
R E S E A R CH A R T I C L E

Generalized models for quantifying laterality using functional
transcranial Doppler ultrasound

Paul A. Thompson | Kate E. Watkins | Zoe V. J. Woodhead |

Dorothy V. M. Bishop

Department of Experimental Psychology, Anna

Watts Building, Radcliffe Observatory Quarter,

Oxford, UK

Correspondence

Paul A. Thompson, Centre for Educational

Development, Appraisal and Research

(CEDAR), University of Warwick, Coventry,

CV4 7AL, UK.

Email: paul.thompson.2@warwick.ac.uk

Present address

Paul A. Thompson, Centre for Educational

Development, Appraisal and Research

(CEDAR), University of Warwick,

Coventry, UK.

Funding information

H2020 European Research Council,

Grant/Award Number: Advanced Grant

(694189)

Abstract

We consider how analysis of brain lateralization using functional transcranial Doppler

ultrasound (fTCD) data can be brought in line with modern statistical methods typi-

cally used in functional magnetic resonance imaging (fMRI). Conventionally, a lateral-

ity index is computed in fTCD from the difference between the averages of each

hemisphere's signal within a period of interest (POI) over a series of trials. We dem-

onstrate use of generalized linear models (GLMs) and generalized additive models

(GAM) to analyze data from individual participants in three published studies

(N = 154, 73 and 31), and compare this with results from the conventional POI aver-

aging approach, and with laterality assessed using fMRI (N = 31). The GLM approach

was based on classic fMRI analysis that includes a hemodynamic response function

as a predictor; the GAM approach estimated the response function from the data,

including a term for time relative to epoch start (simple GAM), plus a categorical

index corresponding to individual epochs (complex GAM). Individual estimates of the

fTCD laterality index are similar across all methods, but error of measurement is low-

est using complex GAM. Reliable identification of cases of bilateral language appears

to be more accurate with complex GAM. We also show that the GAM-based

approach can be used to efficiently analyze more complex designs that incorporate

interactions between tasks.
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1 | INTRODUCTION

Lateralization of brain activity (functional lateralization) is usually mea-

sured using functional magnetic resonance imaging (fMRI), which pro-

vides high spatial resolution, flexible experimental designs, and well-

established analysis procedures. Functional transcranial Doppler

sonography (fTCD) is less widely used, but has a number of practical

advantages over fMRI, including lower cost, portability, fewer

contraindications, and less sensitivity to head motion. While fMRI is

often considered the “gold standard” in functional laterality research,

the practical advantages of fTCD make it useful for large-scale studies

where the focus is solely on lateralization, regardless of localization of

activation within a hemisphere. It is a particularly useful approach for

studies that may be challenging using fMRI, including those involving

special populations, such as children, or studies involving speech pro-

duction. Both fMRI and fTCD quantify functional lateralization using a
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laterality index (LI), but the analytical approach used to calculate LI dif-

fers greatly between the two. This article explores how generalized

linear models (GLM) and generalized additive models (GAM) may be

applied to fTCD data. These methods make it easier to compare

results from fMRI and fTCD studies directly, give greater precision of

laterality estimates, and increased analytical flexibility over and above

what is possible with the current fTCD methods.

We first present a basic description of fTCD and its similarities

and differences to fMRI. For more comprehensive details see Badcock

and Groen (2017); Deppe et al. (1997); Deppe, Knecht, et al. (2004);

Deppe, Ringelstein, and Knecht (2004); Lupetin et al. (1995).

1.1 | Physiological basis of fTCD versus fMRI

FTCD uses ultrasound probes to detect changes in cerebral blood

flow velocity (CBFV) in response to a stimulus. Typically, the stimulus

signals that the participant should perform a specific task; for exam-

ple, presentation of an alphabetic letter requires the participant to

mentally generate words that start with that letter. Clinically, fTCD is

well-established as a method for assessing the integrity of the cerebral

circulation (Lupetin et al., 1995), but over the past two decades it has

been developed as a method for quantifying functional lateralization

by researchers (Deppe, Knecht, et al., 2004; Deppe, Ringelstein, and

Knecht, 2004; Knecht et al., 1998). The change in CBFV relative to

activity in a prior rest baseline period is used as a proxy measure for

brain activity. Most commonly, CBFV is recorded from the middle

cerebral artery (MCA), which has good coverage of lateral temporal,

frontal, and inferior parietal cortical areas (see Figure 2 in Kim

et al., 2019), but it is also possible to record from other cerebral arter-

ies. By comparison, fMRI detects the changes in blood oxygenation

levels—the blood oxygen level dependent (BOLD) response. The two

methods both use indirect measures of brain activity that rely on neu-

rovascular coupling, but whereas fTCD measures perfusion over a

widespread arterial territory (Payne, 2017), fMRI detects local changes

in the capillaries (i.e., at the spatial scale of individual voxels) (Attwell

et al., 2010).

As arterial blood flow and local blood oxygenation are tightly

coupled, they should show similar time courses in their response to

brain activity (Buxton et al., 1998; Gagnon et al., 2015). The time

course of the BOLD response following a brief experimental stimulus

has been well characterized (e.g., Boynton et al., 1996; Glover, 1999).

It increases to reach a peak at around 5–6 s post-stimulus, then

declines, dropping below baseline levels to reach the trough of the

undershoot at around 16 s, before gradually returning to resting

levels. This shape can be approximated by a combination of two

gamma functions, one modeling the initial peak and one modeling the

undershoot (Friston et al., 1998). The precise shape of the response is

likely to differ for different individuals and brain regions

(Glover, 1999); furthermore, the double gamma function may be

insufficient for modeling sustained neural responses to more complex

tasks (Frackowiak et al., 2004).

The time course of the response in fTCD is not well characterized.

Recordings with fTCD of the posterior cerebral artery's CBFV in

response to prolonged visual stimulation (Aaslid, 1987; Conrad &

Klingelhofer, 1989) showed that (similar to fMRI) the response peaks

within four to five. Both studies reported a slow decline in CBFV dur-

ing the prolonged stimulation. Conrad et al. reported a brief “off-reac-
tion” (an increase in blood flow) at stimulus offset. For a 20 s stimulus,

Aaslid et al. reported that CBFV returned to baseline levels around 6 s

after stimulus offset. Conrad et al. reported an undershoot effect after

stimulus offset, similar to that seen in fMRI. Figure 1 shows illustrative

data that we gathered on a single individual performing a 2-s hand

movement task; this demonstrates a response similar to that seen in

fMRI, with an initial peak at �4 s, and an undershoot which resolved

to baseline levels by around 15 s. When a 10-s stimulus was used, the

response continued to build until a peak at around �5 s, then there

was adaptation in the response during the remainder of the task. After
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F IGURE 1 Normalized
cerebral blood flow velocity
(CBFV) measured with functional
transcranial Doppler ultrasound
(fTCD) from the left hemisphere
(dark grey) and the right
hemisphere (light grey) to a 10 s
(top) and 2 s (bottom) movement
task using the left hand; single
illustrative participant averaged
over 15 trials. The vertical dashed
grey lines indicate the task offset,
that is, when the participant
finished making the hand
movements
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task cessation, the signal dropped to baseline by 20 s, followed by an

undershoot. Overall, the available evidence suggests that responses

observed in fTCD are likely to have a similar shape to those in fMRI,

but that the time to peak and to return to baseline may be slightly

faster.

1.2 | Measurement

The main research use of fTCD in healthy individuals has been to

assess functional lateralization, that is, differences between the right

and left hemispheres. Unlike fMRI, it is not common to focus on acti-

vation strength per se, that is, the degree of change in blood flow dur-

ing task relative to rest. The CBFV recorded in fTCD is measured in

meaningful units (cm/s), but the signal amplitude is dependent on

both the speed of blood flow and the angle of insonation (the position

of the ultrasound probe relative to the artery). Positioning of the

probe is subject to operator error (McMahon et al., 2007), and some

movement of the probe can occur over the course of an experiment.

Hence, there is likely to be a difference in the angle of insonation

between the hemispheres, which is adjusted for by a normalization

step in the data processing (see below). To avoid unwanted effects of

signal drift it is also customary to perform a baseline correction proce-

dure, whereby the data stream is segmented into epochs and mean

activation in a period prior to stimulus presentation is subtracted from

all values in the epoch. This is comparable to the standard approach

used in electroencephalographic studies on event-related potentials.

In contrast, as described below, the modeling approach used in the

present article does not involve baseline correction.

1.3 | Experimental design

FTCD studies typically use experimental designs similar to a block

design in fMRI. The focus is on the increase in blood flow in the left

and right MCAs associated with a stimulus that signals the start of an

experimental task. The length of the block is designed to allow the

cerebral blood flow in response to the stimulus to reach a plateau and

thus maximize the signal to noise ratio. Sufficient rest time is generally

allowed between blocks to let the cerebral blood flow return to presti-

mulation levels. This limits the number of trials that can be given: an

experiment typically consists of around 15–30 trials of a single task,

each with the same temporal structure.

Note that the term “baseline” as used in fTCD has a different

meaning from that used in fMRI. It merely refers to value of CBFV in

the period prior to active stimulation, which is conventionally used to

adjust the signal in different epochs to ensure that left and right sides

are equalized prior to stimulus presentation. In contrast, in fMRI, the

term “baseline” refers to a comparison block in which the participant

may either rest or perform a control task that is designed to engage

similar perceptual and/or motor processes as the task of interest,

allowing brain activation associated with those activities to be

removed by subtracting baseline from target activation. Subtraction of

different conditions is not typically done with fTCD, where the sole

focus is on left–right differences, rather than localization of activity

within a hemisphere. In fTCD it is assumed that activation due to fac-

tors such as general visual stimulation or motor responses will be

removed when the left and right hemisphere signals are subtracted,

provided such activation is not itself lateralized. Nevertheless, the key

processes that lead to lateralized responses can be hard to identify in

fTCD: for instance, if we find a spoken word fluency task gives a later-

alized response, we cannot tell how far the mental generation of

words and/or their articulation is the key lateralized function. It is nec-

essary to run separate experiments with varying task demands to

establish which component processes are lateralized. We show below

that with a generalized modeling approach, we can run analyses on

fTCD data that are analogous to task comparison as used in fMRI.

As in fMRI, the block design used in fTCD is efficient in terms of

signal detection, but has some known issues. First, this design limits

which tasks can be used: it is not suitable for tasks that involve infre-

quent, brief or unpredictable events. Second, performing the same

task for the length of a block can allow attention to wander, which is

particularly a problem for low-level perceptual tasks that are not suffi-

ciently engaging. In fMRI, these problems are typically avoided by

using an event-related design, where tasks are presented in individual

trials (rather than blocks of trials), with rapid interleaving between dif-

ferent tasks of interest. What this type of design lacks in signal to

noise ratio, it makes up for in the number of trials that can be pre-

sented in a fixed amount of time (http://imaging.mrc-cbu.cam.ac.uk/

imaging/DesignEfficiency). Note, however, it introduces a task-

switching component to the experiment, which may itself generate

distinctive neural activation. Event-related designs are theoretically

possible with fTCD, but have not been attempted to date.

1.4 | Data analysis

The time series data recorded in each trial of fTCD are similar to that

of fMRI, but with only one time series per hemisphere (vs. the many
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F IGURE 2 Portion of data analyzed for Dataset 1 (see below).
Raw signal (black lines) showing peaks in cerebral blood flow velocity
(CBFV) with each heartbeat, and signal after heart cycle integration
(blue lines). Red dots show one point per heart cycle, as used in our
analysis
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voxels per hemisphere in fMRI) and with a higher temporal resolution.

FTCD data is acquired at �100 Hz, although subsequently down-

sampled (see below), whereas fMRI is acquired at approximately one

image every 1–3 s. Data from the two methods are typically analyzed

for each participant (within-subjects) before proceeding to any group

comparisons, but the conventional approach is different for fTCD

and fMRI.

In conventional fTCD analysis, the data from the two channels

are reduced to a single number representing the difference between

normalized blood flow velocity for left and right hemispheres. The

time series is epoched into individual trials that are time-locked to

stimulus onset; then, after baseline correction, all trials are averaged

to reduce the impact of task-irrelevant noise. A period of interest

(POI) is defined, which varies according to task, but typically starts

around 3–4 s after the participant is cued to start performing the task

and lasts around 15–20 s. The original approach to obtaining a lateral-

ity index from fTCD involved identifying the peak value during the

POI in the average difference wave formed by subtracting signals

from left and right channels (Knecht et al., 1998). Our group found

that this generates an artificially bimodal distribution of LIs, and in

recent work, we have moved to computing a LI by simply taking the

difference between left CBFV and right CBFV, averaged over trials

and then temporally averaged over the POI (Woodhead et al., 2018).

We refer to this henceforth as the POI averaging method.

In contrast, the usual approach to fMRI analysis uses a general lin-

ear modeling (GLM) approach (Koh et al., 2017; Worsley et al., 2002).

The time series of blood-oxygen-level dependent (BOLD) signal

change in each voxel is analyzed separately in a mass univariate analy-

sis. The BOLD signal for the voxel is entered into the GLM as the

dependent variable. The predictor is the time course of the onset of

trials within the experiment, convolved with the expected shape of

the hemodynamic response. This approach predicts how well the time

course of the task predicts the time course of signal change in the

voxel. The output of the GLM is an estimated beta value for each

explanatory variable at that voxel. When a resting baseline is used,

the significance of the beta for the task of interest can be converted

to a t-statistic to test whether it is significantly greater than zero.

Alternatively, when a comparison task (“active baseline”) is used, a

contrast can be performed to compare the beta for the task of interest

to the beta for the comparison task, again, computing a t-statistic to

indicate the strength (and statistical significance) of the difference.

If the voxel has a t-statistic that exceeds a threshold level, this is

taken as a sign of significant voxel activation; a thresholded t-statistic

map can be used to highlight specific brain regions that are activated

for the task in question. A number of different methods exist for cal-

culating LI from a t-statistic map, but the simplest method is to collect

together the subset of t-statistics that exceed the threshold for each

hemisphere and sum them to give a relative proportion of activity in

each hemisphere (sometimes called “volume of active tissue”). More

sophisticated methods have been developed that are not dependent

on one critical t-statistic threshold, but instead calculate LI iteratively

over a range of t-thresholds and pool across the results; one com-

monly used method (which we used in the present article) is the

bootstrapping method devised by Wilke et al., which is employed in

the LI Toolbox (Wilke & Lidzba, 2007; Wilke & Schmithorst, 2006).

1.5 | Aims

The initial aim of the present article was to evaluate the feasibility of

the GLM analysis framework used in fMRI for use with fTCD data

from individual participants. Limitations of the GLM approach led us

to extend our analysis to include GAMs, which can handle the com-

plex nonlinear time-series seen with fTCD data. A secondary aim was

to demonstrate that these approaches permit a greater range of

experimental designs and potential hypotheses to be tested than is

currently available. We demonstrate the application of these methods

to three existing fCTD datasets using different experimental designs.

In the Methods section, we first describe the three datasets that

are used, and the analytic methods for each one. All scripts, data and

outputs can be found in the OSF repository (https://osf.io/gw4en/).

In the Results section, we compare findings from different model-

fitting approaches with those from the traditional POI averaging

method for computing the LI.

2 | METHODS

2.1 | Dataset 1

Dataset 1 is from a PhD thesis (Bruckert, 2016), parts of which were

published in Bruckert et al. (2021). For the present article, we ana-

lyzed data from a word generation task (also known as verbal or pho-

nological fluency), which is widely held as the gold standard measure

for assessing language lateralization. A subset of participants were

assessed using fMRI: fMRI methods are described in Bruckert (2016)

but results from this method have not yet been published elsewhere.

2.2 | Participants

Data on word generation were available from 154 adult participants

(on self-report: 88 right-handed females, 45 right-handed males,

11 left-handed females, 10 left-handed males). Mean age was

22 years, range 18–40 years. A subset of 31 participants returned for

a fMRI session in which they performed the same word generation

task. Those doing fMRI were selected to over-represent individuals

with atypical language laterality, and included 18 left-handers.

2.3 | FTCD procedure

Full details of the fTCD procedure can be found in Bruckert et al.

(2021). In brief, on each of 23 trials, the participant was shown a letter

of the alphabet and asked to silently generate words beginning with

that letter for a 5 s period. A second cue at 20 s prompted them to

4 THOMPSON ET AL.
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verbally report the words. The POI was specified as 3–20 s after the

signal to generate words (allowing for a delay in the blood flow's

response to the task).

2.4 | FMRI procedure

Data were collected using a 3 T Siemens Trio scanner with a

32-channel headcoil at the Oxford Centre for Clinical Magnetic Reso-

nance Research, University of Oxford. A high resolution T1-weighted

MPRAGE was acquired for image registration (TR = 2040 ms,

TE = 4.7 ms, flip angle = 8�, 192 transverse slices, 1 mm isotropic

voxels). Echo-planar images were acquired to measure change in

blood oxygen levels during behavioral tasks (TR = 3 s, TE = 30 ms, flip

angle = 90�, 48 axial slices, slice thickness = 3 mm, in-plane

resolution = 3 � 3 mm).

Task stimuli were presented using Presentation Software

(Neurobehavioral Systems) with stimulus onset synchronized with the

scanner. The stimuli were projected via a mirror mounted on the head

coil. The task was performed similarly to in fTCD, but due to fMRI's

greater susceptibility to motion artifacts there was no overt word

reporting phase. A block design was used, where the task was per-

formed for 15 s followed by 15 s of rest (with a fixation cross). There

were 12 blocks, each with a different letter presented on the screen

throughout the duration of the block. Participants were required to

covertly think of as many words as they could starting with that letter.

2.5 | FMRI analysis

Analysis of fMRI data was conducted using FEAT (the fMRI Expert

Analysis Tool) in FSL (FMRIB Software Library, http://www.fmrib.ox.

ac.uk/fsl). The pre-processing stages included head motion correction

through realignment to the middle volume of the EPI dataset; skull

stripping using FSL's Brain Extraction Tool (Smith, 2002); spatial

smoothing using a 6 mm full-width-half-maximum Gaussian kernel;

high-pass temporal filtering at 90 s; and unwarping using fieldmaps in

FSL's Phase Region Expanding Labeller for Unwrapping Discrete Esti-

mates tool (PRELUDE) and FMRIB's Utility for Geometrically Unwarp-

ing EPI (FUGUE; Jenkinson, 2003).

The pre-processed data were entered into first-level (subject-spe-

cific) GLMs. The explanatory variables (EVs) in the GLM were: the tim-

ings of the word generation blocks convolved with a double-gamma

function; the temporal derivatives of the time course EV; and six

motion correction parameters as covariates of no interest. The contrast

of interest was word generation versus the implicit (resting) baseline.

The z-statistic maps from the contrasts were used to calculate LI

values using the bootstrapping method in the LI Toolbox (Wilke &

Lidzba, 2007; Wilke & Schmithorst, 2006). The LI values were calcu-

lated for a combined mask of the frontal, temporal, and parietal lobes

as an approximation of the MCA territory. The mask excluded 5 mm

either side of the midline and was created using templates provided in

the LI Toolbox. Although it is more conventional to use t-statistics,

when the degrees of freedom exceed 30, z-statistics are numerically

very similar, but benefit from having a more normal distribution.

LIs for fMRI are conventionally calculated using the formula,

LI = (L � R)/(L + R). This traditional LI has one limitation, namely that

it is bounded by �1 and 1, whereas the LI from fTCD is unbounded.

The correlation with LIs from fTCD is therefore likely to be deflated

by restriction of range. To obtain a measure more analogous to the

fTCD LI, we computed a difference score (L � R) based on the number

of suprathreshold voxels within the masked region in the left and right

hemispheres.

2.6 | FTCD data pre-processing

We first applied the generic processing steps used in our original stud-

ies, which are similar to the pipeline proposed by Deppe et al. (1997).

Raw data were downsampled from 100 to 25 Hz: this value is arbi-

trary, based on prior work showing that this level of precision is more

than adequate to capture task-related changes in the signal. The data

were then epoched in relation to marker signals that correspond to

the stimulus presentation. The left and right signals were normalized

to a mean of 100 by dividing by the respective channel mean. Heart

cycle integration was performed by identifying regular peaks in the

waveform and averaging over the peak-to-peak interval. Extreme

values (normalized scores below 60 and above 140) were discarded.

Baseline correction was performed for each epoch separately for data

from the left and right hemispheres by subtracting the mean value

during the baseline period from the signal across the whole epoch,

and the averaged LI was computed as the mean of the difference

wave over the POI (8–20 s from start of the epoch). A SE for the aver-

aged LI was obtained by computing LI for individual trials and taking

the SE of the estimates.

After heart cycle integration, the resulting data have a block-

stepped appearance with high autocorrelation (see Figure 2). This is

not ideal for the GLM approach, so we ameliorated this by further

downsampling so that each heartbeat contributed one value. The

effective sampling rate depends on the individual's heart rate, but is

typically between 1 and 1.5 Hz. Note that for the model-fitting

approach, we did not use baseline corrected data.

2.7 | GLM analysis of fTCD data

The classic GLM analysis for a block design in fMRI fits the following

model to the observed time series (y) to estimate values of β at each

voxel:

y¼ β0þβ1:xþ ε ð1Þ

where y is observed activation, x is the predicted hemodynamic

response function, and ε is error.

THOMPSON ET AL. 5
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Because we have only two series of observations, from left and

right respectively, a simple way to obtain a laterality index with fTCD

is to modify this model as follows:

y¼ β0þβ1:xþβ2:hemisphereþβ3:x
�hemisphereþε ð2Þ

where hemisphere is coded as 1 for the CVFV from the left or � 1 for

right. The coefficient β3 is then a direct estimate of the laterality

index.

We modeled the hemodynamic response (HDR) function, x, using

the fmri package in R (Tabelow & Polzehl, 2011) to estimate a gamma

function with default settings. We estimated two HDR functions; one

starting at the stimulus for word generation, and a second one corre-

sponding to the signal to report the generated words. Studies using

word generation with fTCD have found that it is the word generating

phase, rather than the reporting phase, that gives strong left-

lateralization in most people, and accordingly, the laterality index was

estimated as coefficient for the interaction term (β4) in the following

equation:

y¼ β0þβ1:HDR1þβ2:HDR2þβ3:hemisphereþβ4:

HDR1�hemisphereþβ5:tþβ6:t
2þβ7:

t3þε

ð3Þ

where t is time in seconds from the start of the experiment. Consis-

tent with use of GLM in fMRI analysis (Worsley et al., 2002), to allow

for signal drift across the session, we included terms for linear, qua-

dratic, and cubic effects of time (t).

2.8 | GAM analysis of fTCD data

Rather than estimating the HDR, we could directly estimate it from

the data, by switching to a GAM that allows us to model nonlinear

trends in the data by incorporating splines to model the time compo-

nents (one model per individual). We therefore considered whether

we might obtain more precise estimates of the laterality index by add-

ing additional predictors, moving to a GAM approach. With a GAM,

we still need to specify a time period during which a lateralized

response is predicted, and we used the same POI as specified using

the POI Averaging method (i.e., 3–20 s after the cue to generate

words).

A useful introduction to GAMs can be found in Pedersen et al.

(2019). As with GLM, the response, y, is predicted by a linear combi-

nation of explanatory variables, but GAM combines both parametric

and nonparametric terms. This gives a hybrid or semiparametric model

which incorporates nonlinear trends in the time predictors, while

maintaining parametric terms for predictors, such as hemisphere and

stimuli by hemisphere interactions. The flexible nonlinear fit is

achieved using a smoother function, f xð Þ (Green & Silverman, 1993;

Hastie & Tibshirani, 1986), which consists of a set of smaller functions

which are referred to as basis functions. The smoother function, f(t),

can be written as the sum of K simpler, fixed basis functions (bi,k) with

corresponding coefficients (βi,k), as follows:

f1,i tið Þ¼ S
XK

k¼1

βi,kbi,k tið Þ

K refers to the number of knots in a spline, which determines the

complexity or “wiggliness” of the smoother. With this increased flexi-

bility, there is a risk of overfitting, so a smoothing penalty is intro-

duced to control for this. Each smoother has its own penalty matrices

(S) according to the basis functions included, which are multiplied by

the vector of estimated β coefficients to form the penalty, βTSβ. The

GAM model is fitted using penalized estimation, specifically the penal-

ized maximum likelihood:

lp βð Þ¼ l βð Þ�penalty¼ l βð Þ� λβTSβ

A smoothing parameter (λ) is also introduced to control the influence

of the smoothing penalty. In our GAM model, we used the default thin-

plate splines from the R package mgcv (Wood, 2017) as the smoother

in the model. The benefit of this type of spline is that the position of

the knots is determined from the data. This avoids the need to prespe-

cify the number of knots and their location prior to model fitting. Fur-

ther details of the smoother and penalized likelihood specifications can

be found in Green and Silverman (1993) and Wood (2003, 2017).

To apply this kind of model, we first divided the data into epochs,

and then incorporated smoothers both for total time elapsed from the

start of the session (t), and relative time within the epoch (r). The later-

ality index is estimated from the interaction between hemisphere and

the boxcar function that indicates the time period when the lateral

difference is expected, that is, the original POI. The simpler version of

this model is shown in Equation (4):

y¼ β0þβ1:s tð Þþβ2:s rð Þþβ3:POIþβ4:hemisphereþβ5:POI�hemisphereþ ε

ð4Þ

where t is time from the start of the experiment, r is time relative to

the start of the epoch, POI is the period of interest for this task (coded

1 or 0), and s() denotes a smoother. We refer to this model as

simple GAM.

The model from Equation (4) is sensitive to regularities in the sig-

nal outside the POI, provided they are consistent across epochs. A

more complex version of the model was also run, where epoch, coded

as a factor that interacts with relative time, was included as a predic-

tor, substituting for absolute time (t), so epoch-specific variation was

modeled. This model, which we refer to as the complex GAM, is:

y¼ β0þβ1:s rð Þþβ2:s r, epochð Þþβ3:POIþβ4:hemisphereþβ5:
POI�hemisphereþ ε

ð5Þ

The rationale for model (5) is that cerebral blood flow can be influ-

enced by behaviors that may be inconsistent across epochs; for

6 THOMPSON ET AL.
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instance, activities such as drawing breath, which is not lateralized,

but has a large impact on the signal. By modeling such features of the

data, rather than subsuming them in the noise term, we may obtain a

more precise estimate of the LI. However, we need to be cautious in

extending the model this way, as there is a risk of overfitting. As dis-

cussed above, the GAM method is designed to counteract over-fitting,

and in practice the results of the model-fitting can also be used to

evaluate the suitability of the model to capture the phenomena of

interest. In particular, we can see how reliable the LI estimates are

across repeated measurements for the same individual: if we are just

overfitting random noise, then reliability should be poor.

In both GAM models, the laterality index is derived from the mag-

nitude of the interaction between hemisphere and POI, which gives

an estimate of the difference in response between the two sides.

2.9 | Dataset 2

Woodhead et al. (2021) reported fTCD data on a set of language acti-

vation tasks for participants given the same test battery on two occa-

sions. Here, we analyzed data from a sentence generation task, based

on Mazoyer et al. (2014), which was the most lateralized task in the

battery.

2.9.1 | Participants

Data were available for 73 adults aged between 18 and 45 years

(30 left- and 43 right-handers) who were tested on two occasions to

establish test–retest reliability of language laterality. The interval

between sessions ranged from 3 days to 6 weeks.

2.9.2 | FTCD procedure

FTCD data were acquired using the same apparatus as Bruckert

(2016). The task followed a similar procedure to the word generation

task described above. On each of 15 trials, participants saw “CLEAR
MIND” for 3 s; followed by a black and white line drawing for 3 s;

then a fixation cross for 11 s; a “REPORT” prompt for 6 s; and finally,

a “REST” prompt for 10 s. Participants were required to covertly

(silently) generate a sentence to describe the picture, then say it

overtly (aloud) when they saw “REPORT.” The data were analyzed

using the same script as for the Bruckert sample, with a baseline

period from 5 s prior to the “CLEAR MIND” cue, to 2 s after it. The

POI was from 6 to 17 s after the “CLEAR MIND” signal (correspond-

ing to the covert sentence generation part of the task). Data and

materials can be found on OSF: https://osf.io/tkpm2/.

2.9.3 | FTCD data pre-processing

The same methods were used as for Dataset 1.

2.9.4 | FTCD GLM and GAM analysis

The same methods were used as for Dataset 1.

2.10 | Dataset 3

Woodhead et al. (2018) used three different language tasks within

one fTCD session. This study was influenced by Mazoyer et al. (2014),

who conducted an fMRI study of language laterality subtypes. They

computed a laterality index where list generation was used as a com-

parison (baseline task) for sentence generation. In effect, the aim was

to obtain a measure of lateralization for generation of sentences that

controlled for the articulatory processes involved in producing single,

overlearned words. Woodhead et al. (2018) used analogous tasks,

making it possible to explore the application of the GAM method to

quantifying the interaction between laterality and task with

fTCD data.

2.10.1 | Participants

Participants were 31 adults (29 right-handers; 20 females; age

mean = 25 years).

2.10.2 | FTCD procedure

Within one test session, participants were given three tasks: word

generation (WG), sentence generation (SG), and list generation (LG),

with task blocks presented in a predetermined pseudorandomized

order within each participant. The session was broken into two runs,

with 10 trials of each task in each run. The three tasks (WG, SG, and

LG) followed a common temporal structure, as described below. The

WG and SG tasks were as described above. In LG, participants saw a

scrambled line drawing image, and were required to covertly (silently)

rehearse the numbers from one to 10, then say them aloud when they

saw the “REPORT” cue. Data and materials can be found on OSF:

https://osf.io/pq6wu/.

2.10.3 | FTCD data pre-processing

The fTCD data were pre-processed as for Datasets 1 and 2. The base-

line period was the 5 s of rest prior to the “CLEAR MIND” cue. The

POI was from 7 to 17 s after the CLEAR MIND cue.

2.10.4 | FTCD GAM analysis

Our focus was on the contrast of the laterality indices for sentence

generation and list generation. First, following Woodhead et al.

(2018), we estimated LIs (and corresponding SEs) for the list

THOMPSON ET AL. 7
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generation and sentence generation tasks using the POI averaging

method. The LIs for the two tasks were compared using a t-test.

Next, we modified the complex GAM approach by a simple exten-

sion of the regression formula to include a term that represents the

three-way interaction between POI, task and hemisphere, and associ-

ated two-way interactions, that is:

y¼ β0þβ1:s rð Þþβ2:s r, epochð Þþβ3:POIþβ4:hemisphereþ
β5:taskþβ6:POI�hemisphereþβ7:POI�taskþβ8:hemisphere�task
þβ9:POI�hemisphere�taskþε

ð6Þ

In our updated analysis (model 6), we specified LG as the first level of

the task factor, against which other tasks were compared, giving an

interaction term between the LI estimate (two-way interaction POI

and hemisphere) and task that reflected the difference between SG

and LG LIs.

2.11 | General criteria for evaluating models

There is no single gold standard for evaluating adequacy of a brain lat-

eralization measure. We present data on the following criteria:

a. Left-lateralization of language activation at the population level. As

our focus is on language tasks, we expect the distribution of LIs to

show a bias to the left. Note that the SE of LI within the sample is

not of particular interest, as this will depend on the proportion of

people who are atypically lateralized.

b. Error of measurement of LI within individuals. The smaller the SE

of the within-individual LI, the more confident we can be that it is

an accurate representation of a person's lateral bias. In many stud-

ies, the LI is converted into a categorical measure, with a division

between left-lateralized, right-lateralized, or bilateral individuals.

This can be done by considering whether the confidence interval

around the LI crosses zero. When the SE is high, it is difficult to

distinguish genuine bilaterality from lateral bias with noisy mea-

surement. The proportion of individuals categorized as having

bilateral language may be taken as an index of precision of mea-

surement, where a high proportion corresponds to an imprecise

measure.

c. Proportion of variance accounted for. For GLM and GAM models,

we can consider R2 as a measure of proportion of variance

accounted for by the model. Note, however, that this inevitably

rises as additional parameters are included in a model; hence, it is

not a suitable measure for comparing models, although it does give

an indication of absolute level of fit.

d. Akaike Information Criterion (AIC). This is a measure of goodness

of fit of a model, adjusted for the number of predictors in the

model, which can be used to compare models. The best-fitting

model is the one with the lowest AIC, that is, the one that explains

the greatest amount of variation using the fewest possible inde-

pendent variables.

e. Bayesian Information Criterion (BIC). This is similar to the AIC, in

that it estimates fit of a model while taking into account the num-

ber of predictors, but it uses Bayesian rather than frequentist prob-

ability. Again, the lower the BIC, the better the fit of the model.

f. Agreement with laterality as assessed using fMRI. For Dataset 1, a

subset of individuals had done the same task with both fTCD and

fMRI, providing an opportunity to compare the LI estimates from

the two methods.

g. Test–retest reliability of LI. In Dataset 2, the same individuals had

repeated fTCD language assessment on two occasions, so we could

estimate test–retest reliability of LI as assessed using different

methods. In addition, we considered agreement between categori-

cal laterality (left, right, and bilateral) across two sessions, using the

confidence interval to assign laterality as described in (b) above.

h. For Dataset 3, we compared the sensitivity of the GAM approach

(model 6) to a simple subtraction of LIs for the two tasks computed

using the POI Averaging method.

3 | RESULTS

3.1 | Dataset 1

For Dataset 1, an arbitrary series of three epochs in the middle of the

series (epochs 10–12) was selected to visualize the fit of the GLM

model-fitting function in individual participants: three participants

were selected as exemplars of individuals who had clear left-lateraliza-

tion, clear right-lateralization, and bilateral language, respectively, on

the POI averaging approach. As can be seen from Figure 3, the fit of

the predicted function is generally unimpressive, and the percentage

of variance accounted for by the model is poor, although the LI esti-

mates from the GLM appear similar to those from the original POI

averaging method. Nevertheless, note that the first case, who was

categorized as having bilateral language by the POI averaging method

(i.e., the confidence interval spanned zero) is significantly left-

lateralized when the GLM approach is used. In Table 1, we show more

detailed comparisons of the performance of the GLM versus the con-

ventional approach.

Table 1 compares the LI obtained from the GLM interaction from

model (3) with that obtained using the original POI Averaging method.

The means are closely similar, but the SE of the LI estimate is some-

what higher with the GLM method than with the original method. As

noted above, the 95% confidence interval around the LI can be used

to identify those with bilateral language (i.e., people whose confidence

interval spans zero), and the higher SE means that the GLM method

would place more people in this category than the original averaging

method.

Illustrative fits of the two GAM models for the same 3 epochs as

Figure 3 are shown in Figures 4 and 5, indicating much improved pre-

diction, as would be expected from this kind of model. The simple

GAM (Equation (4)) captures regularities across the time frame of the

epoch; the more complex GAM (Equation (5)) also incorporates idio-

syncratic variation for each epoch and so achieves much closer fit.

8 THOMPSON ET AL.
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Table 1 shows the quantitative fit statistics for these models. It is

apparent from the AIC and BIC values that model fit is superior for

the more complex GAM model that includes epoch as a predictor,

even after taking into account the larger number of predictors in the

model. The estimates of LI are not very different from the simple POI

averaging method, but the SEs of these estimates decline going from

the GLM to the simple GAM to the complex GAM. It follows that the

latter model also categorizes the smallest number of cases as having

bilateral language, suggesting that the other models may be miscate-

gorizing those with noisy data as bilateral.

3.1.1 | Comparison with fMRI

Because Bruckert (2016) gave the same task to a subset of partici-

pants using fMRI, we were able to compare the model-fitting results

with those from standard GLM analysis of fMRI data on the same

task, using the same hemodynamic response function. Although the

correlation is numerically slightly higher for the GLM than the aver-

aged method, the estimates are not reliably different: both show mod-

erate agreement between methods. Scatterplots for the LIs from the

average method, GLM and complex GAM and the fMRI LI and differ-

ence measure are shown in Figure 6. (The LIs from the simple GAM

are so similar to those from complex GAM that they are not plotted).

3.2 | Dataset 2

Table 2 shows results for Dataset 2 in a format similar to Table 1 for

the different methods. Note there is no fMRI data for this sample.

As with Dataset 1, the estimates of LI are similar for the original

averaging method and those obtained by fitting a generalized model,

with correlations of .95 or more between methods. Note that the

within-subject SE values are higher for the first three methods than

for Dataset 1: this reflects the smaller number of trials used in the SG
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F IGURE 3 Sample data from three epochs for three illustrative
cases. The predicted cerebral blood flow velocity (CBFV) from the
generalized linear model (GLM) is shown as solid blue (right) and pink
(left) lines; observed values are shown as dotted lines. The arrows
show the time where the task started, and the conventional period of
interest (POI) is shown as black horizontal lines below. The purple
trace is the hemodynamic response (HDR) function (arbitrary units).
Averaged laterality index (LI) is the LI from the POI averaging method,
and GLM estimate LI is value from the interaction term in the GLM.
R2 is proportion of variance accounted for by the model. These
estimates of LI and R2 are based on analysis of all 23 epochs

TABLE 1 Mean (95% CI) for indicators of model fit for Dataset 1 (N = 154)

Index POI average GLM GAM GAM2

Mean LI 2.15 [1.95, 2.35] 2.10 [1.92, 2.27] 1.94 [1.78, 2.10] 1.94 [1.78, 2.10]

Within-subject SE LI 0.52 [0.50, 0.54] 0.56 [0.55, 0.58] 0.53 [0.52, 0.55] 0.37 [0.36, 0.38]

R2 - 0.20 [0.19, 0.22] 0.30 [0.29, 0.32] 0.65 [0.64, 0.66]

AIC/1000a - 18.5 [18.1, 19.0] 18.1 [17.7, 18.6] 16.3 [15.9, 16.8]

BIC/1000a - 18.6 [18.2, 19.0] 18.3 [17.9, 18.7] 17.5[17.1, 18.0]

% Right 5.2 1.9 1.9 3.2

% Bilateral 11.7 15.6 14.3 8.4

% Left 83.1 82.5 83.8 88.3

r with POI average - 0.93 [0.91, 0.95] 0.92 [0.89, 0.94] 0.92 [0.89, 0.94]

r with fMRI LI (N = 31) 0.61 [0.33, 0.80] 0.69 [0.45, 0.84] 0.67 [0.41, 0.83] 0.67 [0.41, 0.83]

r with fMRI L-R 0.71 [0.47, 0.85] 0.72 [0.49, 0.85] 0.71 [0.48, 0.85] 0.71 [0.48, 0.85]

Abbreviations: AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; CI, confidence interval; fMRI, functional magnetic resonance

imaging; LI, laterality index; GAM, generalized additive model; GLM, generalized linear model; POI, period of interest.
adivided by 1000 to facilitate formatting.
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task (N = 15) compared with the WG task of Dataset 1 (N = 23). With

the complex GAM method, the within-subject SE is again much smal-

ler, and comparable to that obtained with Dataset 1.

As we have two measures for each participant, test–retest reli-

ability is shown in the lower section of Table 2. Given the good agree-

ment for LI estimates across methods, it is not surprising that the

reliability is also similar across methods, all of which show good con-

sistency of measurement across occasions. Finally, at the bottom of

the table, we see laterality categorized as either consistent across ses-

sions or inconsistent. The method is as described above under General

criteria for evaluating models, that is, if the 95% confidence interval

spanned zero, the case was categorized as bilateral; otherwise the direc-

tion of the LI was used to categorize as left or right-lateralized. The pro-

portions of inconsistent cases are similar across models, but it is

noteworthy that the highest level of consistency is seen for the com-

plex GAM model; we would not expect such consistency across ses-

sions if the good fit was merely a consequence of overfitting.

3.3 | Dataset 3

Figure 7a shows the scatterplot for the LI, based on SG corrected for

LG, both using the POI averaging method (subtracted means) and the

GAM model. Figure 7b shows the corresponding t-values. It is evident

from inspection that the two methods give similar results. The POI

averaging method gives slightly higher values for LI, but the t-values are

higher when the GAM method is used. This again reflects the tighter

confidence interval around estimates when the GAM method is used.

4 | DISCUSSION

In this article, we evaluated new statistical analyses for transcranial

Doppler ultrasound data that more closely align with analysis tech-

niques used in fMRI: first a GLM incorporating a hemodynamic

response function as predictor, and then two GAMs that estimate the

response function from the data.
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F IGURE 4 Sample data from three epochs for same three
illustrative cases as Figure 3. The predicted cerebral blood flow
velocity (CBFV) from the generalized additive model (GAM) excluding
epoch (Equation (4)) is shown as solid blue (right) and pink (left) lines;
observed values are shown as dotted lines. The arrows show the time
where the task started, and the period of interest (POI) is shown as
black horizontal lines below. Averaged laterality index (LI) is the LI
from the conventional averaging over the POI, and GAM estimate LI
is value from the interaction term in the GAM. R2 is proportion of
variance accounted for by the model. These estimates of LI and R2
are based on analysis of all 23 epochs
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F IGURE 5 Sample data from three epochs for same three
illustrative cases as Figure 3. The predicted cerebral blood flow
velocity (CBFV) from the generalized additive model (GAM) including
epoch (Equation (5)) is shown as solid blue (right) and pink (left) lines;
observed values are shown as dotted lines. The arrows show the time
where the task started, and the POI is shown as black horizontal lines
below. Averaged laterality index (LI) is the LI from POI averaging, and
GAM estimate LI is value from the interaction term in the GAM. R2 is
proportion of variance accounted for by the model. These estimates
of LI and R2 are based on analysis of all 23 epochs
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The first point to note is that LIs estimated using the conventional

POI averaging method agree well with those from the more sophisti-

cated model-fitting methods. In terms of test–retest reliability

(Dataset 2) and correlation with fMRI laterality (Dataset 1), the POI

averaging method performed as well as model-based approaches. It

follows that previous studies that used individual POI averaging LIs in

group analyses perform well when compared to more sophisticated

approaches to measurement, which increases confidence in findings

from the fTCD literature to date.

On the other hand, it is clear from analyses of all three datasets

considered here, that at the individual level, the estimate of LI is more

precise when a complex GAM model-fitting approach is used. The
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resonance imaging (fMRI) for
31 participants. The generalized
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is divided by 10,000. The density
plots on the diagonal show the
distribution of the measure in the
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TABLE 2 Mean (95% CI) for indicators of model fit for Dataset 2 (N = 73 participants � 2 sessions)

Index POI average GLM GAM GAM2

Mean LI 2.37 [2.08, 2.66] 2.13 [1.88, 2.38] 1.90 [1.67, 2.14] 1.90 [1.67, 2.14]

Within-subject SE LI 0.66 [0.63, 0.69] 0.76 [0.74, 0.78] 0.67 [0.65, 0.69] 0.38 [0.37, 0.39]

R2 - 0.14 [0.13, 0.15] 0.30 [0.28, 0.31] 0.76 [0.75, 0.77]

AIC - 7784 [7579, 7989] 7540 [7342, 7738] 6285 [6119, 6452]

BIC - 7830 [7624, 8035] 7651 [7453, 7850] 6965 [6793, 7137]

r with POI Average - 0.97 [0.96, 0.98] 0.95 [0.93, 0.97] 0.95 [0.93, 0.97]

Test–retest r 0.82 [0.73, 0.88] 0.81 [0.71, 0.88] 0.81 [0.72, 0.88] 0.81 [0.72, 0.88]

% Inconsistent 6.8 12.3 11.0 8.2

% Consistent right 8.2 4.1 5.5 8.2

% Consistent bilateral 8.2 12.3 9.6 2.7

% Consistent left 76.7 71.2 74. 80.8

Abbreviations: AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; CI, confidence interval; fMRI, functional magnetic resonance

imaging; LI, laterality index; GAM, generalized additive model; GLM, generalized linear model; POI, period of interest.
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smaller confidence intervals around the LI estimate from the complex

GAM imply that when individuals are categorized as having left-,

right-, or bilateral language, fewer cases will be erroneously classified

as bilateral just because their data is noisy. In addition, as shown in

the analysis of Dataset 3, at the individual level, the GAM approach is

more sensitive at detecting significant differences in laterality

between task conditions.

A complex GAM approach that models epoch-related variation

offers considerable potential for obtaining precise individual estimates

of LI, as well as providing a simple way of incorporating task contrasts

in the analysis.

In principle, this method offers further potential, opening up the

possibility of using a range of experimental designs that are commonly

used in the context of fMRI. It would, for instance, be straightforward

to apply the GAM approach to a design using parametric modulation

of a task rather than categorical task differences. In that case, one

would simply substitute a quantitative measure for the “task” term in

model (6). In addition, the GAM approach lends itself to event-related

designs. Direct comparison of results from fMRI and fTCD studies

have the potential to throw light on underlying processes driving cere-

bral lateralization by combining information on spatial localization and

time course of activation. Nonetheless, we may note that extension of

the GAM model to fMRI would pose difficulties because the computa-

tional load of such analysis becomes substantial when more than two

channels of data are involved.

5 | CONCLUSIONS

The potential benefits of employing a GAM model-based analysis for

fTCD data are: more precise estimates of the laterality index, making

it easier to draw a distinction between noisy data and bilaterality; flex-

ible options for study design, for example, event-related designs or

parametric modulators; the possibility of performing contrasts

between tasks, for example, to use active rather than resting base-

lines; biologically plausible modelling of the neurovascular response;

and, finally, more direct comparability to fMRI analysis methods.
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