

warwick.ac.uk/lib-publications

Manuscript version: Published Version
The version presented in WRAP is the published version (Version of Record).

Persistent WRAP URL:
http://wrap.warwick.ac.uk/172076

How to cite:
The repository item page linked to above, will contain details on accessing citation guidance
from the publisher.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International and may be reused according to the conditions of the
license. For more details see: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
mailto:wrap@warwick.ac.uk

Streaming Weighted Sampling over JoinQueries
Michael Shekelyan∗

michael@compsci.science
Queen Mary University of London

Graham Cormode
g.cormode@warwick.ac.uk
University of Warwick

Qingzhi Ma
quincyma@tencent.com
University of Warwick

Ali Mohammadi
Shanghooshabad

shanghooshabad@gmail.com
University of Warwick

Peter Triantafillou
p.triantafillou@warwick.ac.uk

University of Warwick

ABSTRACT
Join queries are a fundamental database tool, capturing a range of
tasks that involve linking heterogeneous data sources. However,
with massive table sizes, it is often impractical to keep these in
memory, and we can only take one or few streaming passes over
them. Moreover, building out the full join result (e.g., linking
heterogeneous data sources along quasi-identifiers) can lead to a
combinatorial explosion of results due to many-to-many links.
Random sampling is a natural tool to boil this oversized result
down to a representative subset with well-understood statistical
properties, but turns out to be a challenging task due to the com-
binatorial nature of the sampling domain. Existing techniques in
the literature focus solely on the setting with tabular data resid-
ing in main memory, and do not address aspects such as stream
operation, weighted sampling and more general join operators
that are urgently needed in a modern data processing context.
The main contribution of this work is to meet these needs with
more lightweight practical approaches. First, a bijection between
the sampling problem and a graph problem is introduced to sup-
port weighted sampling and common join operators. Second,
the sampling techniques are refined to minimise the number of
streaming passes. Third, techniques are presented to deal with
very large tables under limited memory. Finally, the proposed
techniques are compared to existing approaches that rely on
database indices and the results indicate substantial memory
savings, reduced runtimes for ad-hoc queries and competitive
amortised runtimes. All pertinent code and data can be found at:
https://github.com/shekelyan/weightedjoinsampling

1 INTRODUCTION
Joins are best known for their central role in relational databases

(to splice tables back together after decomposing them to reduce
data redundancy), but joins in the more general sense link sets
of entities [14] and are ubiquitous across many fundamental
analytics tasks such as entity matching [5, 72], record linkage
[13, 15, 34] and similarity joins [76, 77]. As modern applications
link together more and more data sources comprised of more
and more entities, computing the join becomes very costly. The
cost becomes prohibitive in the presence of many-to-many links
that inflate the join cardinality to astronomical sizes (cf. Table 2).

∗Research was conducted while the author was at King’s College London (revision
of the manuscript) and University of Warwick (development/analysis/evaluation of
proposed approaches, writing/editing the manuscript and writing/running all the
implemented code).

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-093-6 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Many-to-many links occur routinely in record linkage with non-
unique quasi-identifiers.Handling such massive joins is therefore
a challenging problem for modern data management systems. As
data sizes only increase, prior work makes a compelling case for
working with approximate representations of data, chief among
which is sampling. That is, we seek some representative sample
of the result of a join query which can be used as a surrogate for
the full result in downstream processing and analytics. For exam-
ple, approximate query processing engines, like QuickR [33] and
VerdictDB [53] depend on such samplers to handle joins. Simi-
larly, ML-based Approximate Query Processing (AQP) engines
like DBEst [45] and DBEst++ [44] as well as Learned Selectivity
Estimation methods, such as NeuroCard [73] explicitly depend
on such sampling algorithms to handle joins. The questions we
study in this paper are whether sampling can avoid the high costs
of computing join queries, and how sampling can be achieved
with data-dependant sampling probabilities (weights). Although
efficiently collecting random samples for a single base table is
trivial, collecting a weighted random sample over a join of tables
remains a formidable challenge.

Random sampling is a common answer in knowledge discovery
and mining tasks [16, 32, 43, 66, 70] to reduce these astronomi-
cal sizes to something manageable without having to sacrifice
inference capabilities over the data population. However, it is
not possible to obtain a random sample over joins by leveraging
standard sampling methods. Applying sampling to the result of
the full join is impractical, due to the high cost of performing the
join, while trying to apply the join to samples of the data sources
does not yield a meaningful distribution over join tuples [10]. In
many cases, it is desirable to draw a sample according to weights
defined by the data. Sampling with probabilities proportional to
weights is inherent in a number of applications that cannot be
solved with uniform sampling, such as

• Stratified Sampling / Join over Selections. Join rows vio-
lating column-wise selection predicates can be assigned a
weight of zero via column-based weights. Hence, weighted
sampling can be used to collect stratified samples, e.g., as
needed by AQP systems [9, 33, 53].

• Probability proportional to size (PPS) sampling. A common
sampling design that samples records that relate to larger
groups proportionately more often [52, 56, 62].

• Data exploration. Weighted sampling enable smoother
types of selection (as a function of data values) without
a hard cut-off,which allows to prioritise more relevant
entries, e.g., featuring larger sales volumes, more recent
sales or sales closer to a location. Similarly, one can sam-
ple outliers by weighting expected entries lower. Thus,
weighted sampling is utilised for scientific discovery in
observational data [61].

Series ISSN: 2367-2005 298 10.48786/edbt.2023.24

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.24

• Aggregations.Weighted sampling can bemore accurate for
aggregations on attribute values. For instance, a random
sample biased towards larger values may be more accurate
for aggregate functions such as SUM. Unequal sampling
probabilities are widely used for statistical estimators [7,
59].

• Privacy-Protection. In privacy-preservation frameworks
for query-answering such as differential privacy [19] with
numerous database applications [18, 38, 47, 50], differen-
tially private selection over joins requires weighted sam-
pling over joins (cf. Appendix C for details).

Weighted sampling is a common requirement across many
applications. For instance, optimal sub-sampling [65, 67–69, 75]
for regression tasks, weighted bootstrap [36, 46], proportional-to-
size sampling designs [52, 56, 62], statistical estimators [7, 59] and
data analytics [61, 65, 67–69, 75] require support for weighted
random sampling where probabilities are proportional to weights.
Supporting weighted sampling also immediately enables support
for stratified sampling and filtering entities based on selection
predicates.

Streaming access to data is a desirable way to handle the large
volumes of data that can arise in data processing. Ideally, we
would process each stream of data once only with a single linear
pass. This applies particularly to data consisting of very large
data items, e.g., multimedia content, high-dimensional vectors,
tabular data or documents. As we show below, guaranteeing one
pass for every stream is not possible, and so we seek methods
which take as few passes over the data as possible, so the data
must be stored. Note that streaming passes over data can be
much more efficient than allowing random access via indices.
In our empirical study we compare against methods that do not
operate in the streaming setting, and show that they incur higher
computational costs.

As a specific motivating example, consider a common sce-
nario in commerce where we process a very large number of
transactions within orders that are linked to items with various
properties (price, weight, tax band etc.) and their corresponding
suppliers, and separately to customers with location and demo-
graphic information. Several analytic queries can be expressed as
joins over these inputs, and a weighted sample is needed. For in-
stance, we might want to understand the patterns of demand for
goods between different pairs of countries, where the sampling
probability is weighted by the value of the order. In this setting,
it is reasonable to assume that we can make multiple accesses to
the tables with details of customers and suppliers, but due to its
size we should only make streaming access to the transactions
as they arrive.

Existing join sampling methods do not address these require-
ments. Most approaches from the relevant literature employ some
sampling heuristic that does not follow any statistically useful
sampling design [2, 11, 27, 28, 30, 33, 41, 42] and those that follow
a sampling design [10, 78] only support equal probability sam-
pling, presume the data to reside pre-indexed in main memory
and only support basic join operators. As the basic ideas rely on
long-known structural properties of acyclic joins [74], one can
either try to extend these equal-probability approaches, or revisit
the question from first principles. Our main contributions are:

• Weighted sampling over linked data via a multipartite
graph formulation of joins (Section 3) that provides sup-
port for a variety of join operators.

• A one-pass/two-pass sampler via an online multinomial
sampler (Section 4)

• A multi-pass sampler enabling sub-linear memory foot-
prints via internal sampling, hashing gambit and rejection

sampling for many-to-one links (Section 5)
• A comprehensive experimental comparisonwith non-stream
methods (Section 7), which only support equal probability
sampling.

In summary, our streaming-friendly algorithms are lightweight
to implement, and do not require indices or other preprocessing.
They take one or a few passes over the input data, and produce an
unbiased weighted sample. Our experiments show that these are
fast in practice, making it practical to draw fixed-sized samples
over arbitrarily large joins.

2 FORMAL PROBLEM SETTING
2.1 Weighted Sampling over Linked Data
In what follows, we describe our results in terms of data that
is accessed as a stream of tuples, and analyze the number of
passes through the streams that are needed. We are particularly
interested in what is (or is not) possible to achieve with a constant
number of passes through the data.

Definition 2.1 (data stream join). Let 𝐴 and 𝐵 be two data
streams and link(𝛼, 𝛽) be a link predicate link : 𝐴 × 𝐵 → {0, 1}.

𝐴 |><|𝐵 = {(𝛼, 𝛽) | 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵, link(𝛼, 𝛽)}
𝐴 |><𝐵 = {𝛼 | 𝛼 ∈ 𝐴, ∃ 𝛽 ∈ 𝐵 : link(𝛼, 𝛽)}
𝐴 |>𝐵 = {𝛼 | 𝛼 ∈ 𝐴, � 𝛽 ∈ 𝐵 : link(𝛼, 𝛽)}
(|><| , |>< , |> are inner, semi, anti joins)
𝐴 d|><|𝐵 = 𝐴 |><|𝐵 ∪ {(𝑎, ∅𝐵) | 𝛼 ∈ 𝐴, � 𝛽 ∈ 𝐵 : link(𝛼, 𝛽)}
𝐴 d|><|d𝐵 = 𝐴 d|><|𝐵 ∪ {(∅𝐴, 𝛽) | 𝛽 ∈ 𝐵, �𝛼 ∈ 𝐴 : link(𝛼, 𝛽)}
𝐴 |><|d𝐵 = 𝐴 |><|𝐵 ∪ {(∅𝐴, 𝛽) | 𝛽 ∈ 𝐵, �𝛼 ∈ 𝐴 : link(𝛼, 𝛽)}
(d|><| , d|><|d , |><|d are left, full, right outer joins)

The link functions are presumed to take the form link(𝛼, 𝛽) =
(𝑓 (𝛼) = 𝑔(𝛽)) with functions 𝑓 : 𝐴 → R, 𝑔 : 𝐵 → R. The
function values of 𝑓 and 𝑔 are for instance often simply join
attribute values, but we will refer to them more generally as “link
values”. The equality operator (=) can also be replaced with some
inequality operator (<,>,≤,≥,≠). This corresponds to equi-joins
and theta joins in relational databases. A special case of interest
is if |{𝛽 | 𝛽 ∈ 𝐵, link(𝛼, 𝛽) |}| = 1 for any 𝛼 ∈ 𝐴. It allows to
treat the two item sets 𝐴 and 𝐵 as a single entity set 𝐶 that pairs
each 𝑎 ∈ 𝐴 with the single link partner in 𝐵. Such one-to-one or
many-to-one linkages are most common in relational databases,
where they occur routinely to splice the normalized tables back
together, i.e., joins along foreign keys.

Definition 2.2. A weighted sample over the data stream join
((𝐴 ⊗ 𝐵) ⊗ . . .) ⊗ 𝐺 with ⊗ ∈ { |><| , d|><| , d|><|d , |><|d , |>< , |> } is a multi-
nomial sample with Pr(𝛼, 𝛽, . . . , 𝛾) ∝ 𝑤 (𝛼) ·𝑤 (𝛽) · . . . ·𝑤 (𝛾) for
any item tuple (𝛼, 𝛽, . . . , 𝛾) with 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵, . . . , 𝛾 ∈ 𝐺 .

In this work, weights are per-item, probabilities are propor-
tional to weights and with-replacement/multinomial sampling
[6, 17, 22, 29, 35, 58] is employed. As in Poisson sampling, el-
ements are drawn independently from each other, but unlike
poisson sampling the sampling size is fixed and repeated samples
may occur.

299

Our results apply to any acyclic join query that can be specified.
As a limitation, cyclic joins (allowing links to form cycles) are
left as an open problem. All prior works that claim to handle
cyclic joins relax the join C to some suitable acyclic join A
[60, 78] akin to Chow-Liu trees [12] which means only a fraction
| C |
|A | comprises valid samples. As | C |

|A | can be arbitrarily small, it
can require arbitarily large sample sizes that may be difficult to
support in a streaming setting.

2.2 Lower Bounds for Data Stream Joins
In this section, we study how efficiently we can obtain a join
sample. Ideally, wewould like to do sowith only a single pass over
each relation. However, we show that this is not possible: joining
a pair of one-pass streams typically requires any algorithm to
fully record one of the streams.

Theorem 2.3 (one-pass memory lower bound). Let 𝐴 and

𝐵 be two one-pass data streams, i.e., both stream by just once. Let

distinct be the minimal number of distinct link values of 𝐴 and 𝐵,

|sample| be the sample size. Then collecting a multinomial sample

(with non-zero probabilities) of the data stream join 𝐴 |><|𝐵 requires

storing Ω (min{ |𝐴| + |𝐵 |, distinct · |sample| }) stream items.

The proof can be found in Appendix B.1 and relies on the
well-known communication complexity lower bound for the
index problem [39]. The proof follows by expressing the task
as a communication between Alice and Bob [57] (representing
here the two streams 𝐴 and 𝐵). Instead of the bit string from the
index problem, Alice has a weighted random sample of items
associated with each link value. Instead of an index, Bob has one
item with a specific link value. Then, instead of selecting the
bit with Bob’s index, the task is to select the weighted random
sample for the link value that matches Bob’s item. Following this
mapping, in place of sending Bob Ω(1) bits per index, Alice has
to send Bob Ω(1) weighted random samples for each link value
(or simply all stream items). The proof follows since if Alice and
Bob could solve the sampling problem, they would also solve
the index problem, and so is subject to the corresponding lower
bound.

When we seek a small sample, and there are only a few link
values, Theorem 5.1 shows that we can obtain all relevant stream
items for the join in just one pass. But in general the sampling
lower bound presents a limit on what is achievable. Nevertheless,
with a slight relaxation we can achieve space-efficient algorithms
that take few streaming passes. We propose a compromise where
we take two passes through most streams (or store them in
memory), but only a single pass through one of the streams –
typically, we will choose this to be the largest data stream. We
refer to this as the one∗-pass setting, and define it formally as
follows:

Definition 2.4 (one
∗
-pass sampler). Let 𝐴 be a data stream that

passes by just once and 𝐵, . . . ,𝐺 be streams that pass by once
before 𝐴 and once after 𝐴. Then a one∗-pass sampler collects a
multinomial sample of the data stream join 𝐴 |><|𝐵 |><| . . . |><|𝐺 .

Note that working in this setting is not a restriction: if we
can show algorithms that adhere to the one∗-pass model, it only
means that they require very few passes over the data. In our
experiments, we compare to methods outside of this model, and
show that our one*-pass and few-pass algorithms can be much
more efficient. We next give a lower bound that places a precise
limit on what can be achieved in the one∗-pass model.

𝐴𝐵

𝐵𝐶 𝐶𝐷

𝐵𝐺 𝐺 𝐻𝐹𝐴

item 𝐴 𝐵 weight
𝛼1 𝑎1 𝑏1 𝑤 (𝛼1)
𝛼2 𝑎1 𝑏1 𝑤 (𝛼2)
𝛼3 𝑎3 𝑏2 𝑤 (𝛼3)
𝛼4 𝑎2 𝑏4 𝑤 (𝛼4)
∅𝐴𝐵 𝑤 (∅𝐴𝐵)

item 𝐹 𝐴 weight
𝜙1 𝑓1 𝑎1 𝑤 (𝜙1)
𝜙2 𝑓2 𝑎2 𝑤 (𝜙2)
𝜙3 𝑓3 𝑎2 𝑤 (𝜙3)
𝜙4 𝑓4 𝑎4 𝑤 (𝜙4)
∅𝐹𝐴 𝑤 (∅𝐹𝐴)

item 𝐶 𝐷 weight
𝛿1 𝑐1 𝑑1 𝑤 (𝛿1)
𝛿2 𝑐2 𝑑2 𝑤 (𝛿2)
𝛿3 𝑐2 𝑑3 𝑤 (𝛿3)
𝛿4 𝑐4 𝑑4 𝑤 (𝛿4)
∅𝐶𝐷 𝑤 (∅𝐶𝐷)

item 𝐵 𝐶 weight
𝛽1 𝑏1 𝑐1 𝑤 (𝛽1)
𝛽2 𝑏2 𝑐1 𝑤 (𝛽2)
𝛽3 𝑏2 𝑐2 𝑤 (𝛽3)
𝛽4 𝑏3 𝑐3 𝑤 (𝛽4)
∅𝐵𝐶 𝑤 (∅𝐵𝐶)

Figure 1: Running example: Join of six data streams
(𝐹𝐴 d|><|d𝐴𝐵 |><|d𝐵𝐶 |><𝐶𝐷) |><|𝐵𝐺 |><|𝐺𝐻 linked along attributes
𝐴, 𝐵,𝐶, 𝐷, 𝐹,𝐺, 𝐻 .

Theorem 2.5 (one∗-pass memory lower bound). A one
∗
-pass

sampler over𝐴 |><|𝐵 |><| . . . |><|𝐺 requires Ω(distinct) bits of memory

where distinct is the number of distinct link values appearing in

the streams 𝐵, . . . ,𝐺 .

A full proof can be found in Appendix B.2. The gap between
Theorems 2.3 and 2.5 can be understood as follows. If we con-
sider a stream containing 𝑁 items each representable with 𝑂 (𝑏)
bits, where all link values are distinct, Theorem 2.3 means that
pure one-pass streaming setting requires Ω(𝑁𝑏) bits of storage.
Meanwhile, in the one∗-pass setting we will be able to work with
only 𝑂 (𝑁) bits, which can be a big difference in practice.

2.3 Running Example throughout this Work
We will use a running example of a join across six different
relations, shown in Figure 1. The streams are named after the
item properties/quasi-identifiers, e.g., 𝐴𝐵 is named after the item
properties 𝐴 and 𝐵 and 𝐵𝐶 after properties 𝐵 and 𝐶 such that
one can join both streams using a link function that requires
the values to match for 𝐵. In the example, the two relations 𝐵𝐺
and 𝐺𝐻 have many-to-one relations and all items are chosen to
have weight 1. Such cases can be easier to handle, and so may be
omitted in some discussions.

Why join sampling? Think of 𝐹𝐴, 𝐶𝐷 , 𝐺𝐻 as information
sources about entities such as people, accounts, institutions and
financial transactions. The sources can only be linked via𝐴𝐵, 𝐵𝐶
and 𝐵𝐺 that serve as imperfect “translation tables” that relate the
various pseudo-identifiers (𝐴,𝐵,𝐶 ,𝐺) with each other (e.g., names
and key dates/locations relating to those entities). Materialising
the full join is not feasible, because the join contains all possible
linkage combinations, i.e., the join result becomes astronomically
large and impossible to enumerate. An easy to interpret random
sample can be obtained without materialising the full join.

Why join sampling over streams? As we are joining three
very large information sources (𝐹𝐴, 𝐶𝐷 , 𝐺𝐻) from different par-
ties, we are strongly motivated to minimise the access to the data:
it may be unfeasible or even disallowed to create local copies of
them. We therefore seek methods that require one or at most a
small constant number of streaming accesses to the data sources.

300

Why weighted join sampling over streams? A uniform
sample over the join is often not meaningful, because it weighs
entities more heavily just because they are linked to more entities,
which does not necessarily correlate with their true importance.
Instead, we can specify sampling probabilities based on other fac-
tors of the input items, such as their value or confidence (which if
based on sensitive user data calls for privacy-preserving methods
as in Appendix C).

3 MULTIPARTITE GRAPH FORMULATION

Algorithm 1: Group Weights
1 Let 𝐺 = (𝑉 , 𝐸) be a multipartite graph corresponding to

the join query and𝑤 (𝜏) be a node 𝜏 ’s label.
2 Let root(𝑉) = A ⊆ 𝑉 be the item node partition of the

join query’s main table.
3 Let parentA (T ,𝑉 ′) be all neighbouring link node

partitions in 𝑉 ′ closer to A than T .
4 Let childrenA (T ,𝑉 ′) be all neighbouring link node

partitions in 𝑉 ′ further away from A than T .
5 Let leafsA (𝑉 ′) be all item node partitions in 𝑉 ′ furthest

away from A, excluding A.
6 Initiate 𝑉 ′ as 𝑉 .
7 while |leafsA (𝑉 ′) | > 0 do
8 Pick an item node partition T ∈ leafsA (𝑉 ′)
9 Let J0 = parentA (T ,𝑉 ′).

10 Set the label of all nodes in J0 to −∞
11 foreach item node 𝜏 ∈ T do
12 Initiate𝑊 as 1
13 foreach link node part. J ∈ childrenA (T ,𝑉 ′)

do
14 Let𝑊J be the label of 𝑗 ∈ J connected to 𝜏
15 Multiply𝑊 by𝑊J .
16 end
17 Let𝑊J0 be the label of 𝑗 ∈ J0 connected to 𝜏
18 if 𝑊J0 = −∞ then Set𝑊J0 to 0
19 Add𝑤 (𝜏)𝑊 to𝑊J0 .
20 end
21 Remove item node partition T from 𝑉 ′

22 foreach link node partition J ∈ childrenA (T ,𝑉 ′)
do

23 Remove link node partition J from 𝑉 ′

24 end
25 Replace all labels −∞ with𝑤 (∅T) for nodes in J0
26 end

3.1 Bijection between Join Results and
Partition-Spanning Trees in Multipartite
Graphs.

In order to more easily reason about not just inner joins, but also
outer joins, it is useful to formulate the join operation through a
graph, where items and links form a multipartite graph with one
partition of nodes per stream and one partition of nodes between
any linked pair of streams.

An example of such a multipartite graph for a two stream join
can be found in Figure 2. The nodes of the graph are:

item node link node null node
𝐴𝐵 𝐵𝐶

𝑤 (𝛼1)

𝑤 (𝛼2)

𝑤 (𝛼3)

𝑤 (𝛼4)

𝑤 (∅𝐴𝐵)

1

1

1

1

1

𝐵𝐶

𝑤 (𝛽1)

𝑤 (𝛽2)

𝑤 (𝛽3)

𝑤 (𝛽4)

𝑤 (∅𝐵𝐶)

(a) Each link node is the root of
a sub-tree (left to right).

𝐴𝐵

𝑤 (𝛼1)

𝑤 (𝛼2)

𝑤 (𝛼3)

𝑤 (𝛼4)

𝑤 (∅𝐴𝐵)

𝑤 (𝛽1)

𝑤 (∅𝐵𝐶)

𝑤 (𝛽2) + 𝑤 (𝛽3)

𝑤 (𝛽4)

𝑤 (∅𝐵𝐶)

(b)Weights of each sub-tree are
transferred into a link node.

Figure 2: Graph formulation for join of two streams.

• Item nodes: Each stream is a set of nodes, one node for
each stream item, e.g., there is a node for item 𝛼1 ∈ 𝐴𝐵.

• Null nodes: null nodes for outer joins are an additional
“dummy” stream item, e.g., ∅𝐴𝐵 for stream 𝐴𝐵.

• Item node labels: Each item and null node is labelled with
a weight, e.g.,𝑤 (𝛼1) and𝑤 (∅𝐴𝐵).

• Link nodes: Each link attribute is a set of nodes, one node
for each attribute value, e.g., 𝑏1.

• Link node labels: Each link node is initially labelled with
the value 1, e.g., the node for 𝑏1 has a label 1.

As join operators are not necessarily symmetrical, there is a
“left” and a “right” side. The edges of the graph potentially connect
link nodes with item nodes that satisfy the link predicate, but it
depends on the join operator if they do:

• Each link node for d|><| , |><|d , d|><|d and |><| is connected to each
matching item node.

• Each link node for |><|d and d|><|d that is not connected to
any item node on the left side is connected to the left null
node.

• Each link node for d|><| and d|><|d that is not connected to
any item node on the left side is connected to the right
null node.

• Each link node for |>< has label 0 if there is no match on
the right side.

• Each link node for |> has label 0 if there is a match on the
right side.

This simply means left outer joins (d|><|) allow null items on
the right side and right outer joins (|><|d) on the left side, while full
outer joins allow them on either side (d|><|d). Semi-joins (|><) and
anti-joins (|>) are filters that change the weight of a link node if
there is a match on the right side. For semi-joins and anti-joins
the right side partitions are removed after determining the link
node labels.

The main motivation for this formulation is that each tree that
spans all partitions corresponds to a linked set of items:

Definition 3.1. A partition-spanning tree of a multipartite
graph is a connected subgraph that contains exactly one node in
each partition.

The weighted sampling problem can then be posed via the
multipartite graph formulation:

Definition 3.2. Weighted Sampling over Joins independently
draws 𝑛 partition-spanning trees with probabilities proportional

301

item node link node null node
|><|d𝐴𝐵 𝐵𝐶d|><|d𝐹𝐴 |>< 𝐶𝐷

0

0

(a) Graph Formulation for Running Example

|><|d𝐴𝐵 𝐵𝐶d|><|d𝐹𝐴 |>< 𝐶𝐷

0

0

(b) after 1 iteration

|><|d𝐴𝐵 𝐵𝐶d|><|d𝐹𝐴 |>< 𝐶𝐷

0

0

(c) after 2 iterations

|><|d𝐴𝐵 𝐵𝐶d|><|d𝐹𝐴 |>< 𝐶𝐷

0

0

(d) completed

Figure 3: Algorithm 1’s iterations (Lines 7-26) preserve weights of linked item trees, but simplify the graph by removing
partitions.

to the product of their node weights if they contain at least one
item node and probability 0 if they only contain null nodes.

3.2 Sampling partition-spanning trees via
Ancestral Sampling.

As there are as many partition-spanning trees as join results,
some technique is needed to reduce the complexity. As each
partition-spanning tree is sampled with probabilities propor-
tional to their weight, any group of trees will be sampled with
probabilities proportional to their sum of weights. Thus, one can
sample the partition-spanning tree step-by-step rather than in
one go, whichmakes it possible to achieve a sub-linear complexity
in the number of partition-spanning trees. The step-by-step sam-
pling corresponds to ancestral sampling [24, 37] from a Bayesian
Network (BN) where each item node corresponds to a BN node
and the transition probability of two BN nodes is proportional
to the sum of weights of their ancestors (here extensions of the
partition-spanning tree to additional partitions). For any acyclic
join, one can choose any partition as a root, build a directed
acyclic graph (DAG) with edges pointing away from the root (as
in Figure 1) and traverse the partitions in a breadth-first manner.
Due to the lack of cycles in the join, only directly connected
partitions (parent and child nodes) can have join conditions with
each other, which for the sampling translates to conditional in-
dependence between all partitions that are not in parent-child
relationships. Thus, after sampling a parent partition (e.g., 𝐴𝐵),
its child partitions (e.g., 𝐹𝐴, 𝐵𝐶 , 𝐵𝐺) are sampled independently.
While in Figure 1 there is just one partition with multiple chil-
dren, the approach works similarly whenmultiple partitions have
more than one child. Once all partitions on the same level (parti-
tions with same distance to the root) are sampled, their ancestors
(partitions closer to the root) do not need to be revisited.

3.3 Group Weight Algorithm.
The basic idea of the efficient algorithm is to group all partition-
spanning trees that have the same root and then sample such a
root-group. The challenge left to solve is how to compute the sum
of weights of each root-group. The right side of Figure 2 shows
the most crucial primitive for this purpose. The operation sums
the weights of all sub-trees of each link node and adds it as a new
label of the link node. Such an operation can be implemented
through a linear-time sequential scan of 𝐵𝐶 and generating a
hash table of 𝐵-values contained in 𝐵𝐶 where each entry holds
the sum of observed weights of each 𝐵-value. As a second step,
one can scan 𝐴𝐵, which holds the root nodes. Now, for each item
𝛼𝑖 ∈ 𝐴𝐵 with link value 𝑏 𝑗 one can look up the sum of sub-tree
weights𝑊 (𝑏 𝑗) in the hash table entry of the key 𝑏 𝑗 . The total

weight of all groups that contain 𝛼𝑖 is then𝑤 (𝛼𝑖)𝑊 (𝑏 𝑗). If 𝐵𝐶 is
not a leaf node, one simply recursively continues this procedure
to compute the weights of 𝐵𝐶 until the leaf nodes are reached.
Once a group with 𝛼𝑖 as a root node is sampled with probability
proportional to its total weight, one can continue in a similar
fashion with the children nodes (adjacent nodes in the graph
facing away from the main stream), until the full tree is obtained.
Semi-joins, anti-joins and selections can be supported through
weights, which is detailed later.

Algorithm 1 describes how the group weights can be obtained
for general multi-way joins. Figure 3 applies the algorithm for
the running example. 𝐴𝐵 serves as the main stream (see Line 2),
such that the parent moves closer to 𝐴𝐵 (Line 3) and child nodes
move further away from𝐴𝐵 (Line 4), while leaves such as𝐶𝐷 are
on the outskirts furthest away from 𝐴𝐵 (Line 5). The algorithm
processes a new stream in each iteration (Lines 7-26). It makes a
single stream pass over the items of the new stream (Lines 11-20),
computes the total weight of the sub-trees rooted at the item
(Lines 12-16) and adds this sub-tree weight multiplied by its own
weight𝑤 (𝜏) to the parent link node (Lines 17-19). After the new
stream has been processed it is removed from further consider-
ation (Lines 21-23) and the algorithm goes back to Line 7 and
terminates when no more streams are left for consideration. After
termination, each item node 𝜏 of the main stream is linked to
multiple link nodes and the product of the link node labels mul-
tiplied by𝑤 (𝜏) yields the total weight of all partition-spanning
trees containing 𝜏 .

3.4 Hash Table Implementation.
The algorithm can be implemented with a hash table𝐻J for each
link node partition J to allow an efficient lookup of the adjacent
link node for a item node based on the link value. Note that if
all item nodes except a few have the same label, one only keeps
entries for the exceptions and maintains a default value for the
rest. Hash table entries for a stream can be computed in one scan
that skips any items that do not satisfy the selection predicates.
In case of a semi-join, the default value is 0 and entries are only
equal to 1 for results of the semi join. While an anti-join can be as
large as a stream, for sampling it can be supported via semi-join:
for anti-joins the default value is 1 and entries are only equal
to 0 for results of the semi join. Theta/non-equi-joins can also
be easily supported. If the link condition is ≠, then in addition
to the hash-table one needs to maintain the total weight of all
hash-table entries. Then the weight for equi-joins can simply be
subtracted from the total weight, to obtain the ≠-join weight. For
theta joins with a binary operator ⊙ ∈ {<, ≤, ≥, >} for the link
condition, one can first obtain the equi-join hash table and then
replace the values with cumulatives. This means that the entry

302

for each join attribute value 𝑥 holds the sum of weights of any
equi-join entry 𝑦 that satisfies 𝑦 ⊙𝑥 . Additionally a binary search
tree needs to be constructed to efficiently find the last value 𝑦 ⊙𝑥
where 𝑥 is the queried value from a joining stream. Then the
queried value can be rewritten as the last hash table value.

4 ONE∗-PASS SAMPLER
In the previous section weighted join sampling has been mapped
to the problem of sampling partition-spanning trees with prob-
abilities proportional to their weight. In this section, we show
how the sampling can be performed with few streaming passes
over the input tables. Recall that in our notion of one∗-pass sam-
pling, we have one distinguished stream 𝐴 over which we take
exactly one pass. We will make use of concepts from graphical
models to express the sample probabilities. Specifically, for each
other stream in the query, we can use conditional probabilities
to express the desired sampling probabilities. Based on that, one
can for each stream linked with the one-pass stream derive a
Bayesian Network that can be used with ancestral sampling. For
instance in the running example, we get for 𝛼 ∈ 𝐴𝐵, 𝛽 ∈ 𝐵𝐶, 𝛿 ∈
𝐶𝐷, 𝜙 ∈ 𝐹𝐴:

Pr(𝛽, 𝛿, 𝜙 | 𝛼) = Pr(𝜙 | 𝛼) Pr(𝛽 | 𝛼) Pr(𝛿 | 𝛽) .
For the many-to-one relations with uniform weights one can first
independently select a random item 𝛾 ∈ 𝐵𝐺 that links with 𝛼
and then a random item 𝜒 ∈ 𝐺𝐻 that links with 𝛾 . As the task is
to sample with probabilities proportional to𝑊 (𝜏), one can in a
first stage perform a stream pass over the main table and collect
a sample using the proposed online multinomial sampler from
Section 4. After collecting the main table sample, this yields the
sampled groups of result trees grouped by the main table row
and it is left sampling within the groups. Thus, in each stage
the rows in the sample are extended by the row of another table
until all tables that participate in the join have been reached. The
main table due to the online multinomial sampler from Section 4
is only scanned once, while all other tables are scanned twice.
The remaining challenge is then to support weights over the
one-pass stream. For this purpose an online multinomial sampler
is needed.

4.1 Online Multinomial Sampler

Algorithm 2: General Online Multinomial Sampler
Input: Let 𝑛, 𝑁 ∈ N with 𝑛 ≤ 𝑁 and𝑤1, . . . ,𝑤𝑁 ∈ R≥0.

1 Let𝑊 =
∑𝑁
𝑖=1𝑤𝑖 and 𝐾1, . . . , 𝐾𝑁 be i.i.d. random

variables with 𝐾𝑖 ∼ 𝑈𝑛𝑖 𝑓 (0, 1) (1/𝑤𝑖) for any
𝑖 ∈ {1, . . . , 𝑁 }.

2 Let 𝐾[1] ≤ 𝐾[2] ≤ . . . ≤ 𝐾[𝑁] be the order statistics of 𝐾 .
3 Let 𝑆1, . . . , 𝑆𝑛 be the indices of 𝐾 ’s first 𝑛 order statistics,

i.e., 𝐾𝑆1 = 𝐾[1] , 𝐾𝑆2 = 𝐾[2] , . . . , 𝐾𝑆𝑛 = 𝐾[𝑛] .
4 Select𝑀1 = 𝑆1 and initiate𝑚 = 2 and 𝑗 = 1
5 while 𝑗 ≤ 𝑛 do
6 Select𝑀𝑗 according to Pr(𝑀𝑗 = 𝑖) =

𝑤𝑆𝑖

𝑊
for any

natural number 𝑖 < 𝑗 and
Pr(𝑀𝑗 ≥ 𝑖) =𝑊 −∑𝑗−1

𝑖=1 𝑤𝑆𝑖

7 if 𝑀𝑗 ≥ 𝑖 then
8 Select𝑀𝑗 = 𝑆𝑚 and update𝑚 =𝑚 + 1.
9 Update 𝑗 = 𝑗 + 1
Output:Multinomial sample𝑀1, . . . , 𝑀𝑛

The online multinomial sampling problem (equivalent to the
online weighted with-replacement problem) has been alluded to
in the literature [20], but appears to not have been adequately
solved. Note that unlike in [31] the weights here are real-valued
and unlike in [63] only weights proportional to probabilities are
available. The baseline technique from the literature would be to
maintain an independent sampler for each element of the with-
replacement sample, which clearly does not scale with larger
sample sizes. Algorithm 2 proposes an online multinomial sam-
pler based on an adaption of an existing sampling technique
[21]:

Theorem 4.1. Let 𝑛, 𝑁 ∈ N with 𝑛 ≤ 𝑁 , 𝑤1, . . . ,𝑤𝑁 ∈ R≥0
with𝑊 =

∑𝑁
𝑖=1𝑤𝑖 . Then Algorithm 2 with weights 𝑤1, . . . ,𝑤𝑁

returns a multinomial sample with probabilities proportional to

weights, i.e., each 𝑀𝑗 has Pr(𝑀𝑗 = 𝑖) = 𝑤𝑖/𝑊 for any 𝑖 ∈
{1, . . . , 𝑁 }.

Specifically, Lines 1-3 of Algorithm 2 can be implemented as
weighted reservoir sampling by Efraimidis & Spirakis [21] using
𝑤1, . . . ,𝑤𝑁 as item weights. The proof can be found in Appen-
dix B.3 and is based on the idea that one can use the ordered
weighted sample without replacement as a pool for random items
that have not been previously drawn. One then draws an indepen-
dent element with probabilities proportional to weights at each
step. Observe that after the first item is drawn, the probability of
drawing one of the previous items again is simply proportional to
the weights of those previous items. Thus, one needs to consider
two cases. In one case the previously selected item is drawn again
and in the other case a new random element is selected from the
remaining population without the previously selected items. For
the first case only the previously selected items are needed and
for the second case only items are needed from an equally small
ordered sample that can be obtained using existing techniques
[21] which serves as a proxy for the population items.

4.2 Join Sampler for One∗-Pass Stream Setting

Algorithm 3: One∗-Pass Sampler
1 Prepare Bayesian Network probabilities for streams

linked with one-pass stream by doing one pass over
those streams

2 Initiate 𝑆1, 𝑆2, . . . , 𝑆𝑛 as weighted reservoir sample of size
𝑛

3 Initiate total weight𝑊P as 0 and multiset𝑀 as {}
4 foreach stream item 𝑥 with weight𝑤 (𝑥) do
5 Consider 𝑥 for inclusion in 𝑆 and add𝑤 (𝑥) to𝑊P
6 Initiate total sample weight𝑊𝑀 as 0, 𝑗 as 1 and ℓ as 1
7 foreach 𝑗 ∈ {1, . . . , 𝑛} do
8 Draw 𝑢 ∈ [0, 1] with 𝑃𝑟 (𝑢) ∝ 1
9 if 𝑢 <𝑊𝑀/𝑊 then
10 Set𝑀𝑗 to a randomly drawn𝑀𝑖 ∈ {𝑀1, . . . , 𝑀𝑖−1}

with Pr(𝑀𝑖) ∝ 𝑤 (𝑀𝑖)
11 else
12 Add𝑤 (𝑆ℓ) to𝑊𝑀 , set𝑀𝑗 to 𝑆ℓ and set ℓ to ℓ + 1

13 Extend multinomial sample𝑀1, . . . , 𝑀𝑛 via ancestral
sampling over Bayesian Network in another pass over
those streams

303

Algorithm 3 then employs the online multinomial sampler to
achieve a one∗-pass join sampler, i.e., the main stream passes by
once, whereas all other streams pass by once before and once after
themain stream. The first step is to prepare the Bayesian Network
probabilities based on the group weights using Algorithm 1. The
second step is to collect a sample over the main stream (Lines 2-
12). The third step is to use the Bayesian Network to extend the
sample over the main stream. More specifically, in the graph
formulation (see Figure 2), each item 𝜏 in the main stream sample
is on the “left” side, connected to a link node in the “middle”
that links to multiple item nodes on the “right” side. Then for
each sampled main stream item, the task is to sample an item
node on the “right” side with probabilities proportional to the
group weight. Luckily, the total weights of the sub-trees have
been previously computed and are readily available in the hash
maps for the link nodes. As the total weight𝑊 of the right side
is known, one can for instance employ inversion sampling, i.e.,
draw a random number 𝑢 between 0 and𝑊 and go through the
right side stream until the total weight of observed items is more
than 𝑢 and then pick the preceding item. This allows to collect all
sample continuations of the main stream sample in one stream
pass.

The runtime complexity of the one*-pass sampler is𝑂 (𝑘𝑁 log𝑁)
for 𝑘 streams of length 𝑁 , as each stream is passed a constant
number of times (at most twice) and each stream item is processed
in logarithmic time in the worst case (although, hash-based struc-
tures may yield performance on average that is constant time).
The memory complexity is𝑂 (𝐷 ·𝑘) where 𝐷 ≤ 𝑁 is the maximal
number of distinct link values per stream.

5 MULTI-PASS SAMPLER
In this section the one∗-pass streaming is relaxed to achieve lower
memory usage at the cost of potentially requiring additional
stream passes.

5.1 Internal sampling for large streams with
few distinct link values

Large streams with few link value combinations can be replaced
by a sample per link value using the following theorem:

Theorem 5.1 (Internal Sampling). Let 𝐴, 𝐵, . . . ,𝐺 be data

streams. Let 𝐴′, 𝐵′, . . . ,𝐺 ′
be modified data streams, where any

set of𝑚 stream items with the same link values may be replaced

by a with-replacement sample of 𝑚𝑖𝑛(𝑛,𝑚) stream items with

probabilities proportional to weights. The weight of each sampled

item 𝑥 is modified from𝑤 (𝑥) to 𝑚
𝑛 𝑤 (𝑥). Then a weighted sample

over the join of𝐴′ ⊗𝐵′ ⊗ . . .⊗𝐺 ′
with ⊗ ∈ { |><| , d|><| , d|><|d , |><|d , |>< , |> }

has the same distribution as a weighted sample over𝐴⊗𝐵⊗ . . .⊗𝐺 .

Proof. The modifications to the streams have the same effect
as first drawing a sample from𝐴⊗𝐵 ⊗ . . .⊗𝐺 and then replacing
all values with certain link value combinations (link value com-
binations pre-selected before drawing the sample) with random
items with the similar link values proportional to weights. As
items with similar link values are interchangeable with regards
to what they link to and are still selected with probabilities pro-
portional to weights, the probability distribution over all possible
samples remains the same. □

We can apply this technique when we know that there are
few such link values – via domain knowledge, or from simply
checking the data with an extra initial streaming pass. In the

equi join

equi-hash join

cross join

Figure 4: Hierarchy of join results. Samples from any equi-
hash join with superfluous elements purged (depicted in
red) are ordinary samples from the equi join.

next section, we consider how to reduce the number of values
by hashing, at the expense of increasing the number of samples
needed.

5.2 Hashing gambit for small samples over
many distinct link values

In the one*-pass sampler the memory complexity is proportional
to the number of distinct link values. Thus, the basic idea is to
reduce the number of distinct link values via hashing, which
implements the same sampling method with potentially more
stream passes (if the sample has to be large).

If the link condition is an equality and only a small sample is
needed, one can efficiently deal with many distinct link values by
reducing them to a smaller number of hash values. We call this
the “hashing gambit”, as it introduces superfluous join results that
need to be rejected in order to gain the benefit of a smaller number
of link values. The link function is for this purpose replaced from
full equality to equality of hash values for a random hashing
function.

Clearly, hash collisions link items together that are not actually
linked, but those wrongly linked items can be simply purged
at the end. In order to achieve a desired sample size, it can be
necessary to generate more samples than before. A common
source for a large number of distinct link values is when they are
unique identifiers, in which case one can predict:

Lemma 5.2. Let 𝑇1,𝑇2, . . . ,𝑇𝑘 be 𝑘 streams with unique link

values. Replacing the equality link with a hash-equality link using

a universal hash function with universe of size 𝑢 is expected to

have at most 2𝑚(𝑚𝑢)𝑘−1 superfluous results that are not present in
𝑇1 ⊲⊳ 𝑇2 ⊲⊳ . . . ⊲⊳ 𝑇𝑘 where𝑚 = max(|𝑇1 |, |𝑇2 |, . . . , |𝑇𝑘 |).

Thus, as a heuristic, the hashing gambit will collect a 2(𝑚𝑢)𝑘−1
times larger sample for the hash-relaxed superset (𝑚 and 𝑢 as
defined in Lemma 5.2), provided that it does not exceed the mem-
ory limit, as the join size is expected to be at least as large as the
streams. As the parameter 𝑘 counts the streams where 𝑢 is much
smaller than𝑚, it is dependent on the choice of 𝑢. Thus, different
choices of 𝑢 can be tried out (numerically) to find the best choice
within the formula before the sampling commences.

While each stream pass of the multi-pass sampler has the
same runtime complexity as the one*-pass sampler, the number
of needed stream passes can vary to collect the full sample. The
memory complexity of the multi-pass sampler is reduced to𝑂 (𝑢 ·
𝑘) where 𝑢 is the chosen number of distinct hash values and 𝑘 is
the number of tables.

304

5.3 Rejection sampling for joins with
many-to-one links

A simple case to handle is that of many-to-one relations: this
allows us to first sample from the “many” stream and then look-
up the “one” entity in the other stream(s). If the weights are
all equal, then this reduces to sampling from one stream and
then joining the sample with the other streams. If the weights
are not equal, one can either first proceed as if they were equal
and afterwards employ rejection sampling to rectify inclusion
probabilities, or one needs to find the group weights and treat
the many-to-one join like a many-to-many join. The former is
more memory efficient, whereas the latter is reliably fast. For
the multi-pass sampler, we advocate the more memory efficient
variant.

6 RELATEDWORK
As discussed in the introduction, previous works on join sam-
pling are proposed for simple random sampling (equi-weighted)
in a database context [10, 60, 78] or employ heuristics (lack-
ing a principled statistical model) to sample from static joins
[2, 11, 27, 28, 30, 33, 41, 42, 53] or joins of streams [3, 23, 55, 71].
Samples collected using heuristics do not follow any well-defined
distribution and are either intended for targeted aggregations
or selectivity estimation to more accurately predict the cost of
query plans in database engines. Some also focus solely on simple
many-to-one relationships between tables, i.e., foreign key joins
that reunite tables from a normalised schema. Such approaches
are equivalent to sampling from one table and then extending
the sample using the other tables [1, 25]. This sampling for many-
to-one schemata corresponds to conventional sampling when
uniformweights are applied. However, in the presence of weights
or selection predicates it requires novel methods as presented in
this work.

While prior join samplers [10, 48, 60, 78] internally useweighted
sampling, externally the weights cannot be controlled and only
uniform sampling is supported. The internal weighted sampling
arises due to the structure of acyclic joins that makes it natural
to sample each relation one by one (see next paragraph for more
details). For instance, [48] internally uses Poisson sampling, i.e.,
a coin is flipped for each item and only items with successful flips
are kept and each item can have varying success probabilities.
Externally, [48] employs Bernoulli sampling, which is a special
case that mandates all items to have the same success probability.
As Poisson/Bernoulli sampling can make it difficult to control
the sample size and merge/subsample the samples, we opt in this
work instead for multinomial sampling [6, 17, 22, 29, 35, 58] that
draws each sample independently. Similarly, random join order
enumeration methods [8] internally use non-uniform weights
(that cannot be controlled), but externally only support uniformly
drawn permutations that only help with uniform join samples.
While we show that a limited streaming setting is achievable
for join sampling, this seems unlikely for enumeration methods,
but since they offer interesting applications beyond sampling, it
would be interesting to see if ideas from this work could inspire
extending it to weighted random permutations.

Acyclic joins have a tree-like structure where each node corre-
sponds to a tuple’s (sub)join with the tables downstream, which
allows decompositions akin to Yannakakis’s work on acyclic con-
junctive queries [74]. This is useful when reasoning about join
sampling algorithms. Zhao et al. [78] were first to uncover the
constraint that the extension of a uniformly sampled tuple must

be drawn with probability proportional to the size of the (sub)join
of a tuple with the tables downstream, which generalises the in-
sights from [10] from binary joins to multi-way joins. The key
idea of the algorithm in [78] is a tuple-oriented approach that
first approximates this probability and then later rectifies it via
rejection sampling, which is inspired by Olken’s method [51]. Re-
jections are avoided if approximations are exact, which empirical
results indicate to work better for larger sample sizes [60, 78]. As
the approach extends each tuple individually table-by-table, it
mandates an index.Unlike in this work, the authors of [78] did
not focus on limiting memory usage.

For cyclic joins it has been shown to be necessary to either
build indices [78] or other intermediate data structures [60], but
while relying heavily on breaking the cycles near-optimally, it
has not been rigorously explored how such an optimisation prob-
lem be solved efficiently. Finally, there have been many works
that operate over some approximation of the stream join, e.g.,
join of continuous stream with non-retroactive relations [26]
(stream tuples joined with relations in current state, as changes
to relations would require another pass over stream).

In conclusion, to our knowledge none of the prior works ex-
plicitly support weighted sampling over linked data streams. We
also do not find any precedent for the idea of one∗-pass sampling,
or the hashing gambit.

7 EXPERIMENTAL STUDY
This section compares the novel one∗-pass sampler (minimising
stream passes) and multi-pass sampler (minimising memory) to
existing non-streaming approaches from the database literature.
Very large numbers that may be troublesome in practice are
highlighted in red and the best achieved number is highlighted
in yellow to draw the attention of the reader. Query times are
reported either as average times to answer one query ad-hoc
(data arrives during query time) and amortised times for pre-built
index structures, i.e., how long does it take to run only the query
excluding index building times that are are amortised when
running many queries.

7.1 Experimental Setup
All experiments are performed on a single thread of a dedicated
machine using Ubuntu 18.04.4 LTS, an Intel(R) Xeon(R) W-2145
CPU @ 3.70GHz with 16 cores and 512GB RAM. Memory mea-
surements are taken using the Unix primitive /usr/bin/time
-v that provides the “maximum resident set size”. All code has
been written in C++11 by the same author and was compiled
using GCC 7.5.0 with the compiler flags -O3 and -std=c++11.
The main baselines used for the experiments have been selected
based on the results of Table 1 and an overview of the TPC-H
queries can be found in Figure 5.

7.2 Join Queries
The experiments feature join queries over three datasets with
join sizes shown in Table 2. The dataset used in the TPC-H bench-
mark, a social network of twitter users and a citation network
using records from DBLP. Over the TPC-H benchmark the same
queries are used as in [78] (cf. Figure 5), but additionally define
weights. The scale factor corresponds roughly to the size of the
dataset in GBs. As an application-provided weighting function
o_totalprice (1-l_discount) l_extendedprice is used. For
QY, the values of both instances of lineitem and order are mul-
tiplied with each other. Weighted queries are referred to as WQ3

305

Table 1: How baselines were selected: Comparison of po-
tential baselines

considered baselines

naive [78] code non-stream

Q3𝑆𝐹=100 memory 26.0 GB 142.0 GB 88.2 GB
QX𝑆𝐹=100 memory 52.0 GB 169.7 GB 95.2 GB
QY𝑆𝐹=100 memory 77.6 GB 384 GB 277.5 GB

Q3𝑆𝐹=100 average time 20.2 mins 64.2 mins 18.2 mins
QX𝑆𝐹=100 average time 1236.2 mins 91.5 mins 20.3 mins
QY𝑆𝐹=100 average time 895.1 mins 116 mins 102.7 mins

Q3𝑆𝐹=100 amortised time 20.2 mins 5.7 mins 7.1 mins
QX𝑆𝐹=100 amortised time 1236.2 mins 5.7 mins 7.9 mins
QY𝑆𝐹=100 amortised time 895.1 mins 42 mins 52.9 mins

lineitem 𝑙

order 𝑜

customer 𝑐

custkey

orderkey

(a) Q3

nation 𝑛

supplier 𝑠

customer 𝑐

order 𝑜

lineitem 𝑙

nationkey

nationkey

custkey

orderkey

(b) QX

supplier 𝑠

customer 𝑐1 customer 𝑐2

order 𝑜1 order 𝑜2

lineitem 𝑙1 lineitem 𝑙2

nationkey

custkey custkey

orderkey orderkey

partkey

(c) QY

Figure 5: Join queries over TPC-H data.

Table 2: Join sizes of queries used in the experiments . Q3
and DBLP are joins with many-to-one links and QX and
QF are joins with many-to-many links.

TPC-H 𝑆𝐹=10 𝑆𝐹=100 Real-World Data Sets

(W)Q3 6.0 · 107 6.0 · 108 DBLP 4.5 · 107
(W)QX 2.4 · 1012 2.4 · 1013 Twitter QF 2.7 · 1021

(foreign-key join), WQX (many-to-many join) and WQY (cyclic
join). Over the (raw) twitter dataset [40] the snowflake query QF
is used as posed in [78] (cf. Table 4).

7.3 Compared Approaches
Naive (Join-Then-Sample straw-man). This straw-man approach
is a slightly more sophisticated version of first joining and then
sampling. The approach joins together tables in a greedy fashion
that reduces the sizes of the remaining tables until only one join
column remains. Then a merge-sort inspired approach is used to
retrieve the inverse of uniform variates. While this approach is
not explicitly proposed in the literature, it seems fairly straightfor-
ward and is a clearly superior baseline to naive join-then-sample
as it avoids materialising the full join result. As shown in Table 1
this merge-sort based approach is still extremely slow and it is
therefore not used as a general baseline.

102 103 104 105 106
10−4

10−3

10−2

10−1

sample size

K-
S-
Te
st
D
-S
ta
tis
tic

non-stream baseline
one∗-pass
multi-pass

Figure 6: K-S goodness-of-fit-test (Section A) onWQY query
(𝑆𝐹 = 1) with over 1012 result rows.

Non-Stream (Index-based Baseline). This approach implements an
index-based approach generalised to weighted sampling that is
mostly based on the equal-probability sampling approach [78].
As several details and parameter settings are not fully specified
in the paper [78], several aspects are reverse engineered from
the published code or simplified and generalised1. The main goal
of this implementation is to exploit indices in the same way as
[78], but ideas from this work were crucial to fill in the gaps and
streamline the approach.
One

∗
-Pass (Proposed). The one∗-pass sampler implements the

proposed approach from Section 3 and prioritises a stream-like
access over the data and limited number of scans. To only achieve
a single pass over one stream (usually the largest) it uses the
online multinomial sampler from Section 4.
Multi-Pass (Proposed). The multi-pass sampler implements the
ideas from Section 5 and prioritises lowmemory usage. For many-
to-one joins it first generates a uniform sample and then uses
rejection sampling. For general joins, it uses the hashing gambit
technique to deal with high-cardinality link values.

7.4 Correctness via Goodness-of-Fit Testing
Figure 6 shows that all implementations generate samples that
follow the instructed multinomial distributions. The Kolmogorov-
Smirnov (KS) test statistic is reported for each returned sample,
and shading is used to indicate the critical region. The approaches
all staywith 99% probability below the shaded region. AppendixA
shows how to apply the KS test in the discrete setting.

7.5 Joins with Many-To-One Links
For many-to-one joins, one can first sample from the “many”
side of the relationships and will have exactly one extension on
the other side. This makes the problem a lot easier to solve, but
still poses some challenges in the weighted sampling case. To
support weighted sampling, we can upper bound the sampling
weights by computing the product of maximal base table weights
and then accept uniformly sampled rows with probability equal
to the ratio with the weight upper bound. As can be seen in
Table 3, this works well for linear weight functions. Here, the
multi-pass sampler uses less memory by assuming group weights
being equal to one, which is then rectified through rejections.
Anticipating some rejections, it collects a ten times larger sample.

1The original published code for [78] was not suitable for our experiments in this
work as it only supports integer-valued data without non-join columns and does
not output/validate samples.

306

102 103 104 105 106
10MB

100MB

1GB

10GB

100GB

sample size

m
em

or
y
us
ag
e
(G
B)

non-stream baseline
one∗-pass
multi-pass

Figure 7: Memory for varied sample size over𝑊𝑄𝑋 𝑆𝐹=100.

7.6 Joins with Many-To-Many Links
The query QX over the TPC-H dataset used in Figure 7 does
not have many distinct values, yet the multi-pass sampler vastly
reduces the memory footprint for smaller samples. The intuition
is that for small samples one can choose to collect a larger set
of tuples for the hashing gambit technique, and then discard
the false positives. For the query QF over the Twitter dataset
(cf. Table 4), the multi-pass sampler also achieves vast memory
savings for a target sample size of 1 million items.

8 CONCLUSION
The main objective of this work are lightweight approaches for
weighted sampling to support data-mining tasks over linked data
streams. As in a pure one-pass streaming setting all streams
would require storing all stream items, instead a one∗-pass set-
ting and a multi-pass setting is considered. In the one∗-pass set-
ting one main stream is passed once, whereas all other streams
are passed once before and once after the main stream. In the
multi-pass setting this is relaxed to allow for substantial memory
savings. Being able to support weighted sampling despite just a
single pass required advancing online samplers with-replacement
and being able to reduce memory required new ideas like the
hashing gambit to collectmore compact statistics over the streams.
In the experiments these approaches outperformed approaches
based on indices if the data comes in at query-time, but the
smaller memory footprint comes at the price of slightly larger
query times when the build cost are presumed to be amortised. As
an open problem remain joins with cyclic links and complex link
functions that cannot be expressed via equations or inequalities
between link values.

Table 3: Runtime and memory comparison for a million
samples over foreign-key joins.

baseline proposed

non-stream one∗-pass multi-pass

WQ3𝑆𝐹=10 memory 10.6 GB 1.6 GB 1.9 GB
WQ3𝑆𝐹=100 memory 94.6 GB 9.8 GB 2.6 GB

WQ3𝑆𝐹=10 average time 1.8 mins 1.3 mins 1.4 mins
WQ3𝑆𝐹=100 average time 20.5 mins 12.3 mins 7.5 mins

WQ3𝑆𝐹=10 amort. time 0.7 mins 1.3 mins 1.4 mins
WQ3𝑆𝐹=100 amort. time 7.9 mins 12.3 mins 7.5 mins

Table 4: Runtime and memory comparison for a million
samples over joins with many-to-many links.

baseline proposed

non-stream one∗-pass multi-pass

WQX𝑆𝐹=10 memory 10.7 GB 1.6 GB 2.2 GB
WQX𝑆𝐹=100 memory 95.0 GB 9.8 GB 7.2 GB
QF memory 428.4 GB 91.5 GB 16.2 GB

WQX𝑆𝐹=10 average time 1.9 mins 1.4 mins 1.8 mins
WQX𝑆𝐹=100 average time 20.6 mins 13.1 mins 14.0 mins
QF avg. time 126.5 mins 36.0 mins 47.0 mins

WQX𝑆𝐹=10 amort. time 0.7 mins 1.4 mins 1.8 mins
WQX𝑆𝐹=100 amort. time 7.9 mins 13.1 mins 14.0 mins
QF amortised time 63.1 mins 36.0 mins 47.0 mins

0.0

0.2

0.4

0.6

0.8

1.0
𝑃𝑟 (𝑋 ≤ 𝑎)

𝑎 ∈ N

(a) Discrete Distribution

0.0

0.2

0.4

0.6

0.8

1.0
𝑃𝑟 (𝑋 ≤ 𝑥)

𝑥 ∈ R+

(b) Continuous Distribution

Figure 8: Converting discrete distribution into continuous
one by adding uniform variates (cf. Lemma A.1) to apply
continuous goodness-of-fit tests such as the K-S Test.

A APPENDIX: GOODNESS-OF-FIT TESTING
FOR MULTINOMIAL DISTRIBUTIONS

For sample validation, Zhao et al. [78] propose to utilise conven-
tional KS-testing to validate samples over join rows. This is at
odds with the statistics literature on (conventional) KS-testing,
which requires a continuous reference distribution. While KS-
testing can be adopted to the discrete setting [4, 54], the work
[78] reports distribution-free critical values which do not exist
in the discrete case and appears to confuse type-I and type-II
errors. The range of the reported 𝐷-statistics would also (almost
certainly) not occur for the reported sample sizes, if the join
result had sufficiently many distinct results to approximate a
continuous distribution.

Thus, in the following a correct way is presented how to ap-
ply Kolmogorov-Smirnov (KS) testing when the reference dis-
tribution is discrete, as an alternative to goodness-of-fit tests
for multinomial distributions such as the likelihood ratio test
[17, 29]. Multinomial tests ignore the ordering unlike KS-tests
that were originally designed for continuous distributions. There
exist discrete variants of KS-tests [4, 54], but they lose a lot of
desirable properties of the continuous one such as distribution-
free statistics, which is why it is here instead proposed to use
the (conventional) continuous KS-test after turning the discrete
distribution into a continuous one in a straightforward way:

Lemma A.1 (continuous conversion). Let [𝑥1, 𝑥2, . . . , 𝑥𝑁]
be a multinomially distributed frequency vector with event proba-

bilities 𝑝1, . . . , 𝑝𝑁 . Let X be a set obtained by drawing for the 𝑖-th

307

event 𝑥𝑖 independent uniform variates between (𝑖 − 1) and 𝑖 . Then
X’s distribution is continuous with a piecewise-linear cumulative

distribution function (CDF), i.e., 𝐹 (𝑥) = 𝑝 ⌈𝑥 ⌉ (𝑥 − ⌈𝑥⌉) +∑⌈𝑥 ⌉
𝑖=1 𝑝𝑖 .

Proof. As shown in Figure 8, the steps of the discrete CDF are
smoothed by adding uniform variates, which have a continuous
uniform distribution with a linear CDF. Thus one obtains a CDF
that interpolates linearly between the steps without any jumps.

□

The suggested continuous conversion describes how both
samples and reference distributions have to be modified and is a
clean way of applying continuous goodness-of-fit tests. While
this comes with the disadvantage of slightly diluting the original
distribution with additional randomness, this is needed to extend
the distribution’s finite support to an infinite one. Luckily, the
impact of the added randomness quickly dissipates with larger
discrete support size in this application, which means that the
power of the test is asymptotically similar to conventional KS-
testing.

B APPENDIX: PROOFS
B.1 Proof for Theorem 2.3
Let 𝐴 and 𝐵 be two one-pass data streams, i.e., both stream by
just once. Let distinct be the minimal number of distinct link
values of 𝐴 and 𝐵, |sample| be the sample size. Then collecting
a multinomial sample (with non-zero probabilities) of 𝐴 |><|𝐵 re-
quires storing Ω (min{ |𝐴| + |𝐵 |, distinct · |sample| }) stream
items.

Proof. The order in which the streams are interleaved can be
arbitrary; for simplicity, assume that that stream 𝐴 has higher
cardinality than stream 𝐵 and the entirety of stream 𝐴 is seen
first before stream 𝐵. Producing the join is hard even if stream 𝐵

contains only a single item 𝛽 : if 𝛽 links with an item in𝐴, then the
output should contain 𝛽 , but not otherwise. Determining whether
𝛽 links with an item in 𝐴 essentially requires storing 𝐴 in full. It
is straightforward to let 𝐴 encode a bit string 𝑥 of length 𝑛 = |𝐴|,
where item 𝛼𝑖 ∈ 𝐴 if and only if the corresponding bit 𝑥𝑖 = 1.
This captures the Index problem [39], whose communication
complexity gives a lower bound of Ω(𝑛) for the space needed to
solve the join problem. In this case, the join is either empty or {𝛽},
and so any sample must contain the full join results. In the case
when 𝐴 has a small set of distinct item identifiers, then the same
argument shows that the space required must be proportional to
this cardinality, distinct. □

B.2 Proof for Theorem 2.5
A one∗-pass sampler over 𝐴 |><|𝐵 |><| . . . |><|𝐺 requires Ω(distinct)
bits of memory where distinct is the number of distinct link
values appearing in the streams 𝐵, . . . ,𝐺 .

Proof. The basic idea is to consider an adversarial setting
where the content of stream 𝐴 depends on which statistics are
collected for stream 𝐵 (simulating unpredictable data distribu-
tions). Clearly, if for an item in 𝐴 we do not have any statistics
available about how items in 𝐵 link with it, it is impossible to
sample the item from 𝐴 with the correct probability. If 𝐵 is only
streamed once, clearly one would not only need the statistics but
also the items, which means “one∗-pass” is indeed the strictest
setting that is still feasible without having to record the full
stream.

The formal proof is by contradiction. If fewer than𝑀 values are
stored for stream 𝐵, then there may exist a link value for which
no statistics are available when 𝐴 is streamed. The contradictory
claim is then that an item from 𝐴 is sampled with the correct
probability without any knowledge of how many items in 𝐵 link
with it. Similarly, as 𝐵 is streamed before 𝐴, there is no way
of knowing which link values appear only in 𝐵. Note that this
presumes an adversarial setting, where the content of streams is
allowed to be reactive to which link values are stored (simulating
unpredictable data distributions). If 𝐵 is only streamed once, it
would furthermore require storing all stream items as outlined
in the previous theorem. □

B.3 Proof for Theorem 4.1
Ordered sampling brings the population items into an order such
that one can pick the first items as the sample. Using this idea, one
can generate for each item with weight𝑤𝑖 an independent expo-
nential variate𝑉𝑖 ∼ Exp(𝑤𝑖) and order them by these variates. It
follows then from well-known properties of exponential variates
that Pr(𝑉𝑖 = min({𝑉1,𝑉2, . . . ,𝑉𝑁 }) =

𝑤𝑖

𝑤1+𝑤2+...+𝑤𝑁
. Thus, the

minimum is chosen with probability proportional to weights, the
second-smallest item with probability proportional to weights
if the minimum item did not exist, and so on. Efraimidis & Spi-
rakis [21] (E&S) analogously use 𝐾𝑖 = 𝑒−𝑉𝑖 ∼ 𝑈 (0, 1)1/𝑤𝑖 as
random “keys”, which flips the order by applying the strictly
decreasing function 𝑒−𝑥 , but otherwise yields the same prop-
erties and probabilities just for the maximum. E&S then define
the 𝑛 items with the largest 𝐾𝑖 as a “weighted sample” of size
𝑛, although only the largest-key item is chosen proportional to
weights in the final sample [64]. Thus, E&S do not use the weights
to decide probabilities of the overall sampling process, but only
in relation to rounds of without-replacement draws in the urn
model. Meanwhile, here the 𝑛 largest-key items are only used as
an intermediary for the population. Weighted with-replacement
sampling has a very simple interpretation, i.e., each item is inde-
pendently selected into the sample with probability proportional
to its weight. This approach is described in Algorithm 3. The
first step is to find the total weight𝑊P of all population items
P and the 𝑛 largest-key items 𝑆1, 𝑆2, . . . , 𝑆𝑛 from P still sorted
by the keys, i.e., 𝑘1 ≥ 𝑘2 ≥ . . . ≥ 𝑘𝑛 (Lines 2-5). From that, it
follows that all other population items P/{𝑆1, 𝑆2, . . . , 𝑆𝑛} have
a smaller key than 𝑘𝑛 and will not make it into the multino-
mial sample. To find the largest-key items one can employ the
weighted reservoir sampler by E&S [21] with the exponential
jump algorithm. In the next steps of the approach (Lines 8-12),
one draws in each step an independent element 𝑀𝑗 with 𝑗 ≥ 1
and maintains at each moment the total weight𝑊𝑀 of all distinct
elements {𝑀1, 𝑀2, . . . , 𝑀 𝑗−1} that were previously selected. Note
that for𝑀𝑗 = 𝑀1 the “abuse of notation” {𝑀1, 𝑀2, . . . , 𝑀 𝑗−1} is
used to denote an empty set and for𝑀𝑗 = 𝑀2 it is equal to {𝑀1}.
With probabilities proportional to weights,𝑀𝑗 is either in the set
of previously chosen items or not yet chosen items:

𝑀𝑗 ∈
{
{𝑀1, 𝑀2, . . . , 𝑀 𝑗−1} with probability𝑊𝑀/𝑊P
P/{𝑀1, 𝑀2, . . . , 𝑀 𝑗−1} otherwise

A (biased) coin flip determines according to these probabilities
from which set one random element is selected with probabilities
according to weights. Observe that it is exploited here that {𝑆1} is
a one-item weighted sample from P, {𝑆2} is a one-item weighted
sample from P/{𝑆1}, {𝑆3} is a one-item weighted sample from
P/{𝑆1, 𝑆2} and so on.

308

C DIFFERENTIALLY PRIVATE SELECTION
OVER JOINS

Suppose join rows are scored in terms of interest based on sen-
sitive user data and the impact of a single user on the scores is
limited. Then differentially private join sampling allows to select
the join rows of interest a lot more likely, but not too likely as
to reveal with certainty which users participated in the scores.
Formally:

Lemma C.1. Let 𝐴, 𝐵, . . . ,𝐺 be streams. Let 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵,𝛾 ∈ 𝐺
be stream items and 𝑢 be a real-valued utility function defined over

them. Let 𝑢 (𝛼) + 𝑢 (𝛽) + . . . + 𝑢 (𝛾) for any combination of linked

stream items change at most by ±Δ due to a single added/removed

user. Then it is Y-differentially private to release a multinomial

sample of size 𝑛 with Pr(𝛼, 𝛽, . . . , 𝛾) ∝ 𝑤 (𝛼) ·𝑤 (𝛽) · . . . ·𝑤 (𝛾) and
𝑤 (𝑥) = exp(Y𝑢 (𝑥)2𝑛Δ) for any item 𝑥 .

Proof. The proof follows via the well-known exponential
mechanism [49] and sequential composition results [19] that
the probability of each multinomial sample of size 𝑛 changes
at most by a multiplicative factor exp(Y) due to a single user
being added or removed when using this weight function. Per
definition 𝑢 (𝛼) +𝑢 (𝛽) + . . . +𝑢 (𝛾) has sensitivity Δ, i.e., changes
at most by ±Δ due to a single added/removed user, and one can
rewrite the probability as (∝ hides normalisation constants):

Pr(𝛼, 𝛽, . . . , 𝛾) ∝ exp
(

Y
2𝑛Δ (𝑢 (𝛼) + 𝑢 (𝛽) + . . . + 𝑢 (𝛾))

)
Via the exponential mechanism [49] then follows that Pr(𝛼, 𝛽, . . . , 𝛾)
changes due to a single added/removed user at most by a multi-
plicative factor Y

𝑛 , i.e., drawing one sample is Y/𝑛-differentially
private. Via sequential composition [19] then follows that draw-
ing 𝑛 independent samples is Y-differentially private. □

ACKNOWLEDGMENTS
This work is supported by European Research Council grant
ERC-2014-CoG 647557 and The Alan Turing Institute under the
EPSRC grant EP/N510129/1.

REFERENCES
[1] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ra-

maswamy. 1999. Join Synopses for Approximate Query Answering. In ACM

SIGMOD Conference. 275–286. https://doi.org/10.1145/304182.304207
[2] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel

Madden, and Ion Stoica. 2013. BlinkDB: queries with bounded errors and
bounded response times on very large data. In Eurosys Conference. 29–42.
https://doi.org/10.1145/2465351.2465355

[3] Mohammed Al-Kateb, Byung Suk Lee, and Xiaoyang Sean Wang. 2007. Reser-
voir Sampling over Memory-Limited Stream Joins. In International Conference

on Scientific and Statistical Database Management. 23. https://doi.org/10.1109/
SSDBM.2007.40

[4] Taylor B. Arnold and John W. Emerson. 2011. Nonparametric Goodness-of-Fit
Tests for Discrete Null Distributions. R J. 3, 2 (2011), 34. https://doi.org/10.
32614/rj-2011-016

[5] Kedar Bellare, Suresh Iyengar, Aditya G. Parameswaran, and Vibhor Rastogi.
2012. Active sampling for entity matching. In ACM SIGKDD Conference. 1131–
1139. https://doi.org/10.1145/2339530.2339707

[6] Daniel A Bloch and Geoffrey S Watson. 1967. A Bayesian study of the multi-
nomial distribution. The Annals of Mathematical Statistics (1967), 1423–1435.

[7] Ken RW Brewer and Muhammad Hanif. 2013. Sampling with unequal proba-

bilities. Vol. 15. Springer Science & Business Media.
[8] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole

Schweikardt. 2020. Answering (Unions of) Conjunctive Queries using Ran-
dom Access and Random-Order Enumeration. In Proceedings of the 39th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS

2020, Portland, OR, USA, June 14-19, 2020, Dan Suciu, Yufei Tao, and Zhewei
Wei (Eds.). ACM, 393–409. https://doi.org/10.1145/3375395.3387662

[9] Surajit Chaudhuri, Gautam Das, and Vivek R. Narasayya. 2007. Optimized
stratified sampling for approximate query processing. ACM Trans. Database

Syst. 32, 2 (2007), 9. https://doi.org/10.1145/1242524.1242526

[10] Surajit Chaudhuri, RajeevMotwani, and Vivek R. Narasayya. 1999. On Random
Sampling over Joins. In ACM SIGMOD Conference. 263–274. https://doi.org/
10.1145/304182.304206

[11] Yu Chen and Ke Yi. 2017. Two-Level Sampling for Join Size Estimation. In
ACM SIGMOD Conference. 759–774. https://doi.org/10.1145/3035918.3035921

[12] C. K. Chow and C. N. Liu. 1968. Approximating discrete probability distri-
butions with dependence trees. IEEE Trans. Inf. Theory 14, 3 (1968), 462–467.
https://doi.org/10.1109/TIT.1968.1054142

[13] Peter Christen. 2008. Automatic record linkage using seeded nearest neighbour
and support vector machine classification. In ACM SIGKDD Conference. 151–
159. https://doi.org/10.1145/1401890.1401913

[14] William W. Cohen and Haym Hirsh. 1998. Joins that Generalize: Text
Classification Using WHIRL. In ACM SIGKDD Conference. 169–173. http:
//www.aaai.org/Library/KDD/1998/kdd98-027.php

[15] Michael D. Conover, Matthew Hayes, Scott Blackburn, Pete Skomoroch, and
Sam Shah. 2018. Pangloss: Fast Entity Linking in Noisy Text Environments. In
ACM SIGKDD Conference. 168–176. https://doi.org/10.1145/3219819.3219899

[16] Graham Cormode and Nick G. Duffield. 2014. Sampling for big data: a tutorial.
In ACM SIGKDD Conference. 1975. https://doi.org/10.1145/2623330.2630811

[17] Noel Cressie and Timothy RC Read. 1984. Multinomial goodness-of-fit tests.
Journal of the Royal Statistical Society: Series B (Methodological) 46, 3 (1984),
440–464.

[18] Wei Dong and Ke Yi. 2021. Residual Sensitivity for Differentially Private
Multi-Way Joins. In SIGMOD ’21: International Conference on Management of

Data, Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos
Idreos, and Divesh Srivastava (Eds.). ACM, 432–444. https://doi.org/10.1145/
3448016.3452813

[19] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of
Differential Privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.
https://doi.org/10.1561/0400000042

[20] Pavlos S. Efraimidis. 2015. Weighted Random Sampling over Data Streams.
In Algorithms, Probability, Networks, and Games - Scientific Papers and Essays

Dedicated to Paul G. Spirakis on the Occasion of His 60th Birthday (Lecture

Notes in Computer Science), Christos D. Zaroliagis, Grammati E. Pantziou, and
Spyros C. Kontogiannis (Eds.), Vol. 9295. Springer, 183–195. https://doi.org/
10.1007/978-3-319-24024-4_12

[21] Pavlos S. Efraimidis and Paul G. Spirakis. 2006. Weighted random sampling
with a reservoir. Inf. Process. Lett. 97, 5 (2006), 181–185. https://doi.org/10.
1016/j.ipl.2005.11.003

[22] Ted H Emigh. 1983. On the number of observed classes from a multinomial
distribution. Biometrics (1983), 485–491.

[23] Raphaël Féraud, Fabrice Clérot, and Pascal Gouzien. 2010. Sampling the join
of streams. In Classification as a Tool for Research. 307–314.

[24] Nir Friedman, Dan Geiger, and Moises Goldszmidt. 1997. Bayesian network
classifiers. Machine learning 29, 2 (1997), 131–163.

[25] Rainer Gemulla, Philipp Rösch, and Wolfgang Lehner. 2008. Linked Bernoulli
Synopses: Sampling along Foreign Keys. In Scientific and Statistical Database

Management. 6–23. https://doi.org/10.1007/978-3-540-69497-7_4
[26] Lukasz Golab and M. Tamer Özsu. 2005. Update-Pattern-Aware Modeling

and Processing of Continuous Queries. In ACM SIGMOD Conference. 658–669.
https://doi.org/10.1145/1066157.1066232

[27] Peter J. Haas and Joseph M. Hellerstein. 1999. Ripple Joins for Online Aggre-
gation. In ACM SIGMOD Conference. 287–298. https://doi.org/10.1145/304182.
304208

[28] Marios Hadjieleftheriou, Xiaohui Yu, Nick Koudas, andDivesh Srivastava. 2008.
Hashed samples: selectivity estimators for set similarity selection queries. Proc.
VLDB Endow. 1, 1 (2008), 201–212. https://doi.org/10.14778/1453856.1453883

[29] Wassily Hoeffding. 1965. Asymptotically optimal tests for multinomial distri-
butions. The Annals of Mathematical Statistics (1965), 369–401.

[30] Dawei Huang, Dong Young Yoon, Seth Pettie, and Barzan Mozafari. 2019. Join
on Samples: A Theoretical Guide for Practitioners. Proc. VLDB Endow. 13, 4
(2019), 547–560. https://doi.org/10.14778/3372716.3372726

[31] Rajesh Jayaram, Gokarna Sharma, Srikanta Tirthapura, and David P. Woodruff.
2019. Weighted Reservoir Sampling from Distributed Streams. In Proceedings

of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, Dan
Suciu, Sebastian Skritek, and Christoph Koch (Eds.). ACM, 218–235. https:
//doi.org/10.1145/3294052.3319696

[32] George H. John and Pat Langley. 1996. Static Versus Dynamic Sampling for
Data Mining. In ACM SIGKDD Conference. 367–370. http://www.aaai.org/
Library/KDD/1996/kdd96-069.php

[33] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma,
Robert Grandl, Surajit Chaudhuri, and Bolin Ding. 2016. Quickr: Lazily Ap-
proximating Complex AdHoc Queries in BigData Clusters. In ACM SIGMOD

Conference. 631–646. https://doi.org/10.1145/2882903.2882940
[34] Alexandros Karakasidis, Georgia Koloniari, and Vassilios S. Verykios. 2015.

Scalable Blocking for Privacy Preserving Record Linkage. In ACM SIGKDD

Conference. 527–536. https://doi.org/10.1145/2783258.2783290
[35] Harry Kesten and Norman Morse. 1959. A property of the multinomial distri-

bution. The Annals of Mathematical Statistics 30, 1 (1959), 120–127.
[36] Ivan Kojadinovic and Jun Yan. 2012. Goodness-of-fit testing based on a

weighted bootstrap: A fast large-sample alternative to the parametric boot-
strap. Canadian Journal of Statistics 40, 3 (2012), 480–500.

309

[37] Wouter Kool, Herke van Hoof, and Max Welling. 2020. Ancestral Gumbel-
Top-k Sampling for Sampling Without Replacement. J. Mach. Learn. Res. 21
(2020), 47:1–47:36. http://jmlr.org/papers/v21/19-985.html

[38] Ios Kotsogiannis, Yuchao Tao, Xi He,Maryam Fanaeepour, AshwinMachanava-
jjhala, Michael Hay, and Gerome Miklau. 2019. PrivateSQL: A Differentially
Private SQL Query Engine. Proc. VLDB Endow. 12, 11 (2019), 1371–1384.
https://doi.org/10.14778/3342263.3342274

[39] Ilan Kremer, Noam Nisan, and Dana Ron. 1999. On Randomized One-Round
Communication Complexity. Comput. Complex. 8, 1 (1999), 21–49. https:
//doi.org/10.1007/s000370050018

[40] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue B. Moon. 2010. What
is Twitter, a social network or a news media?. In International Conference on

World Wide Web. 591–600. https://doi.org/10.1145/1772690.1772751
[41] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas

Neumann. 2017. Cardinality Estimation Done Right: Index-Based Join Sam-
pling. In Conference on Innovative Data Systems Research. http://cidrdb.org/
cidr2017/papers/p9-leis-cidr17.pdf

[42] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online
Aggregation via Random Walks. In ACM SIGMOD Conference. 615–629. https:
//doi.org/10.1145/2882903.2915235

[43] Ping Li. 2015. 0-Bit ConsistentWeighted Sampling. InACMSIGKDDConference.
665–674. https://doi.org/10.1145/2783258.2783406

[44] Qingzhi Ma, Ali Mohammadi Shanghooshabad, Mehrdad Almasi, Meghdad
Kurmanji, and Peter Triantafillou. 2021. Learned Approximate Query Process-
ing: Make it Light, Accurate and Fast. In 11th Conference on Innovative Data Sys-
tems Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2021/papers/cidr2021_paper15.pdf

[45] Qingzhi Ma and Peter Triantafillou. 2019. DBEst: Revisiting Approximate
Query Processing Engines with Machine Learning Models. In Proceedings of

the 2019 International Conference on Management of Data, SIGMOD Conference

2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, Peter A. Boncz, Stefan
Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM,
1553–1570. https://doi.org/10.1145/3299869.3324958

[46] Shuangge Ma and Michael R Kosorok. 2005. Robust semiparametric M-
estimation and the weighted bootstrap. Journal of Multivariate Analysis 96, 1
(2005), 190–217.

[47] Ashwin Machanavajjhala, Daniel Kifer, John M. Abowd, Johannes Gehrke, and
Lars Vilhuber. 2008. Privacy: Theory meets Practice on the Map. In Proceedings
of the 24th International Conference on Data Engineering, ICDE 2008, April 7-12,

2008, Cancún, Mexico, Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen
(Eds.). IEEE Computer Society, 277–286. https://doi.org/10.1109/ICDE.2008.
4497436

[48] Ben McCamish, Vahid Ghadakchi, Arash Termehchy, Behrouz Touri, and
Liang Huang. 2018. The Data Interaction Game. In Proceedings of the 2018

International Conference on Management of Data, SIGMOD Conference 2018,

Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M. Jermaine,
and Philip A. Bernstein (Eds.). ACM, 83–98. https://doi.org/10.1145/3183713.
3196899

[49] Frank McSherry and Kunal Talwar. 2007. Mechanism Design via Differential
Privacy. In 48th Annual IEEE Symposium on Foundations of Computer Sci-

ence (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings. IEEE
Computer Society, 94–103. https://doi.org/10.1109/FOCS.2007.41

[50] Arjun Narayan and Andreas Haeberlen. 2012. DJoin: Differentially Private
Join Queries over Distributed Databases. In 10th USENIX Symposium on Op-

erating Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA,

October 8-10, 2012, Chandu Thekkath andAmin Vahdat (Eds.). USENIXAssocia-
tion, 149–162. https://www.usenix.org/conference/osdi12/technical-sessions/
presentation/narayan

[51] Frank Olken. 1993. Random sampling from databases. Ph.D. Dissertation.
University of California, Berkeley.

[52] Frank Olken and Doron Rotem. 1995. Random sampling from databases: a
survey. Statistics and Computing 5, 1 (1995), 25–42.

[53] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. 2018.
VerdictDB: Universalizing Approximate Query Processing. In ACM SIGMOD

Conference. 1461–1476. https://doi.org/10.1145/3183713.3196905
[54] Anthony N Pettitt and Michael A Stephens. 1977. The Kolmogorov-Smirnov

goodness-of-fit statistic with discrete and grouped data. Technometrics 19, 2
(1977), 205–210.

[55] Jiadong Ren, Wanchang Jiang, and Cong Huo. 2007. Random sampling over
streaming window joins. In International Symposium on Data, Privacy, and

E-Commerce. 53–55.
[56] Bengt Rosén. 1997. On sampling with probability proportional to size. Journal

of statistical planning and inference 62, 2 (1997), 159–191.
[57] Tim Roughgarden. 2016. Communication Complexity (for Algorithm De-

signers). Found. Trends Theor. Comput. Sci. 11, 3-4 (2016), 217–404. https:
//doi.org/10.1561/0400000076

[58] M Ruiz, FJ Girón, CJ Pérez, J Martín, and C Rojano. 2008. A Bayesian model
for multinomial sampling with misclassified data. Journal of Applied Statistics
35, 4 (2008), 369–382.

[59] MR Sampford. 1967. On sampling without replacement with unequal proba-
bilities of selection. Biometrika 54, 3-4 (1967), 499–513.

[60] Ali Mohammadi Shanghooshabad, Meghdad Kurmanji, Qingzhi Ma, Michael
Shekelyan, Mehrdad Almasi, and Peter Triantafillou. 2021. PGMJoins: Random
Join Sampling with Graphical Models. In SIGMOD ’21: International Conference

on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 1610–1622.
https://doi.org/10.1145/3448016.3457302

[61] Lefteris Sidirourgos, Martin L. Kersten, and Peter A. Boncz. 2013. Scientific
discovery through weighted sampling. In 2013 IEEE International Conference

on Big Data (IEEE BigData 2013), 6-9 October 2013, Santa Clara, CA, USA,
Xiaohua Hu, Tsau Young Lin, Vijay V. Raghavan, Benjamin W. Wah, Ricardo
Baeza-Yates, Geoffrey C. Fox, Cyrus Shahabi, Matthew Smith, Qiang Yang,
Rayid Ghani, Wei Fan, Ronny Lempel, and Raghunath Nambiar (Eds.). IEEE
Computer Society, 300–306. https://doi.org/10.1109/BigData.2013.6691587

[62] Utkarsh Srivastava and Jennifer Widom. 2004. Memory-Limited Execution
of Windowed Stream Joins. In (e)Proceedings of the Thirtieth International

Conference on Very Large Data Bases, VLDB 2004, Toronto, Canada, August 31 -

September 3 2004, Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann,
Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer (Eds.). Morgan
Kaufmann, 324–335. https://doi.org/10.1016/B978-012088469-8.50031-0

[63] Michal Startek. 2016. An asymptotically optimal, online algorithm for
weighted random sampling with replacement. CoRR abs/1611.00532 (2016).
arXiv:1611.00532 http://arxiv.org/abs/1611.00532

[64] Yves Tillé. 2019. A general result for selecting balanced unequal probability
samples from a stream. Inf. Process. Lett. 152 (2019). https://doi.org/10.1016/j.
ipl.2019.105840

[65] Daniel Ting and Eric Brochu. 2018. Optimal Subsampling with Influence
Functions. (2018), 3654–3663. https://proceedings.neurips.cc/paper/2018/
hash/57c0531e13f40b91b3b0f1a30b529a1d-Abstract.html

[66] Chi Wang and Bailu Ding. 2019. Fast Approximation of Empirical Entropy
via Subsampling. In ACM SIGKDD Conference. 658–667. https://doi.org/10.
1145/3292500.3330938

[67] HaiYing Wang. 2019. More Efficient Estimation for Logistic Regression with
Optimal Subsamples. J. Mach. Learn. Res. 20 (2019), 132:1–132:59. http:
//jmlr.org/papers/v20/18-596.html

[68] Haiying Wang and Yanyuan Ma. 2021. Optimal subsampling for quantile
regression in big data. Biometrika 108, 1 (2021), 99–112.

[69] HaiYing Wang and Jiahui Zou. 2021. A comparative study on sampling
with replacement vs Poisson sampling in optimal subsampling. In The 24th

International Conference on Artificial Intelligence and Statistics, AISTATS 2021,

April 13-15, 2021, Virtual Event (Proceedings of Machine Learning Research),
Arindam Banerjee and Kenji Fukumizu (Eds.), Vol. 130. PMLR, 289–297. http:
//proceedings.mlr.press/v130/wang21a.html

[70] Mingxi Wu and Chris Jermaine. 2006. Outlier detection by sampling with
accuracy guarantees. In ACM SIGKDD Conference. 767–772. https://doi.org/
10.1145/1150402.1150501

[71] Junyi Xie and Jun Yang. 2007. A Survey of Join Processing in Data Streams.
In Data Streams - Models and Algorithms. 209–236. https://doi.org/10.1007/
978-0-387-47534-9_10

[72] Yang Yang, Yizhou Sun, Jie Tang, Bo Ma, and Juan-Zi Li. 2015. Entity Matching
across Heterogeneous Sources. In ACM SIGKDD Conference. 1395–1404. https:
//doi.org/10.1145/2783258.2783353

[73] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73. https://doi.org/10.14778/3421424.3421432

[74] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Very

Large Data Bases. 82–94.
[75] Yaqiong Yao and HaiYing Wang. 2019. Optimal subsampling for softmax

regression. Statistical Papers 60, 2 (2019), 585–599.
[76] Haoyu Zhang and Qin Zhang. 2017. EmbedJoin: Efficient Edit Similarity Joins

via Embeddings. In ACM SIGKDD Conference. 585–594. https://doi.org/10.
1145/3097983.3098003

[77] Haoyu Zhang and Qin Zhang. 2019. MinJoin: Efficient Edit Similarity Joins
via Local Hash Minima. In ACM SIGKDD Conference. 1093–1103. https:
//doi.org/10.1145/3292500.3330853

[78] Zhuoyue Zhao, Robert Christensen, Feifei Li, XiaoHu, and Ke Yi. 2018. Random
Sampling over Joins Revisited. In ACM SIGMOD Conference. 1525–1539. https:
//doi.org/10.1145/3183713.3183739

310

