 2 3 2 3∩ , and x y[ ] = [˜ ]2 1 and x y[ ] = [˜ ]3 2

for some gluing pair x x x x y y(˜ , ˜ , ˜ , ˜ , ˜ , ˜ ) ′n p1 2 3 3 1 2 , −1∈ ; see Figure 30B. One can check in the
figure that the double intersection between the two gluing cycles and the two cycles from
the factor still yields a single cycle in the symmetric difference.

By the above steps and the induction hypothesis for p, we have achieved that in
a C( )Δ ( ′ )n n p, −1  , every vertex is contained in a cycle together with all vertices

x x x{ ˜ 0 ˜ [ ]}∈ for some ax D ( )n∈ with φ x p( ) − 1≤ , that is, the induction hypothesis

(A)

(B)

FIGURE 30 Verification of multiple intersections in the proof of Theorem 9. [Color figure can be viewed at
wileyonlinelibrary.com]
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holds for p − 1. In the last step of the construction for p p= ˇ + 1we added a gluing tuple
x x x x y y( , , , , , )1 2 3 3 1 2 where y s y s= , = ′n n1 ″ 2 , and thus we glued both cycles s[ ]n″ and s[ ′]n

into one.
This completes the proof of the theorem. □

6 | OPEN QUESTIONS

We conclude this paper with the following open questions.

• We believe that the techniques used in Section 5.3 to prove that G α α( , − 1, 1) has a
Hamilton cycle are in principle suitable to prove that aG ( ) has a Hamilton cycle for all a
with aΔ( ) = 0, which would be an important first step towards a proof of Conjecture 6. In
particular, the construction of the cycle factor a( )n and gluing tuples a( )n described in
Sections 5.3.1 and 5.3.2, respectively, are fully general. The main difficulty in combining
these ingredients lies in the fact that some gluing cycles join more than two cycles from the
factor (namely, 3, 5, or 6 cycles) to a single cycle, and in this case the resulting interactions
between different gluing cycles seem to be hard to control (recall Figure 30).

• We conjecture that G α α( , , 1) for α 2≥ is Hamilton‐connected, just as all other graphs aG ( )

with aΔ( ) > 0 covered by Theorem 7. However, we are unable to prove this based on
Conjecture 6; recall the discussion in Section 2.3. We confirmed this conjecture with
computer help for α = 2, 3, 4; see Table 1. Proving the conjecture would streamline our proof
of Theorem 7 considerably, as it would make Lemmas 17–20 redundant, which build on top
of Lemma 21 in the induction proof. To prove that G α α( , , 1) is Hamilton‐connected, it may
help establish a Hamiltonicity property for graphs aG ( ) with aΔ( ) = 0 and k 3≥ that is
stronger than 1 . Specifically, in addition to a Hamilton path between any vertex in aΠ( )1,1

and any vertex not in aΠ( )1,1, we may also ask for a Hamilton path between any two distinct
vertices in aΠ( )1,1. We checked by computer whether aG ( ) has this stronger property for
a {(2, 1, 1), (3, 2, 1), (3, 1, 1, 1), (4, 3, 1), (4, 2, 2), (4, 2, 1, 1), (4, 1, 1, 1, 1)}∈ , and it was sat-
isfied in all cases except for a = (2, 1, 1).

• While the proofs presented in this paper are constructive, they are far from yielding efficient
algorithms for computing the corresponding Gray codes. Ideally, one would like algorithms
whose running time is polynomial in n per generated multiset permutation of length n. Such
algorithms are known for the Hamilton cycles mentioned in Theorems 2 and 3, see [19,
Section 7.2.1.2] and [23], respectively. An interesting direction could be to explore greedy
algorithms for generating multiset permutations by star transpositions, which may yield
much simpler constructions to start with, compare [7, 35, 41].

• Knuth raised the question whether there are star transposition Gray codes for α α( , )‐
combinations whose flip sequence can be partitioned into α2 − 1 blocks, such that each
block is obtained from the previous one by adding +1 modulo α2 − 1. This problem is a
strengthening of the middle levels conjecture, and it was answered affirmatively in [22]. The
Gray code for (4, 4)‐combinations shown in Figure 2A has such a sevenfold cyclic symmetry.
We can ask more generally: Are there star transposition Gray codes for multiset
permutations whose flip sequence can be partitioned into n − 1 blocks, such that each
block is obtained from the previous one by adding+1 modulo n − 1? Figure 31 shows an ad
hoc solution for (2, 2, 2)‐multiset permutations with fivefold cyclic symmetry.
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• A more general version of the problem considered in this paper is the following: We consider
an alphabet k{1, …, } of size k 2≥ , and frequencies a a, …, 1k1 ≥ that specify that symbol i
appears exactly ai times for all i k= 1, …, . Moreover, there is an additional integer parameter
s with s k1 − 1≤ ≤ that has the following significance. The objects to be generated are all
pairs S x( , ), where S is a set or string of s distinct symbols, and x is a string of the remaining
n s− symbols, where n a a+ + k1≔ ⋯ . A star transposition swaps one symbol from S with
one symbol from x that is currently not in S, and the question is whether there is a star
transposition Gray code for all those objects.

Note that multiset permutations considered in this paper are the special case when s = 1.
Andrea Sportiello suggested this problem with a a α= = =k1 ⋯ (uniform frequency) and S
being a set as a generalization of the middle levels conjecture (s k a a α= 1, = 2, = =1 2 ).
Moreover, Ajit A. Diwan suggested this problem with a a α= = =k1 ⋯ (uniform frequency)
and a set S of size s k= − 1. Note that the uniform frequency case is particularly interesting,
as the underlying flip graph for this problem is vertex‐transitive if and only if a a= = k1 ⋯

(recall Lovász' conjecture [21]).
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