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Abstract
We study the adjoint Bloch–Kato Selmer groups attached to a classical point in the cuspidal
eigenvariety associated with GSp2g . Our strategy is based on the study of families of Galois
representations on the eigenvariety, which is inspired by the book of J. Bellaiche and G.
Chenevier.

Résumé
Nous étudions les groupes de Selmer adjoints définis par Bloch-Kato qui sont attachésv à un
point classique dans la variété de Hecke cuspidale pour GSp2g . Notre stratégie est basée sur
l’étude des familles de représentations de Galois sur la variété de Hecke cuspidale, qui est
inspirée par le livre de J. Bellaïche et G. Chenevier.
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1 Introduction

In this paper, we study the adjoint Bloch–Kato Selmer groups attached to a classical point
in the cuspidal eigenvariety E0 associated with GSp2g . Our strategy is based on the study
of families of Galois representations on E0, which is inspired by the book of Bellaiche and
Chenevier [2].

An overview

Fix a prime number p and a positive integer g ∈ Z>0. Let X(C) be the Siegel modular variety
of a fixed tame level structure away from p; and let XIw(C) be the Siegel modular variety
over X(C) with an extra Iwahori level at p. We let N be the product of primes that divide
the level of X(C).

On XIw(C), one can consider the overconvergent parabolic cohomology groups H tol
par,κ .

Following the formalism in [16], one can use H tol
par,κ to construct the (reduced equidimen-

sional) cuspidal eigenvariety E0, parametrising finite-slope families of eigenclasses in the
overconvergent parabolic cohomology groups. See Sects. 2.3 and 2.4 for a review.

Given a point x ∈ E0 whose weight is a dominant algebraic weight and whose slope is
small enough, it is predicted by R. Langlands that there is a continuousGalois representation1

ρx : GalQ ρ
spin
x−−→ GSpin2g+1(Qp)

spin−−→ GL2g (Q
1
p)

whose characteristic polynomials of the Frobenii away from N p are equal to the Hecke
polynomials away from N p. Here, GalQ denotes the absolute Galois group of Q.

Let ad0 ρspin
x be the (trace-0) adjoint representation ofρspin

x and consider the adjointBloch–
Kato Selmer group H1

f (Q, ad0 ρspin
x ). We have the following conjecture of S. Bloch and K.

Kato:

Conjecture 1 (Bloch–Kato conjecture)

(i) The order of vanishing of the adjoint L-function L(ad0 ρspin
x , s) at s = 1 is equal to the

dimension of H1
f (Q, ad0 ρspin

x ).

(ii) The adjoint Bloch–Kato Selmer group H1
f (Q, ad0 ρspin

x ) vanishes.

The aim of this paper is to show that, under certain assumptions, H1
f (Q, ad0 ρspin

x ) does
vanish. In particular, the following natural hypotheses are assumed to achieve our goal:

• Hypothesis 1: Roughly speaking, this hypothesis states that the aforementioned philos-
ophy of Langlands holds true.

• Hypothesis 2: Roughly speaking, this hypothesis ensures that there exists a real finite
extension L of Q and a generic cuspidal automorphic representation GL2g (AL) whose
associated Galois representation coincide with ρx|GalL , where AL is the ring of adeles of
L and GalL is the absolute Galois group of L .

1 See [14, Lecture 20] for the definition and properties of the spin representation spin : GSpin2g+1 → GL2g .
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• Hypothesis 3: This is a technical hypothesis, which ensures us to obtain a GSpin2g+1-
valued Galois representation with coefficients in the local eigenalgebra of x and that the
chosen tame �(p) implies a particular ramification type of this Galois representation at
bad primes.

Theorem (Corollary 3.26) Let x ∈ E0 whose weight is a dominant algebraic weight and
whose slope is small enough. Suppose the following assumptions hold:2

(I) Standard assumptions:

• The point x corresponds to a p-stabilisation of an eigenclass of tame level (see
Sects. 3.2 and 3.3 for more discussion).

• Hypothesis 1 holds so that we get a GSpin2g+1-valued Galois representation ρ
spin
x

attached to x. We write ρx := spin ◦ρspin
x be the associated GL2g -valued Galois

representation.

(II) Technical assumption: Hypothesis 3 hold.
(III) Assumptions used in the strategy of [2]:

• The restriction ρx|GalQp
admits a refinement F

x• that satisfies (REG) and (NCR) (see

Sect. 3.1 for definitions of F
x•, (REG) and (NCR)).

• The restriction ρx|GalQp
is not isomorphic to its twist by the p-adic cyclotomic char-

acter.

(IV) Assumptions to apply [25]:

• Hypothesis 2 holds.
• The cuspidal automorphic representation πx of GL2g (AL) ensured by Hypothesis 2

is regular algebraic and polarised (see, for example, [4, §2.1]).
• The image ρx(GalL(ζp∞ )) is enormous (see [25, Definition 2.27]).

Then

(i) The adjoint Bloch–Kato Selmer group H1
f (Q, ad0 ρspin

x ) associated with ρ
spin
x vanishes.

(ii) There is an ‘infinitesimal R = T theorem’ locally at x.

Strategy of the proof We now summarise the strategy to achieve the statement:

Step 1. Using the standard assumptions in the theorem and Proposition 3.13, we construct
a refined family of Galois representations (Eirr0 ,Detuniv,Xcl♥, {αi : i = 1, . . . , 2g}, {Fi : i =
1, . . . , 2g}) in Theorem 3.16.

Step 2. Following the strategy in [2] and using the assumption that ρx admits a refinement Fx•,
we define global deformation problemsD spin

x, f andD spin
x,Fx•

. It is standard in Galois deformation
theory that these two functors are pro-representable by complete noetherian local rings by
Runiv
x, f and Rspin

x,Fx•
respectively.

Step 3. By applying a theorem of Bellaïche–Chenevier to the refined family of Galois rep-
resentations in Step 1 and combining Hypothesis 3 and (III) in the theorem, we deduce in
Proposition 3.25 the following statements:

(i) There exists a canonical ring homomorphism Runiv
x,Fx•

→ Tx, where Tx is the local eige-
nalgebra at x.

2 Since many hypotheses are assumed this theorem, examples of these assumptions are discussed in Sect. 3.6.
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(ii) If the adjoint Bloch–Kato Selmer group H1
f (Q, ad0 ρspin

x ) vanishes, then the canonical

map in Runiv
x,Fx•

→ Tx is an isomorphism (an ‘infinitesimal R = T theorem’).

Step 4. To conclude the result, the assumption (IV) and [25, Theorem 5.3] imply that
H1

f (Q, ad0 ρspin
x ) = 0. The desired assertions then follow. ��

We close this introduction with the remark that one can also deduce the vanishing of the
adjoint Bloch–Kato Selmer group without assuming (IV) in the theorem above but with two
other (probably strong) assumptions (see Corollary 3.27). Such a statement shall allow one to
obtain a (conjectural) link between the p-adic adjoint L-function Ladj defined in [35] and the
adjoint Bloch–Kato Selmer group (see Remark 3.28). This is, in fact, the original motivation
of our study in this paper.

Conventions

Throughout this paper, we fix the following:

• g ∈ Z≥1.
• For any prime number �, we fix once and forever an algebraic closure Q� of Q� and

an algebraic isomorphism C� 
 C, where C� is the �-adic completion of Q�. We write
GalQ�

for the absolute Galois group Gal(Q�/Q�). We also fix the �-adic absolute value
on C� so that |�| = �−1.

• We also fix an algebraic closure Q of Q and embeddings Q� ←↩ Q ↪→ C, which is
compatible with the chosen isomorphisms C� 
 C. We analogously write GalQ for the
absolute group Gal(Q/Q) and identify GalQ�

as a (decomposition) subgroup of GalQ.
• We fix an odd prime number p ∈ Z>0.
• For n ∈ Z≥1 and any set R, we denote by Mn(R) the set of n by n matrices with

coefficients in R.
• The transpose of a matrix α is denoted by tα.
• For any n ∈ Z≥1, we denote by 1n the n × n identity matrix and denote by 1̆n the n × n

anti-diagonal matrix whose non-zero entries are 1; i.e.,

1n =
⎛
⎝
1

. . .

1

⎞
⎠ and 1̆n =

⎛
⎝

1

. .
.

1

⎞
⎠ .

2 Preliminaries

In this section, we recall some preliminaries. In particular, after setting up the notations
in Sect. 2.1 and recalling the Siegel modular varieties in Sect. 2.2, we briefly review the
construction of the overconvergent parabolic cohomology groups and the construction of the
cuspidal eigenvariety in Sects. 2.3 and 2.4.

2.1 Algebraic and p-adic groups

Let V = VZ be the free Z-module Z2g of rank 2g. By viewing elements in V as column
vectors, we equip V with the symplectic pairing

V×V → Z, (v, v′) 
→ tv

( −1̆g

1̆g

)
v′. (1)

The algebraic group GSp2g (over Z) is then defined to be the group that preserves this
symplectic pairing up to units. More precisely, for any ring R,
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GSp2g(R) =
{
γ ∈ GL2g(R) : tγ

( −1̆g

1̆g

)
γ

= ς(γ )

( −1̆g

1̆g

)
for some ς(γ ) ∈ R×

}
.

Equivalently, for any γ =
(

γ a γ b
γ c γ d

)
∈ GL2g , γ ∈ GSp2g if and only if

tγ a 1̆g γ c = tγ c 1̆g γ a,
tγ b 1̆g γ d = tγ d 1̆g γ b, and tγ a 1̆g γ d − tγ c 1̆g γ b = ς(γ )1̆g

for some ς(γ ) ∈ Gm . One can easily check that GSp2g is stable under transpose. Thus, the
above conditions are also equivalent to

γ a 1̆g
tγ b = γ b 1̆g

tγ a, γ c 1̆g
tγ d = γ d 1̆g

tγ c, and γ a 1̆g
tγ d − γ b 1̆g

tγ c = ς(γ )1̆g

for some ς(γ ) ∈ Gm .
We shall be also considering the following algebraic and p-adic subgroups of GLg and

GSp2g:

• We consider the upper triangular Borel subgroups

BGLg := the Borel subgroup of upper triangular matrices in GLg

BGSp2g
:= the Borel subgroup of upper triangular matrices inGSp2g .

The reason why we are able to consider the upper triangular Borel subgroup for GSp2g
is because of the choice of the pairing in (1).

• The corresponding unipotent radicals are

UGLg := the upper triangular g × gmatrices whose diagonal entries are all 1

UGSp2g
:= the upper triangular 2g × 2gmatrices in GSp2g whose diagonal

entries are all 1.

Consequently, themaximal tori for both algebraic groups are the tori of diagonalmatrices.
The Levi decomposition then yields

BGLg = UGLg TGLg and BGSp2g
= UGSp2g

TGSp2g
.

Moreover, we denote by U opp
GLg

and U opp
GSp2g

the opposite unipotent radical of UGLg and

UGSp2g
respectively.

• To simplify the notation, for any s ∈ Z≥0, we write

TGLg ,s :=
{

TGLg (Zp), s = 0

ker(TGLg (Zp) → TGLg (Z /ps Z)), s > 0

TGSp2g ,s :=
{

TGSp2g
(Zp), s = 0

ker(TGSp2g
(Zp) → TGSp2g

(Z /ps Z)), s > 0

UGLg ,s :=
{

UGLg (Zp), s = 0

ker(UGLg (Zp) → UGLg (Z /ps Z)), s > 0

UGSp2g ,s :=
{

UGSp2g
(Zp), s = 0

ker(UGSp2g
(Zp) → UGSp2g

(Z /ps Z)), s > 0
.
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The above maps are all reduction maps.
• The Iwahori subgroups are

IwGLg := the preimage ofBGLg (Fp)under the reduction mapGLg(Zp) → GLg(Fp)

IwGSp2g
:= the preimage ofBGSp2g

(Fp)under the reduction mapGSp2g(Zp) → GSp2g(Fp).

We have Iwahori decompositions for IwGLg and IwGSp2g

IwGLg = U opp
GLg,1

TGLg,0UGLg ,0 and IwGSp2g
= U opp

GSp2g ,1
TGSp2g ,0UGSp2g ,0.

For later purposes, we also recall the Weyl groups of GSp2g and H := GLg × Gm from
[13, Chapter VI, §5]. Here, we view H as an algebraic subgroup of GSp2g via the embedding

H = GLg × Gm ↪→ GSp2g, (γ ,υ) 
→
(

γ

υ 1̆g
tγ −1 1̆g

)
.

Consider the character groupX = Hom(TGSp2g
,Gm).Wehave the following isomorphism

Zg+1 ∼−→ X, (k1, . . . , kg; k0) 
→
(
diag(τ 1, . . . , τ g, τ 0 τ−1

g , . . . , τ 0 τ−1
1 ) 
→

g∏
i=0

τ
ki
i

)
.

Let x1, . . . , xg, x0 be the basis of X that corresponds to the standard basis on Zg+1. Note
that X can also be viewed as the character group of the maximal torus TH = TGLg × Gm of

H via the isomorphisms TGSp2g

 G

g+1
m 
 TGLg × Gm = TH .

Under the above choices of the maximal tori, we can describe the root systems of GSp2g
and H explicitly

�GSp2g
= {±(xi − x j ), ±(xi + x j − x0), ±(2xt − x0) : 1 ≤ i < j ≤ g, 1 ≤ t ≤ g}

�H = {±(xi − x j ), ±xg, ±x0 : 1 ≤ i < j ≤ g}.
Moreover, the choices of the Borel subgroups yield the description of the positive roots

�+
GSp2g

= {xi − x j , xi + x j − x0, 2xt − x0 : 1 ≤ i < j ≤ g, 1 ≤ t ≤ g}
�+

H = {xi − x j : 1 ≤ i < j ≤ g}(= �H ∩ �+
GSp2g

).

The Weyl groups of GSp2g and H are defined as

WeylGSp2g
:= NGSp2g

(TGSp2g
)/TGSp2g

and WeylH := NH (TH )/TH ,

where NGSp2g
(TGSp2g

) (resp. NH (TH )) is the group of normalisers of TGSp2g
(resp. TH ) in

GSp2g (resp. H ). They can also be described explicitly as follows.

• Wecan identifyWeylGSp2g
with�g �(Z /2Z)g , where�g denotes the permutation group

on g letters. For any τ = diag(τ 1, . . . , τ g, τ 0 τ−1
g , . . . , τ 0 τ−1

1 ) ∈ TGSp2g
, the actions

of �g and (Z /2Z)g are given as

(i) �g permutes τ 1, . . . , τ g ,
(ii) the element (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0) ∈ (Z /2Z)g maps τ to

diag(τ 1, . . . , τ i−1, τ 0 τ−1
i , τ i+1, . . . , τ g, τ 0 τ−1

g , . . . , τ 0 τ−1
i+1, τ i , τ 0 τ−1

i−1, . . . , τ 0 τ−1
1 ).
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• We can identify WeylH with �g , whose action on TH is defined as the action of �g on
TGSp2g

.

The actions of theWeyl groups on themaximal tori then induce actions on the root systems
�GSp2g

and �H . Following [13, Chapter VI, §5], let

WeylH := {x ∈ WeylGSp2g
: x(�+

GSp2g
) ⊃ �+

H } ⊂ WeylGSp2g
.

The subset WeylH consequently gives a system of representatives of the quotient
WeylH \WeylGSp2g

.

2.2 The Siegel modular varieties

Let �(p) ⊂ GSp2g(Ẑ) be a neat open compact subgroup such that �(p) = ∏�: prime �
(p)
� ,

where each �
(p)
� is an open compact subgroup of GSp2g(Z�). Let Sbad := {� prime number :

�
(p)
� � GSp2g(Z�)} ∪ {p}. We shall assume this union is a disjoint union and write N :=∏
�∈Sbad �{p} � ( and so p � N ).

Fix a primitive N -th roots of unity ζN ∈ Q ⊂ Qp . Let SCHZp[ζN ] be the category of
locally noetherian schemes over Zp[ζN ]. Consider the functor

SCHZp[ζN ] → SETS,

S 
→
⎧⎨
⎩(A/S, λ, ψN ) :

A is a principally polarised abelian scheme over S
λ is a principal polarisation on A
ψN is a level structure defined by �(p)

⎫⎬
⎭ / 
 .

Assume that �(p) is chosen so that the above functor is representable by a scheme XZp[ζN ].
Denote by X = XCp the base change of XZp[ζN ] to Cp .

Example 2.1 Suppose �(p) = �(N ) := ker(GSp2g(Ẑ) → GSp2g(Z /N Z)) for N large
enough, then �(N ) defines the level structure asking for symplectic isomorphisms,

ψN : A[N ] ∼−→ (Z /N Z)2g,

i.e., isomorphisms that preserve symplectic pairings on both sides up to units, where we
consider the Weil pairing on the left-hand side and the symplectic pairing induced by (1) on
the right-hand side. ��

Fix a primitive p-th root of unity ζp ∈ Q ⊂ Qp ,we also consider the scheme XIw,Qp[ζN ,ζp],
parametrising tuples

(A, λ, ψN ,Fil•),

where (A, λ, ψN ) ∈ XQp[ζN ,ζp] := XZp[ζN ] ×Zp[ζN ] SpecQp[ζp, ζN ] and Fil• is a full

filtration of A[p] such that Fil⊥• = Fil2g−• (with respect to the Weil pairing). Similarly, we
write XIw = XIw,Cp the base change of XIw,Qp[ζN ,ζp] to Cp . Obviously, we have the natural
forgetful morphism

XIw → X , (A, λ, ψN ,Fil•) 
→ (A, λ, ψN ).

This morphism is obviously an étale morphism.
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With respect to the fixed isomorphism C 
 Cp in the beginning, we can consider the
C-points XIw(C). The space XIw(C) can then be identified with the locally symmetric space

XIw(C) = GSp2g(Q)\GSp2g(A f ) × Hg / IwGSp2g
�(p),

where Hg is the (disjoint) union of the Siegel upper- and lower-half plane and A f is the ring
of finite adèles of Q. It is well-known that the dimension of the Siegel modular variety XIw

(as well as X ) is n0 = g(g + 1)/2.
Let M be a left GSp2g(Zp)-module (over some commutative ring). Thus, M also admits

a left action of IwGSp2g
via restriction. By equipping M with a trivial action by �(p), the

module M naturally defines a local system on X(C) and XIw(C) as explained in [1, §2.2]
(see also [16, §2.1]). One can then consider the (Betti) cohomology groups Ht (X(C), M)

and Ht (XIw(C), M) (resp. compactly supported cohomology groups Ht
c (X(C), M) and

Ht
c (XIw(C), M)) with coefficients in M . Then, there are natural morphisms

�p : Ht (X(C), M) → Ht (XIw(C), M) (2)

�p : Ht
c (X(C), M) → Ht

c (XIw(C), M) (3)

induced by the forgetful morphism.

2.3 The overconvergent parabolic cohomology groups

Define

T0 = {(γ ,υ) ∈ IwGLg ×Mg(p Zp) : tγ 1̆g υ = tυ 1̆g γ
}
.

Elements inT0 can be viewed as the left (2g×g)-columns ofmatrices in IwGSp2g
as explained

in [35, §2.2]. Then T0 admits a right action of BGLg,0 given by the right multiplication and

a left action of � :=
(

IwGLg Mg(Zp)

Mg(p Zp) Mg(Zp)

)
∩ GSp2g(Qp) by the left multiplication.

Moreover, T0 admits a special subset

T00 :=
{
(γ ,υ) ∈ T0 : γ ∈ U opp

GLg ,1

}
,

which can be identified with U opp
GSp2g ,1

via

T00
∼−→ U opp

GSp2g ,1
, (γ ,υ) 
→

(
γ

υ 1̆g
tγ −1 1̆g

)
.

For any affinoid Qp-algebra R and any p-adic weight (i.e., continuous character) κ :
TGLg ,0 → R× and any s ∈ Z>0, we consider the s-locally analytic functions

As
κ (T0, R) :=

{
φ : T0 → R : φ(γ β,υ β) = κ(β)φ(γ ,υ) ∀((γ ,υ),β) ∈ T0 ×BGLg,0

φ|T00 is s-locally analytic

}
.

Here, we extend κ to a function on BGLg ,0 by setting κ|UGLg ,0 = 1 and the ‘s-locally analytic’

condition is in the sense of [16, §2 Definition] (after identifyingT00 withU opp
GSp2g ,1

). One sees

immediately that we have a natural inclusion As
κ (T0, R) ⊂ As+1

κ (T0, R).
The s-locally analytic distributions are then defined to be

Ds
κ (T0, R) := Homcts

R (As
κ (T0, R), R).
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The natural inclusion As
κ (T0, R) ⊂ As+1

κ (T0, R) then yields a natural projection
Ds+1

κ (T0, R) → Ds
κ (T0, R). Consequently, we define

A†
κ (T0, R) := lim−→

s

As
κ (T0, R)

D†
κ (T0, R) := lim←−

s

Ds
κ (T0, R).

We call elements of these two modules overconvergent functions and overconvergent dis-
tributions respectively. It is also obvious that D†

κ (T0, R) is the continuous dual of A†
κ (T0, R).

Observe that IwGSp2g
⊂ �, thus D†

κ (T0, R) is naturally a left IwGSp2g
-module.

Equip it with a trivial action by �(p), we can consequently consider the cohomology
groups (resp. compactly supported cohomology groups) Ht (XIw(C), D†

κ (T0, R)) (resp.
Ht

c (XIw(C), D†
κ (T0, R))) for any 0 ≤ t ≤ 2n0. The overconvergent parabolic cohomology

group is then defined to be

Ht
par(XIw(C), D†

κ (T0, R)) := image
(
Ht

c (XIw(C), D†
κ (T0, R)) → Ht (XIw(C), D†

κ (T0, R))
)
,

where the map is the natural map from the compactly supported cohomology group to the
cohomologygroup. Inwhat follows,wewill be considering the total overconvergent parabolic
cohomology group

H tol
par,κ := ⊕2n0

t=0Ht
par(XIw(C), D†

κ (T0, R)).

2.4 Hecke operators and the (reduced equidimensional) cuspidal eigenvariety

Let � be a prime number that does not divide pN . We consider the set of double cosets

ϒ� := {[GSp2g(Z�) δGSp2g(Z�)] : δ ∈ GSp2g(Qq) ∩ M2g(Zq)}.
For any fixed δ, we have the coset decomposition

GSp2g(Z�) δGSp2g(Z�) = � j δ j GSp2g(Z�)

for finitely many δ j ∈ GSp2g(Q�) ∩ M2g(Z�). By letting δ j ’s act trivially on D†
κ (T0, R),

we have a left action of the double coset [GSp2g(Z�) δGSp2g(Z�)] on the cochain complex
C•

κ (resp. C•
c,κ ) that computes the cohomology groups Ht (XIw(C), D†

κ (T0, R)) (resp. the
compactly supported cohomology groups Ht

c (XIw(C), D†
κ (T0, R))) by

[GSp2g(Zq) δGSp2g(Zq)] · σ =
∑

j

δ j ·σ

for any σ ∈ C•
κ (resp. C•

c,κ ). Then the Hecke algebra at � (over Zp) is defined to be T� =
T�,Zp = Zp[ϒ�]. Consequently, the unramified Hecke algebra is

T
p := ⊗��pN T� .

We specify out a special element t�,0 = diag(1g, �1g) ∈ GSp2g(Q�)∩ M2g(Z�). For any
x ∈ WeylGSp2g

, denote by T x
�,0 theHecke operator defined by the double coset [GSp2g(Z�)(x ·

t�,0)GSp2g(Z�)]. Following [15, §3], we define the Hecke polynomial at � to be

PHecke,�(Y ) :=
∏

x∈WeylH

(Y − T x
�,0) ∈ T�[Y ]. (4)

123



J. Wu

One sees immediately that this is a polynomial of degree 2g .
For Hecke operators at p, consider matrices

up,i :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1g

p1g

)
, i = 0

⎛
⎜⎜⎝
1g−i

p1i

p1i

p21g−i

⎞
⎟⎟⎠ , 1 ≤ i ≤ g − 1

.

For any (γ ,υ) ∈ T0, write (γ ,υ) = (γ 0,υ0)β for some β ∈ B+
GLg ,0

such that γ 0 ∈
U opp
GLg,1

. Then, the left action of up,i on T0 is defined by the formula

up,i ·(γ ,υ) = (u�
p,i γ 0 u

�,−1
p,i ,u�

p,i υ0 u
�,−1
p,i )β,

where we write

up,i =
(
u�

p,i

u�
p,i

)
.

On the other hand, we also have a coset decomposition of IwGSp2g
up,i IwGSp2g

, given by

IwGSp2g
up,i IwGSp2g

= � j δi, j IwGSp2g

for some δi, j ∈ GSp2g(Qp) ∩ M2g(Zp); in particular, δi, j = λi, j up,i for some λi, j ∈
IwGSp2g

. Hence, we have the action

[IwGSp2g
up,i IwGSp2g

] · σ :=
∑

j

δi, j ·σ =
∑

j

λi, j · (up,i ·σ )

for any σ ∈ C•
κ (resp. C•

c,κ ). We denote by Up,i the Hecke operator defined by the double
coset [IwGSp2g

up,i IwGSp2g
]. Similarly, for any x ∈ WeylGSp2g

, we denote byU x
p,i the Hecke

operator defined by the double coset [IwGSp2g
(x · up,i ) IwGSp2g

], whose action is similarly
defined as above. Then, the Hecke algebra at p is defined to beTp = Tp,Zp = Zp[U x

p,i : i =
0, 1, . . . , g − 1, w ∈ WeylGSp2g

]. Consequently, the (universal) Hecke algebra is defined
to be

T := T
p ⊗Zp Tp .

There is a special Hecke operator Up ∈ Tp defined to be

Up :=
g−1∏
i=0

Up,i .

Combining the discussions in [16, §2.2] and [20, §3.2],3 the operatorUp defines a compact
operator onC•

κ (resp.,C
•
c,κ ). Consequently,we consider the slope decomposition onC•

κ (resp.,

3 Let us explain this implication inmore details. In [16] the operatorUp acts compactly on the chain complexes
that computes the homology groups with coefficients in As

κ (T0, R) for any s ∈ Z>0. On the other hand, the
authors of [20] used a different formalism that allows them to deduce the compactness of the operator Up
on the cochain complexes that compute cohomology groups with coefficients in ‘Dr

κ ’. The modules Dr
κ are

obtained by considering the completion on R[[Uopp
GSp2g ,1

]] with respect to an ‘r -norm’. Such a module is not

the module of s-locally analytic distributions considered in [16] and here. However, this difference disappears
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C•
c,κ ) with respect to the action ofUp , which allows us to consider the finite slope cohomology

groups (resp., compactly supported cohomology groups).
Let W = Spa(Zp[[TGLg ,0]],Zp[[TGLg,0]])anη be our weight space, where the superscript

‘•an’ means that we are taking the analytic points of the adic space and the subscript ‘•η’
means that we are considering the generic fibre of the adic space. The slope decomposition
on the cochain complexes C•

κ then defines a Fredholm surface Z over W. As the natural
map C•

c,κ → C•
κ is Hecke-equivariant, the finite-slope cohomology groups and finite-slope

compactly supported cohomology groups define finite-slope parabolic cohomology groups
H tol,<h
par,κ (see [35, §3.3]).
For any slope datum (U, h) (see [16, §3.1]; in particular, U ⊂ W), denote by κU the

universal weight on U and define

T
red,h
par,U := image

(
T → EndOW(U)

(
H tol,≤h
par,κU

))red
,

where the superscript ‘•red’ stands for the maximal reduced quotient of the corresponding
ring. The algebras T

red,h
par,U then glue together to a coherent sheaf of OZ-algebras, denoted

T red
par. The reduced cuspidal eigenvariety is then defined to be

Ered0 := SpaZ(T
red
par,T

red,◦
par ),

where the sheaf of integral elements T red,◦
par is guaranteed by [20, Lemma A.3]. We finally

define the (reduced equidimensional) cuspidal eigenvariety

E0 := the equidimensional locus of Ered0

The natural map

wt : E0 → W
is called the weight map.

Remark 2.2 If we work with the strict Iwahori level as in [35], then E0 is the reduced and
equidimensional part of the p �= 0 locus of the cuspidal eigenvariety considered in loc. cit..
We focus on the reduced cuspidal eigenvariety due to later purposes on families of Galois
representations.

3 Families of Galois representations

In this section, we study families of Galois representations on the reduced equidimensional
cuspidal eigenvariety E0. We shall first recall several formalisms about families of Galois
representations from [2]. Our main results concerning the Bloch–Kato conjecture are then
proven in Sect. 3.5.

3.1 Determinants and families of representations

In this subsection, we recall several terminologies for studying families of Galois represen-
tations. Most of the materials presented in this subsection are taken from [2].

Footnote 3 continued
after taking limit, i.e., lim←−r

Dr
κ = D†

κ (T0, R). We should also caution the reader that the p-adic weight κ and
R considered in [20] are well-chosen so that their formalism could be applied. We omitted this subtlety in the
above discussion just to provide an idea.
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Determinants. We briefly recall the notion of ‘determinants’ from [6] and refer the readers
to loc. cit. for more detailed discussions. We remark in the beginning that the notion of
determinants is used to strengthen the notion of ‘pseudocharacters’ first introduced by R.
Taylor in [31] and studied by other mathematicians. We also remark that determinants are
equivalent to pseudocharacters in characteristic 0.

Definition 3.1 Let A be a commutative ring and R be an A-algebra (not necessarily commu-
tative).

(i) For any A-module M , one can view M as a functor from the category of commutative
A-algebras to the category of sets, sending B to M ⊗A B. Let M , N be two A-modules.
Then an A-polynomial law between M and N is a natural transformation

M ⊗A B → N ⊗A B

on the category of commutative A-algebras.
(ii) Let P : M → N be an A-polynomial law and d ∈ Z>0. We say P is homogeneous of

dimension d if for any commutative A-algebra B, any b ∈ B and any x ∈ M ⊗A B,
we have P(bx) = bd P(x).

(iii) Let P : R → A be an A-polynomial law. We say P is multiplicative if, for any
commutative A-algebra B, P(1) = 1 and P(xy) = P(x)P(y) for any x, y ∈ R ⊗A B.

(iv) For d ∈ Z>0, a d-dimensional A-valued determinant on R is a multiplicative A-
polynomial law D : R → A which is homogeneous of dimension d .

Example 3.2 Let G be a group and A be any ring. Let ρ : G → GLd(A) be a representation
of dimension d . Then

D : A[G] → A, G � σ 
→ det ρ(σ )

is an A-valued determinant of dimension d on A[G]. We also say that D is an A-valued
determinant of dimension d on G.

Theorem 3.3 ([6, Theorem A and Theorem B])
Let G be a group.

(i) Let k be an algebraically closed field and let D : k[G] → k be a determinant of
dimension d. Then, there exists a unique (up to isomorphism) semisimple representation
ρ : G → GLd(k) such that for any σ ∈ G, we have

det(1 + Xρ(σ )) = D(1 + Xσ) ∈ k[X ].
In particular, det ρ = D.

(ii) Let A be an henselian local ring with algebraically closed residue field k, D : A[G] → A
be a determinant of dimension d and let ρ be the semisimple representation attached to
D ⊗A k in (i). Suppose ρ is irreducible, then there exists a unique (up to isomorphism)
representation ρ̃ : G → GLd(A) such that

det(1 + X ρ̃(σ )) = D(1 + Xσ) ∈ A[X ]
for any σ ∈ G.

Refinements of crystalline representations. We recall the notion of ‘refinements’ of crys-
talline representations from [2, §2.4]. Let L be a finite extension of Qp and let V be an
n-dimensional L-representation of GalQp . Assume that V is crystalline. Also assume that
the crystalline Frobenius ϕ = ϕcris acting on Dcris(V ) has all eigenvalues living in L×.
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Definition 3.4 ([2, §2.4.1]) A refinement of V is the data of a full ϕ-stable L-filtration

F• : 0 = F0 � F1 � · · · � Fn−1 � Fn = Dcris(V ).

Suppose F• is a refinement of V , one sees immediately that it determines two orderings:

(Ref 1) An ordering (ϕ1, . . . , ϕn) of the eigenvalues of ϕ by the formula

det(X − ϕ|Fi ) =
i∏

j=1

(X − ϕ j ).

Notice that if the ϕ j ’s are all distinct, then such an ordering of eigenvalues of ϕ

conversely determines the refinement.
(Ref 2) An ordering (a1, . . . , an) of Hodge–Tate weights of V . More precisely, the jumps

of the Hodge filtration of Dcris(V ) induced on Fi are (a1, . . . , ai ).

Definition 3.5 ([2, Definition 2.4.5]) Suppose the Hodge–Tate weights a1 < · · · < an of V
are all distinct. Let F be a refinement of V and let Fil• Dcris(V ) be the Hodge filtration of
Dcris(V ). We say F is non-critical if, for all 1 ≤ i ≤ n, we have

Dcris(V ) = Fi ⊕Filai +1 Dcris(V ).

Recall the Robba ring

RL :=
{

f (X) =
∑
i∈Z

tn(X − 1)n ∈ L[[X ]] : f (X) converges on some annulus of Cp

of the form r( f ) ≤ |X − 1| ≤ 1

}
.

Here the norm | · | is the p-adic norm on Cp with the normalisation |p| = 1/p. Let � = Z×
p .

The theory of (ϕ, �)-modules yields an equivalence of categories between the category
finite-dimensional L-representations of GalQp and the category of étale (ϕ, �)-modules over
RL (see, for example, [2, §2.2]). In particular, we have a (ϕ, �)-module Drig(V ) over RL

associated with V .

Proposition 3.6 ([2, Proposition 2.4.1 and Proposition 2.4.7]) Let F• be a refinement of V .

(i) Then F• determines a unique filtration Fil• Drig(V ) of length n, i.e., a triangulation
of Drig(V ). Consequently, F• determines a unique collection of continuous characters
δi : Q×

p → L× via the isomorphism

Fili Drig(V )/Fili−1 Drig(V ) 
 RL(δi )

given by [2, Proposition 2.3.1]. Here, the tuple δ = (δ1, . . . , δn) is called the parameter
of V .

(ii) Moreover, suppose the Hodge–Tate weight of V are all distinct h1 < · · · < hn. Then, F•
is non-critical if and only if the sequence Hodge–Tate weights (a1, . . . , an) associated
with F• in (Ref 2) is increasing, i.e., ai = hi for all i = 1, . . . , n.

Remark 3.7 The theory of (ϕ, �)-modules can be worked out for local artinian Qp-algebras
(see, for example, [2, §2]). Thus, it makes sense to consider the following deformation func-
tors. Let AR be the category of local artinianQp-algebras whose residue field is isomorphic
to L . Then, we define the (local) trianguline deformation functor

DV ,Fil• Drig(V ) : AR → SETS,

A 
→
⎧⎨
⎩(VA, ρA,Fil• Drig(VA)) :

VA 
 An

ρA : GalQp → GL(VA) 
 GLn(A) s.t. ρA ⊗A L 
 V
Fil• Drig(VA) ⊗RA RL 
 Fil• Drig(V )

⎫⎬
⎭ / 
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Wewill also denote the above deformation functor byDV ,F• as the triangulation Fil• Drig(V )

is uniquely determined byF•. In fact, wewill confuse the refinementF• with the triangulation
Fil• Drig(V ) in what follows.

Families of representations. Here, we collect some terminologies introduced in [2, §5] that
will be needed in the later subsections. Note that the terminology of ‘pseudocharacters’ is
used in op. cit. since the notion of ‘determinants’ was not yet discovered. In what follows,
we shall adapt everything with the notion of determinants.

Let G be a topological group with a continuous group homomorphism GalQp → G,
e.g., G = GalQ with the natural inclusion GalQp ↪→ GalQ. Therefore, any (continuous)
representation ρ of G induces a (continuous) representation of GalQp , denoted by ρ|GalQp

.
By a family of representations, we mean a datum (X, D), where X is a reduced sepa-

rated rigid analytic variety (viewed as an adic space) over Spa(Qp,Zp) and a continuous
determinant D : OX(X)[G] → OX(X). The dimension of this family is understood to be the
dimension of the determinant D, denoted by n. For any x ∈ X, let kx be the residue field of
x, then we have the specialisation

D|x : G
D−→ OX(X) → kx. (5)

Applying Theorem 3.3 (i), we see that D|x is nothing but the determinant of a (unique up to
isomorphism) continuous semisimple representation ρx : G → GLn(kx).

Definition 3.8 ([2, Definition 4.2.3]) A refined family of representations of dimension n is
a datum (X, D,Q, {αi : i = 1, . . . , n}, {Fi : i = 1, . . . , n}), where
(a) (X, D) is a family of representations of dimension n,
(b) Q ⊂ X is a Zariski dense subset,
(c) αi ∈ OX(X) is an analytic function for i = 1, . . . , n,
(d) Fi ∈ OX(X) is an analytic function for i = 1, . . . , n,

such that

(i) For every x ∈ X, the Hodge–Tate–Sen weights4 for ρx|GalQp
are α1(x), …, αn(x).

(ii) For each y ∈ Q, the representation ρy|GalQp
is crystalline (so that αi (y)’s are integers)

and we have α1(y) < · · · < αn(y).
(iii) For each y ∈ Q, the eigenvalues of the crystalline Frobenius ϕ on Dcris(ρy|GalQp

) are

distinct and are (pα1(y)F1(y), . . . , pαn(y)Fn(y)).
(iv) For any C ∈ Z>0, define

QC :=
{
y ∈ Q : αi+1(y) − αi (y) > C(αi (y) − αi−1(y)) for i = 2, . . . , n − 1

α2(y) − α1(y) > C

}
.

We request that QC accumulates at any point of Q for any C . In other words, for any
y ∈ Q and any C ∈ Z>0, there is a basis of affinoid neighbourhoods U of x such that
U∩QC is Zariski dense in U.

(*) For each i = 1, . . . , n, there is a continuous characterZ×
p → OX(X)× whose derivative

at 1 is themap αi andwhose evaluation at any point y ∈ Q is the elevation to the αi (y)-th
power.

4 Here, the Hodge–Tate–Sen weight is defined to be the roots of the Sen polynomial (see, for example, [24,
Definition 2.24]).
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Let (X, D,Q, {αi : i = 1, . . . , n}, {Fi : i = 1, . . . , n}) be a refined family of dimension
n. We fix a point y ∈ Q. Then ρy admits a natural refinement F

y• given by the ordering of
distinct eigenvalues

(pα1(y)F1(y), . . . , pαn(y)Fn(y))

of the crystalline Frobenius acting onDcris(ρy |GalQp
) ( [2, Definition 4.2.4]). We assume that

ρy is irreducible and it satisfies the following two conditions:

(REG) The refinementFy• is regular, i.e., for any i = 1, . . . , n, pα1(y)+···+αi (y)F1(y) · · · Fi (y)
is an eigenvalue of the crystalline Frobenius ϕ acting on Dcris(∧iρy|GalQp

) of multi-
plicity one.

(NCR) The refinement F
y• is non-critical.

Since ρy is assumed to be irreducible, Theorem 3.3 (ii) implies that there is a unique contin-
uous representation

ρX,y : G → GLn(OX,y)

such that ρX,y ⊗OX,y ky = ρy and so det ρy coincides with the composition G
D−→ OX(X) →

OX,y. Following [2, §4.4], we define a continuous character δy : Q×
p → (O×

X,y)
n by setting

δy(p) = (F1,y, . . . , Fn,y) and δy|Z×
p

= (α−1
1,y, . . . , α

−1
n,y), (6)

where Fi,y and αi,y are the images of Fi and αi in OX,y respectively.

Theorem 3.9 ([2, Theorem 4.4.1]) For any ideal I � OX,y of cofinite length, ρX,y ⊗OX,y

OX,y /I is a trianguline deformation of (ρy,F
y•), i.e., it belongs to Dρy|GalQp

,F
y•(OX,y /I)

(defined in Remark 3.7), whose parameter is δy ⊗ OX,y /I.

3.2 Galois representations for GSp2g

Given a dominant weight k = (k1, . . . , kg) ∈ Zg
≥0, recall the GSp2g-representations

Valg
GSp2g ,k

=
⎧⎨
⎩φ : GSp2g(Qp) → Qp :

φ is a polynomial function
φ(γ β) = k(β)φ(γ ) ∀(γ ,β) ∈ GSp2g
(Qp) × BGSp2g

(Qp)

⎫⎬
⎭

Valg,∨
GSp2g ,k

= HomQp (V
alg
GSp2g ,k

,Qp).

The representation Valg
GSp2g ,k

is equipped with a right GSp2g(Qp)-action by the formula

γ ·φ(γ ′) = φ(γ γ ′)

for any φ ∈ Valg
GSp2g ,k

, γ , γ ′ ∈ GSp2g(Qp). Hence, V
alg,∨
GSp2g ,k

is equipped with a left

GSp2g(Qp)-action and consequently induces a local system on both XIw+(C) and X(C).
We abuse the notation and use the same symbol to denote such local system. In particular,
we can consider the parabolic cohomology group

H alg,tol
tame,par,k := ⊕2n0

t=0Ht
par(X(C),Valg,∨

GSp2g ,k
).
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Note that the double cosets [GSp2g(Zp)(x · up,i )GSp2g(Zp)] acts on H alg,tol
tame,par,k for any

x ∈ WeylGSp2g
. We denote by

T
tame := T

p ⊗Zp Zp
[[GSp2g(Zp)(x · up,i )GSp2g(Zp)] :

i = 0, 1, . . . , g − 1, x ∈ WeylGSp2g

]
.

In particular, it makes sense to consider the Hecke polynomial PHecke,p(Y ) at p in this case
and is defined as in (4).5

Hypothesis 1 For any T
tame-eigenclass [μ] ∈ H alg,tol

tame,par,k with eigensystem λ[μ] : T
tame →

Qp , there exists a (continuous) Galois representation

ρ[μ] : GalQ
ρ
spin
[μ]−−→ GSpin2g+1(Qp)

spin−−→ GL2g (Q
5
p)

such that

(i) The representation ρ[μ] is unramified outside pN and

char. poly(Frob�)(Y ) = λ[μ](PHecke,�(Y )) :=
∏

x∈WeylH

(Y − λ[μ](T x
�,0))

for any � � pN , where char. poly(Frob�)(Y ) stands for the characteristic polynomial of
the Frobenius at � and PHecke,�(Y ) is the Hecke polynomial defined in (4). Moreover, the
coefficients of these two polynomials are algebraic integers over Q.

(ii) The representation ρ[μ]|GalQp
is crystalline with Hodge–Tate weights6

(a1, . . . , a2g ) = (0, a′
g, . . . , a′

1, a′
g + a′

g−1, . . . , a′
2 + a′

1, . . . , a′
g + · · · + a′6

1 ),

where a′
i = (g + 1 − i) + ki . Let ϕ = ϕcris be the crystalline Frobenius acting on

Dcris(ρ[μ]|GalQp
), we moreover have

char. poly(ϕ)(Y ) = λ[μ](PHecke,p(Y )),

where char. poly(ϕ)(X) is the characteristic polynomial of ϕ acting onDcris(ρ[μ]|GalQp
),

and the coefficients of these two polynomials are algebraic integers overQ. We order the
eigenvalues of ϕ so they satisfy

(ϕ1, . . . , ϕ2g ) = ϕ1(1, ϕ
′
2, . . . , ϕ

′
g+1, ϕ

′
2ϕ

′
3, . . . , ϕ

′
gϕ

′
g+1, . . . , ϕ

′
2 · · ·ϕ′

g+1)

for some (ϕ′
2, . . . , ϕ

′
g+1). The order of the later tuple is chosen similarly as the Hodge–

Tate weights. In particular, ϕ2, . . . , ϕg+1 are divisible by ϕ1 and the 2g eigenvalues of ϕ
depend only on ϕ1, . . . , ϕg+1.

Remark 3.10 Recall that Sbad is the finite set of prime numbers which divides pN . Let
GalQ,Sbad be theGalois group of themaximal extension ofQwhich is unramified outsideSbad.
Therefore, the representation ρ[μ] in Hypothesis 1 can be regarded as a Galois representation
of GalQ,Sbad .

5 We refer the readers to [14, Lecture 20] for the definition and properties of the representation spin :
GSpin2g+1 → GL2g .
6 These numbers are all possibilities of sums of a′

i ’s. The order is chosen so that if k = (k1, . . . , kg) =
(kg + g − 1, kg + g − 2, . . . , kg), we have a1 < a2 < · · · < a2g .
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Remark 3.11 Evidently, Hypothesis 1 comes from Global Langlands Correspondence. We
comment briefly on this hypothesis.

(i) When g ≤ 2, Hypothesis 1 (i) is well-known (see, for example, [34]). The work of
Kret and Shin [22] gave a positive answer to Hypothesis 1 (i) under some conditions on
the automorphic representations for general g. Although their result is not completely
unconditional, it suggests thatHypothesis 1 is reasonable to assume (but could be difficult
to prove in general).

(ii) Hypothesis 1 (ii) is also well-studied when g ≤ 2. In particular, Urban proved the case
for g = 2 in [33], result deduced from Scholl’s motive for modular forms [28]. For
general g, the property is expected if Hypothesis 2 below holds (see, for example, [27,
Theorem 2.1 and Corollary 2.2]).

By [22, Lemma 0.1] and under the assumption of Hypothesis 1, we know that given a
T
tame-eigenclass [μ] as above, ρ[μ] factors as

ρ[μ] : GalQ,Sbad

ρ
spin
[μ]−−→ GSpin2g+1(Qp)

spin−−→ GS(Qp) → GL2g (Qp),

where

GS =
{
GO2g , if g(g + 1)/2 is even
GSp2g , if g(g + 1)/2 is odd

and the last arrow is nothing but the natural inclusion. Define

gl2g := the Lie algebra ofGL2g (Qp), equipped with the induced adjoint

GalQ,Sbad -action by ρ[μ]
ad ρ[μ] := the Lie algebra ofGS(Qp), equipped with the induced adjoint GalQ,Sbad

-action by spin ◦ρspin
[μ]

ad ρ
spin
[μ] := the Lie algebra ofGSpin2g+1(Qp), equipped with the induced adjoint

GalQ,Sbad -action by ρ
spin
[μ] .

Then, the inclusions

GSpin2g+1(Qp) ↪→ GS(Qp) ↪→ GL2g (Qp)

induces GalQ,Sbad -equivariant inclusions

ad ρ
spin
[μ] ↪→ ad ρ[μ] ↪→ gl2g ,

which then further induces inclusions of the Galois cohomology groups

H1(GalQ,Sbad , ad ρ
spin
[μ] ) ↪→ H1(GalQ,Sbad , ad ρ[μ]) ↪→ H1(GalQ,Sbad , gl2g ).

On the other hand, let sl2g be the trace-zero part of gl2g and let

ad0 ρ[μ] := ad ρ[μ] ∩ sl2g and ad0 ρspin
[μ] := ad ρ

spin
[μ] ∩ sl2g .
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Note that the decomposition gl2g = sl2g ⊕ gl1 is GalQ-equivariant, we thus have a commu-
tative diagram

H1(GalQ,Sbad , ad ρ
spin
[μ] ) H1(GalQ,Sbad , ad ρ[μ]) H1(GalQ,Sbad , gl2g )

H1(GalQ,Sbad , ad
0 ρ

spin
[μ] ) H1(GalQ,Sbad , ad

0 ρ[μ]) H1(GalQ,Sbad , sl2g )

, (7)

where the arrows are all inclusions.
Under the assumption ofHypothesis 1, one obtains a 2g-dimensionalGalois representation

for each eigenclass [μ]. It is then a natural question to ask whether the attached Galois
representation admits an associated cuspidal automorphic representation ofGL2g . The answer
to this question is expected to be affirmative, which we state as the next hypothesis.

Hypothesis 2 (The potential spin functoriality) Given a T
tame-eigenclass [μ] ∈ H alg,tol

tame,par,k ,

there exists a finite real extension L ⊂ Q ofQ with ρ[μ]|GalL being irreducible and a generic
cuspidal automorphic representation π[μ] of GL2g (AL), where AL is the ring of adles of L ,
such that

• π[μ] is unramified outside the places above Sbad and
• the Galois representation associated with π[μ] is isomorphic to ρ[μ]|GalL .

Remark 3.12 We should remark that Kret and Shin verify the above hypothesis in [22, The-
orem C] under some stronger conditions than the ones they verify Hypothesis 1.

On the other hand, we also write

H alg,tol
par,k := ⊕2n0

t=0Ht
par(XIw+(C),Valg,∨

GSp2g ,k
).

The forgetful map XIw(C) → X(C) then induces a morphism (see also (2) and (3))

�p : H alg,tol
tame,par,k → H alg,tol

par,k . (8)

Observe that this morphism is T
p-equivariant. Moreover, we have slope decomposition

on the latter space with respect to the action of Up since it is a finite-dimensional Qp-vector
space. Thus, for each h ∈ Q>0, we write

H alg,tol,≤h
tame,par,k := image

(
H alg,tol
tame,par,k

�p−→ H alg,tol
par,k � H alg,tol,≤h

par,k

)
,

where H alg,tol,≤h
par,k is the ‘≤ h’ part of H alg,tol

par,k under the action of Up . Thus, for any T
tame-

eigenclass [μ] in H alg,tol
tame,par,k , its image in H alg,tol,≤h

tame,par,k can be decomposed as a sum of T-
eigenclasses. We call any of these factors a p-stabilisation of [μ].

It is a natural question asking how the eigenvalues of a T
tame-eigenclass interact with the

eigenvalues of its p-stabilisations. The following statement is due to Harron–Jorza.

Proposition 3.13 ([17, Lemma 17])

(i) Let [μ] be a T
tame-eigenclass with eigensystem λ[μ] in H alg,tol,≤h

par,k . Then, there exist 2gg!
p-stabilisations [μ](p), indexed by WeylGSp2g

.
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(ii) Chose a bijection of sets ι : {1, 2, . . . , 2g} ∼−→ WeylH so that λ[μ]
(

T ι(i)
p,0

)
= ϕi , where

T ι(i)
p,0 is the Hecke operator defined by [GSp2g(Zp)(ι(i) · up,0)GSp2g(Zp)] acting on

H alg,tol
tame,par,wt(x) and ϕi is the i-th eigenvalue of the crystalline Frobenius associated with

ρ[μ].7 Denote by λi = λ[μ](T ι(i)
p,0 ) and let [μ](p) be any of the p-stablisation of [μ] with

Hecke eigensystem λ
(p)
[μ] . Then, there exists a constant ϑ ∈ Q (depending only on g) such

that, for i = 1, . . . , g + 1,

λ
(p)
[μ](U

ι(i)
p,0 ) = pϑ · p−(g+1−i)λ1

g∏
j=1

(λ j+1/λ1)
aν( j) or 1−aν( j) ,

where

• the index of [μ](p) is (ε, ν) ∈ WeylGSp2g
= �g �(Z /2Z)g and

aν( j) =
{
1, ν( j) = i
0, otherwise

;

• the exponent depends on whether ε(ν( j)) = 0 or 1 ∈ Z /2Z.

3.3 Families of Galois representations on the cuspidal eigenvariety

The goal of this section is to construct families of Galois representations on a sublocus of
the cuspidal eigenvariety E0 under the assumption of Hypothesis 1.

For any dominant algebraic weight k ∈ Zg
>0, recall from [1, Theorem 6.4.1] that there is

hk ∈ R>0 such that for any h ∈ Q>0 with h < hk , we have a canonical isomorphism

H tol,≤h
par,k

∼−→ H alg,tol,≤h
par,k .

We then define the p-stabilised classical locus of E0 to be the locus Xcl ⊂ E0, containing
those x with the following conditions:

• wt(x) = k ∈ Zg
>0 is a dominant algebraic weight;

• there exists h < hk such that x corresponds to a p-stabilisation of slope ≤ h of a
T
tame-eigenclass [μ] in H alg,tol

tame,par,k ;

• the Galois representation ρ
spin
[μ] attached to [μ] (by Hypothesis 1) is irreducible.

Consequently, we define

Eirr0 := the Zariski closure ofXcl in E0 .

Remark 3.14 We do not expect every classical point in E0 corresponds to an irreducible
Galois representation due to the endoscopy theory of automorphic forms. As we will be only
interested in classical points that correspond to irreducible Galois representations, we do not
lose information if we only consider Eirr0 .

Proposition 3.15 Assume the truthfulness of Hypothesis 1.

7 This can be done due to Hypothesis 1 (ii).

123



J. Wu

(i) For any x ∈ Xcl, there is an associated Galois representation

ρx : GalQ,Sbad
ρ
spin
x−−→ GSpin2g+1(Qp)

spin−−→ GL2g (Qp)

that satisfies the properties in Hypothesis 1.
(ii) There is a universal determinant

Detuniv : GalQ,Sbad → O+
Eirr0

(Eirr0 )

of dimension 2g such that, for any x ∈ Xcl, the specialisation Detuniv |x (notation as in
(5)) coincides with det ρx.

Proof The first assertion is easy. Let x ∈ Xcl. It corresponds to a p-stabilisation class [μ](p) ∈
H alg,tol,≤h
tame,par,k . That is, there is a T

tame-eigenclass [μ] ∈ H alg,tol
tame,par,k such that [μ](p) is a p-

stabilisation of [μ]. By Hypothesis 1, the class [μ] is associated with a Galois representation
with desired properties. Then, we define ρ

spin
x := ρ

spin
[μ] and ρx := ρ[μ].

For the second assertion,we follow the proof of [5, Proposition 7.1.1] (see also [6, Example
2.32]). Consider the morphism

� : O+
Eirr0

(Eirr0 ) →
∏

x∈Xcl

Cp, f 
→ ( f (x))x∈Xcl .

Equipped
∏

x∈Xcl Cp with the product topology, one sees that� is continuous. We claim that
�(O+

Eirr0
(Eirr0 )) is homeomorphic to O+

Eirr0
(Eirr0 ) and is closed in

∏
x∈Xcl Cp . Indeed, since Xcl

is Zariski dense in the reduced space Eirr0 , the map� is injective. Apply [20, Corollary 5.4.4],
we know that O+

Eirr0
(Eirr0 ) is compact and so �(O+

Eirr0
(Eirr0 )) is closed in

∏
x∈Xcl Cp .

On the other hand, we have a continuous map

Det : GalQ,Sbad →
∏

x∈Xcl

Cp, σ 
→ (det ρx(σ ))x∈Xcl .

One checks easily that Det is a determinant of dimension 2g , in fact, the determinant of
a representation GalQ → GL2g (

∏
x∈Xcl Cp). Hypothesis 1 and image� being closed in∏

x∈Xcl Cp imply that imageDet ⊂ image�. Hence, we define

Detuniv := �−1 ◦ Det : GalQ,Sbad → O+
Eirr0

(Eirr0 ).

Since � is injective and Det is a determinant of dimension 2g , Detuniv is as desired. ��
Theorem 3.16 There exists a subset Xcl♥ ⊂ Xcl which is Zariski dense in Eirr0 , 2g analytic

functions α1, . . . , α2g ∈ OEirr0 (Eirr0 ) and 2g analytic functions F1, . . . , F2g ∈ OEirr0 (Eirr0 ) such
that

(Eirr0 ,Detuniv,Xcl♥, {αi : i = 1, . . . , 2g}, {Fi : i = 1, . . . , 2g})
is a refined family of Galois representations.

Proof For any p-adic weight κ = (κ1, . . . , κg), define an ordering of functions on Z×
p via

(α1, . . . , α2g ) := (0, α′
g, . . . , α

′
1, α

′
g + α′

g−1, . . . , α
′
g + α′

1, α
′
g−1 + α′

g−2, . . . , α
′
2

+α′
1, . . . , α

′
g + · · · + α′

1),
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where α′
i = (g + 1 − i) + κi is the character a 
→ κi (a)ag+1−i for every a ∈ Z×

p . We can

view α j ’s as functions on Eirr0 by composing with the weight map wt. Obviously from this
definition, for any x ∈ Xcl, the functions α j ’s provide an ordering of the Hodge–Tate weight
of ρx in Hypothesis 1 (iii).

Define

Xcl♥ :=
⎧⎨
⎩x ∈ Xcl :

0 = α1(x) < α2(x) < · · · < α2g (x)
eigenvalues of the crystalline Frobenius acting on
Dcris(ρx|GalQp

) are distinct

⎫⎬
⎭ .

Observe thatXcl♥ is Zariski dense in Eirr0 sinceXcl is Zariski dense in Eirr0 and the first condition

definingXcl♥ is an open condition on weights while the second condition is an open condition

on Eirr0 . We claim that Xcl♥ satisfies condition (iv) in Definition 3.8. That is, for any C ∈ Z>0,
we have to show that the set

Xcl♥,C :=
{
x ∈ Xcl♥ : αi+1(x) − αi (x) > C(αi (x) − αi−1(x)) for i = 2, . . . , 2g − 1

α2(x) − α1(x) > C

}

satisfies that, for any basis of affinoid neighbourhoods V of x, V∩Xcl♥,C is Zariski dense in

V. However, this follows from that the condition defining Xcl♥,C is an open condition on the
weights.

Now, for any x ∈ Xcl♥, the associated representation ρx is crystalline at p. Let
ϕ1(x), . . . , ϕ2g (x) be eigenvalues of the crystalline Frobenius ϕ = ϕcris acting on
Dcris(ρx|GalQp

). The order of the eigenvalues ϕi ’s is defined so that it defines a non-critical
refinement on ρx. This is achievable by applying Proposition 3.6 (ii). Define

Fi (x) := ϕi (x)/pαi (x) ∈ Cp .

Weclaim that the collection {(Fi (x))i=1,...,2g }x∈Gcl♥ glue to 2g analytic functions (F1, . . . , F2g )

in OEirr0 (Eirr0 ). Let λx : T
tame → Qp be the eigensystem corresponds to x. Consider

pϑ pκ ′
i Fi := image of the operator U ι(i)

p,0 in OEirr0 (Eirr0 ),

where

(κ ′
1, . . . , κ

′
2g ) = (0, κg, . . . , κ1, κg + κg−1, . . . , κg + κ1, κg−1 + κg−2, . . . , κ2

+κ1, . . . , κg + · · · + κ1)

and (κ1, . . . , κg) = wt is the weight map. Then, Hypothesis 1 (ii) and Proposition 3.13 imply
the desired result (see also [2, Proposition 7.5.13]). ��
Remark 3.17 Recall that we have ordered the eigenvalues of the crystalline Frobenius ϕ so
that they satisfy

(ϕ1, . . . , ϕ2g ) = ϕ1(1, ϕ
′
2, . . . , ϕ

′
g+1, ϕ

′
2ϕ

′
3, . . . , ϕ

′
gϕ

′
g+1, . . . , ϕ

′
2 · · ·ϕ′

g+1).

On the other hand, recall that WeylH is a set of representatives of WeylH \WeylGSp2g
, where

WeylH 
 �g . Observe that diag(1g, p1g) is stable under the action of �g , thus the action
of WeylH on Tp,0 only depends on the action of (Z /2Z)g . Combining everything together,
we have the relation

(F1, . . . , F2g ) = F1(1, F ′
2, . . . , F ′

g+1, F ′
2F ′

3, . . . , F ′
g F ′

g+1, . . . , F ′
2 · · · F ′

g+1).

In particular, F2, . . . , Fg+1 are divisible by F1.
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3.4 Local and global Galois deformations

We keep the notations in the previous subsection. Fix x ∈ Xcl♥ with wt(x) = k = (k1, . . . , kg)

and we write

ρx : GalQ ρ
spin
x−−→ GSpin2g+1(Qp)

spin−−→ GL2g (Qp)

for the Galois representation attached to x, given by Proposition 3.15. We fix a large enough
finite field extension kx of Qp such that kx contains the residue field at x and ρ

spin
x takes

values in GSpin2g+1(kx). We also assume that kx contains all eigenvalues of the Frobenii.

Let now AR be the category of local artinian kx-algebras whose residue field is kx. We
denote by F

x• the refinement of ρx|GalQp
induced by the refined family defined in Theorem

3.16. We also denote by δ = (δ1, . . . , δ2g ) the parameter attached to the triangulation asso-
ciated with F

x•. Notice that the relation of the eigenvalues of crystalline Frobenius and the
Hodge–Tate weight implies that the parameter δ satisfies

(δ1, . . . , δ2g ) = δ1(1, δ
′
2, . . . , δ

′
g+1, δ

′
2δ

′
3,

. . . , δ′
gδ

′
g+1, . . . , δ

′
2 · · · δ′

g+1)

for some continuous characters δ′
2, . . . , δ

′
g+1 such that δi = δ1δ

′
i for all i = 2, . . . , g + 1.

Local Galois deformations at p. We shall consider two deformation problems at p:

(i) The deformation problem

D
spin
x,Fx•,p : AR → SETS,

sending each A ∈ AR to the isomorphism classes of representations ρ
spin
A : GalQp →

GSpin2g+1(A) with a triangulation Fil• Drig(spin ◦ρspin
A ) such that

• ρ
spin
A ⊗A kx 
 ρ

spin
x |GalQp

;

• (spin ◦ρspin
A ,Fil• Drig(spin ◦ρspin

A )) ∈ Dρx|GalQp
,Fx•(A) andwrite δA = (δA,1, . . . , δA,2g )

for the associated parameter;
• the parameter δA satisfies

(δA,1, . . . , δA,2g ) = δA,1(1, δ
′
A,2, . . . , δ

′
A,g+1, δ

′
A,2δ

′
A,3, . . . , δ

′
A,2δ

′
A,g+1, δ

′
A,3δ

′
A,4, . . . ,

δ′
A,gδ

′
A,g+1, . . . , δ

′
A,2 · · · δ′

A,g+1)

for some continuous characters δ′
A,2, . . . , δ

′
A,g+1;

• det spin ◦ρspin
A = det ρx|GalQp

(ii) The deformation problem

D
spin
x, f ,p : AR → SETS,

sending each A ∈ AR to the isomorphism classes of representations ρ
spin
A : GalQp →

GSpin2g+1(A) such that

• ρ
spin
A ⊗A kx 
 ρ

spin
x |GalQp

;
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• the (ϕ, �)-moduleDrig(spin ◦ρspin
A ) is crystalline in the sense of [2, Definition 2.2.10]

whose eigenvalues (ϕA,1, . . . , ϕA,2g ) of the crystalline Frobenius satisfy

(ϕA,1, . . . , ϕA,2g ) = ϕA,1(1, ϕ
′
A,2, . . . , ϕ

′
A,g+1, ϕ

′
A,2ϕ

′
A,3, . . . , ϕ

′
A,gϕ

′
A,g+1,

. . . , ϕ′
A,2 · · ·ϕ′

A,g+1),

order chosen the same as for ϕi ’s;
• det spin ◦ρspin

A = det ρx|GalQp

Consider

L ′
p := ker

(
H1(GalQp , ad

0 ρ
spin
x ) → H1(GalQp , ad

0 ρ
spin
x ⊗kx Bcris)

)
,

where Bcris is Fontaine’s ring of crystalline periods. It is well-known that L ′
p defines the

tangent space of the crystalline deformation problem for ρspin
x with fixed determinant. Con-

sequently, the tangent space D spin
x, f ,p(kx[ε]), where ε is a variable such that ε2 = 0, of D spin

x, f ,p
defines a subspace of L ′

p . Thus, we define

L p := D
spin
x, f ,p(kx[ε]) ⊂ L ′

p. (9)

Local Galois deformations at N . For any �|N , we consider the following deformation prob-
lem

D
spin
x,� : AR → SETS

sending each A ∈ AR to the isomorphism classes of representations ρ
spin
A : GalQ�

→
GSpin2g+1(A) such that

• ρ
spin
A ⊗A kx 
 ρ

spin
x |GalQ�

;

• ρ
spin
A |I� 
 ρ

spin
x |I� ⊗kx A

• det spin ◦ρspin
A = det ρx|GalQ�

Here, I� ⊂ GalQ�
denotes the inertia subgroup. Then, one sees that the tangent space

Dx,�(kx[ε]) of Dx,� is a kx-subspace of H1(GalQ�
, ad0 ρspin

x ). We consequently define

L� := Dx,�(kx[ε]) ⊂ H1(GalQ�
, ad0 ρspin

x ). (10)

We learnt the following lemma from P. Allen.

Lemma 3.18 Under the assumption of Hypothesis 2, we have

L� = H1(GalQ�
, ad0 ρspin

x ).

Proof Let

H1
unr(GalQ�

, ad0 ρspin
x ) := ker

(
H1(GalQ�

, ad0 ρspin
x ) → H1(I�, ad

0 ρ
spin
x )
)

By definition, we see that H1
unr(GalQ�

, ad0 ρspin
x ) ⊂ L�. Thus, it is enough to show that

H1
unr(GalQ�

, ad0 ρspin
x ) = H1(GalQ�

, ad0 ρspin
x ).

First of all, observe that

H1
unr(GalQ�

, ad0 ρspin
x ) = H1(GalQ�

/I�, (ad
0 ρ

spin
x )I� )
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by definition. Note that GalQ�
/I� 
 Ẑ. Hence, one deduces from the discussion in [29,

Chapter XIII, §1] that

dimkx H1
unr(GalQ�

, ad0 ρspin
x ) = dimkx H1(GalQ�

/I�, (ad
0 ρ

spin
x )I� )

= dimkx H0(GalQ�
/I�, (ad

0 ρ
spin
x )I� )

= dimkx H0(GalQ�
, ad0 ρspin

x ).

By applying the local Euler characteristic, the desired equation will follow once we show

H2(GalQ�
, ad0 ρspin

x ) = 0.

By Tate duality, it is equivalent to show

H0(GalQ�
, ad0 ρspin

x (1)) = 0.

Let L be the real extension of Q as in Hypothesis 2, we claim that for any place v in L
sitting above �, we have

H0(GalLv , ad
0 ρ

spin
x (1)) = 0,

where GalLv = Gal(Q�/Lv) is the absolute Galois group of Lv . However, under the assump-
tion of Hypothesis 2, the desired vanishing follows from [4, Lemma 1.3.2] and the discussion
around (7).

Finally, observe that the restriction map

Res : H0(GalQ�
, ad0 ρspin

x (1)) → H0(GalLv , ad
0 ρ

spin
x (1))

is an injection since kx is of characteristic zero so that

Corres ◦ Res = multiplication by [Lv : Q�]
is an injection. The assertion then follows. ��

Global Galois deformations. Consider the following two global deformation functors:

(i) The deformation problem

D
spin
x,Fx•

: AR → SETS,

sending each A ∈ AR to isomorphism classes of representations ρ
spin
A : GalQ,Sbad →

GSpin2g+1(A) and triangulation Fil• Drig(spin ◦ρspin
A |GalQp

) such that

• ρ
spin
A ⊗A kx 
 ρ

spin
x

• det spin ◦ρspin
A = det ρx

• (spin ◦ρspin
A |GalQp

,Fil• Drig(spin ◦ρA|GalQp
)) ∈ D

spin
x,Fx•,p(A)

• ρ
spin
A |GalQ�

∈ D
spin
x,� (A) for � ∈ Sbad

(ii) The deformation problem

D
spin
x, f : AR → SETS,

sending each A ∈ AR to isomorphism classes of representations ρ
spin
A : GalQ,Sbad →

GSpin2g+1(A) such that
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• ρ
spin
A ⊗kx kx 
 ρ

spin
x

• det spin ◦ρA = det ρx
• ρ

spin
A |GalQp

∈ D
spin
x, f ,p(A)

• ρ
spin
A |GalQ�

∈ D
spin
x,� (A) for � ∈ Sbad.

Lemma 3.19 Keep the above notations.

(i) The deformation problems D spin
x,Fx•

and D
spin
x, f are pro-representable. Denote by Runiv

x,Fx•
and

Runiv
x, f the complete noetherian local rings that represent these two deformation functors

respectively.
(ii) Suppose F

x• is non-critical, then D
spin
x, f is a subfunctor of D spin

x,Fx•
.

Proof Since ρx is absolutely irreducible, the first assertion follows from standard Galois
deformation theory (see, for example, [23, §4] and [19, Proposition 3.7 & Proposition 3.8]).
The second assertion is an immediate consequence of [2, Proposition 2.5.8]. Notice that our
deformation problems are slightly different from the ones considered in op. cit. and [19].
In fact, one sees easily that our deformation problems are subfunctors of the deformation
problems considered therein. Their results imply ours since spin : GSpin2g+1 → GL2g

is a closed immersion, the conditions we required on the relations of the parameters and
the fixed determinant of the deformations are closed conditions and they are stable under
isomorphisms, i.e., they satisfy the definition of ‘deformation problems’ (see, for example,
[23, Definition 4.1]). ��

The Bloch–Kato Selmer group associated with ad0 ρspin
x is defined to be

H1
f (Q, ad0 ρspin

x ) := ker

⎛
⎝H1(GalQ,Sbad , ad

0 ρ
spin
x )

Res−−→
∏

�∈Sbad ∪{p}

H1(GalQ�
, ad0 ρspin

x )

L�

⎞
⎠ ,

(11)
where L� are as defined in (9) and (10).

Proposition 3.20 The tangent space D
spin
x, f (kx[ε]) of D spin

x, f can naturally be identified with

the Bloch–Kato Selmer group H1
f (Q, ad0 ρspin

x ).

Proof This is follows from standard Galois deformation theory (see, for example, [19, Propo-
sition 3.7]) and the definition of L p and L� (see (9) and (10)). ��

3.5 The adjoint Bloch–Kato Selmer groups

We keep the notations and assumptions in the previous subsection. We further assume the
following

• the refinement F
x• of ρx satisfies (REG) and (NCR);8

• the representation ρx|GalQp
is not isomorphic to its twist by the p-adic cyclotomic char-

acter.

Lemma 3.21 Denote by Tx := ÔE0,x the completed local ring at x. Then, for any ideal of
cofinite length I ⊂ Tx there exists a Galois representation

ρI : GalQ,Sbad → GL2g (Tx /I)

such that

8 In fact, the condition (NCR) is already satisfied by the definition of Xcl♥.
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(i) ρI ⊗Tx kx 
 ρx
(ii) ρI|GalQp

∈ Dρx|GalQp
,Fx•,p(Tx /I)

Proof The first assertion is a consequence of Theorem 3.3. The second assertion is a conse-
quence of Theorem 3.9. ��
Hypothesis 3 Consider the Galois representation ρI in Lemma 3.21 for any ideal of cofinite
length I ⊂ Tx. We assume

(i) The Galois representation ρI factors as

ρI : GalQ,Sbad

ρ
spin
I−−→ GSpin2g+1(Tx /I)

spin−−→ GL2g (Tx /I).

(ii) The Galois representation ρ
spin
I |GalQp

∈ D
spin
x,Fx•,p(Tx /I).

(iii) The tame level structure �(p) implies that the Galois representation ρ
spin
I satisfies

ρ
spin
I |GalQ�

∈ D
spin
x,� (Tx /I)

for any �|N .

Remark 3.22 We remark that the above hypothesis is safe to assume:

(i) The first two conditions are natural. When g = 1, the conditions are trivial. When
g = 2, GSpin5 is isomorphic to GSp4. In this case, the proof of [15, Lemma 4.3.3]
implies the conditions.

(ii) Roughly speaking, the third condition in the hypothesis means that the level structure
on the automorphic side determines the ramification type on the Galois side. This
condition is inspired by the Taylor–Wiles method. When g = 1, the classical example
is the work of R. Taylor and A. Wiles in [32]. In loc. cit., they showed that if one
considers the Hecke algebra on the space of weight-2 modular forms of a certain level,
then the Galois representation with coefficients in the local Hecke algebra satisfies
certain Galois deformation problem. For higher-rank groups, one sees, for example,
such a relation in [15, §4.3] for GSp4 and [7, §3.4] for GLn over CM fields.

Lemma 3.23 Denote by Rwt(x) the complete local ring at wt(x) and so we have a natural
homomorphism Rwt(x) → Qp → kx, where the first map is given by quotienting the maximal
ideal and the second map is the natural inclusion. Then, Runiv

x,Fx•
admits an action of Rwt(x)

and

Runiv
x,Fx• ⊗Rwt(x) kx = Runiv

x, f .

Proof Let us first explain the action of Rwt(x) on Runiv
x,Fx•

. For any A ∈ AR, observe that we
have a natural morphism

D
spin
x,Fx•

(A) → Homcts(TGLg ,1, A×),

ρ
spin
A 
→ ((δ′

A,g+1)
−1|Z×

p
− g, (δ′

A,g)
−1|Z×

p
− (g − 1), . . . , (δ′

A,2)
−1|Z×

p
− 1).

Under this map, the image of ρspin
x is exactly k = (k1, . . . , kg) by (6). Consequently, there is

a natural morphism

Zp[[TGLg ,1]] → Runiv
x,Fx• ,
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which factors through Rwt(x).

Since the refinement F
x• satisfies (REG), together with the relation of parameters and the

condition of fixed determinant, the desired isomorphism follows from the constant weight
lemma ([2, Proposition 2.5.4]), i.e., the crystalline deformations of ρx are of constant Hodge–
Tate weight, of which being the same as ρx. ��

Lemma 3.24 Denote by H1
F
x•
(Q, ad0 ρspin

x ) the tangent space D
spin
x,Fx•

(kx[ε]) of Dspin
x,Fx•

. We have
an exact sequence

0 → H1
f (Q, ad0 ρspin

x ) → H1
F
x•(Q, ad0 ρspin

x ) → kg
x .

Proof Following [2, Proposition 7.6.4], we expect an exact sequence

0 → H1
f (Q, ad0 ρspin

x ) → H1
F
x•(Q, ad0 ρspin

x ) → k2
g

x .

The first map is clear while the second map is defined as follows. For any A ∈ AR, we have

D
spin
x,Fx•

(A) → Homcts(Q×
p , A×)2

g
, ρA 
→ (δA,1, . . . , δA,2g ).

Composing with the derivative at 1, we obtain a morphism

D
spin
x,Fx•

(A) → A2g
.

That is, we obtain

∂ : D spin
x,Fx•

→̂
G

2g

m .

The secondmap is then defined to be ∂(kx[ε]). Lemma3.23 shows that H1
f (Q, ad0 ρspin

x ) =
ker ∂(kx[ε]).

Recall that the local condition of D spin
x,Fx•

at p requires a relation of the parameters and a
fixed determinant. Thus, the image of ∂(kx[ε]) lies in a subspace of dimension g, depending
only on the continuous characters δ′

A,2, …, δ′
A,g+1. ��

Proposition 3.25 Retain the notation in Lemma 3.21 and assume Hypothesis 3 holds.

(i) There exists a canonical ring homomorphism Runiv
x,Fx•

→ Tx.

(ii) If the adjoint Bloch–Kato Selmer group H1
f (Q, ad0 ρspin

x ) vanishes, then the canonical

map in (i) is an isomorphism Runiv
x,Fx•


 Tx (an ‘infinitesimal R = T theorem’).

Proof By Lemma 3.21 and Hypothesis 3, for any ideal I ⊂ Tx of cofinite length, there is a
canonical ring homomorphism

Runiv
x,Fx• → Tx /I .

This ring homomorphism is surjective due to the fact that the characteristic polynomials
of the Frobenii under ρI are given by the Hecke polynomials. Consequently, one obtains a
canonical morphism

Runiv
x,Fx• → Tx = lim←−

I : cofinite length

Tx /I

with dense image. Since Runiv
x,Fx•

is complete, the canonicalmorphism Runiv
x,Fx•

→ Tx is surjective.

123



J. Wu

Finally, if H1
f (Q, ad0 ρspin

x ) vanishes, then the exact sequence in Lemma 3.24 implies that

dimkx H1
F
x•(Q, ad0 ρspin

x ) ≤ g.

Since Runiv
x,Fx•

is a local noetherian ring, its Krull dimension is bounded by the dimension of its

tangent space ([30, Section 00KD]), i.e., dim Runiv
x,Fx•

≤ g. Moreover, we also know from loc.

cit. that the equality holds if and only if Runiv
x,Fx•

is regular. However, since E0 is equidimensional
and finite overW, we know that dimTx = dimW = g. Therefore,

g ≥ dim Runiv
x,Fx• ≥ dimTx = g

and Runiv
x,Fx•

is regular of dimension g. To conclude the proof, suppose a = ker(Runiv
x,Fx•

→ Tx)

is non-zero and so we can identify Tx with Runiv
x,Fx•

/ a. Since Runiv
x,Fx•

is a regular local ring, it is
a domain ([30, Lemma 00NP]). We then obtain a contradiction

g = dim Runiv
x,Fx• > dim Runiv

x,Fx•/ a = dimTx = g.

��

Due to the nice property stated in Proposition 3.25, we will from now on assume the
truthfulness of Hypothesis 3.

Corollary 3.26 Suppose Hypothesis 1, Hypothesis 2, and Hypothesis 3 hold. Assume the
following also hold:

• The cuspidal automorphic representation πx of GL2g (AL) associated with ρx as in
Hypothesis 2 is regular algebraic and polarised (see, for example, [4, §2.1]).

• The image ρx(GalL(ζp∞ )) is enormous (see [25, Definition 2.27]).

Then

(i) H1
f (Q, ad0 ρspin

x ) = 0; and

(ii) Runiv
x,Fx•


 Tx.

Proof By the discussion around (7), we have

H1
f (Q, ad0 ρspin

x ) ⊂ H1
f (Q, ad0 ρx).

However, the latter space vanishes by [25, Theorem 5.3] and so we conclude by Proposition
3.25. ��

We conclude this paper with another situation when one can also deduce the vanishing of
the adjoint Bloch–Kato Selmer group.

Corollary 3.27 Suppose Hypothesis 1 and Hypothesis 3 hold. Suppose the weight map is étale
at x and suppose the canonical morphism Runiv

x,Fx•
→ Tx is an isomorphism. Then,

H1
f (Q, ad0 ρspin

x ) = 0.

123

https://stacks.math.columbia.edu/tag/00KD
https://stacks.math.columbia.edu/tag/00NP


On adjoint Bloch–Kato Selmer groups for...

Proof Observe the following sequence of isomorphisms

�1
Tx /Rwt(x)

⊗Tx kx 
 �1
Runiv
x,Fx•/Rwt(x)

⊗Runiv
x,Fx•

kx


 �1
Runiv
x,Fx•/Rwt(x)

⊗̂Runiv
x,Fx•

Runiv
x, f ⊗Runiv

x, f
kx


 �1
Runiv
x,Fx•/Rwt(x)

⊗̂Runiv
x,Fx•

Runiv
x,Fx• ⊗Rwt(x) kx ⊗Runiv

x, f
kx


 �1
Runiv
x,Fx•/Rwt(x)

⊗Rwt(x) kx ⊗Runiv
x, f

kx


 �1
Runiv
x, f /kx

⊗Runiv
x, f

kx.

Here, the first isomorphism follows from the assumption Runiv
x,Fx•


 Tx and the third and the
final isomorphism follows from Lemma 3.23. Therefore, we have

dimkx H1
f (Q, ad0 ρspin

x ) = dimkx Homkx(�
1
Runiv
x, f /kx

⊗Runiv
x, f

kx, kx)

= dimkx Homkx(�
1
Tx /Rwt(x)

⊗Tx kx, kx)

= dimkx �
1
Tx /Rwt(x)

⊗Tx kx

≤ lengthTx
�1

Tx /Rwt(x)
.

However, since the weight map is étale at x, lengthTx
�1

Tx /Rwt(x)
= 0. We then conclude the

result. ��
Remark 3.28 Supposewe are nowworkingwith the strict Iwahori level Siegelmodular variety
and suppose the p-adic adjoint L-function Ladj in [35] is defined at x. Suppose we are also
in the situation of Corollary 3.27. Then, by [35, Theorem 4.3.5], we then have

ordx Ladj = 0 = dimkx H1
f (Q, ad0 ρspin

x ).

Such a relation then (conjecturally) justifies the name of Ladj. More generally, in light of the
Bloch–Kato conjecture (Conjecture 1), we expect that, if x is a smooth point,

ordx Ladj = dimkx H1
f (Q, ad0 ρspin

x ).

In particular, since H1
f (Q, ad0 ρspin

x ) is expected to vanish, it seems fair to expect that, if x

is a smooth point with small slope and at which Ladj is defined, the weight map is étale at x.
When g = 1, this is [3, Theorem 2.16].

3.6 Appendix: Examples

In ourmain result (Corollary 3.26),many assumptions aremade. The purpose of this appendix
is to provide examples as evidence that we did not make vacuum assumptions. For the
convenience of the readers, we recall the suppositions:

• The point x ∈ E0 corresponds to a p-stabilisation of an eigenclass of tame level.
• Hypothesis 1 holds. In particular, one can attach a GSpin2g+1-valued Galois rep-

resentation ρ
spin
x to x, which is crystalline when restricting to GalQp . And we let

ρx := spin ◦ρspin
x .
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• Hypothesis 2 holds, i.e., the potential spin functoriality holds. Moreover, the cuspidal
automorphic representation πx of GL2g (AL) is regular algebraic and polarised.

• Hypothesis 3 holds, i.e., the Galois representation valued in the Hecke algebra satisfies
the desired deformation conditions.

• The restriction ρx|GalQp
admits a refinement F

x• that satisfies (REG) and (NCR).
• The restriction ρx|GalQp

is not isomorphic to its twist by the p-adic cyclotomic character.
• The image ρx(GalL(ζp∞ )) is enormous.

In what follows, we discuss examples for g = 1, 2. In these cases, Hypothesis 1 is well-
understood by mathematicians (see Remark 3.11) and so we will skip the discussions. Note
also that Hypothesis 2 is trivial when g = 1.

Example 3.29 Our first example concerns g = 1 and suppose x corresponds to a p-
stabilisation of a weight-k normalised newform f =∑n>0 anqn of level �(N ) with p � N
and p > k ≥ 2. We assume that f is not a CM form. The Hecke polynomial of f at p is
given by

Y 2 − apY + pk−1.

We assume that the two roots α, β are distinct.
In this case, by the result in [12], we know that the associated Galois representation

ρx = ρ f : GalQ → GL2(Qp)

of f is irreducible and ofHodge–Tateweight (0, k−1) at p.Moreover, ρ f |GalQp
is crystalline

by [28, Theorem 1.2.4].
Let’s now check the conditions imposed on ρ f . First of all, it is easy to see that ρ f |GalQp

is not isomorphic to its twist by the p-adic cyclotomic character. Moreover, since ρ f |GalQp
is a 2-dimensional crystalline representation, it satisfies (NCR) by [2, Remark2.4.6]. To
check (REG), note that the characteristic polynomial of the crystalline Frobenius ϕ is equal
to the Hecke polynomial at p ( [28, Theorem 1.2.4]). Since α �= β, α and αβ = pk−1 are
eigenvalues of the crystalline Frobenii onDcris(ρ f |GalQp

) andDcris(∧2ρ f |GalQp
) respectively

with multiplicity one. Finally, combining the result in [25, Example 2.3.4] and [26], we know
that ρ f (GalQ(ζp∞ )) is enormous.

It remains to check Hypothesis 3. The first point in Hypothesis 3 is trivial. Additionally,
the second point follows from that the Galois representations of finite-slope overconvergent
eigenforms are triangulline ([21, Theorem 6.3] and [8, Proposition 4.3]). Finally, by the
discussions in [10, §3.2], we know that the deformation valued in the Hecke algebra is
minimally ramified at �|N and hence the last point in Hypothesis 3. ��
Example 3.30 In this example, we let g = 2 and suppose x corresponds to a p-stabilisation of
a discrete series cuspidal automorphic representation πGSp4 of GSp4(AQ) which is spherical
at p and of cohomological weight k = (k1, k2) with k1 ≥ k2 ≥ 0. We assume πGSp4 is
neither CAP nor endoscopic.

In this case, the Galois representation

ρ
spin
x = ρπGSp4

: GalQ → GSpin5(kx) 
 GSp4(kx)

associated to πGSp4 is irreducible, where kx is a large enough finite extension of Qp . The
Hodge–Tate weight of ρπGSp4

|GalQp
is (0, k2+1, k1+2, k1+k2+3). Moreover, ρπGSp4

|GalQp
is crystalline and its characteristic polynomial of the crystalline Frobenius coincides with the
Hecke polynomial at p. We impose the following assumptions on the Galois representation
ρπGSp4

:
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• We assume that the Hecke polynomial at p is decomposed as

PHecke,p = (Y − α)(Y − β)(Y − γ )(Y − δ)

with distinct roots α, β, γ , δ. Note that all the roots are of Weil weight k1 + k2 − 3 ([34,
Theorem 1]).

• LetSbad be the finite set, consisting of primes at whichπGSp4 is not spherical.
9 We assume

that if � ∈ Sbad, then the restriction of the residual representation ρπGSp4
|I� is absolutely

irreducible and p � �12 − 1.

Note that the spin representation spin : GSpin5 → GL4 is nothing but the natural embed-
ding of GSp4 ↪→ GL4. Following the discussion in [11, §2], we know that there is a cuspidal
automorphic representation πGL4 of GL4(AQ), which is regular algebraic and polarised,10

such that the associated Galois representation πGL4 is

ρx = ρπGL4
: GalQ

ρπGSp4−−−−→ GSp4(Qp) ↪→ GL4(Qp).

Let’s now check the conditions on ρπGL4
. First of all, one sees that ρπGL4

|GalQp
is not

isomorphic to its twist by the p-adic cyclotomic character by comparing the Hodge–Tate
weights on both sides. Next, since 0 < k2 + 1 < k1 + 2 < k1 + k2 + 3, we can apply [2,
Proposition 2.4.7] and know that (NCR) is satisfied. Moreover, since α, β, γ , δ are distinct
but with the same Weil weight, we see that (REG) is also satisfied.

We show that ρπGL4
(GalQ(ζp∞ )) is enormous. First, note that if the Zariski closure of

ρπGL4
(GalQ(ζ∞

p )) in GL4 contains Sp4, then it is enormous by [25, Lemma 2.33]. Using the
strategy in [op. cit, Example 2.34], it is enough to show that theZariski closure ofρπGL4

(GalQ)

in GL4 contains Sp4. However, since πGSp4 is neither CAP nor endoscopic, the desired result
follows from the discussion in [18, §9.3.4].

Finally, we check Hypothesis 3. The first point holds by the argument of [15, Lemma
4.3.3]. The second point holds due to the fact that the Galois representations of finite-slope
overconvergent Siegel modular forms of genus 2 are triangulline ( [9, Theorem 13.3]). For
the third point, we first remark that, by [15, Lemma 4.3.6], ρπGSp4

(I�) = ρπGL4
(I�) is finite

of order prime to p. Hence, we can verify Hypothesis 3 (iii) by the following lemma:

Lemma 3.31 Let A ∈ AR and let ρA : GalQ → GSp4(A) be a representation such that
ρA ⊗A kx 
 ρπGSp4

. Then, for � ∈ Sbad, ρA(I�) is finite of order prime to p. In particular,
we have

ρA(I�) 
 ρπGSp4
(I�).

Proof The proof of this lemma is basically [15, Lemma 4.3.3].
Note first that ker(GSp4(A) → GSp4(kx)) is a locally pro-p group. Hence, it suffices to

show that ρA(I�) is finite of order prime to p.
To show this, wemake a further reduction. Let I (�)� be the pro-� Sylow subgroup of I�. That

is, I (�)� is the Galois group of the maximal tamely ramified extensionQtame
� ofQ�. Since I (�)�

is pro-� and GSp4(A) is locally pro-p, the image ρA(I (�)� ) is finite. Let F̃ be the finite Galois
extension of Qtame

� defined by ker ρA|
I (�)�

. Then, there exists a finite Galois extension F of

Qunr
� such that F̃ = F Qtame

� . Moreover, if we let IF,� := Gal(Q�/F) and I (�)F,� := ker ρA|
I (�)�

,

then

9 Note the different definitions of Sbad here and the main body of the paper.
10 The terminology ‘polarised’ is called ‘essentially self-dual’ in op. cit..
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I�/I (�)� 
 IF,�/I (�)F,�

and so it suffice to show know that ρA(IF,�) is finite, providing ρA|
I (�)F,�

being trivial.

Recall that

IF,�/I (�)F,� 
 I�/I (�)� 

∏
q �=�

Zq(1).

Therefore, via the isomorphisms above, we only need to show ρA(Zp(1)) is trivial. We prove
this in the following two steps:

Let ξ ∈ Zp(1) be a topological generator. We first claim that ρA(ξ) is unipotent. Suppose
ρA(ξ) is not unipotent, then it would admit an eigenvalue ε �= 1. By conjugating with the
ρA(Frob�), we see that ρA(ξ) and ρA(ξ

�) have same eigenvalues. By iterating such a process,
we learn that {ε, ε�, ε�2 , ε�3} is a subset of eigenvalues of ρA(ξ) while {ε�, ε�2 , ε�3 , ε�4} is a
subset of eigenvalues of ρA(ξ

�). Comparing these two sets, one deduces the identity

ε = ε�
12
.

In particular, ε is a root of unity. On the other hand, since ξ is a topological generator of the
pro-p group, ε can only be a p-power root of unity. Thus, we have

p|�12 − 1,

which contradicts to the assumption that p � �12 − 1.
Finally, we claim that ρA(ξ) = 1. If ρA(ξ) �= 1, then it would fix a subspace V of

A4, which is stable under the action of I�. On the other hand, since ρπGSp4
|I� is irreducible,

ρπGSp4
|I� is irreducible and so is ρA|I� . The existence of V then contradicts the irreducibility.

��
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