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We report a molecularly augmented continuum-based computational model of dynamic
wetting and apply it to the displacement of an externally driven liquid plug between
two partially wetted parallel plates. The results closely follow those obtained in a
recent molecular dynamics (MD) study of the same problem (Fernández-Toledano et al.,
J. Colloid Interface Sci., vol. 587, 2021, pp. 311–323), which we use as a benchmark.
We are able to interpret the maximum speed of dewetting U∗

crit as a fold bifurcation in
the steady phase diagram and show that its dependence on the true contact angle θcl is
quantitatively similar to that found using MD. A key feature of the model is that the
contact angle is dependent on the speed of the contact line, with θcl emerging as part
of the solution. The model enables us to study the formation of a thin film at dewetting
speeds U∗ > U∗

crit across a range of length scales, including those that are computationally
prohibitive to MD simulations. We show that the thickness of the film scales linearly
with the channel width and is only weakly dependent on the capillary number. This work
provides a link between matched asymptotic techniques (valid for larger geometries) and
MD simulations (valid for smaller geometries). In addition, we find that the apparent angle,
the experimentally visible contact angle at the fold bifurcation, is not zero. This is in
contrast to the prediction of conventional treatments based on the lubrication model of
flow near the contact line, but consistent with experiment.
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1. Introduction

Dynamic wetting, the process by which a liquid wets a solid surface, is an important
phenomenon that underpins a wide range of both industrial and natural processes,
including microfluidics (Stone, Stroock & Ajdari 2004), liquid coating and printing
operations (Weinstein & Ruschak 2004), petroleum recovery (Gerritsen & Durlofsky
2005), plant protection (Papierowska et al. 2018), ground water hydrology (Beatty &
Smith 2010) and biological processes (Barthlott, Mail & Neinhuis 2016). As such, it
presents a multiscale problem. Whilst its origin is at the microscopic scale of the
moving contact line, it influences outcomes at very much larger scales. However, despite
this importance, and consequent research over many decades, there remain fundamental
questions about the physics involved and, in particular, the role of solid–liquid interactions
at the moving contact line (Andreotti & Snoeijer 2020; Afkhami, Gambaryan-Roisman
& Pismen 2020; Semenov et al. 2011). One such difficulty is the determination of the
slip length from experiments. In this paper we develop a continuum model that does
not require the slip length, which is difficult to measure experimentally, to be specified.
The only parameter that we require is the width of the three-phase zone (TPZ), which
can be easily extracted from molecular dynamics (MD) simulations and an experimental
determination of the contact line friction for system-specific studies. MD simulations are
prohibitively expensive when the physical system size is large, but by simply changing a
single parameter in our model we are able to probe the dynamics of larger systems which
are beyond the capabilities of MD.

In wetting studies solid–liquid interactions are usually quantified in terms of the angle
of contact between the liquid and the solid, and its proper description has attracted much
attention (De Gennes 1985; Blake 2006; Shikhmurzaev 2007; Andreotti & Snoeijer 2020).
From hydrostatic and hydrodynamic perspectives, this boundary condition is crucial, as
it dictates the shape of the liquid volume. The way it changes in response to movement
of the contact line across the solid surface is, therefore, fundamental to our ability to
predict wetting outcomes. Nevertheless, the description of the true contact angle at a
moving contact line remains hotly debated (Andreotti & Snoeijer 2020; Afkhami et al.
2020; Semenov et al. 2011).

In continuum models the true contact angle, measured by the tangent of the interface
at the solid (see figure 1), has to be specified in order to solve the governing equations
and is usually considered to be constant and equal to the equilibrium value. The
observed dynamics of the apparent contact angle (i.e. the one seen experimentally
Wilson et al. 2006) is attributed to the ‘viscous bending’ of the interface: this is the
so-called ‘hydrodynamic’ or Cox–Voinov formulation (Cox 1986; Voinov 1976). However,
according to the molecular-kinetic theory (MKT) of wetting (Blake & Haynes 1967; Blake
1993) and the interface formation model (Shikhmurzaev 2007), the true contact angle
varies and is dependent on the velocity of the contact line.

Here, we will show that viscous bending alone is insufficient to capture the effects seen
in molecular simulations, where the velocity dependence of the actual contact angle is
observed. Therefore, we develop a new combined approach based on the Navier–Stokes
continuum paradigm combined with the MKT (whose formulation is far simpler than
the interface formation model, despite the latter’s attractive features) and focus it on
the canonical dynamic wetting problem of a liquid plug propagating through a channel.
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Figure 1. Schematic of a liquid plug between two plates subject to an external forcing F∗
0 . The angle that

the receding contact line makes with the plate is the true angle, denoted θcl. See figure 6 for a more detailed
schematic of the angle measurements.

In particular, in order to allow for unambiguous comparisons to the results of MD on a
comparable system, we identify a critical speed at which a flow bifurcation occurs and a
thin film is formed.

The study of dynamic wetting using molecular simulations has a long history, see review
articles De Coninck & Blake (2008) and Koplik & Banavar (1995); but here we focus on
a recent paper, Fernández-Toledano et al. (2021), that examines both wetting transitions
and the behaviour of the contact angle. In this study large-scale MD is utilised to explore
the steady displacement of a water-like liquid plug between two molecularly smooth solid
plates under the influence of an external driving force F∗

0 (see figure 1 for the geometry).
The study used a coarse-grained model of water and an atomistic Lennard–Jones model
for the solid plates. The general behaviour observed as F∗

0 was increased and, hence, the
liquid plug’s speed was raised, is depicted in figure 2. Notably, it was reported that both
the ‘true’, dynamic contact angle at the contact line, θcl, and a larger-scale ‘apparent’
angle, θapp, are dependent on the contact line velocity U∗

cl for the receding and advancing
interfaces. Henceforth, unless otherwise stated, when we refer to a ‘contact angle’ we mean
the ‘true’ contact angle. We also note that quantities labelled with an asterisk correspond
to dimensional physical quantities and those without to dimensionless quantities.

In the MD study, the apparent angle was measured at the system scale by a method that
mimics typical measurements of it in macroscopic experiments, where the precise details
of the true contact angle’s dynamics remain hidden, as they occur on such small length
scales (Hoffman 1975; Dussan 1979; Blake 2006). By varying the solid–liquid affinity
(i.e. the solid’s wettability), it was possible to investigate the influence of the equilibrium
contact angle θ0 on the results. For all θ0, θcl was found to be velocity dependent in a
manner consistent with the MKT of dynamic wetting (Blake & Haynes 1967; Blake 1993).
However, θapp diverged from θcl as F∗

0 was increased, especially at the receding contact
line (RCL), in a way that closely followed the Voinov equation (Voinov 1976)

θ3
app = θ3

cl + 9 Ca log(L∗/L∗
m), (1.1)

where Ca = μ∗U∗
cl/γ

∗ is the capillary number based on the contact line speed U∗
cl,

dynamic viscosity μ∗ and surface tension γ ∗, and L∗ and L∗
m are suitably chosen

macroscopic and microscopic length scales. For each θ0, there was a critical RCL velocity
U∗

crit and contact angle θcrit at which θapp became small and the receding meniscus
deposited a liquid film on the plates. This value could then be used in (1.1), assuming
θapp ≈ 0, to fix L∗/L∗

m and, hence, reliably predict θcl at both the ACL and RCL.
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Figure 2. Figure reprinted from Fernández-Toledano, Blake & De Coninck (2021), with permission from
Elsevier. Panels (a–e) show the liquid plug as the force F∗

0 (in the article asterisks were not used to denote
dimensional quantities) becomes successively larger and eventually exceeds the critical value (panels d,e) where
a thin film begins to develop. In this MD simulation the external phase is a vacuum.

This result is significant, as θcl is not usually experimentally accessible and the fact that it
varies with U∗

cl poses questions for hydrodynamic interpretations of dynamic wetting. The
result also shows that the critical condition for film deposition encodes crucial information
about the hydrodynamics.

The existence of a critical wetting speed has been investigated thoroughly using
hydrodynamic models in a range of geometries, including those associated with coating
flows (Kumar 2015) and plate withdrawal (Snoeijer et al. 2008), among others. In Keeler
et al. (2021) both receding and advancing contact line (ACL) problems were investigated
for a coating flow and the stability of the solutions near the critical speed was quantified
using a dynamical systems method. Here, our focus will be on the RCL, as this is where
the first bifurcation will occur. Previous studies have shown that as Ca increases, the RCL
will attain a steady state provided Ca < Cacrit, where Cacrit is a critical capillary number
that is a function, at the very least, of θcl, the slip length and the viscosity ratio of the
liquid and gas phases (Cox 1986; Eggers 2004; Snoeijer et al. 2006, 2007; Keeler et al.
2021), but, if Ca > Cacrit, a thin film develops with thickness dependent on Ca (Snoeijer
et al. 2006; Keeler et al. 2021). Using a lubrication model, Cacrit can be approximated
when the slip length is small relative to the film height (Eggers 2005), by considering a
small-Ca asymptotic analysis and using the key assumption that θapp = 0 at the critical
point. However, in a nano-geometry, as considered here, we will see that this assumption
is not valid and the resulting small-Ca asymptotic analysis does not extend to this regime.
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In this paper we will develop a hydrodynamic model based on the Navier–Stokes
paradigm to calculate steady states and transient behaviour of the liquid plug scenario
considered in Fernández-Toledano et al. (2021). An essential aspect of this model is that
the true angle, θcl, has to be specified at the junction of the liquid, gas and solid phases.
In many previous studies where a Navier–Stokes model is used (see, e.g. Sprittles &
Shikhmurzaev 2012; Kamal et al. 2019; Liu, Carvalho & Kumar 2019; Vandre, Carvalho
& Kumar 2012, 2013; Liu et al. 2016a,b; Liu, Carvalho & Kumar 2017) θcl is assumed
to be constant and, in others, whilst the angle varies this is to account for sub-grid-scale
variations in the apparent angle, rather than variation of θcl (Sui, Ding & Spelt 2014).

Motivated by the results of Fernández-Toledano et al. (2021) we relax this assumption
and adopt a model that determines θcl as a function of Ca and the static contact angle
θ0 based on the MKT. Notably, the model remains hydrodynamic throughout, in contrast,
for example, to Hadjiconstantinou (1999), and the molecular augmentation comes entirely
through the contact angle formula.

The approach of using molecular simulations to develop a macroscopic framework
for dynamic wetting builds on a number of influential works in this area. Notably,
in Qian, Wang & Sheng (2003) molecular simulations revealed the existence of the
‘uncompensated Young stress’ in the contact line region that led the authors to derive
a ‘generalized Navier boundary condition’ that fits into a Cahn–Hilliard computational
framework where the molecular-scale diffuse nature of the interface is resolved. In Ren &
E (2007) a careful analysis of contact line force contributions in MD was also considered,
but within the sharp-interface regime this led the authors to propose a hydrodynamic
model similar to the one considered here, Navier slip and the use of the MKT to
account for the contact line region’s dynamics. This work was extended in Ren, Hu &
E (2010) to account for complete wetting states. Again, motivated by MD, more recent
approaches have even considered modifications to impermeability of the solid–liquid
interface (Lukyanov & Pryer 2017) that change the flow kinematics near the contact line.
Notably, such models subsequently became the basis of macroscopic CFD-type codes for
wetting, e.g. Xu & Ren (2014) and Yue & Feng (2011). Previous articles considering MD
have, understandably, focused on steady states where the advantages of time averaging of
MD obtained quantities can be exploited. Here, we expand on these articles to focus on
flow instabilities at the RCL, which is known to be a sensitive test for dynamic wetting
theories (Snoeijer & Andreotti 2013).

Macroscopic models previously proposed, including, in particular, those using the MKT
(Reddy, Schunk & Bonnecaze 2005; Dodds, Carvalho & Kumar 2012), often consider that
the static contact angle, θ0, and slip length are independent parameters. Motivated again by
Blake et al. (2015) and Fernández-Toledano, Blake & De Coninck (2020b), we will make
use of a correlation between slip length and θ0 that reduces the number of parameters that
are required. This correlation is based on an assumption, borne out by MD simulations,
that the mechanism of slip between a liquid and a solid is the same across all parts of the
solid–liquid interface, including the contact line.

The paper is structured as follows. In § 2 we describe the system of equations used
to model the liquid plug based on the Navier–Stokes equations. In addition to the
Navier–Stokes equations, in § 3 we discuss asymptotic results, based on a quasi-parallel
(QP) lubrication approach adapted from Eggers (2005), that will be relevant here.
By calculating numerical solutions of the governing equations using a finite-element
framework, we will then show in § 4 that the critical speed of wetting for the entire
liquid plug is dependent on the RCL and not influenced by the ACL. We will also
discuss the method for calculating the apparent angle. Next, in § 5 we will show how
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augmenting the Navier–Stokes equations with an MKT variable-angle (VA) constraint
predicts the existence of a critical Ca, and that as the wettability is varied the values
of Cacrit match favourably with the MD data in Fernández-Toledano et al. (2021), in
contrast to the predictions of the fixed-angle model. In addition, we demonstrate how θcl
and θapp vary with the slip length and, thus, provide an estimate of L∗/L∗

m for the liquid
plug system, which shows excellent agreement with the MD simulations. Furthermore, in
§ 6 we examine time-dependent behaviour when Ca > Cacrit so that a thin film develops,
whose height obeys a Landau–Levich law. Finally, in § 7, having validated the system
in the liquid nano-plug geometry, we exploit our computational framework to explore
larger-scale systems, which are beyond the scope of MD simulations. By examining
systems where the physical size is orders of magnitude larger than the nano-channel
studied in Fernández-Toledano et al. (2021), we will show that the dimensionless thickness
of the film remains constant for a fixed Ca.

2. Molecular-augmented hydrodynamic model

We will now describe the hydrodynamic model. We shall discuss the full system, based
on the Navier–Stokes equations and then describe two different system formulations, the
pressure-driven problem and the force-driven problem, as well as the numerical method
and the different computational domains.

2.1. Fully nonlinear system
To mimic the molecular simulations, we model the liquid-bridge system as a
two-dimensional flow between two parallel plates as illustrated in figure 1 and detailed
in figure 3(a). A finite liquid region fills the channel bounded by two rigid plates that
are separated by a distance H∗. We solve in a frame of reference that moves with the
plug, with the walls moving with velocity U∗

wall. The exact formulation depends on the
domain and problem that we consider (i.e. pressure-driven or body-force driven), details
of which we discuss later. We non-dimensionalise all lengths using the half-height, H∗/2,
all velocities using U∗

wall, all pressures by μ∗U∗
wall/(H

∗/2), all time scales by (H∗/2)/U∗
wall

and the body force by μ∗U∗
wall/(H

∗/2)2. The physical values from the nano-channel
geometry of Fernández-Toledano et al. (2021) are H∗ = 20.2 nm, μ∗ = 0.37 mPa s−1,
ρ∗ = 997 kg m−3 and γ ∗ = 66 × 10−3 Nm−1. The physical velocity U∗

wall ranges from
1 to 102 m s−1. As in other studies (Sprittles & Shikhmurzaev 2011b,a; Vandre et al.
2012; Sprittles & Shikhmurzaev 2013; Vandre et al. 2013; Liu et al. 2016a,b, 2017,
2019), we apply the Stokes-flow approximation, (2.1)–(2.2), so that the Reynolds number,
ρ∗U∗

wallH
∗/μ∗, is assumed to be negligibly small; simple estimates confirm that this is

appropriate for the nano-system. We neglect the influence of gravity and assume that the
gas phase can be modelled as a vacuum (as seen in figure 2, there are no molecules in the
gas phase). A typical computational domain is shown in figure 3(a). On the moving wall
(y = 0) we apply a Navier-slip condition, (2.3), and, therefore, introduce a dimensionless
slip length, λ. The MD simulations in figure 2 indicate the flow is symmetric around the
centreline of the channel and, hence, we introduce a symmetry wall at y = 1, labelled
Γ2, where we set the vertical component of velocity to be zero, apply zero tangential
stress and let the horizontal velocity be determined as part of the solution. As well as
the fluid velocity field, u(t, x), and pressure, p(t, x), which depend on the dimensionless
time, t, and the position, x of the interfaces, denoted Radv = (xa(t, s), ya(t, s)) and Rrec =
(xr(t, s), yr(t, s)), respectively, are also unknowns in the problem and functions of t and
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Half liquid-plug domain

Receding contact line
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Figure 3. The computational domain with streamlines and computational elements in the background.
(a) Half-liquid plug domain – the upper boundary, Γ2 is a symmetry boundary and Γ4 is a moving wall, so we
are computing the system in a frame of reference that moves with the liquid. (b) Receding contact line domain
where, instead of a free surface at Γ1, we impose parallel flow which significantly reduces the computational
burden. (c) Advancing contact line domain. In (b,c) the circular markers on the free surfaces indicate the
location of the inflection point, denoted IP. Parameter values are Ca = Cacrit = 0.31, λ = 0.1, θcl = π/2.

the arclength, s, as measured from the contact point. These are found using dynamic
and kinematic conditions on both free surfaces. The governing equations and boundary
conditions then become

0 = −∇p + ∇2u + F , x ∈ Ω, Conservation of momentum, (2.1)

∇ · u = 0, x ∈ Ω, Incompressibility, (2.2)

λ(τ · n) · t, = (u − U) · t, x ∈ Γ4, Navier-slip condition, (2.3)

u · n = 0, x ∈ Γ4, No-penetration condition, (2.4)

u · n = 0, (τ · n) · t = 0, x ∈ Γ2, Symmetry condition, (2.5)

τ · n = 1
Ca

κn, x ∈ Γ1 ∪ Γ3, Dynamic condition (receding & advancing), (2.6)

∂Radv

∂t
· n = u · n, x ∈ Γ1, Kinematic condition (advancing), (2.7)

∂Rrec

∂t
· n = u · n, x ∈ Γ3, Kinematic condition (receding), (2.8)

where n and t are the vectors normal and tangential, respectively, to the appropriate
boundaries denoted Γi, and κ is the curvature of the corresponding interface. The plate
speed U = (Uwall, 0)T and λ = λ∗/(H∗/2) is the dimensionless slip length. The body
force is F = (F, 0)T, where F is a set constant. The stress tensor τ is defined as

τ = −pI + (∇u + (∇u)T) , (2.9)
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where I is the identity matrix. We shall refer to the system described by (2.1)–(2.8) as the
‘half-liquid plug’ problem.

2.2. Contact angle models
The system is not well-posed unless a contact angle is specified between the free surfaces
and the horizontal plates. For the symmetry boundary, we set θ(s = L) = π/2, but the
dynamic contact angle, θcl, can be freely chosen and depends on the wettability of the
solid.

The simplest approach is to specify a constant equilibrium contact angle, i.e.

θcl = const., Constant angle equation. (2.10)

However, as is well known, the MKT predicts θcl to be dependent on the speed of the
contact line. As shown in Appendix A, for the RCLs of interest here, this dependence may
be written in the linearised form

Ca = λ
δ

(cos(θ0) − cos(θcl)) , VA equation, (2.11)

where δ is a dimensionless parameter that corresponds to the width of the TPZ, i.e. the
contact line viewed at the molecular scale, and Ca is the relative velocity of the contact
line to the wall speed, i.e.

Ca = Ca
(

U · ex − ∂x
∂t

∣∣∣∣
s=0

)
, (2.12)

where ex is a unit vector in the x direction. Equation (2.11) is the linearised form of
the theory, which will be valid for the system considered in this article. Furthermore, it
has long been recognised that a relationship must exist between the slip length and the
equilibrium contact angle, e.g. Tolstoi (1952), Barrat & Bocquet (1999) and Priezjev
(2007). Here, motivated by the results of Fernández-Toledano et al. (2021) and the theory
described in Appendix A, we consider the relationship

λ∗MD = a exp [b(1 + cos(θ0)] , 0 < θ0 < π, (2.13)

where a and b are fitting parameters and λ∗MD is the physical slip length derived from the
MD data in Fernández-Toledano et al. (2021). We will assume that λ∗MD is independent
of the physical channel height, H∗, and, therefore, in our non-dimensionalisation λ =
2λ∗MD/H∗. To investigate the nano-channel used in Fernández-Toledano et al. (2021),
where H∗ = 20.2 nm, the different values of θ0 will yield dimensionless slip lengths in
the range λ ∼ 0.02 to 0.2. Alternatively, as we will show in § 7, by varying λ, and keeping
θ0 fixed, we can investigate the effects of varying the physical channel height H∗ to larger
systems. We emphasise that there is a one-to-one correspondence between λ∗MD and θ0,
and hence, we are free to prescribe either quantity and use (2.13) to determine the other.
In physical experiments it is more practical to find θ0, which can readily be measured, and
then determine λ∗MD, which is more difficult to measure experimentally. Figure 4 shows
the fit of this function to the MD data from Fernández-Toledano et al. (2021). We call the
system of equations described in (2.1)–(2.8) augmented with the constant angle formula,
(2.10), the constant angle (CA) model, while when augmented with the VA formula, (2.11)
and (2.13), we call it the VA model.
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a exp b(1 + cos θ0)

Figure 4. The slip length dependence on the static angle. The markers are the MD data obtained from
Fernández-Toledano et al. (2021) and the solid line is the curve fit given from (2.13) with b = −2.342 and
a = 5.656 × 10−9.

2.3. Pressure-driven and force-driven problems
We now discuss the two different types of problems, i.e. the pressure-driven and
force-driven problems. The MD simulations in Fernández-Toledano et al. (2021) is
a force-driven problem, but pressure-driven problems are relevant in many practical
situations, for example, coating flows (Liu et al. 2019).

In Pouseille flow, without a free surface, it is easy to show that a pressure-driven problem
can be equivalent to a force-driven one. With a free surface however, this is not true
and each case has to be considered separately. For steady calculations, in both types of
problems, the set of equations are ill-posed unless we specify the volume of the liquid
plug. To remove this issue, for pressure-driven flow, we impose a normal stress on Γ1,

τ · n = poutn, x ∈ Γ1, (2.14)

and let the value of pout be determined implicitly by a condition on the overall volume of
the liquid plug, which corresponds to the computational area of the domain. We set F = 0
and solve in a frame of reference that moves such that the walls are non-stationary in the
translating frame (Uwall = −1).

In contrast, for the steady force-driven problem, we set Uwall = −1 and pout = 0, but
now let Ca be determined implicitly by a volume constraint. In both cases, to overcome
the translational invariance, we also have to pin a point on the boundary that depends on
the domain of the problem (as discussed below).

For time-dependent problems, whether pressure driven or force driven, the volume
constraint is unnecessary, as (2.2) ensures that volume is conserved. Instead, we impose
a position constraint for the reduced domains (see below) that determines pout or Ca,
depending on the problem.

2.4. Numerical method
The complete system of equations are discretised and solved using a finite-element method
and the open-source oomph-lib package (Heil & Hazel 2006), as described in Keeler et al.
(2021). An unstructured triangular mesh is used that is treated as a pseudo-elastic body,
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so that changes to the unknown free surface can be facilitated and the mesh can adapt to
capture regions of high velocity or pressure gradients, for example, near the contact point.
We use a Zienkiewicz–Zhu (ZZ) error estimator, which measures the continuity of the
rate of strain in each element, to identify elements that require refinement or unrefinement
(Zienkiewicz & Zhu 1992). As a typical example, for the time-dependent calculations,
with Ca = 0.5 and λ = 0.01, elemental areas range from ∼10−3 to 10−1 to accommodate
a maximum ZZ error of 10−3.

2.5. ‘Half’ and ‘quarter’ domains
We can simplify the complexity of the half-liquid plug domain further by solving in two
separate ‘quarter’ domains, each having only one free surface; thus, significantly reducing
the number of triangular elements required, see figures 3(b) and 3(c). To facilitate this, we
replace the free surface (and corresponding dynamic and kinematic boundary conditions)
at one end of the computational domain (Γ1 for the ACL and Γ3 for the RCL) with an
imposed normal stress (i.e. (2.14)) and parallel-flow condition

v = 0, x ∈ Γ1 (Receding) or x ∈ Γ3 (Advancing). (2.15)

In these quarter domains, the imposed pressure, pout, is determined implicitly by ensuring
the volume per unit length (i.e. the area) of the liquid domain is constant (as in the
half-liquid plug domain), so that in each quarter domain we are solving in a frame of
reference with a fixed volume. We note that in the quarter domains we impose (2.14) and
(2.15) in both steady and time-dependent calculations. These quarter domain simulations
will be referred to as the ‘receding contact line’ and ‘advancing contact line’ domains (see
figure 3b,c), respectively. abbreviated to RCL and ACL in the rest of the paper. The origin
is different in each of these domains and corresponds to the pinned position of the steady
and time-dependent problems. To illustrate the benefit of this reduction, the number of
elements required in the computation of figure 5 for the half-liquid plug is ∼4000–8000,
but the number for the RCL is ∼400. The reason for the ∼90 % reduction in elements is
because the pressure gradients are not as severe near the RCL, compared with the ACL. In
the next section we shall show that the dynamics of the whole system and the prediction
of a critical Ca are dominated by the RCL. Thus, computation of the full half-liquid plug
problem, where both the advancing and receding interface are calculated, is not necessary
in order to find the first flow bifurcation and is computationally inefficient when compared
with the reduced RCL domain.

We emphasise that the main aim of this study is to investigate the VA model, and not to
make a thorough investigation of the differences between pressure-driven and force-driven
flow, as the VA model can be applied independently of the problem. Thus, in the results
that follow, we mainly consider pressure-driven flow, except when we make a direct
comparison with the MD simulations. For the latter, we present force-driven results, as
clearly specified. In addition, as we shall show in § 4.1, the choice of domain is also
independent of the problem (i.e. pressure driven or force driven), so we choose the domain
that is most important to the flow bifurcation and that is also the simplest, computationally.

3. Reduced governing equations (QP system)

We shall now discuss a reduced evolution partial differential equation model, the so-called
QP system, before finally obtaining asymptotic results that will help predict the value of
Cacrit.
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Figure 5. The steady solution space mapped in the (Ca, X) plane when θcl = const. = π/2. Here Xadv and Xrec
are the horizontal distances of the interface at the two plates for the advancing and receding cases, respectively.
The solid curves represent the half-liquid bridge problem, while the broken lines indicate the ‘quarter’ problems
where the advancing and RCL are calculated separately. The limit point for the RCL indicates the threshold
beyond which no steady states exist, denoted by Cacrit, and corresponds to the critical F∗

0 in the MD simulations
of Fernández-Toledano et al. (2021). The inset diagrams correspond to the parameter values Ca = Cacrit ≈
0.31, λ = 0.2.

For the RCL, the flow near the contact line is approximately parallel, cf. figure 12, and
we can exploit this to reduce the Navier–Stokes equations to a simpler system that requires
unknowns only on the fluid interface. As well as the parallel-flow assumption, we assume
the horizontal coordinate is approximately the arclength, i.e. x ≈ s, so the full expression
for the curvature can be used, not the linearized form as used in conventional lubrication
models (see, e.g. Eggers 2005) and long-wave models (see, e.g. Snoeijer 2006).

Following Jacqmin (2004), Sbragaglia, Sugiyama & Biferale (2008) and Vandre (2013),
we let θ be the angle the interface makes to the horizontal (see figure 1), h = yr(s) be the
height of the interface and s be the arclength coordinate measured from the contact line.
Using conservation of mass and the kinematic condition on the free surface, the governing
equation for the fluid pressure gradient, ∂p/∂s, may be written as (Snoeijer et al. 2006)

∂h
∂t

+ ∂Q
∂s

= 0, Q = ∂

∂s

(
−1

3
∂p
∂s

h2(h + 3λ) − (U · ex)h
)

, (3.1a,b)

where U · ex = −1 for the RCL. The unknown pressure gradient, ∂p/∂s, can then be
expressed in terms of the exact curvature by differentiating the normal stress balance with
respect to s, i.e.

1
Ca

∂2θ

∂s2 = ∂p
∂s

. (3.2)

In order to solve (3.2), we require two conditions on θ . At the contact line, s = 0, we
implement (2.11)

Ca = λ
δ

(cos(θ0) − cos(θcl)) , (3.3)
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and at the symmetry wall, s = L, we set θ = π/2, where L is the overall length of the
interface. The shape of the interface can then be recovered by solving

∂x
∂s

= cos(θ),
∂h
∂s

= sin(θ). (3.4a,b)

Each of these equations requires a single condition, so we set x(s = 0) = y(s = 0) = 0
(choosing the contact line to be at the origin). Finally, we note that the length of the
interface, L, and, hence, the size of the domain, s, are not known a priori. To determine L,
we scale the independent variable s, so that ξ = Ls and ξ = [0, 1]. The total length of the
interface, L, can then be determined by the additional constraint that

y(ξ = 1) = 1. (3.5)

To solve this system of equations, we choose to discretise the spatial derivatives
using finite differences and then the system of equations are solved numerically using
Newton’s method. We remark that we exclusively concentrate on the steady results of the
pressure-driven QP system and do not solve the time-dependent problem, as this is better
suited to the full nonlinear system.

3.1. Asymptotics
We now briefly describe and adapt the analysis of Chan, Snoeijer & Eggers (2012) and
Eggers (2005) to find an asymptotic expression for Cacrit. We will not repeat their analysis
except for the parts where it differs from the situation we examine here. In both of these
previous works gravitational effects are included and the liquid domain is unconfined,
whereas we neglect gravity and the system is confined. They also considered only steady
solutions, so that time derivatives in the problem can be ignored.

The matched asymptotics methodology of Chan et al. (2012) and Eggers (2005) is to
determine an inner solution, say h = hinner, for small Ca, that is valid close to the contact
line, i.e. when s/λ ∼ O(1), and an outer solution, h = houter say, that is valid far away
from the contact line, i.e. when s ∼ O(1). To determine an unknown constant in the outer
solution, the inner and outer solutions have to match in a crossover region. This matching
procedure yields an equation, for an arbitrary unknown, θapp, which is the angle the outer
interface makes with the horizontal. For the ACL domain, θapp is finite for all values of Ca,
and thus, in these asymptotic limits at least, there is no critical point for the ACL domain.
However, in the RCL domain θapp can only be calculated up to a critical value of Ca, this
value being interpreted as Cacrit.

In our problem, for a confined geometry and in the absence of gravity, the inner region
analysis near the contact line is identical to the case considered in Chan et al. (2012) and
Eggers (2005). In Eggers (2005) the effects of gravity are present at first order in the outer
solution. The outer solution, for small Ca, is found by expanding the unknowns as a power
series in Ca. We can write a leading-order outer solution of (3.1a,b) to (3.4a,b) as

θouter = θapp + κss, houter = 1 − 1
κs

cos
(
θapp + κss

)
,

xouter = 1
κs

[
sin
(
θapp + κss

)− 1
]+ Xrec,

⎫⎪⎪⎬
⎪⎪⎭ (3.6)

where κs = (π − 2θapp)/2L is the curvature, Xrec is the meniscus rise (cf. figure 5) and
θapp is an undetermined constant. The outer solution in (3.6) describes a sector of a circle
with centre (Xrec − r, 1) and r = 1/κs that makes an angle θapp to the horizontal at s = 0.
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Figure 6. The alternative definitions of the apparent angle. In (a), θapp,circ is defined as the angle a fitted
circle makes with the bottom plate; θapp,inf is defined as the minimum angle the interface makes with the
horizontal, as measured anti-clockwise, and corresponds to the inflection point of the interface, where the
curvature, κ = 0. In (b) we plot the interface angle as a function of y that demonstrates that θapp,inf can be
calculated as the minimum value of θ .

Examining the geometry (see dashed curve in figure 6a) gives κs = sin(π/2 − θapp), so as
θapp → 0, κs → 1 and, hence, the interface is a semi-circle of radius 1. In particular, we
have

L → π/2, Xrec → 1, as θapp → 0. (3.7)

When the outer solution, described in (3.6), is matched to the inner solution, as described
in Eggers (2005), we obtain an expression for θapp,

θapp

θ3
cl

= −22/331/3Ca1/3Ai′(z1)

Ai(z1)
, (3.8)

where Ai(z) is an Airy function of the first kind. We note this is the same for an unconfined
geometry with gravity as considered in Eggers (2005). In addition, Cacrit satisfies the same
expression as in Eggers (2005) but has a factor of 21/3 in the denominator of the logarithm
term, i.e.

Cacrit = θ3
cl
9

[
log

(
Ca1/3

critθcl

32/3 · 21/3Ai2(zmax)λπ

)]−1

, zmax = −1.0188. (3.9a,b)

The difference between (3.9a,b) and the equivalent expression in Eggers (2005) is down
to the far-field boundary conditions; in our problem the fluid is confined, and in Eggers
(2005) it extends to infinity. These results are valid for a constant contact angle model
but we can easily extend them to our VA formula by expanding (2.11) in powers of Ca,
for Ca 
 1, and then θcl in the above expression is just the static angle θ0. However,
we will show that the full expression for θcl in (2.11) will be required in the formula
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(3.9a,b) for it to compare favourably with the numerical results. In the sections that
follow, the expressions in (3.7), (3.8) and (3.9a,b) will be compared with the numerical
solutions.

4. System measurements and parameters

In this section we describe the methods used to determine Cacrit from the numerical
calculations of the fully nonlinear and QP systems. In addition we also discuss, in detail,
the methodology of identifying the value of θapp, and compare two different methods.

4.1. Finding the critical Ca
We now describe how we determine the critical Ca computationally. We note that this
methodology is valid for both the fully nonlinear and QP systems. Initially, we shall assume
a constant θcl, i.e. we impose (2.10), and, for simplicity, we shall assume that θcl = π/2.
In the pressure-driven problem, by varying Ca and subsequently solving the steady set of
equations, we can trace the state of the system by recording the horizontal distance between
where the interface meets the moving wall and the symmetry wall, which we denote Xrec
and Xadv for the RCL and ACL, respectively (the same can be achieved in the force-driven
problem by increasing the value of F and finding the maximum value of Cacrit). Figure 5
shows the resulting solution curves of Xrec (upper curve) and Xadv (lower curve) plotted
against Ca. The solid lines indicate solutions of the half-liquid plug problem, while the
broken lines are solutions of the corresponding quarter RCL and ACL domains.

There are a number of important features of these solution curves. The RCL solution
curve experiences a limit point (or fold bifurcation) where the curve turns around and
the corresponding steady solution becomes unstable. The consequence of this is that
the value of Ca where this critical point occurs marks the limiting threshold for which
stable (i.e. those that can be experimentally realised) steady solutions exist, and it is,
therefore, natural to associate this value with Cacrit. It is important to emphasise that
the limit point occurs only for the RCL in this set-up (i.e. a liquid–vacuum system).
Furthermore, we note that the curves of the half-liquid plug problem completely overlap
the curves for the RCL and ACL domains, the only distinction being that the quarter ACL
solution curves are able to continue past Cacrit, as no unstable ACL is observed. The
critical point of the full nonlinear system coincides with the fold bifurcation of the RCL,
and so in order to understand the dynamics of the system before and after criticality,
we only need to consider the RCL; thus, significantly reducing the computational
demands.

4.2. Measuring the apparent angle
The precision with which the dynamic contact angle can be measured experimentally is
limited by the resolution of the method used (Dussan 1979). This is usually of the order
of a few micrometres and, for optical measurements, can be no better than the diffraction
limit. Thus, accurate measurement of the true contact angle is not possible, though some
progress has been made (Chen, Yu & Wang 2014). A common approach is to fit a curve to
the image of the interface and measure its tangent at its point of intersection with the solid
surface. Alternatively, the interface can be assumed to have a quasi-equilibrium shape
(e.g. a spherical cap) from which the angle may be deduced via an appropriate formula
(Hoffman 1975; Dussan 1979; Chen, Ramé & Garoff 1995; Lhermerout & Davitt 2019).
Neither approach has the ability to resolve significant changes in curvature very close to
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the contact line, such as those observed in the MD simulations (see figure 2), which occur
whenever the true contact angle differs significantly from the apparent angle. Therefore,
to a greater or lesser extent, the measured angle inevitably depends on the method used
to measure it, and simply represents the slope of the interface at some arbitrary distance
from the contact line. This is the reason why these angles are commonly described as
‘apparent’.

In the MD study, Fernández-Toledano et al. (2021), two methods were investigated to
evaluate θapp in a systematic way that was consistent with experiment, despite the very
small scale of the system. For both, multiple snapshots were averaged to account for
thermal noise. Since the menisci of the liquid plug are cylindrical at rest, the methods
were based on circular fits to the liquid surface. The first approach was to estimate the
slope of the interface at the point of its inflection, as shown in figure 6. This was achieved
by fitting the arc of a circle to the central 50 % of the meniscus (i.e. well away from the
inflections) and measuring the slope of the arc at its points of intersection with planes
parallel to the solid surfaces and passing through the inflections. The method appealed as
being consistent with the asymptotic matching procedure used in hydrodynamic treatments
of dynamic wetting (Voinov 1976; Cox 1986).

The second approach was to mimic experiment more directly by measuring the tangents
to a circular arc defined by upper and lower contact lines and passing through the apex
of the meniscus at its mid-point, as shown in figure 6. This procedure is commonly used
to measure the dynamic contact angle in capillary systems (Dussan 1979); and because
the positions of the three defining points could be measured more accurately from the
simulations than the locations of the inflections, this was the method adopted. It gave
advancing angles a few degrees smaller than those found at the inflection points, but the
receding angles were indistinguishable within simulation limits. The method was also
used in a recent numerical study of microscopic and apparent contact angles (Omori &
Kajishima 2017).

Similarly, in the present paper we calculate θapp in two different ways consistent with
those adopted in Fernández-Toledano et al. (2021). In figure 6(a) the liquid–gas interface
is shown by a solid line and the arc of a circle that is tangent to the interface at the
line of symmetry by a dashed line. We define θapp,circ as the angle the circle makes
with the horizontal as shown in figure 6. This definition, used in Fernández-Toledano
et al. (2021), is useful if the position of the liquid–gas interface is not well
defined.

Alternatively, and again as considered in Fernández-Toledano et al. (2021), we can
define θapp,inf as the angle the interface makes with the horizontal at the inflection point
of the curve; see figure 6. In this definition we measure the angle along the curve using the
identity

θ ≡ atan
(

y′(s)
x′(s)

)
(4.1)

and then find the minimum value that θ takes as a function of x; see figure 6(b). This
corresponds to where the curvature is zero and the interface has an inflection point. The
value of y at the inflection point is denoted hinf , which will be commented on later in
the paper. This approach of measuring θapp is more amenable to finite-element method
calculations, because (4.1) can be calculated easily as the position of the interface is well
defined and was the approach used in Liu et al. (2019), Vandre et al. (2012), Liu et al.
(2016a,b,2017) and Vandre et al. (2013).
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5. Steady results

In this section we will describe the steady solution space of the RCL using and
comparing the CA model, where θcl is held constant, and the VA model, where θcl is
determined by (2.11). First, using parameter values that are representative of the values in
Fernández-Toledano et al. (2021), we shall compute steady solutions in the pressure-driven
VA model and present a bifurcation diagram that demonstrates that the fold bifurcation,
which represents the critical speed of dewetting, still exists when using the VA model and
predicts the value obtained in Fernández-Toledano et al. (2021). Then we shall vary θ0 to
investigate the effect of wettability on the value of Cacrit and compare this directly with
the results of Fernández-Toledano et al. (2021) using the pressure-driven and force-driven
problem. Finally, we compare the predictions of the continuum model with the results
previously obtained by applying the Cox–Voinov law to the data derived from the MD
simulations in Fernández-Toledano et al. (2021).

5.1. Bifurcation diagram and general features
We now focus our attention to the VA model and discuss steady solutions and the critical
point. We emphasise that in this model we require only the static angle, θ0, the width of
the TPZ, δ, and the capillary number, Ca, as specified parameters so that a steady solution
can be computed.

Figure 7 shows the steady solution space of the RCL domain by plotting X against Ca, as
calculated numerically. The solid and dashed curves indicate, respectively, the stable and
unstable solution branches of the full system and the circular markers indicate the solution
branch of the QP system. The inset diagrams show streamline patterns and the interface
position at (A) the critical point, (B) when θapp,circ = 0 and (C) when θapp,inf = 0. There
are a number of interesting features that are worth commenting on. First, we note that even
though θcl is now dependent on Ca, the limit point still occurs. We also remark on the close
agreement of the QP system and the full nonlinear system; the QP system does remarkably
well in approximating the limit point for this particular value of θ0, although the curves
diverge as Xrec increases.

The solution where θapp,circ = 0 is significantly closer on the bifurcation curve to the
limit point than where θapp,inf = 0. In fact, as seen from the inset interface profiles, the
interface when θapp,inf = 0 (label (C)) is already significantly deformed and approaching
a thin film, whereas the profile when θapp,circ = 0 (label (B)) more closely matches the
interface at the limit point (label (A)). This result is interesting, as in many works,
e.g. Eggers (2005), Cacrit is defined as occurring when θapp = 0. This is strictly valid in
the regime λ→ 0 and we note that in our geometry the slip length and Ca take moderate
values, and therefore, we find that θapp /= 0 at Cacrit.

The consequence of our findings is that it is not unreasonable to use the definition of
θapp,circ = 0 as a lower bound on the critical capillary number when analysing outcomes
in experiments and MD simulations where the existence of a smooth bifurcation curve
is hidden, including smaller geometries whose dimensions are comparable to those of
the slip length. Furthermore, at the limit point, we expect the dynamics of the system
to be very slow, as the leading eigenvalue of the linear stability problem will be close
to zero (Keeler et al. 2021). Thus, in any experimental/MD set-up the time frame may
not be large enough to guarantee that a steady state is being approached or whether
a thin film is about to develop. Therefore, we conclude that while the position of the
critical point is a well-defined threshold for the critical capillary number in calculations
involving a deterministic hydrodynamic model, for experimental and MD results, using
the definition of Cacrit as the location where θapp,circ = 0 may be operationally acceptable.
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Figure 7. The steady solution structure for θ0 = 64.7◦ and λ = 0.02. The solid/dashed curves indicate the
stable/unstable branches of the full VA system and the solid circular markers indicate the solution using
the QP approach. The inset profiles show the steady solution interface and domain when (A) Ca = Cacrit,
(B) θapp,circ = 0 and (C) θapp,inf = 0. Their locations are indicated by solid black markers on the main curve.

The difference between θapp,circ and θapp,inf for both the RCL and ACL is shown in figure 8
for values of λ = 0.2 and θ0 = 105◦. As Cacrit is approached in the RCL domain, the
apparent angle tends to zero in a way such that θapp,circ < θapp,inf < θcl. For the ACL
domain (the shaded region in the figure), the order of the inequalities is reversed, although
there is less of a distinction between θapp,circ and θapp,inf . We should also mention here that
in the original MD study (Fernández-Toledano et al. 2021) the behaviour of the cosine
of the advancing contact angle was significantly nonlinear over the range of velocities
investigated. As a result, the difference between θcl and θapp,circ was significantly smaller
than that depicted in figure 8, where the linear form of the MKT, (2.11), is used throughout.

5.2. Behaviour of Cacrit: VA and CA model versus MD
A critical test of both the CA and VA model is how well it is able to predict Cacrit when
compared with the MD. For the CA model, we specify λ and θcl and then Cacrit can be
calculated using the method described in Keeler et al. (2021) to find the fold bifurcation.
Figure 9(a) shows the location of Cacrit as θcl is varied for λ = 0.02 and λ = 0.2; these
values roughly corresponding to the lower and upper bounds of the slip length in the MD
calculations. As can be seen from the figure, the comparison with the MD data is poor,
with Cacrit underestimated. This provides motivation to implement a VA model where θcl
is a function of Ca and λ.

A much more convincing result is obtained when we apply the VA model. Figure 9(b)
shows Cacrit plotted against θcl. The curves represent the loci of the critical point as λ and,
therefore, θ0, are varied. Note that λ and θ0 are expressly linked by expression (2.13). Here,
we have chosen a range of λ that matches the MD simulations in Fernández-Toledano et al.
(2021); the only parameter we have to specify is δ in (2.11). The solid/dotted lines are for
the pressure-driven/force-driven problems, respectively, with δ = 0.0525, the value from
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Figure 8. (a) The measured angles as a function of Ca when λ = 0.2, θ0 = 105.1◦. In this figure we adopt
the convention of Fernández-Toledano et al. (2021) where, for the RCL domain, Ca is negative.
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Figure 9. In each chart, the markers with error bars are the MD data obtained from Fernández-Toledano et al.
(2021). (a) The critical Ca as a function of the true angle, θcl, for different values of λ using the constant θcl
model given in (2.10). (b) The critical Ca as a function of the true angle, θcl, for the pressure-driven (solid line)
and force-driven (dotted line) problems, QP system (circular markers) and the asymptotics given by (3.9a,b)
(dashed line). (c) The critical Ca as a function of the true angle, θcl, for different values of δ. The value of
δ = 0.0525 corresponds to that obtained from the simulations in Fernández-Toledano et al. (2021).
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the MD simulations; see Appendix A. The solid markers are the QP data and the dashed
line is the asymptotics described by (3.9a,b).

Remarkably, the QP model replicates the full nonlinear system and the simple
asymptotic formula shows excellent agreement with the QP model, despite this being in a
regime when the slip length, and indeed Ca, are not particularly small. We stress that here
the asymptotic formula uses the full Ca-dependent formula for θcl.

Evidently, the VA theory captures the same qualitative behaviour exhibited by the
MD simulations and is much better at predicting Cacrit than the CA model and the
force-driven problem has a slightly better quantitative fit. For the value of δ obtained from
Fernández-Toledano et al. (2021), the VA under predicts Cacrit for the same value of θ0,
but if we make δ larger the comparison becomes more favourable, as shown by the dashed
line in figure 9(c). The uncertainty in selecting the appropriate basis for the measurement
of δ from the simulations is discussed in Appendix A. Values of δ larger than that used here
are certainly compatible with the data, depending on the criteria used to define the TPZ.
This uncertainty is compounded by the inevitable thermal noise in the MD results, despite
averaging the data over long periods relative to the simulation time scale, which means
that there is an inherent difficulty in obtaining the exact steady state at the critical point
in the MD simulations. This would mean that the critical point from the MD simulations
should be treated as a lower bound, rather than a precise value.

As well as measuring θcl, we also measure θapp,inf and θapp,circ at the limit point.
Figure 10 shows three curves that represent the Cacrit as a function of (1) θapp,circ, (2)
θapp,inf and (3) θcl. We observe that θapp,circ at Cacrit never exceeds 20◦, which is consistent
with experimental studies of the apparent angles at RCLs (de Gennes 1986; Redon,
Brochard-Wyart & Ronelez 1991; Brochard-Wyart & de Gennes 1992; Rio et al. 2005),
where the data shows that dθapp/dCa diverges rapidly as Ca → Cacrit, and is replicated in
the VA model as shown in figure 8. In these previous studies apparent angles approaching
zero are reported only on surfaces that exhibit little or no contact angle hysteresis
(Lhermerout & Davitt 2019). Hysteresis implies the presence of surface imperfections,
such as roughness or heterogeneity. These cause local fluctuations in contact line velocity,
which may trigger film deposition prematurely. This might be the reason why Rio et al.
(2005) report that angles below about 30◦ were inaccessible. The alternative possibility
is that dewetting systems may become intrinsically unstable at some value of θapp > 0, as
demonstrated here. The fact that θapp is itself an artificial construct and dependent on the
method of observation adds further uncertainty to the interpretation of experimental data.
Nevertheless, we comment that the results from the VA model are consistent with these
experimental observations.

We shall now use the Cox–Voinov law, (1.1), to help further rationalise the MD results.
If we interpret θapp as θapp,circ, the approach taken by Fernández-Toledano et al. (2021),
we can make the approximation that θapp,circ = 0 at the critical capillary number and then
(1.1) reduces to

θ3
cl = 9 Cacrit log

(
L∗/L∗

m
)
. (5.1)

We replicate the method of Fernández-Toledano et al. (2021) to obtain an ‘estimate’
of L∗/L∗

m, using (5.1). We do not expect L∗/L∗
m to be constant, given (2.13), but the

purpose of this calculation is to perform a quantitative comparison with the MD data in
Fernández-Toledano et al. (2021), rather than a comparison with the asymptotic theory
of Cox, which is not wholly appropriate in our geometry as the slip lengths are not
asymptotically small. In figure 11 we plot θ3

cl as a function of Cacrit, based on the solutions
at Cacrit for each value of θ0. We can ‘estimate’ the value of L∗/L∗

m by approximating the
curve as a straight line and measuring the slope. The figure demonstrates that a straight
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Figure 10. The critical Ca as a function of the true angle for δ = 0.0525 with the values of θapp,circ and
θapp,Inf also shown. Note that θapp,circ only approaches zero as λ→ 0.
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Figure 11. Exploiting the Cox–Voinov law. The solid curve is θ3
cl against Cacrit as calculated using the full

nonlinear model. The dashed line is a line of best fit with the gradient corresponding to L∗/L∗
m = 2.07.

line is not wholly appropriate, but its slope gives an approximation of L∗/L∗
m = 2.07,

which compares favourably with the equivalent approximation from Fernández-Toledano
et al. (2021) of 2.06 (denoted L/Lm in their study). This is further direct evidence that the
numerical results of the model closely replicate the MD simulations.

6. Time-dependent results: thin-film formation

We now discuss time-dependent calculations and the formation/deposition of a thin liquid
film. In most of the simulations that follow, we start a pressure-driven system from rest
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Figure 12. Quiver plot of the thin film. Here Ca = 0.05, λ = 0.02, θ0 = 64.7◦, t = 19.9. The arrows indicate
the relative size of the local velocity vector field. The blue arrow indicates the scale of a unit vector.

with an initially flat interface and a constant value of Ca. As shown in Keeler et al. (2021),
if we choose Ca < Cacrit then the system will relax to the stable steady solution branch,
as seen in the MD simulations when F∗

0 < F∗
crit. However, if we choose Ca > Cacrit, a

thin film will develop, as also observed in the simulations. In this section we implement
(2.11) and perform time-dependent calculations to understand the effect of the various
parameters on the formation of this thin film.

Figure 12 is a visualisation of the velocity field using quivers to represent the strength
and direction of the flow once a thin film has developed. There are three distinct regions;
a ‘rim’ region close to the contact line, a flat, thin-film region of height hfilm and a static
region corresponding to the static meniscus shape. We remark that close to the contact
line the flow is approximately parallel, and so a lubrication model would be an appropriate
model reduction here. Far away from the contact line, the flow is certainly not parallel and,
therefore, to resolve the half-liquid plug a full continuum model is required.

Figure 13 shows snapshots of the evolution of the interface at different times, t, for
various values of Ca (panels a–d). Panel (e) shows the time signal of θcl and panel ( f )
compares the final time snapshot for the different values of Ca chosen. In the supercritical
case (i.e. Ca > Cacrit) the height of the thin film is approximately constant before an
almost circular cap region closes the interface. For macroscopic geometries, it is well
known that the film thickness, hfilm scales according to the Landau–Levich–Derjaguin law
(Deryaguin 1943; Landau & Levich 1988)

hfilm ∼ 0.95Ca2/3, Ca 
 1. (6.1)

This value of the film height is shown as dotted lines in figure 13(b–d) and the actual
thin films closely match this value with increasing accuracy as Ca becomes smaller (as
expected).
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Figure 13. Time-dependent calculation when θ0 = 64.7◦ (or λ = 0.02). (a) In this panel, Ca = 0.04 <

Cacrit. The system settles on the stable steady state and a thin film is not formed. Plots (b–d)
show the thin-film formation for Ca = 0.05, 0.1, 0.5 > Cacrit, respectively. The dotted lines indicate the
Landau–Levich–Derjaguin film height, given in (6.1). Plot (e) shows the evolution of θcl as a function of t.
Plot ( f ) compares the thin-film profiles for different Ca when t = 19.9. Note the scale of the horizontal axes
on (a–d) are different.

The contact angle at small times rapidly decreases and achieves a minimum value,
before gradually increasing to a limiting value, at θcl ≈ 59◦, as shown in panel (e); the
same time-dependent behaviour was observed in the MD simulations. A key observation
is that in these time-dependent calculations the limiting relative capillary number Ca is
independent of Ca, as seen in figure 14(a), which is consistent with experimental and
theoretical studies, for example, Snoeijer et al. (2006). This indicates that the flow in
the film region becomes increasingly independent of the liquid plug. In Keeler et al.
(2021) it was shown that, at the RCL especially, the time-dependent trajectories of the
system are similar to the steady bifurcation diagram when both are plotted in the (Ca, X)

plane. The same phenomenon occurs here; see panel (b) in figure 14 where it is shown
that the trajectories closely match the steady bifurcation curve. This is consistent with a
prediction of Chan et al. (2012) that, for plate withdrawal from a bath flattened in the
far field by gravity, the dynamics closely follow the unstable branch of solutions in a
quasi-steady manner. In their case, where gravity plays an important role, the bifurcation
curve oscillates around a fixed value of Ca, but in the pressure-driven problem this does not
occur and we observe monotonic convergence towards a particular Ca. In the body-force
problem we see the exact same phenomena, for both the CA and VA model (results not
shown), but leave a thorough investigation of this as a future research avenue. Finally, we
can make a qualitative comparison of the numerical results to the MD results in figure 2.
Figure 15 shows the equivalent half-liquid plug profiles for the force-driven problem (as
in the MD) obtained by computing the receding and advancing interfaces separately and
combining them. As can be seen from the profiles, the qualitative comparison is strong.
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Figure 14. (a) Time signal of Ca defined in (2.12) when θ0 = 64.7◦ (or λ = 0.02, for Ca = 0.05, 0.1, 0.5 >

Cacrit, respectively. (b) Comparison of time trajectories with the steady solution curve in the (Ca, X)

plane.
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Figure 15. Qualitative comparison with figure 2 (figure reprinted from Fernández-Toledano et al. (2021), with
permission from Elsevier) when θ0 = 102.4◦. The left column are the images taken from figure 2 and the right
column are calculations using the force-driven problem with the value of F stated.

7. Larger-scale systems

Having validated our model in the context of the nano-geometry using MD calculations,
we can extend our analysis to investigate thin-film formation in a larger-scale geometry, for
which MD simulations are prohibitively computationally expensive. We can achieve this
by reducing the value of the dimensionless slip length λ while keeping θ0 and, therefore,
the physical slip length constant, which has the effect of increasing H∗, the physical
channel width.
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Figure 16. (a) The evolution of Cacrit as λ is varied for θ0 = 64.7◦. The numerics are indicated by the solid
curve and the asymptotics given in (3.9a,b) are shown with a dashed curve when θcl is used in (3.9a,b) and a
dotted curve when θ0 is used in (3.9a,b). (b) The variation of θapp,circ and θapp,inf at the critical point, shown as
dashed and solid lines, respectively. The inset diagram is the same data shown on a log scale. (c) The variation
of X and L at the critical point as λ is varied.

We also investigate the formation of thin films in the limit as λ→ 0 (we note that λ = 0
has no solution (Huh & Scriven 1971)). Using the same methods as before, we can track
Cacrit as λ is varied. Figure 16(a) shows that Cacrit → 0 as λ→ 0, indicating that the
system becomes unstable for increasingly slower wall speeds as the scale of the system
is increased. The dashed line indicates the asymptotic formula given in (3.9a,b), with the
full expression for θcl used, and the dotted line shows (3.9a,b) with θcl replaced with θ0.
Because λ
 δ, the difference between θ0 and θcl is large; see (2.11). As a result, in order
to capture the numerics, the full expression for θcl has to be included in the asymptotic
formula, and then the agreement is excellent.

Figure 16(b) shows how θapp,circ and θapp,inf vary at the critical point. It is clear that,
for both measures of the apparent angle, as λ decreases, θapp → 0. This is an important
observation and provides a link to the work of Snoeijer et al. (2006, 2007), Eggers (2004),
where in the lubrication approximation they apply, it is perfectly reasonable to employ the
Cox–Voinov formula with θapp = 0 as a means of determining Cacrit. In a nano-geometry
however, this approximation is not valid, as we have shown that θapp,crit /= 0. We also find
that, as λ→ 0, the interface approaches a circular meniscus with radius 1 and length π/2,
as the results in panel (c) clearly show.

We now turn our attention to time-dependent results in the limit as λ→ 0 with θ0 being
kept fixed. Figure 17 shows the thin film at t = 14.916 for values of λ = 2 × 10−2, 2 ×
10−3, 2 × 10−4, 2 × 10−5 (panels a–d) with Ca = 0.05, θ0 = 64.7◦. The largest value of
λ = 0.02 corresponds to the nano-channel considered in Fernández-Toledano et al. (2021)
while the smallest value of 2 × 10−5 corresponds to a system 103 times larger, i.e. a
micro-channel. Figure 17(e) shows the comparison of the profiles when the x is normalised
by X. The immediate observation is that the dimensionless film height, hfilm, is independent
of λ once the thin film has had sufficient time to develop, so that the physical film height
will scale linearly with the system size. This is especially evident when comparing the
interface profiles for λ = 2 × 10−3, 2 × 10−4, 2 × 10−5. Thus, sufficiently far away from
the contact line the structure of the thin film is independent of the size of the geometry
(in physical systems this is measured relative to the physical width of the channel).
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Figure 17. Thin-film formation when the scale of the system is increased. Panels (a–d) show the thin film at
t = 14.916 for λ = 0.02, 0.002, 0.0002, 0.00002 and Ca = 0.05, θ0 = 64.7◦. Panel (e) shows a comparison of
each of the profiles in (a–d) scaled by X.

The ‘rim’ region is however highly dependent on λ and the details of the contact line
angle (see Flitton & King 2004); the smaller the system (larger λ) the larger the ‘rim’ near
the contact line. Therefore, the physical rim height will increase slower than linearly as the
system size is increased.

8. Conclusion

We have developed a novel molecularly augmented continuum model, based on a variable
true contact angle, that describes the dynamics of a liquid bridge between two parallel
plates, and, more generally, describes the RCL and ACL physics. By solving the resulting
set of equations numerically, we are able to interpret the maximum speed of dewetting as
a fold bifurcation in the steady bifurcation diagram. We find that the maximum speed of
wetting Cacrit, calculated as a function of θcl, is qualitatively similar to the MD simulations
described in Fernández-Toledano et al. (2021) and that the estimate of L∗/L∗

m is in excellent
agreement.

As well as showing good agreement with the MD simulation, the advantage of this
approach is that by replacing the assumption that θcl is constant with the constraints

Ca = λ
δ

(cos(θcl) − cos(θ0)) ,

λ∗MD = a exp [b(1 + cos(θ0)] ,

⎫⎬
⎭ (8.1)

the issue of deciding what θcl should be in any hydrodynamic calculation is removed, as
it is naturally determined, through (8.1), as part of the solution. Furthermore, whereas in
previous approaches the slip length and θcl had to be specified as control parameters, in
this model the only hydrodynamic parameter we have to specify is the slip length. With
this parameter being difficult to measure, invariably it has been used as an additional
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fitting parameter that can cover up for inaccuracies in the constant angle model. We do
however have to estimate δ, the width of the TPZ from MD simulations and this provides
an additional parameter that has to be known in advance, although this parameter can
be far more accurately specified than slip lengths. The comparison between the MD
simulations and the VA model is strong, and although some of the physics present in
the MD calculations are absent, for example, the disjoining pressure, we conclude that the
VA model contains the minimum ingredients required to replicate the physics contained
in the MD calculations, at least before the thin film ruptures (see, e.g. Kreutzer et al. 2018;
Zhao et al. 2018).

Our results also illuminate the values of θcl and θapp when a partially wetted substrate
is withdrawn from a pool of liquid at capillary numbers greater than Cacrit. Experiments
have shown that attempts at forced dewetting cause the (three-dimensional) contact line to
slant at an angle relative to the direction of withdrawal, such that the capillary number in
the direction normal to the contact line remains constant at Cacrit. These observations of
avoided critical behaviour led to the postulate of a maximum speed of dewetting (Blake
& Ruschak 1979). Presumably, θcl and θapp along the slanted contact line are the smallest
possible consistent with a stable flow without film deposition, i.e. those associated with
the turning point in the steady phase diagram. For θcl, this is θcl,crit. For θapp, it depends
on how the angle is measured.

We are easily able to extend the VA model to larger systems, which are prohibitively
computationally expensive for MD calculations, and by examining the thin-film formation
in these systems when Ca > Cacrit, we are able to demonstrate that the relative height of
the thin film is independent of size of the system and weakly dependent on Ca. Differences
in the interface profile occur close to the contact line, as indicated by the size of the ‘rim’
that develops, but sufficiently far away from the contact line the relative heights of the thin
film are nearly identical.

Another advantage of the framework is practical, in that the computational time for these
calculations is O(min) using the open-source oomph-lib framework with state-of-the-art
linear algebra solvers, rather than O(days) for the MD simulations. As we are able to
obtain the velocity and pressure fields in addition, this unified model has excellent potential
for researchers wishing to combine the best aspects of the hydrodynamic and molecular
theories in their work. We also remark that viscous and inertial effects can be incorporated
in this model by, for example, treating the gas phase using a lubrication approximation; see
Keeler et al. (2021). We also remark that the QP model and associated asymptotic results,
while not resolving the flow field, are useful for validation, as demonstrated here.

Nevertheless, there remains a need for more physical experiments with emphasis on the
RCL up to the point of film deposition, since, as we have seen, this encodes much valuable
information concerning the contact angle on the microscopic scale. While there is a very
large body of literature on film deposition, such as that which occurs when a solid surface
is withdrawn from a pool of liquid, and much published data on advancing contact angles,
comprehensive measurements of dynamic receding angles on partially wetted surfaces are,
unfortunately, rare. A resurgence of interest is overdue.
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Appendix A. Molecular-kinetic theory

According to the MKT of dynamic wetting, the contact line advances or recedes across
the energy landscape of the solid surface as a consequence of random, thermally activated
molecular events having characteristic frequency κ∗

0 and length λ∗0 (not to be confused with
the dimensionless slip length λ) (Blake & Haynes 1967; Blake 1993). Such events occur
across the whole solid–liquid interface, but only those that take place within the TPZ
determine dynamic wetting. The TPZ, of width δ∗, is the region where the liquid–vapour
and solid–liquid interfaces meet, i.e. the contact line viewed at the molecular scale. At
equilibrium, the molecular events simply cause the contact line to fluctuate about its mean
position (Fernández-Toledano, Blake & De Coninck 2019, 2020a; Fernández-Toledano
et al. 2020b). However, for net displacement of the contact line at velocity U∗

cl, work
must be done to favour events in the desired direction. This work is provided by the
out-of-balance surface tension force that arises when the equilibrium is disturbed: f ∗ =
γ ∗

L (cos(θ0) − cos(θcl)), where γ ∗
L is the surface tension of the liquid. According to the

model, as the TPZ moves across the solid surface, this work is expended at n∗ interaction
sites per unit area swept. Application of the Frenkel–Eyring theory of stress-modified
activated rate processes (Glasstone, Laidler & Eyring 1941; Frenkel 1946) then leads to
the principal equation linking U∗

cl and θcl,

U∗
cl = 2κ∗

0λ
∗
0 sinh

[
γ ∗

L (cos(θ0) − cos(θcl)) /2n∗kBT
]
, (A1)

where kB and T are, respectively, the Boltzmann constant and the absolute temperature.
Since its inception, this equation has proved very effective in correlating experimental

and MD data for a wide range of systems; see, for example, Blake (1993), Schneemilch
et al. (1998), Blake (2006) and Duvivier, Blake & De Coninck (2013). In the interpretation
of experimental data, the interaction sites are usually assumed to be uniformly distributed,
so that λ∗0 ≈ 1/

√
n∗; thus reducing the unknowns to just two: κ∗

0 and λ∗0.
For small arguments of sinh, typically when θcl is not too far from θ0 (true for θcl at the

RCL in the MD data investigated here) or γ ∗
L is small, this reduces to a linear relationship

U∗
cl =

(
κ∗

0λ
∗
0

n∗kBT

)
γ ∗

L (cos(θ0) − cos(θcl)) , (A2)

which may be written as

Cacl = μ∗
L

ζ ∗ (cos(θ0) − cos(θcl)) , (A3)
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where ζ ∗ is the coefficient of contact line friction (per unit length of the contact line),

ζ ∗ = n∗kBT
κ∗

0λ
∗
0

. (A4)

This single coefficient quantifies the localised resistance to the displacement of the contact
line.

In previous MD studies (Bertrand, Blake & De Coninck 2009; Blake et al. 2015) it has
been shown that both contact line friction and slip between a liquid and a solid depend on
the same thermally activated molecular events. Whereas, at the contact line, the principle
driving force comes from the out-of-balance surface tension acting across the TPZ, for
the latter, it is provided by the viscous shear stress acting across the whole solid–liquid
interface: μ∗

L(∂u∗/∂z∗) = β∗λ∗, where β∗ is the slip coefficient and λ∗ the Navier-slip
length (i.e. the distance into the solid at which the extrapolated fluid velocity vanishes).
Because of the common mechanism, it follows that the two coefficients are directly related;
specifically,

β∗ = ζ ∗/δ∗; (A5)

hence,
λ∗ = δ∗μ∗

L/ζ ∗. (A6)

This relationship has been validated by MD simulations, in which both the contact line
friction and the slip length have been measured for the same system over a range of
equilibrium contact angles (Blake et al. 2015; Fernández-Toledano et al. 2020b). Good
agreement has been shown for both Lennard–Jones liquids and atomistically simulated
water on molecularly smooth carbon-like surfaces. That said, a precise correlation hinges
on the value of δ∗. For the Lennard–Jones liquids, the value selected was assessed from
the velocity profiles across the TPZ. For the simulated water system, the distance over
which the density of the liquid in contact with the solid fell to zero was used. See figure 10
in Blake et al. (2015) to compare the two approaches. Arguments may be made for both.
For the Lennard–Jones system, the difference in the result was in the region of 30 %. Slip
lengths were smaller if the density profile was used. In addition, the value of δ∗ appeared to
depend weakly on both contact line velocity and the equilibrium contact angle. Based on
the existing data, while (A6) appears to be physically justified, a precise understanding
of the subtle influences in play requires more work. The value of δ∗ found for the
coarse-grained water simulations (Fernández-Toledano et al. 2021) was 0.93 ± 0.14 nm
based on the density argument. We use this value in the present paper.

If (A6) is accepted, at least in principle, it allows us to rewrite (A3) in dimensionless
variables, as

Cacl = λ
δ

(cos(θ0) − cos(θcl)) . (A7)

In the stationary frame of the liquid plug between two solid walls moving at velocity U∗
wall,

this becomes

Ca
(

Uwall − ∂xcl

∂t

)
= λ

δ
(cos(θ0) − cos(θcl)) , (A8)

which is (2.11) in the main body of the paper when we set the non-dimensional wall speed
to be Uwall = −1. Furthermore, and perhaps more significantly, we know that contact line
friction depends strongly on the equilibrium contact angle. This means that the same is
true for the slip length. As has been shown by Blake (1993), Blake & De Coninck (2002),
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Bertrand et al. (2009), Duvivier et al. (2013), the frequency κ∗
0 is related to the equilibrium

contact angle by

κ∗
0 ∼ (

kBT/μ∗
Lv∗

L
)

exp
[−γ ∗

L (1 + cos(θ0)) /n∗kBT
]
, (A9)

where v∗
L is the molecular flow volume in the Frenkel–Eyring theory. This leads to

ζ ∗ ∼ (
n∗μ∗

Lv∗
L/λ∗0

)
exp

[−γ ∗
L (1 + cos(θ0)) /n∗kBT

]
(A10)

and, hence, to

λ∗ ∼ δ∗ (λ∗0/n∗v∗
L
)

exp
[−γ ∗

L (1 + cos(θ0)) /n∗kBT
]
. (A11)

This suggests the general (dimensionless) form

λ = a exp [b(1 + cos(θ0)] . (A12)

In the present paper we have used this expression, (2.13), to fit the slip length calculated
from the MD data in table 1 of Fernández-Toledano et al. (2021).
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