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Abstract
We formalize and analyze a fundamental component of dif-
ferentiable neural architecture search (NAS): local “opera-
tion scoring” at each operation choice. We view existing
operation scoring functions as inexact proxies for accuracy,
and we find that they perform poorly when analyzed empir-
ically on NAS benchmarks. From this perspective, we intro-
duce a novel perturbation-based zero-cost operation scor-
ing (Zero-Cost-PT) approach, which utilizes zero-cost prox-
ies that were recently studied in multi-trial NAS but de-
grade significantly on larger search spaces, typical for dif-
ferentiable NAS. We conduct a thorough empirical evalu-
ation on a number of NAS benchmarks and large search
spaces, from NAS-Bench-201, NAS-Bench-1Shot1, NAS-
Bench-Macro, to DARTS-like and MobileNet-like spaces,
showing significant improvements in both search time and
accuracy. On the ImageNet classification task on the DARTS
search space, our approach improved accuracy compared to
the best current training-free methods (TE-NAS) while be-
ing over 10× faster (total searching time 25 minutes on a
single GPU), and observed significantly better transferabil-
ity on architectures searched on the CIFAR-10 dataset with
an accuracy increase of 1.8 pp. Our code is available at:
https://github.com/zerocostptnas/zerocost operation score.

1 Introduction
One of the biggest problems in neural architecture search
(NAS) is the computational cost – even training a single deep
network can require enormous computational resources, and
many NAS methods need to train tens, if not hundreds, of net-
works in order to converge to a good architecture (Real et al.
2019; Luo et al. 2018; Dudziak et al. 2020). A related prob-
lem concerns search space size—a larger NAS search space
would typically contain better architectures but requires a
longer searching time (Real et al. 2019). Differentiable archi-
tecture search (DARTS) was first proposed to tackle those
challenges, showcasing promising results when searching
for a network in a set of over 1018 possible variations (Liu,
Simonyan, and Yang 2019). Unfortunately, DARTS has sig-
nificant robustness issues, as demonstrated through many
recent works (Zela et al. 2020; Shu, Wang, and Cai 2020;
Yu et al. 2020). It also requires a careful selection of hyper-
parameters, making it somewhat difficult to adapt to a new

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

task. Recently, (Wang et al. 2021) showed that operation
selection in DARTS based on the magnitude of architec-
tural parameters (α) is fundamentally wrong and will always
simply select skip connections over other more meaningful
operations. They proposed an alternative operation selection
method based on perturbation, where the importance of an
operation is determined by the decrease of the supernet’s vali-
dation accuracy when it is removed. Then the most important
operations are selected by exhaustively comparing them with
other alternatives on each single edge of the supernet until
the final architecture is found.

In a parallel line of work that aims to speed up NAS, prox-
ies are often used instead of training accuracy to quickly
obtain an indication of performance without expensive full
training for each searched model. Conventional proxies typi-
cally consist of a reduced form of training with fewer epochs,
less data or a smaller DNN architecture (Zhou et al. 2020).
Most recently, zero-cost proxies, which are extreme types of
NAS proxies that do not require any training, have gained in-
terest and are shown to empirically outperform conventional
training-based proxies and deliver outstanding results on com-
mon NAS benchmarks (Abdelfattah et al. 2021; Mellor et al.
2021). However, their efficient usage on a large search space,
typical for differentiable NAS, has been shown to be more
challenging and thus remains an open problem (Mellor et al.
2021).

The objective of our paper is to shed some light onto the
implicit proxies that are used for operation scoring in differ-
entiable NAS, and to discover new proxies in this setting that
have the potential of improving both search speed and quality.
We decompose differentiable NAS into its two constituent
parts: (1) supernet training and (2) operation scoring. We
focus on the second component and formalize the concept
of “operation scoring” that happens during local operation
selection at each edge in a supernet. Through this lens, we are
able to empirically compare the efficacy of existing differen-
tiable NAS operation scoring functions. We find that existing
methods act as a proxy for accuracy and perform poorly on
NAS benchmarks. Consequently, we propose new operation
scoring functions based on zero-cost proxies that outperform
existing methods on both search speed and accuracy. Our
main contributions are:

• Formalize operation scoring in differentiable NAS and
perform a first-of-its-kind analysis of the implicit prox-



ies that are present in existing methods.
• Propose, evaluate and compare perturbation-based

zero-cost operation scoring (Zero-Cost-PT) for differ-
entiable NAS building upon recent work on training-
free NAS proxies.

• Perform a thorough empirical evaluation of Zero-Cost-
PT in multiple search spaces and datasets, including
DARTS, DARTS subspaces S1-S4, MobileNet-like
space, and 3 popular NAS benchmarks: NAS-Bench-
201, NAS-Bench-1shot1 and NAS-Bench-Macro.

2 Related work
Classic NAS and Proxies. Zoph & Lee were among the first
to propose an automated method to search neural network ar-
chitectures, using a reinforcement learning agent to maximize
rewards coming from training different models (Zoph and Le
2017). Since then, a number of alternative approaches have
been proposed in order to reduce the significant cost intro-
duced by training each proposed model. In general, reduced
training can be found in many NAS works (Pham et al. 2018;
Zhou et al. 2020), and different proxies have been proposed,
e.g. searching for a model on a smaller dataset and then trans-
ferring the architecture to the larger target dataset (Real et al.
2019; Mehrotra et al. 2021), or incorporating a predictor into
the search process (Wei et al. 2020; Dudziak et al. 2020; Wu
et al. 2021; Wen et al. 2019).
Zero-cost Proxies. Recently, zero-cost proxies (Mellor et al.
2021; Abdelfattah et al. 2021) for NAS emerged from
pruning-at-initialisation literature (Tanaka et al. 2020; Wang,
Zhang, and Grosse 2020; Lee, Ajanthan, and Torr 2019;
Turner et al. 2020). Such proxies can be formulated as archi-
tecture scoring functions S(A) that evaluate the “saliency”
of a given architecture A in achieving accuracy at initializa-
tion without the expensive training process. In this paper, we
adopt the recently proposed zero-cost proxies (Abdelfattah
et al. 2021; Mellor et al. 2021), namely grad norm, snip,
grasp, synflow, fisher and nwot. Those metrics ei-
ther aggregate the saliency of model parameters to compute
the score of an architecture (Abdelfattah et al. 2021), or
use the overlapping of activations between different samples
within a minibatch of data as a performance indicator (Mel-
lor et al. 2021). In a similar vein, (Chen, Gong, and Wang
2021) proposed the use of training-free scoring for operations
based on the neural tangent kernel (Jacot, Gabriel, and Hon-
gler 2021) and number of linear regions; operations with the
lowest score are pruned from the supernet iteratively until a
subnetwork is found.
Differentiable NAS and Operation Perturbation. Liu et al.
first proposed to search for a neural network’s architecture
by parameterizing it with continuous values (called archi-
tectural parameters α) in a differentiable way. Their method
constructs a supernet, i.e., a superposition of all networks in
the search space, and optimizes the architectural parameters
(α) together with supernet weights (w). The final architecture
is extracted from the supernet by preserving operations with
the largest α. Despite the significant reduction in searching
time, the stability and generalizability of DARTS have been
challenged, e.g., it may produce trivial models dominated
by skip connections (Zela et al. 2020). SDARTS (Chen and

Hsieh 2020) proposed to overcome such issues by smoothing
the loss landscape, while SGAS (Li et al. 2020) considered
a greedy algorithm to select and prune operations sequen-
tially. The recent DARTS-PT (Wang et al. 2021) proposed
a perturbation-based operation selection strategy, showing
promising results on DARTS space. In DARTS-PT operations
are no longer selected by optimizing architectural parameters
(α), but via a scoring function evaluating the impact on a
supernet’s validation accuracy when they are removed.

3 Rethinking Operation Scoring
In the context of differentiable NAS, a supernet would con-
tain multiple candidate operations on each edge as shown
in Figure 1. Operation scoring functions assign a score to
rank operations and select the best one. In this section, we
empirically quantify the effectiveness of existing operation
scoring methods in differentiable NAS, with a specific focus
on DARTS (Liu, Simonyan, and Yang 2019) and the recently-
proposed DARTS-PT (Wang et al. 2021). Concretely, we
view these scoring functions as proxies for final subnetwork
accuracies and we evaluate them on that basis to quantify
how well these functions perform. We challenge many as-
sumptions made in previous work and show that we can
outperform existing methods with lightweight alternatives.

3.1 Operation Scoring Preliminaries
For a supernet A we want to be able to start discretizing edges
in order to derive a subnetwork. When discretizing we replace
an edge composed of multiple candidate operations and their
respective (optional) architectural parameters α with only one
operation selected from the candidates. We will denote the
process of discretization of an edge e with operation o, given
a model A, as: A+ (e, o). Analogously, the perturbation of
a supernet A by removing an operation o from an edge e will
be denoted as A− (e, o). Figure 1 illustrates discretization
and perturbation. Furthermore, we will use A, E and O to
refer to the set of all possible network architectures, edges
in the supernet and candidate operations, respectively. More
details about notation can be found in Appendix A.1.

NAS can then be performed by iterative discretization of
edges in the supernet, yielding in the process a sequence
of partially discretized architectures: A0, A1, ..., A|E|, where
A0 is the original supernet, A|E| is the final fully-discretized
subnetwork (result of NAS), and At is At−1 after discretizing
a next edge, i.e., At = At−1 +(et, ot) where t is an iteration
counter. The problem of finding the sequence of (et, ot) that
maximizes the performance of the resulting network A|E| has
an optimal substructure and can be reduced to the problem
of finding the optimal policy π : A× E → O that is used to
decide on an operation to assign to an edge at each iteration,
given current model (state). This policy function is defined
by means of an analogous scoring function f : A × E ×
O → R, that assigns scores to the possible values of the
policy function, and then taking argmax or argmin over f ,
depending on the type of scores produced by f . 1

1Since a scoring function clearly defines a relevant policy func-
tion, we will sometimes talk about a scoring function even though
the context might be directly related to a policy function – in those



Figure 1: Visualization of perturbation and discretization of an edge in a supernet. Middle: a supernet is composed of three
edges {e(i)}i=1,2,3, each consisting of three possible operations {o(i)}i=1,2,3 which are applied in parallel to the same input.
Left: edge e(2) is perturbed by removing o(1) from the set of candidate operations assigned to this edge. Right: the same edge
e(2) is discretized with operation o(1) by removing all other candidate operations leaving o(1) as the only choice left.

n(2)

n(3)

n(1)

A + (e(2),o(1))A - (e
(2),o(1))

discretize e(2)perturb e(2)

e(2)={o(0),o(1),o(2)}

n(2)

n(3)

n(1)

e(2)=o(1)

n(2)

n(3)

n(1)

e(1)={o(0),o(1),o(2)}

e(2)={o(0),o(2)}e(3)={o(0),o(1),o(2)} e(3)={o(0),o(1),o(2)} e(3)={o(0),o(1),o(2)}

e(1)={o(0),o(1),o(2)} e(1)={o(0),o(1),o(2)}

We begin by defining the optimal scoring function that
we will later use to assess the quality of different empirical
approaches. For a given partially-discretized model At, let us
denote the set of all possible fully-discretized networks that
can be obtained from At after a next edge e is discretized
with an operation o as At,e,o. Our optimal scoring function
can then be defined as:

πbest-acc(At, e) = argmax
o∈Oe

max
A|E|∈At,e,o

V ∗(A|E|) (1)

where V ∗ is the validation accuracy of a network after con-
verged (we will use V to denote validation accuracy without
training), and Oe ⊆ O is the subset of candidate operations
that are considered for edge e. It is easy to see that this policy
meets Bellman’s principle of optimality (Bellman 1957) –
the definition follows directly from it and therefore is the
optimal solution to our problem. However, it might be more
practical to consider the expected achievable accuracy when
an operation is selected, instead of the best. Therefore we
define the function πavg-acc:

πavg-acc(At, e) = argmax
o∈Oe

E
A|E|∈At,e,o

V ∗(A|E|) (2)

In practice, we are unable to use either πbest-acc or πavg-acc
since we would need to have the final validation accuracy
V ∗ of all the networks in the search space. Here we consider
the following practical alternatives from DARTS (Liu, Si-
monyan, and Yang 2019) and the recent DARTS-PT (Wang
et al. 2021):

πdarts(At, e) = argmax
o∈Oe

αe,o (3)

πdisc-acc(At, e) = argmax
o∈Oe

V ∗(At + (e, o)) (4)

πdarts-pt(At, e) = argmin
o∈Oe

V (At − (e, o)) (5)

where αe,o is the architectural parameter assigned to oper-
ation o on edge e as presented in DARTS (Liu, Simonyan,
and Yang 2019). πdisc-acc uses accuracy of a supernet after an
operation o is assigned to an edge e – this is referred to as
“discretization accuracy” in DARTS-PT and is assumed to

cases, it should be understood as the policy function that follows
from the relevant scoring function (and vice versa).

be a good operation scoring function (Wang et al. 2021), it
could approximate favg-acc. πdarts-pt is the perturbation-based
approach used by DARTS-PT – it is presented as a practical
and lightweight alternative to πdisc-acc (Wang et al. 2021).
Zero-Cost Operation Scoring. We argue that the scoring
functions 3-5 are merely proxies for the best achievable ac-
curacy (Eq. 1). As such, we see an opportunity to use a new
class of training-free proxies that are very fast to compute and
have been shown to work well within multi-trial NAS, albeit
not in differentiable NAS, nor within large search spaces. We
present the following scoring functions that use a zero-cost
proxy S instead of validation accuracy when discretizing an
edge or perturbing an operation. Note that the supernet is
randomly-initialized and untrained.

πdisc-zc(At, e) = argmax
o∈Oe

S(At + (e, o)) (6)

πzc-pt(At, e) = argmin
o∈Oe

S(At − (e, o)) (7)

In the rest of this paper, we consider the following proxies
that have been proposed in recent zero-cost NAS literature:
grad norm (Abdelfattah et al. 2021), snip (Lee, Ajanthan,
and Torr 2019), grasp (Wang, Zhang, and Grosse 2020),
synflow (Tanaka et al. 2020), fisher (Theis et al. 2018),
zen score (Lin et al. 2021), tenas (Chen, Gong, and
Wang 2021) and nwot (Mellor et al. 2021). Detailed metrics
descriptions are included in Appendix A.2. Note that in most
existing work (Abdelfattah et al. 2021; Mellor et al. 2021),
zero-cost metrics are not used to score operations but to
select architectures based on their end-to-end scores, their
effectiveness on operation selection remains to discover, and
we are going to show that building operation scoring function
and algorithm upon on them is trivial, while TE-NAS (Chen,
Gong, and Wang 2021) also uses them to score operations.
However, as opposed to selecting the optimal operations (via
either discretization or perturbation), the tenas metric is
used to iteratively prune the weakest operations from a super-
net (Chen, Gong, and Wang 2021).

3.2 Empirical Analysis on Operation Scoring
In this subsection, we investigate the performance of different
operation scoring methods. Because we want to compare with
the optimal best-acc and avg-acc, we conduct experiments



on two popular NAS benchmarks: NAS-Bench-201 (Dong
and Yang 2020) and NAS-Bench-1Shot1 (Zela, Siems, and
Hutter 2020). In the following, we discuss our findings using
NAS-Bench-201, while results on NAS-Bench-1Shot1 can
be found in Appendix A.10. We conduct our investigation in
two settings, initial and progressive. The first setting com-
pares operation scoring functions while making their first
decision (iteration 0) during NAS. The second, progressive,
setting takes into account retraining of a partially discretized
supernet At and a subsequent rescoring of operations, that
might occur between iterations of different algorithms that
we consider like darts-pt (Wang et al. 2021).
Initial Operation Scoring. For the supernet A0 we compute
the operation scores for all operations on all edges, at the
first iteration (iteration 0) of NAS, that is, f(A0, e, o) ∀ e ∈
E , o ∈ Oe. In our first experiment, we collect the scores
produced by different scoring methods, per operation, per
edge, then compute the Spearman rank correlation for opera-
tions on each edge, and finally average the rank correlation
coefficient over all edges (details of our experiments and
illustrative examples are provided in Appendix A.3). The
resulting averaged rank correlation is indicative of how well
an operation scoring method would do when making the first
discretization decision, relative to a perfect “oracle” search.
We plot the rank correlation coefficients in Figure 2, showing
many surprising findings. First, the original darts α score
is weakly and inversely correlated with the oracle scores,
further supporting arguments in prior work that this is not
an effective operation scoring method. Second, disc-acc is
inversely correlated to best-acc. This refutes the claim in
the DARTS-PT paper that disc-acc is a reasonable operation
score (Wang et al. 2021) – these findings are aligned with
prior work that has already shown that the supernet accuracy
is unrelated to the final subnetwork accuracy (Li et al. 2020).
Third, the darts-pt score does not track disc-acc, in fact, it
is inversely-correlated to it as well, meaning that the darts-
pt score is not a good approximation of disc-acc. However,
darts-pt is weakly correlated to the “oracle” best-acc and
avg-acc scores which supports (empirically) why it works
well. Fourth, tenas (Chen, Gong, and Wang 2021), which also
utilizes training-free operation scoring, performs fairly well,
with Spearman-ρ =0.44, but still falls short of the perfor-
mance of the two zc-pt variants (ρ =0.77 and 0.63). Finally,
our zc-pt, when using either synflow or nwot metric, is
strongly correlated with both the best-acc and avg-acc met-
rics, indicating that there could be huge promise when using
this scoring function within NAS. Note that disc-zc, in partic-
ular when using nwot metric, is only weakly correlated with
the oracle scores, suggesting that perturbation is a more ro-
bust scoring paradigm than discretization. We provide more
analysis on disc-zc vs. later, and compare NAS results when
using either scoring method in Appendix A.6.

In Table 1, we show the discovered NAS-Bench-201 archi-
tecture when applying the seven scoring functions (Eq. (1) –
(7)) for operation selection on all edges. As expected, best-
acc chooses the best subnetwork, while avg-acc selects a
very good model but not the best one, likely due to the large
variance of accuracies in NAS-Bench-201. zc-pt(nwot) se-
lected one of the top models in NAS-Bench-201 as expected

Table 1: Model selected based on maximizing each operation
strength independently.

best-acc avg-acc disc-acc darts-pt
Avg. Error1[%] 5.63 6.24 13.55 19.43
Rank in NAS-Bench-201 1 166 12,744 13,770

zc-pt(nwot) disc-zc(nwot) darts tenas
Avg. Error1[%] 5.81 22.96 45.7 7.19
Rank in NAS-Bench-201 14 14,274 15,231 1,817

1 Computed as the average of all available seeds for the selected model in NAS-Bench-201
CIFAR-10 dataset.

from the strong correlation with the oracle best-acc func-
tion; while tenas selected a good model, in the top 15% of
the NAS-Bench-201 dataset, commensurate with the aver-
age correlation shown in Figure 2. The remaining operation
scoring functions failed to produce a good model in this ex-
periment, suggesting that these metrics do not make a good
initial choice of operations at iteration 0 of differentiable
NAS. A similar analysis of NAS-Bench-1shot1 search space
can be found in Appendix A.10. We provide a more detailed
look into the failures of certain scoring methods below.
Analysis of the darts-pt and disc-acc scoring. As mentioned
before, our zc-pt operation scoring function outperforms both
darts-pt and disc-acc, despite the latter methods relying di-
rectly on accuracy. This may sound counter-intuitive, but it
becomes clearer if we note that the accuracy used by these
methods (supernet accuracy) is not directly relevant to the
NAS objective (subnet accuracy). Regarding darts-pt, we ar-
gue that the unrolled estimation performed by a supernet,
as described by (Wang et al. 2021), might lead to the ob-
served preference towards selecting skip connections (see
Table A12). This is because under this hypothesis, convo-
lutional operations on an edge perform only refinement of
the input, while most of the information is carried directly
from the input through a skip connection. Therefore, it can
be expected that removal of the skip connection should have
much severe effects on the supernet’s performance. More
information can be found in Appendix A.3.

Regarding disc-acc, we perform an additional case study
of how the supernet’s accuracy changes after discretizing
an edge with different operations, as a function of train-
ing epochs. The experiment details are in Appendix A.3.
From the results we can see that as retraining progresses,
lighter operations (none in particular) converge much faster
than heavy, but potentially more meaningful, operations like
conv 1x1. What is more, even after sufficiently long train-
ing, all choices converge to roughly the same point. We argue
that this is caused by the fact that in the early NAS iterations
the supernet is heavily overparamtrized, which hinders our
ability to faithfully measure each operation’s contribution
based simply on the accuracy of the supernet.
Analysis of the zc-pt and disc-zc scoring. We further per-
form detailed experiments on comparing both pertubation
and discretization policies, especially when using nwot zero-
cost metric. Specifically, we create a toy model that allows us
to observe how disc-zc(nwot) and zc-pt(nwot) be-
have in a simplified setting, as we vary the model’s depth. We



Figure 2: Left: Rank correlation coefficient between different operation scoring metrics at the first iteration of NAS. Right: Rank
correlation coefficient of different operation scoring functions vs. best-acc when invoked iteratively for each edge. In iteration i,
only edge i is discretized then all scores for all operations on the remaining edges is computed and correlated against best-acc.
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observe that while both approaches behave similarly when
a network is shallow, as we increase its depth disc-zc
quickly degrades and becomes biased towards selecting skip
connection, which is not the case for zc-pt. This suggests
that nwot might in fact prefer shallower networks – how-
ever, unlike discretization, perturbation paradigm does not
introduce the ability to reduce the supernet’s depth (as long
as each edge includes at least two meaningful operations
among their candidates), which seems to robustify nwot
significantly. More detailed can be found in Appendix A.4.

While the above signals some major weaknesses of differ-
ent proxies used in differentiable NAS, when used to perform
initial scoring of operations, it’s worthwhile to further ana-
lyze them in the progressive setting which would show what
happens in later NAS iterations.
Progressive Operation Scoring. Until now, we have only
investigated the performance of operation scoring functions
in the first iteration of NAS. This approach is relevant for
methods like DARTS, where operation scoring function f
does not depend on At in any way (only A0), but is not
truly representative of other methods that work iteratively.
Because of that, we extend our analysis to investigate what
happens in later iterations of NAS. To do that, we calculate
the correlation of scoring functions in the progressive setting
by performing the following steps: (1) score operations on
all undiscretized edges, (2) discretize edge i, (3) retrain for
5 epochs (darts-pt and disc-acc only), (4) increment i and
repeat from step 1 until all edges are discretized. At each
iteration i, we calculate the scores for the operations on all
remaining undiscretized edges and compute their Spearman-
ρ rank correlation coefficients with respect to best-acc. This
is plotted in Figure 2, averaged over 4 seeds.

Our results confirm many of our initial (iteration-0) analy-
sis. zc-pt(nwot) continues to be the best operation scoring
function, and darts-pt is the second-best, improving in corre-
lation from 0.4 to 0.6 between the first and last iterations, in-
deed showing that retraining and/or progressive discretization
helps. However, disc-acc continues to be unrepresentative
of operation strength even when used in the iterative setting.
This is not what we expected, especially in the very last it-
eration when disc-acc is supposed to match a subnetwork
exactly. As Figure 2 shows, the variance in the last iteration
is quite large – we believe this happens because we do not
train to convergence every time we discretize an edge, and

instead we only train for 5 epochs. Our progressive analysis
provided further empirical evidence that supernet discretiza-
tion accuracy should not be used as a proxy for subnetwork
accuracy, contradicting (Wang et al. 2021). However, we
have confirmed that darts-pt does in fact improve when re-
training is performed between NAS iterations, but could still
be improved upon with zc-pt – it performed exceptionally
well as a proxy for accuracy and has the potential to make
differentiable NAS both much faster and of higher accuracy.

4 Zero-Cost-PT Neural Architecture Search
Based on our analysis of operation scoring, in this section,
we propose a NAS algorithm called Zero-Cost-PT using zero-
cost perturbation and perform ablation studies to find the
best set of heuristics for our NAS methodology, including:
edge discretization order, number of search and validation
iterations, and the choice of the zero-cost metric.

4.1 Architecture Search with Zero-cost Proxies
Our algorithm contains two stages: architecture proposal and
validation. It begins with an untrained supernet A0 which
contains a set of edges E , the number of proposal iterations
N, and the number of validation iterations V. In each pro-
posal iteration i, we discretize the supernet A0 based on
our proposed zero-cost-based perturbation function fzc-pt that
achieved promising results in the previous section. After all
edges have been discretized, the final architecture is added
to the set of candidates and we begin the process again for
i+ 1 starting with the original A0. After N candidate archi-
tectures have been constructed, the validation stage begins.
We score the candidate architectures again using a selected
zero-cost metric (the same which is used in fzc-pt), but this
time computing their end-to-end score rather than using the
perturbation paradigm. We calculate the zero-cost metric for
each subnetwork using V different minibatches of data. The
final architecture is the one that achieves the best total score
during the validation stage. The full algorithm is outlined
as Algorithm 1 in Appendix A.5 and the flowchart of our
algorithms is in Figure 3 . Our algorithm contains four main
hyperparameters: N, V, ordering of edges to follow when dis-
cretizing, and the zero-cost metric to use (S). In the following
we present detailed ablations to decide on the best possible
configuration of these.
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Figure 3: Flowchart of the proposed Zero-Cost-PT algorithm.

Table 2: Comparison in test error (%) with SOTA
perturbation-based and zero-cost NAS on NAS-Bench-201
(Best in red, 2nd best in blue. Same for all following tables).

Method CIFAR-10 CIFAR-100 ImageNet-16
Zero-Cost-PTrandom with different proxies (Section 4.2)
tenas (Chen, Gong, and Wang 2021) 70.07±39.87 83.04±31.93 90.57±17.21

fisher (Theis et al. 2018) 10.64±1.27 38.48±1.96 82.85±12.63

grad norm (Abdelfattah et al. 2021) 10.55±1.11 38.43±2.10 80.71±12.10

grasp (Wang, Zhang, and Grosse 2020) 9.81±3.42 36.52±6.33 64.27±8.82

snip (Lee, Ajanthan, and Torr 2019) 8.32±2.02 34.00±4.03 65.35±11.04

zen score1(Lin et al. 2021) 6.24±0.00 28.89±0.00 58.56±0.00

synflow1(Tanaka et al. 2020) 6.24±0.00 28.89±0.00 58.56±0.00

nwot (Mellor et al. 2021) 5.97±0.17 27.47±0.28 53.82±0.77

Baselines and SOTA approaches (Section 5.1)
Random 13.39±13.28 39.17±12.58 66.87±9.66

DARTS 45.70±0.00 84.39±0.00 83.68±0.00

DARTS-PT 1 11.89±0.00 45.72±6.26 69.60±4.40

DARTS-PT (fix α) 1, 2 6.20±0.00 34.03±2.24 61.36±1.91

NASWOT(synflow) 3 6.54±0.62 29.53±2.13 58.22±4.18

NASWOT(nwot) 3 7.04±0.80 29.97±1.16 55.57±2.07

TE-NAS 6.10±0.47 28.76±0.56 57.62±0.46

Zero-Cost-Disc(nwot (Mellor et al. 2021)) 6.22±0.84 28.18±2.01 55.14±1.77

1 Only 1 model was selected across all 4 seeds in both cases.
2 Results on CIFAR-10 taken from (Wang et al. 2021). Results on other datasets computed using official code
in (Wang et al. 2021) across 4 seeds.
3 Using N=1000 for both proxies and averaged over 500 runs as in (Mellor et al. 2021).

4.2 Ablation Study
We conduct ablations of the proposed Zero-Cost-PT approach
on NAS-Bench-201 (Dong and Yang 2020). More results on
additional NAS search spaces and benchmarks are reported
later in Section 5 and Appendix A.7. NAS-Bench-201 con-
structed a unified cell-based search space, where each archi-
tecture has been trained on three different datasets, CIFAR-
10, CIFAR-100 and ImageNet-16-1202. In our experiments,
we take a randomly initialised supernet for this search space
and apply our Zero-Cost-PT algorithm to search for architec-
tures without any training. We search with four random seeds

2We use the three random seeds available in NAS-Bench-201: 777, 888, 999.

(0, 1, 2, 3) and report the average and standard deviation
of test errors of the obtained architectures. All searches are
performed on CIFAR-10, and obtained architectures are then
additionally evaluated on the other two datasets.
Different Zero-cost Metrics. Since our focus is to under-
stand how existing zero-cost metrics can be successfully
applied to a large-space NAS, we begin our investigation
by analysis how different metrics behave when used in the
proposed combination with perturbation-based search. It is
also worth noting that our formulation and analysis are gen-
eral and can be extended to new zero-cost proxies that may
emerge in the future. For now we only consider random
edge discretization order (Zero-Cost-PTrandom), and more
details on edge discretization order will be presented later.
Table 2 compares the average test errors of architectures
selected by different proxies on NAS-Bench-201. We see
that nwot, synflow and zen score perform consider-
ably better across the three datasets than the others, where
nwot offers around 0.27% improvement over synflow. On
the other hand, we notice tenas fails in this case, as the
metric was designed for pruning operations rather than se-
lecting them (more details are discussed in Appendix A.6).
Other than that, even the naive grad norm outperforms the
state-of-the-art DARTS-PT on this benchmark. This confirms
it is the appropriate combination of zero-cost metrics and
perturbation-based NAS paradigms as in Zero-Cost-PT that
could become promising proxies to the actual trained accu-
racy. We also observed that the ranking of those metrics are
quite stable on the three datasets (descending order in terms
of error as in Table 2), indicating that architectures discovered
by our Zero-Cost-PT have good transferability. In particular
nwot consistently performs best, reducing test errors on all
datasets by a considerable margin.
Architecture Proposal vs. Validation. We then study the
impact of different architecture proposal iterations N and val-



Figure 4: (left) Accuracy vs. score of architectures discovered on CIFAR-10 by Zero-Cost-PT with different N. (right) Accuracy
distribution of discovered architectures with different N and V.

idation iterations V when Zero-Cost-PT uses nwot metric
and random edge discretization order. Intuitively, larger N
leads to more architecture candidates being found, while V
indicates the amount of data used to rank the search candi-
dates. As shown in Figure 4, we see larger N does lead to
more architectures discovered, but not proportional to the
value of N on NAS-Bench-201 space. For N=100 we discover
27.8 distinct architectures on average, but when increased to
N=1000 the number only roughly doubles. We also see that
even with N=10, Zero-Cost-PTrandom can already discover
top models in the space, demonstrating desirable balance
between search quality and efficiency. On the other hand, as
shown in Figure 4, larger V tends to reduce the performance
variance, especially for smaller N. This is also expected as
more validation iterations could stabilise the ranking of se-
lected architecture candidates, helping Zero-Cost-PT to retain
the most promising ones with a manageable overhead of V
mini-batches.

To further justify our finding on NAS-Bench-201, we per-
formed similar ablations on DARTS-CNN space. We study
the impact of different architecture proposal iterations N and
validation iterations V when Zero-Cost-PT uses random as
the search order and nwot metric. The further experiment
details are in Appendix A.7

We first consider an extreme case, setting architecture
proposal iteration N=1, where Zero-Cost-PT only proposes
one architecture candidate (with random edge discretization
order), and with no validation stage performed. And then,
in order to maximize the performance of our method, we
balance exploration (higher N + random edge order) and
exploitation (higher V) in the searching and validation phases
respectively.

Admittedly, the interplay between those two phases is
crucial for our method. To further showcase how the valida-
tion phase complements the searching phase, we run addi-
tional ablations on the DARTS CNN space with N=10 and
V={1,10,100}, the results are shown in Table 3. The results
are consistent with what is shown in the NAS-Bench-201:
higher V produces better results on average but does not affect
the best case that much (the best model is still upper-bounded
by what was found with N=1).
Edge Discretization Order. Finally, we investigate how dif-
ferent edge discretization orders may impact the performance
of our Zero-Cost-PT approach, when the best performing
nwot metric, N=10 and V=100 are used. We consider the

Table 3: Ablation overview, the performance of Zero-Cost-
PTrandom with N={1, 10}, V={0, 1, 10, 100}, nwot metric
on DARTS CNN space.

N V Test Error(%)

Avg. Best

1 0 2.81±0.29 2.43

10
1 2.93±0.14 2.65

10 2.88±0.14 2.65
100 2.64±0.16 2.43

following edge discretization orders:
• fixed: discretizes the edges in a fixed order, where our

experiments discretize from the input towards the output;
• random: discretizes the edges in a random order;
• global-op-iter: iteratively evaluates S(A− (e, o))

for all operations on all edges in E , selects the edge e
containing the operation o∗ with globally best score. Dis-
cretizes e with o∗, then repeats to decide on the next edge
(re-evaluating scores) until all edges have been discretized;

• global-edge-iter: similar to the above but itera-
tively selects edge e from E based on the average score of
all operations on each edge;

• global-op-once: only evaluates S(A− (e, o)) for all
operations once to obtain a ranking order of the operations
and decide the edge order upfront based on it, then starts
following the algorithm as usual, calculating scores of
operations at each edge iteratively;

• global-edge-once: similar to the above but uses the
average score of operations on edges to obtain the edge
discretization order.
Table. 5 shows the performance of and # of perturbations

required by our Zero-Cost-PT approach when using different
edge discretization order, under nwot metric, with N = 10
and V = 100.

We observe that global-op-iter consistently per-
forms best across all three datasets since it iteratively ex-
plores the search space of remaining operations while greed-
ily selecting the current best. On the other hand, we see that
the performance of global-op-once is inferior since it
determines the order of perturbation by assessing the im-
portance of operations once and for all at the beginning,
which may not be appropriate as discretization continues.



Table 4: Comparison with s SOTA differentiable NAS meth-
ods on the DARTS CNN search space (CIFAR-10).

Method Error [%] Params Cost
Avg. Best [M] [GPU-days]

DARTS (Liu, Simonyan, and Yang 2019) 3.00±0.14 - 3.3 0.4
SDARTS-RS (Chen and Hsieh 2020) 2.67±0.03 - 3.4 0.4
SGAS (Li et al. 2020) 2.66±0.24 - 3.7 0.25

DARTS-PT (Wang et al. 2021) 2.61±0.08 2.48 3.0 0.8
DARTS-PT+none

1 2.73±0.13 2.67 3.2 0.8

TE-NAS (Chen, Gong, and Wang 2021) 2.63±0.064 - 3.8 0.05

max-param-random 2.94±0.098 2.83 5.14 -
NASWOT(2500) 2.99±0.22 2.66 - 0.018
NASWOT(20000) 2.73±0.09 2.58 - 0.083
NASWOT(50000) 2.72±0.09 2.52 - 0.208
Zero-Cost-EVO 2.94±0.14 2.72 - 0.018

Zero-Cost-PTsynflow 3.88±0.56 3.38 5.1 -
Zero-Cost-PTzen score 3.06±0.31 2.68 2.9 -
Zero-Cost-PTrandom 2.64±0.16 2.43 4.7 0.018
Zero-Cost-PTglobal-op-iter 2.62±0.09 2.49 4.6 0.17
1 Results obtained by re-enabling none operation in DARTS-PT (Wang et al. 2021).

Table 5: Test error (%) of Zero-Cost-PT when using different
search orders on NAS-Bench-201.

Search Order1 # of Perturbations2 C10 C100 ImageNet-16
fixed |O||E| 5.98±0.50 27.60±1.63 54.23±0.93

global-op-iter 1
2
|O||E|(|E|+ 1) 5.69±0.19 26.80±0.51 53.64±0.40

global-op-once 2|O||E| − |O| 6.30±0.57 28.96±1.66 55.04±1.47

global-edge-iter 1
2
|O||E|(|E|+ 1) 6.23±0.45 28.42±0.59 54.39±0.47

global-edge-once 2|O||E| − |O| 6.30±0.57 28.96±1.66 55.04±1.47

random |O||E| 5.97±0.17 27.47±0.28 53.82±0.77

1 All methods use nwot metric, N=10 search iterations and V=100 validation iteration.
2 Number of perturbations per search iteration.

We observe similar behaviour in global-edge-iter and
global-edge-once, both of which use the average im-
portance of operations on edges to decide search order, lead-
ing to suboptimal performance. It is also worth pointing out
that fixed performs relatively well comparing to the other
variants, offering comparable performance with random.
This shows that Zero-Cost-PT is generally robust to the edge
discretization order. In the following experiments, we use
Zero-Cost-PT with random order with a moderate setting
in architecture proposal iterations (N=10) to balance explo-
ration and exploitation during the search, while maintaining
efficiency.

5 Results
In this section, we perform extensive empirical comparisons
of Zero-Cost-PT with the state-of-the-art differentiable and
zero-cost NAS algorithms on a number of search spaces.
Due to space limit, in the following, we present results
on NAS-Bench-201 (Dong and Yang 2020), DARTS CNN
space (Liu, Simonyan, and Yang 2019) and the practical
large search space MobileNet-like space. Results on NAS-
Bench-1shot1 (Zela, Siems, and Hutter 2020), NAS-Bench-
Macro (Su et al. 2021) and the four DARTS subspaces S1-
S4 (Zela et al. 2020), together with detailed experimental
settings and more baselines are in Appendix A.9 A.10, A.11,
A.12, .

Table 6: Comparison with SOTA differentiable NAS methods
on the DARTS CNN search space (ImageNet).

Method Error [%] Params Cost
Top-1 Top-5 [M] [GPU-days]

DARTS (Liu, Simonyan, and Yang 2019) 26.7 8.7 4.7 0.4
SDARTS-RS (Chen and Hsieh 2020) 25.6 8.2 - 0.4
DARTS-PT (Wang et al. 2021) 25.5 8.0 4.6 0.8
PC-DARTS (Xu et al. 2020) 25.1 7.8 5.3 0.1
SGAS (Li et al. 2020) 24.1 7.3 5.4 0.25

TE-NAS(C10) (Chen, Gong, and Wang 2021) 26.2 8.3 6.3 0.05
TE-NAS (Chen, Gong, and Wang 2021) 24.5 7.5 5.4 0.17

Zero-Cost-PT1(best) 24.4 7.5 6.3 0.018
Zero-Cost-PT1(4 seeds) 24.6±0.13 7.6±0.09 6.3 0.018
1 We use the same training pipeline from DARTS (Liu, Simonyan, and Yang 2019).

5.1 Tabular NAS Benchmarks
Table 2 shows the average test error (%) of the competing
approaches and our Zero-Cost-PT on the three datasets in
NAS-Bench-201. Here we include the naive random search
and original DARTS as baselines, and compare our approach
with the recent zero-cost NAS algorithm NASWOT (Mellor
et al. 2021), TE-NAS (Chen, Gong, and Wang 2021), as well
as the perturbation-based NAS approaches DARTS-PT and
DARTS-PT (fix α) (Wang et al. 2021). As in all competing ap-
proaches, we perform a search on CIFAR-10 and evaluate the
final model on all three datasets. We see that on all datasets,
our Zero-Cost-PT (with nwot) consistently offers superior
performance, especially on CIFAR-100 and ImageNet-16. On
the other hand, the best existing perturbation-based algorithm,
DARTS-PT (fix α), fails on those two datasets, producing
suboptimal results with small improvements compared to
random search, suggesting that architectures discovered by
DARTS-PT might not transfer well to other datasets. TE-NAS
is second best on CIFAR but as we show in the later section,
performance deteriorates on larger datasets like ImageNet.

We compare the performance of Zero-Cost-DISC and our
proposed Zero-Cost-PT on NAS-Bench-201 (Dong and Yang
2020), as shown in Table 2. We see that discretization (Zero-
Cost-DISC) results in inferior performance compared to the
proposed perturbation-based approach (Zero-Cost-PT) on all
datasets, confirming our previous analysis on their correla-
tions with the oracle metric.

5.2 DARTS CNN Search Space
We use the same settings as in DARTS-PT (Wang et al. 2021),
but instead of pre-training the supernet and fine-tuning it after
each perturbation, we take an untrained supernet and directly
perform our algorithm as in Section 4.1. Additional details,
baselines, ablations and discovered architectures can be found
in Appendix A.7, A.9, and A.13.
Results on CIFAR-10. As shown in Table 4 the proposed
Zero-Cost-PT approaches can achieve a much better average
test error than the DARTS and are comparable to its newer
variants SDARTS-RS (Chen and Hsieh 2020) and SGAS (Li
et al. 2020) at a much lower searching cost (especially when
using random edge ordering). There is a significant search
cost reduction compared to DARTS-PT. While DARTS-PT
needs to perform retraining between iterations, Zero-Cost-
PT only evaluates the score of the perturbed supernet with



zero-cost proxies (Snwot), requiring less than a minibatch
of data. Note that here the cost of Zero-Cost-PT reported
in Table 4 is for N=10 ( random edge discretization order),
and thus a single proposal iteration only takes about a few
minutes to run. The global-op-iter variant offers better
performance with lower variance compared to random but
incurs slightly heavier computation.

Different Zero-cost Searching Approaches. We addition-
ally compare our Zero-Cost-PT to several alternative ways
of performing zero-cost NAS, to further show its efficiency
in utilising zero-cost proxies and assert its efficiency as a
searching methodology.

We start with the simplest baseline of maximizing number
of parameters – this is based on the observation that our
method tends to select slightly larger models than some of
the baselines in Table 4 and Table 6. We include details in
the Appendix A.7 and summarize our finding here. Overall,
the test error (%) of this baseline is 2.93±0.23 (avg.) and 2.78
(min), vs. our 2.64±0.16 (avg.) and 2.43 (min). This confirms
that simply selecting models with maximum FLOPs/Params
is not an appropriate searching methodology in general, and
that our methods performs more meanigngful architecture
selection than simply maximising model size.

In Section 5.1, we compared our method to sampling-based
zero-cost NAS in Table 2 (see NASWOT lines). Our results
are empirically better on all three datasets. Additionally, our
method computes the operation score per edge in a supernet,
whereas the sampling-based approach computes the end-to-
end network score. The relationship between the number
of subnetworks and the number of operations is exponen-
tial. Therefore, we anticipate having to sample exponentially
many networks in sample-based NASWOT (Mellor et al.
2021) compared to our proposed Zero-Cost-PT.

In order to extend the comparison between zero-cost NAS
(NASWOT) and our Zero-Cost-PT to the DARTS CNN
search space, we have conducted further experiments sim-
ilar to NASWOT on NAS-Bench-201, the details of these
experiments can be found in Appendix A.7 and the results are
presented in Table 4. In summary, for a similar time budget
to ours (25 min), the average performance of the baseline is
actually much closer to the random search (3.29±0.15) (Liu,
Simonyan, and Yang 2019) than to our method, with signifi-
cant variance.

In addition to the random sampling baseline presented
above, here we further extend our study by performing an
evolution-based search for a model maximizing the nwot
metric (instead of sampling randomly as above) which is
then trained. We denote this baseline as Zero-Cost-EVO. We
allow a similar search budget (2500 sample size, ≈25min
on a single 2080ti GPU), and follow the same settings as
in our experiments (searching with 4 random seeds, each
of the discovered models is trained with 4 random seeds).
The results are shown in Table 4. We can see that when
given a similar search budget, the evolution-based search
performs significantly worse than our Zero-Cost-PT (avg. of
2.94 vs. 2.64), confirming the efficacy of the proposed NAS
algorithm.
Results on ImageNet. Table 6 shows the ImageNet classi-

Table 7: Comparison on MobileNet search space (ImageNet)

Architecture Error [%] Params Cost
Top-1. Top-5 [M] [GPU-days]

MobileNet-V3(1.0)(Howard et al. 2019) 24.8 - 5.3 288
GreedyNAS (You et al. 2020) 25.1 - 3.8 7.6
SPOS (Guo et al. 2019) 25.3 - - 12.4
ProxylessNAS (GPU) (Cai, Zhu, and Han 2019) 24.9 7.5 7.1 8.3

Zero-Cost-PT(best) 23.6 6.8 8.0 0.041
Zero-Cost-PT(avg) 23.8±0.08 6.93±0.09 8.1 0.041

fication accuracy for architectures searched on CIFAR-10.
Our Zero-Cost-PTrandom algorithm is able to find architec-
tures with a comparable accuracy much faster than previous
work, further reinforcing its efficacy in this setting. While
TE-NAS results on CIFAR-10 were very close to Zero-Cost-
PT, a much larger difference is observed on ImageNet with
an accuracy drop of 1.8 pp and a search time that is ∼2.5×
slower than Zero-Cost-PT.

5.3 MobileNet-like Search Space
It is well known that most of the existing NAS algorithms
designed for MobileNet-like perform constrained NAS. How-
ever, our method has not been designed for such a context.
To the best of our knowledge, the necessity to consider both
scores of operations and their potential contribution to the
sum of #FLOPS/Params of the final model would result in a
potentially NP-hard problem. Therefore, we do not enforce
such constraints at this point, as it is less relevant to the
proposed approach.
Results on ImageNet. Table 7 shows the performance (error
%) of the architectures discovered by the proposed Zero-Cost-
PT algorithm on ImageNet, using a MobileNet-like search
space from ProxylessNAS (Cai, Zhu, and Han 2019), we,
therefore, compare only to results using the same setting.
We see that compared to the existing train-based approaches,
our approach allows for finding even better models, but also
larger ones, much faster (at least 190× speed up). Please
note, that because our method performs unconstrained NAS,
unlike existing baselines, the results should not be interpreted
as being objectively better. Instead, we simply use them as
reference points to put our results in perspective – the goal
was to show that our method works well in this type of search
space and the results support this claim; as expected, more
accurate models, but with a larger footprint, can be found
faster compared to the constrained baselines.

6 Conclusion
In this paper, we formalized the implicit operation scoring
proxies that are present within differentiable NAS algorithms
to both analyze existing methods and propose new ones. We
showed that lightweight operation scoring methods based on
zero-cost proxies empirically outperform existing operation
scoring functions. We also found that perturbation is more
effective than discretization when scoring an operation, lead-
ing to our lightweight NAS algorithm, Zero-Cost-PT. Our
approach outperforms the best available differentiable archi-
tecture search in terms of searching time and accuracy even
in very large search spaces.
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