
Finance and Stochastics
https://doi.org/10.1007/s00780-022-00496-5

The infinite-horizon investment–consumption problem for
Epstein–Zin stochastic differential utility. II: Existence,
uniqueness and verification for ϑ ∈ (0,1)

Martin Herdegen1 · David Hobson1 · Joseph Jerome2

Received: 14 July 2021 / Accepted: 6 October 2022
© The Author(s) 2022

Abstract
In this article, we consider the optimal investment–consumption problem for an
agent with preferences governed by Epstein–Zin (EZ) stochastic differential util-
ity (SDU) over an infinite horizon. In a companion paper Herdegen et al. (Finance
Stoch. 27:127–158, 2023), we argued that it is best to work with an aggregator in
discounted form and that the coefficients R of relative risk aversion and S of elastic-
ity of intertemporal complementarity (the reciprocal of the coefficient of elasticity of
intertemporal substitution) must lie on the same side of unity for the problem to be
well founded. This can be equivalently expressed as ϑ := 1−R

1−S
> 0.

In this paper, we focus on the case ϑ ∈ (0,1). The paper has three main con-
tributions: first, to prove existence of infinite-horizon EZ SDU for a wide class of
consumption streams and then (by generalising the definition of SDU) to extend this
existence result to any consumption stream; second, to prove uniqueness of infinite-
horizon EZ SDU for all consumption streams; and third, to verify the optimality of
an explicit candidate solution to the investment–consumption problem in the setting
of a Black–Scholes–Merton financial market.
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1 Introduction

This paper is the second of a trio of papers by the same authors; see also Herde-
gen et al. [4, 3]. The collective goal of these papers is to undertake a rigorous study
of a Merton-style infinite-horizon investment–consumption problem in the setting
of Epstein–Zin (EZ) stochastic differential utility (SDU). In particular, the aim is
to study when the problem is mathematically well posed and economically well
founded, and if so, to derive the candidate optimal strategy, the candidate value func-
tion and the candidate optimal utility process (see [4]). Once these issues have been
resolved, the objective is to prove existence and uniqueness (where possible) of a util-
ity process associated to an arbitrary consumption stream and to verify that the can-
didate optimal strategy is indeed optimal in a large class of admissible investment–
consumption strategies (see the present paper and [3]).

EZ SDU has two key parameters: R, representing the coefficient of relative risk
aversion, and S, representing the coefficient of elasticity of intertemporal comple-
mentarity (EIC), the reciprocal of the coefficient of the elasticity of intertemporal
substitution. In [4], we argued that if R and S lie on opposite sides of unity, then EZ
SDU is not well founded in the sense that even though it is possible to obtain (candi-
date) solutions to the backward stochastic differential equations (BSDEs) defining the
utility process, these solutions have the characteristics of a utility bubble: the current
value arises not from integrated consumption over time, but rather from a postulated
ever larger value of the utility process at a future time. We must have ϑ := 1−R

1−S
> 0

for the utility process to have an interpretation which is economically sound.
One of the insights in [4] which led us to the above conclusion is that it is better

to work with the discounted form of EZ SDU rather than the difference form. The
advantage of the discounted form is that the aggregator takes values in either [−∞,0]
or [0,∞] rather than in [−∞,∞]. Since the sign of the aggregator is unambiguous,
it is always possible to assign a value to the integral of the aggregator against time
(and also to the expected value of the integral of the aggregator).

In this paper, we focus on the case ϑ ∈ (0,1). The case ϑ > 1 is covered in [3].
Note that ϑ = 1 is the case of additive utility. This paper aims to answer three main
questions under this parameter restriction:

1) To which consumption streams is it possible to assign a utility process?
2) For which consumption streams is the assigned utility process unique?
3) Can we verify that an explicit candidate optimal investment–consumption strat-

egy in a Black–Scholes–Merton market is indeed optimal for the class of all admis-
sible investment–consumption strategies?

The contributions of this paper are threefold, and each contribution addresses one of
the three questions above.

First, we prove a set of existence results (covering ϑ ∈ (0,∞)) which show that
there exists a well-defined utility process for a large class of consumption streams.
Then, under the assumption ϑ < 1, we show how to extend the existence result further
to give a well-defined (though not necessarily finite-valued) utility process for any
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consumption stream. Key to the proofs is the fact that under our formulation, the
aggregator takes only one sign.

Second, we turn to uniqueness. Again assuming ϑ ∈ (0,1), we show that for EZ
SDU preferences, the utility process associated to a consumption stream is unique.
The main idea is to apply a comparison theorem for (sub- and super-)solutions to a
representation of the utility process.

Third, we turn to the identification of the optimal investment–consumption strat-
egy and the optimal utility process. At this point, we specialise to a constant-para-
meter Black–Scholes–Merton market. In this setting, the candidate optimal strategy
and candidate optimal utility process are known (see Schroder and Skiadas [11], Mel-
nyk et al. [8], Kraft et al. [6] as well as Herdegen et al. [4]), and the main techniques
behind a verification argument are also well established in the literature. But what
distinguishes our results is the fact that we optimise over all attainable consumption
streams, i.e., all consumption streams which can be financed from an initial wealth
x > 0. In the extant literature, optimisation typically only takes place over a sub-
family of consumption streams for which the corresponding utility process possesses
certain regularity and integrability conditions. Further, since there are very few exis-
tence results in the literature, it often happens that the only strategies for which it can
be verified that the utility process indeed satisfies the required regularity conditions
are the constant proportional investment–consumption strategies. Since we optimise
over all attainable consumption streams, this is a significant advance.

The remainder of this paper is organised as follows. In Sect. 2, we introduce
stochastic differential utility (SDU) and Epstein–Zin (EZ) SDU and summarise the
results of [4]. Once this preliminary discussion has been completed, we are able in
Sect. 3 to give a more thorough description of the issues which arise regarding exis-
tence and uniqueness of utility processes associated to general consumption streams,
and of the strategy of our proofs. In Sect. 4, we prove existence of EZ SDU for a
wide class of consumption streams, including all constant proportional consumption
streams for which the problem is well posed, and any strategies which are ‘close’ to
constant proportional streams in a sense to be made precise. Still, this does not cover
all consumption streams; so in Sects. 5 and 6, we show how the utility process for
an arbitrary consumption stream can be obtained by approximation and taking lim-
its. Section 5 also proves uniqueness of the utility process. In Sect. 7, we introduce
the Black–Scholes–Merton financial market and give expressions for the candidate
optimal investment–consumption strategy and the candidate optimal utility process
in this market. Finally, in Sect. 8, we prove optimality of the candidate optimal strat-
egy (Theorem 8.1), where the optimisation is taken over all attainable consumption
streams and not just those satisfying regularity and integrability conditions. Key re-
sults along the way include a comparison result (Theorem 5.8), existence and unique-
ness results (Theorem 4.5, Theorem B.2) and an approximation result (Theorem 6.5).

2 Epstein–Zin stochastic differential utility

Throughout, we work on a filtered probability space (�,F , (Ft )t≥0,P) satisfying the
usual conditions, where F0 is P-trivial. Let P be the set of progressively measurable
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processes, and P+, P++ the restrictions of P to processes that take nonnegative
and strictly positive values, respectively. Moreover, denote by S the set of all semi-
martingales. We identify processes in P or S that agree up to indistinguishability.

Stochastic differential utility (SDU) is a generalisation of time-additive discoun-
ted expected utility and is designed to allow a separation of risk preferences from
time preferences. For a fuller discussion of the issues considered in this section, see
Herdegen et al. [4, Sect. 4].

Under additive expected utility, the value or utility of a consumption stream,
i.e., a process C ∈ P+, is given by JU(C) = E[∫ ∞

0 U(t,Ct )dt], and the value or
utility process is given by Vt = E[∫ ∞

t
U(s,Cs)ds |Ft ]. Under SDU, the function

U = U(s,Cs) is generalised to become an aggregator g = g(s,Cs,Vs), and the
stochastic differential utility process V C = (V C

t )t≥0 associated to a consumption
stream C solves

V C
t = E

[∫ ∞

t

g(s,Cs,V
C
s )ds

∣
∣
∣
∣Ft

]

. (2.1)

Note that if g takes positive and negative values, the conditional expectation on the
right-hand side of (2.1) need not be well defined. In the following definition, see also
[4, Definition 3.1], g takes values in V ⊆R. Throughout this paper, we assume that
g is one-signed so that V is a subset either of [0,∞] or of [−∞,0].
Definition 2.1 A one-signed aggregator is a function g :R+ ×R+ ×V → V. For
C ∈ P+, define I(g,C) := {V ∈ P : E[∫ ∞

0 |g(s,Cs,Vs)|ds] < ∞}. Then
V ∈ I(g,C) is a utility process associated to the pair (g,C) if it has càdlàg paths
and satisfies (2.1) for all t ∈ [0,∞). Further, let UI(g,C) be the set of elements of
I(g,C) which are uniformly integrable.

By [4, Remark 3.2], a utility process is a special semimartingale and lies in
UI(g,C).

Definition 2.2 A consumption stream C ∈ P+ is g-evaluable if there exists a utility
process V ∈ I(g,C) associated to the pair (g,C). The set of g-evaluable consumption
streams C is denoted by E (g). Furthermore, if the utility process is unique (up to
indistinguishability), then C is g-uniquely evaluable. The set of g-uniquely evaluable
C is denoted by Eu(g).

For a uniquely evaluable consumption stream C, we define the stochastic differ-
ential utility of C and an aggregator g by Jg(C) := V C

0 , where V C satisfies (2.1).
The Epstein–Zin (EZ) aggregator with parameters (R,S) is defined as the function

gEZ :R+ ×V → V given by

gEZ(c, v) := c1−S

1 − S

(
(1 − R)v

) S−R
1−R . (2.2)

Here V = (1 − R)R+ is the domain of the EZ utility process, and both parameters R

and S lie in (0,∞) \ {1}. Note that some care is required when c1−S

1−S
, ((1 − R)v)

S−R
1−R

are in {0,∞}. This case is deferred to Sect. 4.
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Remark 2.3 More generally, we can consider the aggregator

gEZ(t, c, v) := be−δt c1−S

1 − S

(
(1 − R)v

) S−R
1−R ,

where b > 0 and δ ∈ R. Here b is a scaling parameter which can be factored out,
and the discount factor e−δt can be eliminated by a change of numéraire; see [4,
Remark 4.2, Sect. 5.2]. For this reason, and without loss of generality, we take b = 1
and δ = 0 in this paper.

It is convenient to introduce the parameters ϑ := 1−R
1−S

and ρ = S−R
1−R

= ϑ−1
ϑ

, so
that (2.2) becomes

gEZ(c, v) = c1−S

1 − S

(
(1 − R)v

)ρ
. (2.3)

When S = R, the aggregator reduces to the discounted CRRA utility function. This
case corresponds to ϑ = 1 and ρ = 0. We assume throughout that R �= S are both
in (0,∞) \ {1} so that ϑ �= 1 and δ �= 0.

If gEZ is the EZ aggregator for (2.3), the utility process V C = V = (Vt )t≥0 asso-
ciated to consumption C and aggregator gEZ solves

Vt = E

[∫ ∞

t

C1−S
s

1 − S

(
(1 − R)Vs

)ρ ds

∣
∣
∣
∣Ft

]

. (2.4)

One of the main results of [4] is the following theorem ([4, Theorem 4.4]).

Theorem 2.4 For EZ SDU over an infinite horizon with aggregator given by (2.3), we
must have ϑ = 1−R

1−S
> 0 for there to exist solutions to (2.4).

The condition ϑ > 0, or equivalently ρ ∈ (−∞,1), means that both R and S are
either greater than unity or smaller than unity.

3 An overview of the arguments behind the existence and
uniqueness proofs

Our first goal is to discuss existence and uniqueness of EZ SDU over an infinite
horizon. (For general existence and uniqueness results for EZ SDU in a finite-horizon
setting, we refer to Seiferling and Seifried [12].)

Our results and approach are as follows. The first major contribution is an ex-
istence result for all strictly positive consumption streams C = (Ct )t≥0 which sat-
isfy kC1−R

t ≤ E[∫ ∞
t

C1−R
s ds |Ft ] ≤ KC1−R

t for some constants 0 < k ≤ K < ∞.
Note that it follows from the results of [4, Sect. 5.3] (see also Sect. 7 below) that
in a constant-parameter Black–Scholes–Merton financial market, constant propor-
tional investment–consumption strategies satisfy κC1−R

t = E[∫ ∞
t

C1−R
s ds |Ft ] for

some κ ∈ (0,∞), at least when E[∫ ∞
0 C1−R

s ds] < ∞. This means that our result can
be interpreted as a statement about the evaluability of strategies that are, in a very
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precise sense, within a multiplicative constant of a constant proportional investment–
consumption strategy. Moreover, for each such C, there is a unique utility process
V = (V C

t )t≥0 such that kV C1−R
t ≤ (1 − R)Vt ≤ KV C1−R

t for a different pair of
constants (kV ,KV ). (Note that this does not preclude the existence of other utility
processes which do not satisfy such bounds.) The proof relies on the construction of
a contraction mapping and a fixed point argument.

To make further progress, we assume that ϑ ∈ (0,1) (equivalently, ρ < 0). In this
case, we can show that any utility process is unique (in fact, we show uniqueness
for a wide class of aggregators, the main restriction being that they are nonincreas-
ing in v). The key idea is to use concepts from the theory of BSDEs to extend the
concept of a solution to (2.4) to include subsolutions and supersolutions, depending
(roughly speaking) on whether the equality in (2.4) is replaced by ≤ or ≥. Then, again
under the assumption that the aggregator is nonincreasing in v, we prove a compari-
son theorem which tells us that any subsolution always lies below any supersolution.
Uniqueness of solutions then follows by a standard argument as any solution is si-
multaneously both a subsolution and a supersolution. So if V 1 and V 2 are solutions,
then V 1 ≤ V 2 and V 2 ≤ V 1, and hence V 1 = V 2.

For EZ SDU, when ϑ > 1, the comparison argument fails and the uniqueness
argument does not hold. Note that it is not merely that we need to look for a different
strategy of proof—instead, it is simple to give examples for which there are multiple
solutions to (2.4). In this case, a different comparison theorem and a modification
of the definition of the utility process are required. For these reasons, we defer the
discussion of this case to Herdegen et al. [3].

Returning to the case ϑ ∈ (0,1), in order to remove the constraints k > 0 and
K < ∞, we again exploit the comparison theorem to obtain a monotonicity property
for solutions. Provided we allow utility processes to take values in the extended real
line, we can exploit the fact that the aggregator takes only one sign to show that it is
possible to define a unique, possibly infinite-valued, utility process for any attainable
consumption stream. Here we make use of the notion of generalised optional strong
supermartingales.

Where proofs are not given in the main text, they are given in the appendices.

4 Existence of EZ SDU

For the EZ aggregator gEZ, it was shown in Herdegen et al. [4, Sect. 5.3] (see also
Sect. 7 below) that the candidate optimal strategy—along with many other propor-
tional consumption streams—is evaluable. The goal of this section is to prove exis-
tence for a much larger class of consumption streams. The authors are not aware of
any results on the existence of infinite-horizon EZ stochastic differential utility; so
this is an essential result that is currently missing from the literature.

A transformation of the coordinate system leads to a simplified problem. Define
the [0,∞]-valued processes W = (Wt)t≥0 and U = (Ut )t≥0 by

Wt = (1 − R)Vt , Ut = u(Ct ) = ϑC1−S
t , (4.1)

where we agree that Ut := ∞ if Ct = 0 and S > 1.
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Let hEZ(u,w) :R+ ×R+ →R+ be defined by

hEZ(u,w) :=

⎧
⎪⎨

⎪⎩

uwρ, (u,w) ∈ (0,∞) × (0,∞),

wρ, (u,w) ∈ (0,∞) × {0,∞},
u, (u,w) ∈ {0,∞} × [0,∞],

with the standard convention 0ρ := ∞ and ∞ρ = 0 for ρ < 0. The motivation behind
the definition on the boundary is to ensure the continuity in w for fixed u. This also
leads to a natural extension of the EZ aggregator in (2.2) to (c, v) ∈R+ × (1 −R)R+
by setting

gEZ(c, v) =
{

1
1−R

((1 − R)v)ρ if (c, v) ∈R++ × {0, (1 − R)∞},
1

1−S
c1−S if (c, v) ∈ {0, (1 − R)∞} × (1 − R)R+.

We use this definition of gEZ for the remainder of the paper.
Note that V ∈ I(gEZ,C) if and only if W ∈ I(hEZ,U). Consequently, V C is a util-

ity process associated to a consumption stream C with aggregator gEZ if and only if
WU is a utility process associated to the consumption stream U with aggregator hEZ.

We next aim to define an operator FU from an appropriate subset of P++ to itself
satisfying

FU(W)t := E

[∫ ∞

t

hEZ(Us,Ws)ds

∣
∣
∣
∣Ft

]

. (4.2)

Here, we always choose a càdlàg version for the right-hand side of (4.2). In particular,
every fixed point of the operator FU has càdlàg paths. Note that V is a solution to
(2.1) with aggregator gEZ and consumption C if and only W is a fixed point of the
operator FU for the transformed consumption U .

Definition 4.1 Suppose that U = (Ut )t≥0 ∈ P+ and Y = (Yt )t≥0 ∈ P+. We say
that U has the same order as Y if there exist constants k,K ∈ (0,∞) such that
0 ≤ kY ≤ U ≤ KY . Denote the set of processes with the same order as Y by O(Y ).

Definition 4.2 Define Lϑ++ as the subset of all � ∈ P++ with E[∫ ∞
0 �ϑ

s ds] < ∞.
For � ∈ Lϑ++, define the càdlàg process I� = (I�

t )t≥0 by I�
t := E[∫ ∞

t
�ϑ

s ds |Ft ].
Further, define L̂ϑ++ ⊆ Lϑ++ by L̂ϑ++ = {� ∈ Lϑ++ : �ϑ ∈O(I�)}.

Example 4.3 Let Z = (Zt )t≥0 be a geometric Brownian motion such that Zϑ has
a negative drift. Then Z ∈ L̂ϑ++. Indeed, suppose that the drift is −γ < 0. Then
Zϑ = 1

γ
IZ .

Lemma 4.4 Let � ∈ L̂ϑ++ and U ∈ O(�). Then FU( · ) maps O(�ϑ) to itself.

Proof This follows from the more general Lemma B.1 in Appendix B. �



M. Herdegen et al.

We may now state a first existence result. While it is not the strongest existence
result we prove in this paper (Theorem 4.5 is a special case of Theorem B.2), it forms
the backbone of further existence arguments. The idea of the proof is to transform the
problem to an alternative space where the transformed form of FU is a contraction
mapping. The existence of a fixed point then follows from the Banach fixed point
theorem.

Theorem 4.5 Let � ∈ L̂ϑ++ and U ∈ O(�). Then FU defined by (4.2) has a fixed
point W ∈O(�ϑ) ⊆ I(hEZ,U), which is unique in O(�ϑ) and has càdlàg paths.

Proof This is a specific version of the more general Theorem B.2. For a stand-alone
proof, one just needs to set ε = 0 in the proof of Theorem B.2. �

The following result is a direct corollary to Theorem 4.5 and the definitions of W

and U in terms of V and C given in (4.1).

Theorem 4.6 Suppose C ∈ P++ satisfies E[∫ ∞
0 C1−R

s ds] < ∞ and for some con-
stants 0 < k < K < ∞ that

kE

[∫ ∞

t

C1−R
s ds

∣
∣
∣
∣Ft

]

≤ C1−R
t ≤ KE

[∫ ∞

t

C1−R
s ds

∣
∣
∣
∣Ft

]

for all t ≥ 0. Then there exists a utility process V = (V C
t )t≥0 associated with gEZ

and C. Moreover, this utility process is unique in the class of processes with the prop-

erty that (Vt/E[∫ ∞
t

C1−R
s

1−R
ds |Ft ]) is bounded above and below by strictly positive

constants.

Proof Take Ut = �t = C1−S
t . Then U satisfies the conditions of Theorem 4.5 and so

there exists a utility process W associated to (hEZ,U) which is unique in O(�ϑ).
Therefore, V = W

1−R
is a utility process associated to (gEZ,C); uniqueness in the

appropriate class is also inherited. �

Relative to the extant literature, Theorem 4.6 massively expands the set of con-
sumption streams which are known to be evaluable. However, it still does not al-
low us to assign a utility to every consumption stream. For example, the zero con-
sumption stream is excluded. Note also that Theorem 4.6 does not exclude the pos-
sibility that there are other utility processes which do not satisfy the condition that

(Vt/E[∫ ∞
t

C1−R
s

1−R
ds |Ft ]) is bounded.

5 Subsolutions and supersolutions

The aim of this section is to introduce the notions of subsolutions and supersolutions
and then prove a comparison theorem for aggregators that take only one sign and are
nonincreasing in v. As a consequence, all evaluable consumption streams for such
aggregators are uniquely evaluable.

Let V ⊆ [−∞,∞] denote the set in which V may take values. Under our assump-
tion that g is one-signed, we have either V ⊆ R+ or V ⊆ R−. This one-sign property
ensures that integrals are always well defined.



Infinite-horizon Epstein–Zin SDU. II: ϑ ∈ (0,1)

The following definition extends the notion of an aggregator, allowing it also to
depend on the state ω ∈ � of the world.

Definition 5.1 An aggregator random field g : R+ × � ×R+ ×V →V is a product-
measurable mapping such that g( · ,ω, · , · ) is an aggregator for fixed ω ∈ �, and
for progressively measurable processes C = (Ct )t≥0 and V = (Vt )t≥0, the process
(g(t,ω,Ct (ω),Vt (ω)))t≥0 is progressively measurable.

Example 5.2 Let G : R+ ×V×R →V be continuous and Y : [0,∞) × � → R a pro-
gressively measurable process. Then g(t,ω, c, v) := G(c, v,Y (t,ω)) is an aggregator
random field.

Let g be an aggregator random field. The definitions of I(g,C), UI(g,C), the
utility process associated to the pair (g,C) and the sets of evaluable and uniquely
evaluable consumption streams E (g) and Eu(g) follow verbatim from Definitions 2.1
and 2.2.

We now introduce the notion of subsolutions and supersolutions. To this end, recall
that làd stands for “limites à droite”, i.e., for the process to admit right limits.

Definition 5.3 Let C ∈ P+ be a consumption stream and g an aggregator random
field. A V-valued, làd, optional process V is called

– a subsolution for the pair (g,C) if lim supt→∞ E[Vt+] ≤ 0 and for all bounded
stopping times τ1 ≤ τ2,

Vτ1 ≤ E

[

Vτ2+ +
∫ τ2

τ1

g(s,ω,Cs,Vs)ds

∣
∣
∣
∣Fτ1

]

. (5.1)

– a supersolution for the pair (g,C) if lim inft→∞ E[Vt+] ≥ 0 and for all bounded
stopping times τ1 ≤ τ2,

Vτ1 ≥ E

[

Vτ2+ +
∫ τ2

τ1

g(s,ω,Cs,Vs)ds

∣
∣
∣
∣Fτ1

]

. (5.2)

– a solution for the pair (g,C) if it is both a subsolution and a supersolution and
V ∈ I(g,C).

Remark 5.4 (a) V is a supersolution associated to the pair (g,C) if and only if
Ṽ := −V (which is valued in Ṽ := −V) is a subsolution for the pair (g̃,C), where
g̃(t,ω, c, ṽ) = −g(t,ω, c,−ṽ).

(b) While we do not require sub- or supersolutions to be in I(g,C), we require this
integrability for solutions.

(c) It might be expected that the definition would require subsolutions and su-
persolutions to be càdlàg. However, we construct the utility process for a general
consumption stream by taking limits, and a monotone limit of càdlàg processes is not
necessarily càdlàg. In contrast, optionality is preserved in the limit.

If V is a utility process for the pair (g,C), then V ∈ I(g,C) by definition. By [4,
Remark 3.2], it then follows that V is uniformly integrable. Similar results hold for
sub- and supersolutions.
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Lemma 5.5 Suppose that V ⊆ R+ and V is a subsolution, or V ⊆ R− and V is a
supersolution for the pair (g,C). If V ∈ I(g,C), then V ∈UI(g,C).

Proof By symmetry, we consider without loss of generality the case that V ⊆ R+
and V ∈ I(g,C) is a subsolution. Define the UI martingale M = (Mt)t≥0 by
Mt := E[∫ ∞

0 g(s,ω,Cs,Vs)ds |Fs]. Since V ⊆ R+, setting τ1 := t and τ2 := u in
(5.1) and taking the limsup as u → ∞ gives

0 ≤ Vt ≤ E

[∫ ∞

t

g(s,ω,Cs,Vs)ds

∣
∣
∣
∣Ft

]

≤ Mt.

Hence V is uniformly integrable. �

It is useful to introduce two monotonicity conditions on an aggregator random
field.

Definition 5.6 Let g : R+ × � ×R+ ×V → V be an aggregator random field. Then
g is said to satisfy

– (c↑) if it is nondecreasing in c, its third argument (P⊗ dt)-a.e.
– (v↓) if it is nonincreasing in v, its fourth argument (P⊗ dt)-a.e.

Remark 5.7 For EZ SDU, (v↓) is satisfied if and only if ϑ ∈ (0,1]; if ϑ > 1, the
aggregator is nondecreasing in its fourth argument.

The following result shows that under condition (v↓), a comparison result holds
for sub- and supersolutions.

Theorem 5.8 Let C ∈ P+ and let g be an aggregator random field satisfying (v↓). If
V 1 is a subsolution and V 2 is a supersolution for the pair (g,C), and V 1 or V 2 is in
UI(g,C), then V 1

τ ≤ V 2
τ P-a.s. for all finite stopping times τ .

We deduce two simple but important corollaries. The first one shows that under
condition (v↓), all g-evaluable strategies are g-uniquely evaluable. The second shows
that for aggregators g satisfying (c↑) and (v↓), the utility associated to (g,C) is
nondecreasing in g and C.

Corollary 5.9 Let g be an aggregator random field satisfying (v↓). Then we have
E (g) = Eu(g).

Proof Clearly, E (g) ⊇ Eu(g). For the converse inclusion, fix C ∈ E (g). Suppose
there are two utility processes V 1 and V 2 for the pair (g,C). Since V 1 and V 2 are
both solutions, they are in UI(g,C) by Lemma 5.5. Since they are both sub- and su-
persolutions, we may apply Theorem 5.8 twice to show V 1

τ ≥ V 2
τ P-a.s. and V 2

τ ≥ V 1
τ

P-a.s. for all finite stopping times τ ≥ 0. Thus V 1
τ = V 2

τ P-a.s. for all finite stopping
times τ . Since V 1 and V 2 are both optional, this implies that they are indistinguish-
able (see e.g. Nikeghbali [10, Theorem 3.2]). �
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Corollary 5.10 Let C1,C2 ∈ P+ and g1, g2 : R+ × � × R+ × V → V be aggre-
gator random fields satisfying (c↑) and (v↓). Suppose C2 ≥ C1 (P ⊗ dt)-a.e. and
g2( · , · , c, v) ≥ g1( · , · , c, v) (P ⊗ dt)-a.e. for any (c, v) ∈ R+ × V. Moreover, sup-
pose there exists a utility process V i ∈ I(gi,Ci) for the pair (gi,Ci), i ∈ {1,2}. Then
V 1

τ ≤ V 2
τ for all finite stopping times τ .

Remark 5.11 If g1, g2 are both nonincreasing rather than nondecreasing in c but oth-
erwise the hypotheses of the corollary are unchanged, then V 1

τ ≥ V 2
τ .

6 Removing the bounds on evaluable strategies when ϑ ∈ (0,1)

The goal of this section is to show that if ϑ ∈ (0,1), we may first, extend the class of
U for which we can define a utility process by removing the lower bound restriction
k� ≤ U from the hypotheses of Theorem 4.5, and second, generalise the notion of a
utility process, allowing us to evaluate the EZ SDU of any consumption stream.

Standing Assumption 6.1 Henceforth we assume ϑ ∈ (0,1), or equivalently ρ < 0.

Theorem 6.2 Let � ∈ L̂ϑ++ and suppose that U ∈ P+ is such that there exists
K ∈ R+ with 0 ≤ U ≤ K�. Then FU defined by (4.2) has a unique fixed point
W ∈ I(hEZ,U).

Corollary 6.3 Suppose that C ∈ P+ is such that C1−S ≤ KZ1−S , where K ∈ R+
and Z is a geometric Brownian motion such that Z1−R has a negative drift. Then
C ∈ Eu(gEZ).

Proof Setting U := C1−S and � := Z1−S , it follows that U ≤ K�. Furthermore,
� ∈ L̂ϑ++ by Example 4.3 since �ϑ = Z1−R has a negative drift. Finally, using The-
orem 6.2, we may deduce that U ∈ Eu(hEZ) and hence that C ∈ Eu(gEZ). �

Corollary 6.3 gives us a large class of evaluable consumption streams. The rest of
this section is dedicated to generalising the notion of a utility process. In particular,
for any aggregator g satisfying (c↑) and (v↓), the results of this section make it pos-
sible to assign a utility to any process C ∈ P+ that we can express as the monotone
limit of processes Cn ∈ Eu(g). For the EZ aggregator, this includes all consumption
streams.

Definition 6.4 For a general one-signed aggregator g : R+ × � × R+ × V → V, let
E (g) denote the set of consumption streams C ∈ P+ that are monotone limits of
a sequence (Cn)n∈N of processes in E (g) and either 1) V ⊆ R+ and (Cn)n∈N is
nondecreasing, or 2) V ⊆R− and (Cn)n∈N is nonincreasing.

We now state the central result of this section—that we may extend the notion of
a utility process and evaluate processes in E (g).
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Theorem 6.5 Let g be a one-signed aggregator random field satisfying (c↑) and (v↓),
and let C ∈ E (g). Let (Cn)n∈N be a monotone approximating sequence. Let V n be
the utility process associated to Cn for each n ∈ N. Then there exists an adapted
càdlàg process V † = limn→∞ V n that is independent of the approximating sequence.
Moreover, if V ⊆ R+, then V † is the minimal supersolution and if V ⊆ R−, then V †

is the maximal subsolution.

Definition 6.6 We call the unique process V † = (V
†
t )t≥0 constructed in Theorem 6.5

the generalised solution or the generalised utility process associated to (g,C).

The following theorem tells us that the notion of a generalised solution extends
the notion of a solution in the sense that if a solution exists, then it is equal to the
generalised solution.

Theorem 6.7 Let g be a one-signed aggregator random field satisfying (c↑) and (v↓).
If there exists a solution V associated to the pair (g,C), then it agrees with the
generalised solution V †.

Proof We only prove the result in the case V ⊆ R+. The case V ⊆ R− follows by a
symmetric argument. By Theorem 6.5, V † is the minimal supersolution. Let τ be an
arbitrary finite stopping time. Since V ∈ UI(g,C) is a subsolution and V † is a su-
persolution, Vτ ≤ V †

τ by Theorem 5.8. Since V is a supersolution and V † is minimal
in the class of supersolutions, V †

τ ≤ Vτ . Hence V †
τ = Vτ . Since V † and V are both

optional (V † by Theorem 6.5, and V by definition) and they agree for all bounded
stopping times, V † is equivalent to V up to indistinguishability (see for example
Nikeghbali [10, Theorem 3.2]). �

We henceforth drop the superscript † and denote the generalised utility process
by V . The next proposition shows that the generalised solution is nondecreasing in C.

Proposition 6.8 Let g be a one-signed aggregator random field satisfying (c↑) and
(v↓) and C1,C2 ∈ E (g). Suppose further that C2 dominates C1 (P ⊗ dt)-a.e. For
i = 1,2, let V i be the generalised solution associated to the pair (g,Ci). Then
V 2

τ ≥ V 1
τ for all bounded stopping times τ .

If we consider the EZ aggregator gEZ, we may assign a generalised utility process
to any consumption stream.

Theorem 6.9 Let C ∈ P+. There exists a unique generalised utility process associ-
ated to the pair (gEZ,C).

Proof First suppose R < 1 so that V = R+. We want to find a nondecreasing se-
quence of consumption streams (Cn)n∈N such that Cn ∈ Eu(gEZ) for all n ∈ N and
Cn ↗ C. Let Z be a geometric Brownian motion such that Z1−R has a negative drift.
Let Cn = C ∧ (nZ). Then it follows from Corollary 6.3 that (Cn)n∈N ∈ Eu(gEZ), and
Cn ↗ C. Therefore, by Theorem 6.5, there exists a unique generalised utility process
for C.
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Next, if R > 1 and V = R−, the proof goes through in exactly the same manner if
we consider the sequence of processes Cn = C ∨ ( 1

n
Z). �

We can now extend the definition of EZ utility to any consumption stream.

Definition 6.10 Let C ∈ P+. Define the EZ utility process associated to C to be
the generalised utility process V C,gEZ associated to the pair (gEZ,C). Define the EZ
utility of the consumption stream to be JgEZ(C) := V

C,gEZ
0 .

7 The Black–Scholes–Merton financial market and the candidate
optimal strategy

The Black–Scholes–Merton financial market consists of a risk-free asset with interest
rate r ∈ R, whose price process S0 = (S0

t )t≥0 satisfies S0
t = exp(rt), together with a

risky asset whose price process S1 = (S1
t )t≥0 follows a geometric Brownian motion

with drift μ ∈ R and volatility σ > 0, and whose initial value is S1
0 = s1

0 > 0. So
S1

t = s1
0 exp(σBt + (μ − 1

2σ 2)t), where B = (Bt )t≥0 denotes a Brownian motion.
The agent optimises over the control variables given by the proportion of wealth

invested in each asset and the rate of consumption. Let 
t represent the proportion of
wealth invested in the risky asset at time t and 
0

t = 1 − 
t the proportion of wealth
held in the riskless asset at time t . Further, let Ct denote the rate of consumption at
time t . It then follows that the wealth process X = (Xt )t≥0 satisfies the SDE

dXt = Xt
tσ dBt +
(
Xt

(
r + 
t(μ − r)

) − Ct

)
dt (7.1)

with initial condition X0 = x, where x is the initial wealth. Let λ := μ−r
σ

be the
Sharpe ratio of the risky asset.

Definition 7.1 (i) Given x > 0, an admissible investment–consumption strategy is a
pair (
,C) = (
t ,Ct )t≥0 of progressively measurable processes, where 
 is real-
valued and C is nonnegative, such that the SDE (7.1) has a unique strong solu-
tion Xx,
,C that is P-a.s. nonnegative. We denote the set of admissible investment–
consumption strategies for x > 0 by A (x; r,μ,σ ).

(ii) A consumption stream C ∈ P+ is called attainable for initial wealth x > 0 if
there exists a progressively measurable process 
 = (
t )t≥0 such that (
,C) is an
admissible investment–consumption strategy. Denote the set of attainable consump-
tion streams for x > 0 by C (x; r,μ,σ ).

When it is clear which financial market we are considering, we simplify the nota-
tion and write A (x) = A (x; r,μ,σ ) and C (x) = C (x; r,μ,σ ).

The goal of an agent with EZ stochastic differential utility preferences is to max-
imise JgEZ(C) over attainable consumption streams, i.e., to find

V ∗
gEZ

(x) = sup
C∈C (x)

V
C,gEZ
0 = sup

C∈C (x)

JgEZ(C).
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Remark 7.2 This definition of the stochastic control problem is different to that con-
sidered by Schroder and Skiadas [11], Xing [15], Matoussi and Xing [7], Melnyk
et al. [8] and the rest of the literature on the Merton problem for EZ SDU in the fact
that it optimises over all consumption streams and does not impose any regularity
conditions beyond attainability.

We now turn to the candidate optimal strategy. Putting aside questions of exis-
tence and uniqueness (and allowing for the remainder of this section that we have
ϑ ∈ (0,∞)), we seek an attainable consumption stream C that maximises the value
of V C

0 , where

V C
t = E

[∫ ∞

t

C1−S
s

1 − S

(
(1 − R)V C

s

)ρ ds

∣
∣
∣
∣Ft

]

.

As in the Merton problem with CRRA utility, it is reasonable to expect that the opti-
mal strategy is to invest a constant proportion of wealth in the risky asset, and to con-
sume a constant proportion of wealth. Consider the investment–consumption strategy

 ≡ π ∈ R and C = ξX for ξ ∈ R++. Let Xx,π,ξ = X = (Xt )t≥0 be the correspond-
ing wealth process, i.e., let Xx,π,ξ solve (7.1) for 
 ≡ π ∈ R and C = ξX. Note that
(
,C) = (π, ξX) is admissible.

Define H : R×R++ → R by

H(π, ξ) = (R − 1)

(

r + λσπ − ξ − π2σ 2

2
R

)

,

and define η ∈ R by

η = 1

S

(

(S − 1)r + (S − 1)
λ2

2R

)

.

For a proportional investment–consumption strategy (
 = π, C = ξX), it is easy to
show (see Herdegen et al. [4, Remark 5.3]) that (Xx,π,ξ )1−R is a geometric Brownian
motion with drift −H(π, ξ). Moreover, if H(π, ξ) is positive, C = ξX is evaluable
and the associated utility process is given by

Vt =
(

ϑξ1−S

H(π, ξ)

)ϑ
X1−R

t

1 − R
. (7.2)

We can then maximise over π and ξ to find that the candidate optimal investment–
consumption strategy is given by (see [4, Proposition 5.4, Equation (5.10)])


̂ ≡ π̂ = λ

σR
, Ĉ = ξ̂X = ηX. (7.3)

Proposition 7.3 The candidate condition for a well-posed problem is η > 0. In that
case, the candidate optimal strategy is (
̂, Ĉ) from (7.3), the candidate utility process

is V = η−ϑS X1−R

1−R
, and the candidate value function is

V̂ (x) = η−ϑS x1−R

1 − R
. (7.4)
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Remark 7.4 If η > 0 and (
̂, Ĉ) is the candidate optimal strategy from (7.3), then
Û = ϑĈ1−S is a geometric Brownian motion, and (Û)ϑ has drift −ηϑ < 0. Hence
Û ∈ L̂ϑ++ by Example 4.3. Similarly, all the constant proportional investment–con-
sumption strategies (π, ξ) with H(π, ξ) > 0 are such that C = ξXx,π,ξ lies in L̂ϑ++.
Roughly speaking, the same holds true for any strategy which is close to a constant
proportional strategy (for which H(π, ξ) > 0). Thus existence of a utility process
for the candidate optimal consumption stream follows from Theorem 4.5 (whereas
existence of a utility process for a general consumption stream follows from Theo-
rem 6.9—at least for ϑ ∈ (0,1)).

8 The verification argument for the candidate optimal strategy

The goal of this final section is to verify that the candidate optimal strategy is indeed
optimal. Our discussion of existence and uniqueness is valid in a general financial
market, but in order to optimise over consumption streams, we need to specify the set
of attainable consumption processes. We do this by specifying the financial market,
which we take to be the Black–Scholes–Merton market of Sect. 7.

The general structure of a primal verification argument for recursive optimal in-
vestment problems is as follows: first, apply Itô’s lemma to V̂ (X
,C) for a general
strategy (
,C); next, use the HJB equation to show that V̂ (X
,C) is a supersolution
associated to the pair (gEZ,C); finally, the comparison theorem (Theorem 5.8) for
sub- and supersolutions implies V̂ (x) ≥ V C

0 for any admissible strategy C ∈ C (x).

Optimality follows since we showed in Sect. 7 that V Ĉ
0 = V̂ (x).

Unfortunately, there are at least three difficulties with this approach. The first is
that the candidate value function V̂ (x) defined in (7.4) does not have a well-defined
derivative at zero, meaning that we cannot apply Itô’s lemma to V̂ (X
,C) for a gen-
eral admissible wealth process X
,C . The second is that for a general strategy (
,C),
the standard proof that V̂ (X
,C) corresponds to a supersolution involves showing
that the local martingale part of V̂ (X
,C) is a supermartingale, and in the case R > 1,
this is not true in general. The third difficulty is that V C might fail to exist.

The first two issues arise also in the case of CRRA utility. In Herdegen et al. [2],
the authors show how they may be overcome using a stochastic perturbation of the
value function. We now extend the ideas in [2] to the setting of EZ SDU. The third
issue has been dealt with in Sect. 6.

Theorem 8.1 Suppose that η > 0 and ϑ ∈ (0,1). If V C is the (generalised) utility pro-
cess associated to the pair (gEZ,C) and V̂ (x) is the candidate optimal utility given

in (7.4) then supC∈C (x) V
C
0 = V Ĉ

0 = V̂ (x), and the optimal investment–consumption

strategy is given by (
̂, Ĉ) from (7.3).

Proof It follows from Sect. 7 that V
gEZ,Ĉ

0 = V̂ (x); so it only remains to prove that

V̂ (x) ≥ supC∈C (x) V
gEZ,C

0 .
Let Y denote the candidate optimal wealth process started from unit wealth, i.e.,

dYt

Yt

= λ

R
dBt +

(

r + λ2

R
− η

)

dt, Y0 = 1.
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Fix ε > 0 and let gε
EZ(c, y, v) = gEZ(c + εy, v) = (c+ηεy)1−S

1−S
((1 − R)v)ρ . Fix an ar-

bitrary admissible strategy (
,C) ∈ C (x). The dynamics of X + εY := X
,C + εY

are then given by

d(Xt + εYt ) =
(

σ
tXt + λε

R
Yt

)

dBt

+
(

Xt(r + 
t(μ − r)) − Ct +
(
r + λ2

R
− η

)
εYt

)

dt.

Let L c,π denote the infinitesimal aggregator of the diffusion X + εY when the in-
stantaneous rates of investment and consumption are π and c, respectively. Then for
h = h(x, y),

L c,πh =
(

x(r + πσλ) − c +
(
r + λ2

R
− η

)
εy

)

h′ + 1

2

(

σπx + λ

R
εy

)2

h′′.

The first aim is to show that V̂ satisfies a perturbed HJB equation

sup
c∈R+,π∈R

(
L c,π V̂ (x + εy) + gε

EZ

(
c, y, V̂ (x + εy)

)) = 0. (8.1)

This follows from the fact that for general c ∈ R+ and π ∈R,

L c,π V̂ (x + εy) + gε
EZ

(
c, y, V̂ (x + εy)

) = A1(c, x, y) + A2(π, x, y) + A3(x, y),

where

A1(c, x, y) = (c + ηεy)1−S

1 − S

(
(1 − R)V̂ (x + εy)

)ρ

− V̂ ′(x + εy)

(

c + ηεy + η
S

1 − S
(x + εy)

)

,

A2(π, x, y) = V̂ ′(x + εy)

(

xπσλ + λ2

R
εy

)

+ 1

2
V̂ ′′(x + εy)

(

πσx + λ

R
εy

)2

+ λ2

2

(V̂ ′(x + εy))2

V̂ ′′(x + εy)
,

A3(x, y) = (x + εy)r̃V̂ ′(x + εy) − λ2

2

(V̂ ′(x + εy))2

V̂ ′′(x + εy)

+ η
S

1 − S
(x + εy)V̂ ′(x + εy),

and the trio of inequalities A1 ≤ 0, A2 ≤ 0, A3 = 0. Taking the derivative with respect
to c, we find that the maximum of A1(c, x, y) is attained for

c =
(

((1 − R)V̂ (x + εy))ρ

V̂ ′(x + εy)

) 1
S − ηεy,
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and then using the explicit form of V̂ , we find that the maximising value of c is c = ηx

and that A1(ηx, x, y) = 0. Similarly, by taking the derivative with respect to π , the
maximum of A2(π, x, y) is attained when

π = −λ

σx

(
εy

R
+ V̂ ′(x + εy)

V̂ ′′(x + εy)

)

= λ

σR
,

and then A2( λ
σR

, x, y) = 0. Finally, by using the definition of V̂ and η, we find that
A3(x, y) = 0. Consequently, (8.1) is satisfied and the supremum is attained. Note that
since εY is just a scaling of the wealth process under the optimal strategy, it follows
that (V̂ (εYt ))t≥0 ∈UI(gEZ, ηεY ) is the utility process associated to the consumption
stream ηεY . Consequently, it follows by the form of V̂ (x) given in (7.4) and by
Remark 7.4 that limt→∞ E[V̂ (εYt+)] = 0.

Next, fix arbitrary bounded stopping times τ1 ≤ τ2 and define the local martingale
N = (Nt )t≥0 by

Nt =
∫ t

0
V̂ ′(Xu + εYu)

(

σ
uXu + λ

R
εYu

)

dWu.

Then for n ∈ N, set ζn := inf{s ≥ τ1 : 〈N〉s −〈N〉τ1 ≥ n}. It follows from Itô’s lemma,
(8.1) and the definition of gε

EZ that

V̂ (Xτ1 + εYτ1)

= V̂ (Xτ2∧ζn + εYτ2∧ζn) −
∫ τ2∧ζn

τ1

L Cs,
s V̂ (Xs + εYs)ds

+ Nτ1 − Nτ2∧ζn

≥ V̂ (Xτ2∧ζn + εYτ2∧ζn) +
∫ τ2∧ζn

τ1

f ε
EZ

(
Cs,Ys, V̂ (Xs + εYs)

)
ds

+ Nτ1 − Nτ2∧ζn

= V̂ (Xτ2∧ζn + εYτ2∧ζn) +
∫ τ2∧ζn

τ1

fEZ
(
Cs + ηεYs, V̂ (Xs + εYs)

)
ds

+ Nτ1 − Nτ2∧ζn .

Taking conditional expectations and using that (Nt∧ζn − Nt∧τ1)t≥0 is an L2-bounded
martingale, the optional sampling theorem gives

V̂ (Xτ1 + εYτ1) ≥ E[V̂ (Xτ2∧ζn + εYτ2∧ζn) |Fτ1 ]

+E

[∫ τ2∧ζn

τ1

fEZ
(
Cs + ηεYs, V̂ (Xs + εYs)

)
ds

∣
∣
∣
∣Fτ1

]

.

Since V̂ is nondecreasing, V̂ (Xτ2∧ζn +εYτ2∧ζn) ≥ V̂ (εYτ2∧ζn) P-a.s. Moreover, using
that (V̂ (εYt ))t≥0 is bounded below by a UI martingale by [4, Remark 3.2], taking the
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liminf as n → ∞, the conditional version of Fatou’s lemma (with a UI martingale as
lower bound) and the conditional monotone convergence theorem yields

V̂ (Xτ1 + εYτ1) ≥ E[V̂ (Xτ2 + εYτ2) |Fτ1 ]

+E

[∫ τ2

τ1

fEZ
(
Cs + ηεYs, V̂ (Xs + εYs)

)
ds

∣
∣
∣
∣Fτ1

]

. (8.2)

Furthermore, lim inft→∞ E[V̂ (Xt+ + εYt+)] ≥ limt→∞ E[V̂ (εYt+)] = 0. Conse-
quently, V̂ (X + εY ) is a supersolution associated to the pair (gEZ,C + ηεY ).

In the penultimate step, we consider the cases R < 1 and R > 1 separately to
conclude that V̂ (X + εY ) ≥ V gEZ,C . If R < 1, using that C + ηεY > C and gEZ
is nondecreasing in its first argument, it follows that V̂ (X + εY ) is a supersolution
associated to the pair (gEZ,C) by (8.2). Thus the (generalised) utility process V gEZ,C

associated to (gEZ,C) is the minimal supersolution by Theorem 6.5 and the claim
follows.

If R > 1, then also S > 1 by our standing assumption that ϑ > 0. Then
(C + ηεY )1−S ≤ (ηε)1−SY 1−S , and so Corollary 6.3 gives C + ηεY ∈ Eu(gEZ).
Hence there exists a utility process V gEZ,C+ηεY ∈ UI(gEZ,C + ηεY ) associated to
C + ηεY . Since also V̂ (X + εY ) ≤ 0, the claim follows from Theorem 5.8 and
Proposition 6.8.

Finally, in both cases, taking the supremum over attainable consumption streams
at time zero gives V̂ (x + ε) ≥ supC∈C (x) V

gEZ,C

0 . Letting ε ↘ 0 gives the result. �

We conclude this section by showing that the correct wellposedness condition of
the investment–consumption problem is indeed η > 0.

Corollary 8.2 Suppose that ϑ ∈ (0,1). Then the infinite-horizon investment–con-
sumption problem for EZ SDU is well posed if and only if η > 0.

Moreover, if η ≤ 0 (recalling that V C denotes the (generalised) utility process for
the pair (gEZ,C)), then

sup
C∈C (x)

V C
0 =

{
∞ if R < 1,

−∞ if R > 1.

Proof If η > 0, the investment–consumption problem is well posed by Theorem 8.1.
Suppose η ≤ 0. As ϑ ∈ (0,1), the utility process is unique, and if H(π, ξ) > 0,

then V given by (7.2) is the utility process for a constant proportional strategy. We
now consider the cases R < 1 and R > 1 separately.

First, suppose R < 1 so that then also S < 1. Let f (π, ξ) = ξ1−R

1−R
( ϑ
H(π,ξ)

)ϑ and
D = {(π, ξ) ∈R× (0,∞) : H(π, ξ) > 0}. Note that

ϑ
(
H(π̂, ξ)

)−1 = (
ηS + (1 − S)ξ

)−1
.

Letting ξ ↘ −η S
1−S

yields ϑ(H(π̂ = μ−r
σR

, ξ))−1 ↗ ∞. We may conclude that
f (π, ξ) ↗ ∞ and the claim follows.
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Next, suppose R > 1. Fix an arbitrary C ∈ C (x; r,μ,σ ) with associated wealth
process X. Denote by V the generalised utility process associated to the pair
(gEZ,C). It suffices to show that V0 = −∞. For n ∈ N, let αn := S

S−1 ( 1
n

− η) > 0,
rn := r + αn and μn := μ + αn. Consider the modified consumption stream Cn

given by Cn
t := eαntCt . Then by calculating the dynamics of Xn

t := eαntXt , it can be

shown that Cn ∈ C (x; rn,μn,σ ). Furthermore, ηn = (S−1)
S

(rn + λ2

2R
) = 1

n
> 0. Then,

considering the Black–Scholes–Merton financial market with parameters (rn,μn,σ )

and applying Theorem 8.1 gives V n
0 ≤ V̂ n(x) = η−ϑS

n
x1−R

1−R
. It follows from Propo-

sition 6.8 that if V n is the (generalised) solution associated to the pair (gEZ,Cn),
then C ≤ Cn implies V ≤ V n. Combining the inequalities and taking limits yields

V0 ≤ limn→∞ nϑS x1−R

1−R
= −∞. �

9 Summary

In [4], we argued that ϑ := 1−R
1−S

> 0 is a necessary condition for the EZ aggregator
to lead to a well-founded problem. Moreover, it is convenient to use the aggregator in
discounted form because it has the one-sign property, and hence integrals of the form∫ ∞

0 g(s,Cs,Vs)ds and their expectations are always well defined in R.
In this paper, we focussed mainly on the case ϑ ∈ (0,1) and showed that using the

EZ aggregator in discounted form allows a utility process (possibly taking values in R

rather than R) to be defined any consumption stream. Moreover, this utility process is
unique. We also proved a verification lemma and showed (in cases where the problem
is well posed) that the candidate optimal consumption stream is indeed optimal. This
optimality is within the class of all attainable consumption streams for initial wealth
x > 0 (and not just within some subclass with additional regularity and integrability
properties). This is an important contribution since in the literature, solutions of the
(additive) Merton optimal investment–consumption problem via stochastic control
and the primal problem often restrict the class of allowed consumption streams to
those with regularity properties, for example properties which guarantee that a certain
local martingale is a martingale. (Instead, wild strategies should be ruled out because
they are demonstrably sub-optimal, and not be excluded because the mathematical
arguments cannot deal with them.)

Although some of the existence results cover ϑ ∈ (0,∞), the focus of this paper
is on Epstein–Zin stochastic differential utility with ϑ ∈ (0,1). The case ϑ > 1 is
very interesting and is relegated to Herdegen et al. [3]. When ϑ > 1, uniqueness fails.
It is not just that the mathematical arguments of the present paper are insufficient
to deal with the technicalities of the problem, but rather that even in the case of
proportional strategies (and a constant-parameter, Black–Scholes–Merton financial
market), there are multiple utility processes which satisfy (4.1) for the aggregator
gEZ. Given the non-uniqueness, the first task of [3] is to identify the (unique) utility
process associated to (gEZ,C) with a certain extra property—properness—which has
a clear economic as well as mathematical interpretation. Then the second goal of [3] is
to solve the infinite-horizon investment–consumption problem (for the EZ aggregator
in discounted form with ϑ > 1 and in a Black–Scholes–Merton financial market)
where optimisation takes place over a large class of consumption streams, and utility
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processes are required to be proper. This brings new challenges, and requires further
insights.

Appendix A: Proof of the comparison theorem

Lemma A.1 Let −∞ < a < b < ∞. Every uncountable set U ⊆ [a, b) contains at
least one of its right accumulation points.

Proof Seeking a contradiction, suppose U contains none of its right accumulation
points. Then for each x ∈ U , we may find εx > 0 such that [x, x + εx) ∩ U = {x}.
Let Un := {x ∈ U : εx > 1

n
}. Then each Un is finite since the pairwise disjoint union

⋃
x∈Un

[x, x + 1
n
) is contained in the interval [a, b + 1

n
). Hence U = ⋃

n∈N Un is
countable, and we arrive at a contradiction. �

Proof of Theorem 5.8 We prove the result when V ⊆ R+. The case V ⊆ R− is sym-
metric.

Seeking a contradiction, suppose there exists a finite stopping time τ and a set
A ∈Fτ of positive measure such that V 1

τ (ω) > V 2
τ (ω) for ω ∈ A, which implies that

E[1A(V 1
τ −V 2

τ )] > 0. Since V 1 and V 2 are làd, the processes (V 1
s+)s≥0 and (V 2

s+)s≥0
exist and are right-continuous. They are also adapted because the filtration is right-
continuous. It follows that

σ := inf{s ≥ τ : V 1
s+ − V 2

s+ ≤ 0}
is a stopping time. Moreover, the right-continuity of (V 1

s+)s≥0 and (V 2
s+)s≥0 gives

(V 1
σ+ − V 2

σ+)1{σ<∞} ≤ 0 P-a.s.
For each ω ∈ A, we have V 1

s (ω) ≥ V 2
s (ω) for almost all s ∈ [τ(ω), σ (ω)). Indeed,

seeking a contradiction, suppose there are ω ∈ A and a set U of positive Lebesgue
measure such that V 1

s (ω) < V 2
s (ω) for s ∈ U ⊆ [τ(ω), σ (ω)). Since U is uncount-

able, it has a right accumulation point q ∈ U by Lemma A.1. Then q < σ(ω) and
V 1

q+(ω) ≤ V 2
q+(ω), and we arrive at a contradiction.

Next, fix n ∈ N. By subtracting (5.2) from (5.1) for the bounded stopping times
τ1 := τ ∧n and τ2 := σ ∧n, noting that the expectations are well defined since V 1 or
V 2 is in UI(g,C), and using the fact that g is a.s. decreasing in v and V 1

s (ω) ≥ V 2
s (ω)

for almost all s ∈ [τ(ω), σ (ω)) for ω ∈ A, we obtain

E[1A1{τ≤n}(V 1
τ − V 2

τ )]
≤ E

[
1A1{τ≤n}

(
V 1

(σ∧n)+ − V 2
(σ∧n)+

)]

+E

[

1A1{τ≤n}
(∫ σ∧n

τ∧n

(
g(s,ω,Cs,V

1
s ) − g(s,ω,Cs,V

2
s )

)
ds

)]

≤ E
[
1A1{τ≤n}

(
V 1

(σ∧n)+ − V 2
(σ∧n)+

)]
.

Finally, taking the limsup as n → ∞, using monotone convergence, the fact that
(V 1

s+)s≥0 and (V 2
s+)s≥0 are R+-valued, the transversality condition for subsolutions
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and (V 1
σ+ − V 2

σ+)1{σ<∞} ≤ 0 P-a.s., we arrive at the contradiction

E[1A(V 1
τ − V 2

τ )] ≤ lim sup
n→∞

E
[
1A1{τ≤n<σ }

(
V 1

n+ − V 2
n+

)]

+ lim sup
n→∞

E
[
1A1{σ≤n}

(
V 1

σ+ − V 2
σ+

)]

≤ lim sup
n→∞

E
[
V 1

n+
] +E

[
1A1{σ<∞}

(
V 1

σ+ − V 2
σ+

)] ≤ 0. �

Proof of Corollary 5.10 Suppose that V =R+; the proof for V ⊆ R− is symmetric. As
g2( · , · , c, v) ≥ g1( · , · , c, v) (P⊗ dt)-a.e. and g1 and g2 are nondecreasing in c, we
have g2(s,ω,C2

s , V 2
s ) ≥ g1(s,ω,C2

s , V 2
s ) ≥ g1(s,ω,C1

s , V 2
s ) ≥ 0 for (P⊗ dt)-a.e.

(s,ω). It then follows that for all bounded stopping times τ ≤ σ ,

V 2
τ = E

[

V 2
σ+ +

∫ σ

τ

g2(s,ω,C2
s , V 2

s )ds

∣
∣
∣
∣Fτ

]

≥ E

[

V 2
σ+ +

∫ σ

τ

g1(s,ω,C1
s , V 2

s )ds

∣
∣
∣
∣Fτ

]

.

Since V 2 is a utility process associated to (g2,C2) it satisfies (2.1) (with (g,C) re-
placed by (g2,C2)). Letting t → ∞ then implies that limt→∞ E[V 2

t ] = 0. There-
fore, V 2 satisfies the definition of a supersolution associated to the pair (g1,C

1). As
V 2 ∈ UI(g2,C

2) ⊆ UI(g1,C
1) and V 1 is a (sub)solution associated to (g1,C

1), it
follows that V 1

τ ≤ V 2
τ for all finite stopping times τ by Theorem 5.8. �

Appendix B: Proving existence and uniqueness of a utility process

For � ∈ L̂ϑ++, define the ε-perturbed operator Fε
U,� : I(hEZ,U) → P+ by

Fε
U,�(W)t := E

[∫ ∞

t

(UsW
ρ
s + ε�ϑ

s )ds

∣
∣
∣
∣Ft

]

. (B.1)

Here, we always choose a càdlàg version for the right-hand side of (B.1). A key
property of Fε

U,� is that when ε > 0 and � ∈ L̂ϑ++, Fε
0,� is bounded away from zero.

Another property is the following.

Lemma B.1 Let ε ≥ 0, � ∈ L̂ϑ++ and U ∈ O(�). Then Fε
U,�( · ) maps O(�ϑ) to itself.

Proof Fix arbitrary W ∈ O(�ϑ) and recall I� from Definition 4.2. It follows that
there exist constants kW ,KW ∈ (0,∞) such that kW�ϑ ≤ W ≤ KW�ϑ . Simi-
larly, since U ∈ O(�) and �ϑ ∈ O(I�), there exist kU ,KU, k�,K� ∈ (0,∞)

such that kU� ≤ U ≤ KU� as well as k�I� ≤ �ϑ ≤ K�I�. We only prove that
Fε

U,�(W) ≥ κ�ϑ for ρ < 0; the argument for ρ > 0 involves Wρ ≥ (kW�)ϑρ , and
the argument for the upper bound is symmetric. By the definition of Fε

U,�( · ) in (B.1)



M. Herdegen et al.

and using that U ≥ kU�, W ≤ KW�ϑ and �ϑ ≤ K�I� as well as 1 + ϑρ = ϑ ,
we obtain

Fε
U,�(W)t ≥ E

[∫ ∞

t

kU�s(KW�ϑ)ρ + ε�ϑ
s ds

∣
∣
∣
∣Ft

]

= (kUK
ρ
W + ε)E

[∫ ∞

t

�ϑ
s ds

∣
∣
∣
∣Ft

]

≥
(

kUK
ρ
W + ε

K�

)

�ϑ. �

The subsequent theorem is a preliminary existence result and includes Theo-
rem 4.5 as a special case.

Theorem B.2 Let ε ≥ 0, � ∈ L̂ϑ++ and U ∈ O(�). Then Fε
U,� defined by (B.1) has

a fixed point W ∈ O(�ϑ) ⊆ I(hEZ,U), which is unique in O(�ϑ) and has càdlàg
paths.

Set B := L∞(� × R+,Prog,P ⊗ dt), where by Prog we denote the progressive
σ -algebra on � × R+. For the proof of Theorem B.2, we use Blackwell’s sufficient
conditions for an operator T : B → B to be a contraction mapping; see e.g. Stokey
[14, Theorem 3.3] for a proof.

Lemma B.3 Let B be a Banach space and T : B → B an operator that is nonin-
creasing. Suppose there exists β ∈ (0,1) with

T (X + a) ≥ T (X) − βa for all X ∈ B, a > 0. (B.2)

Then T is a contraction mapping with constant β . Similarly, T is a contraction map-
ping if it is nondecreasing and there exists β ∈ (0,1) with T (X + a) ≤ T X + βa for
all X ∈ B, a > 0.

Proof of Theorem B.2 Consider the change of variables

Pt = logUt − log�t, Qt = logWt − ϑ log�t .

Then U ∈ O(�) if and only if P ∈ B, and W ∈ O(�ϑ) if and only if Q ∈ B. More-
over, the fixed point condition W = Fε

U,�(W) is equivalent to the fixed point condi-
tion Q = Gε

P,�(Q), where

Gε
P,�(Q)t := logE

[∫ ∞

t

(
�ϑ

s exp(Ps + ρQs) + ε�ϑ
s

)
ds

∣
∣
∣
∣Ft

]

− ϑ log�t . (B.3)

Note that since the first term on the right-hand side of (B.3) has càdlàg paths, every
fixed point Q to (B.3) corresponds to a W with càdlàg paths. Since Gε

P,�(Q) is the
difference of two continuous functions of progressive processes, it is progressive.
Furthermore, as a consequence of Lemma B.1, Gε

P,� maps B to itself.
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Now suppose ρ ∈ (−1,0) and let a > 0. Then the mapping Q �→ Gε
P,�(Q) is

nonincreasing. Furthermore,

Gε
P,�(Q + a)t

= log

(

exp(ρa)E

[∫ ∞

t

(

�ϑ
s exp(Ps + ρQs) + ε

�ϑ
s

exp(ρa)

)

ds

∣
∣
∣
∣Ft

])

− ϑ log�t

≥ logE

[∫ ∞

t

(
�ϑ

s exp(Ps + ρQs) + ε�ϑ
s

)
ds

∣
∣
∣
∣Ft

]

− ϑ log (�t ) + ρa

= Gε
P,�(Q)t + ρa.

By Lemma B.3, this implies that Gε
P,� is a contraction with constant ρ. Hence the

contraction mapping theorem gives a unique Q ∈ B satisfying (B.3).
If ρ ∈ (0,1), then the mapping Q �→ Gε

P,�(Q) is nondecreasing, and in this case
one can show that Gε

P,�(Q + a)t ≤ Gε
P,�(Q)t + ρa. Again the result follows from

Lemma B.3 and the contraction mapping theorem.
Finally, to extend the result to ρ ∈ (−∞,−1], we borrow an idea from Schroder

and Skiadas [11] and show by induction that for each k ∈N, we have that

for ρ ∈ (−k,0) and P ∈ B, Gε
P,� has a unique fixed point Q ∈ B. (B.4)

The induction hypothesis (k = 1) holds by the above. For the induction step, suppose
that (B.4) holds for some k ≥ 1. In order to show that (B.4) holds for k + 1, it suffices
to consider ρ ∈ (−(k + 1), k]. So fix ρ ∈ (−(k + 1), k] and choose χ ∈ (0,1) small
enough that −k < ρ + χ < 0. Now define the map G̃ε

P,� : B × B → B by

G̃ε
P,�(Q,Z)t = logE

[∫ ∞

t

(
�ϑ

s exp
(
Ps − χQs + (ρ + χ)Zs

) + ε�ϑ
s

)
ds

∣
∣
∣
∣Ft

]

− ϑ log�t . (B.5)

Here, we always choose a càdlàg version for the conditional expectation on the right-
hand side of (B.5).

If suffices to show that there exists a unique Q ∈ B satisfying

Q = G̃ε
P,�(Q,Q). (B.6)

Note that since the first term on the right-hand side of (B.5) has càdlàg paths, every
Q ∈ B satisfying (B.6) corresponds to a W with càdlàg paths. By the induction hy-
pothesis, for each fixed Q ∈ B and since P − χQ ∈ B, there exists a unique Z ∈ B
such that Z = G̃ε

P,�(Q,Z). So we can define the operator Zε
P,� : B → B implicitly

by

Zε
P,�(Q) = G̃ε

P,�

(
Q,Zε

P,�(Q)
)
. (B.7)

If we can show that Zε
P,� has a unique fixed point, we are done. To this end, arguing

as above, it suffices to show that Zε
P,� is a nonincreasing operator and satisfies (B.2)

for β := χ .
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In order to show that Zε
P,� is a nonincreasing operator, we take Q1,Q2 ∈ B

with Q1 ≤ Q2 (P ⊗ dt)-a.e. Moreover, for i ∈ {1,2}, set C̃i := �ϑ exp(Qi) and
Ṽ i := �ϑ exp(Zε

P,�(Qi)). Then (B.7) implies that

Ṽ i
t = E

[∫ ∞

t

(

�ϑ
s

(Us

�s

)( C̃i
s

�ϑ
s

)−χ( Ṽ i
s

�ϑ
s

)ρ+χ + ε�ϑ
s

)

ds

∣
∣
∣
∣Ft

]

= E

[∫ ∞

t

(
Us(C̃

i
s)

−χ (Ṽ i
s )ρ+χ + ε�ϑ

s

)
ds

∣
∣
∣
∣Ft

]

.

Since h̃(t,ω, c, v) = Ut(ω)c−χvρ+χ + ε(�t (ω))ϑ is nonincreasing in c and v, Re-
mark 5.11 gives Ṽ 1 ≥ Ṽ 2, and consequently Zε

P,�(Q1) ≥ Zε
P,�(Q2).

Finally, to show that Zε
P,� satisfies (B.2) for β := χ , let a > 0 and set

� = (
Zε

P,�(Q + a) − Zε
P,�(Q)

)
/a ≤ 0.

It suffices to show that � ≥ −χ . Let L := �ϑ exp(Zε
P,�(Q)). Then

Lt exp(�ta) = �ϑ
t exp

(
Zε

P,�(Q)t
)

exp(�ta)

= �ϑ
t exp

(
Zε

P,�(Q + a)t
)

= E

[∫ ∞

t

(
�ϑ

s e
Ps−χ(Qs+a)+(ρ+χ)Zε

P,�(Q+a)s + ε�ϑ
s

)
ds

∣
∣
∣
∣Ft

]

= E

[∫ ∞

t

(
�ϑ

s e−χa+(ρ+χ)a�s e
Ps−χQs+(ρ+χ)Zε

P,�(Q)s + ε�ϑ
s

)
ds

∣
∣
∣
∣Ft

]

≥ Lt exp(−χa),

where we have used in the last line that (ρ + χ)� ≥ 0. Dividing by Lt , taking loga-
rithms and dividing by a gives � ≥ −χ . �

We may now prove Theorem 6.2.

Proof of Theorem 6.2 The proof has two parts. The first part removes the lower bound
on U for ε > 0; the second shows that we may remove the restriction ε > 0.

Let Un = max{U, 1
n
�}. Then Un ∈ O(�) for every n ∈ N. Hence by Theo-

rem B.2, for each n ∈N, there exists Wn that satisfies

Wn
t = E

[∫ ∞

t

(
Un

s (Wn
s )ρ + ε�ϑ

s

)
ds

∣
∣
∣
∣Ft

]

.

Since � ∈ L̂ϑ++, there exists κ such that �ϑ ≤ κI�. Hence Wn ≥ εI� ≥ ε
κ
�ϑ and

Un(Wn)ρ ≤ (K�)(ερκ−ρ�ϑ−1) = Kκ−ρερ�ϑ. (B.8)

Since ρ < 0, g satisfies (v↓). Hence by Corollary 5.10, the sequence (Wn)n∈N is non-
increasing (and positive) so that it converges almost surely. Applying the dominated
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convergence theorem with the bound in (B.8) and the condition � ∈ L̂ϑ++, we find
that W ∗ := limn→∞ Wn satisfies

W ∗
t = lim

n→∞E

[∫ ∞

t

(
Un

s (Wn
s )ρ + ε�ϑ

)
ds

∣
∣
∣
∣Ft

]

= E

[∫ ∞

t

(
Us(W

∗
s )ρ + ε�ϑ

s

)
ds

∣
∣
∣
∣Ft

]

,

so that W ∗ is a fixed point of Fε
U,�( · ). Uniqueness follows from Corollary 5.9 since

hε(t,ω,u, v) = uvρ + ε(�(t,ω))ϑ satisfies (v↓). This concludes the first part of the
proof.

Let U be a progressively measurable process with 0 ≤ U ≤ K�. Define the ag-
gregator random field hε by hε(t,ω,u, v) := uvρ + ε(�(t,ω))ϑ . By the preceding
argument, for each ε > 0, there exists a utility process for the pair (hε,U). It follows
from Corollary 5.10 that the fixed point Wε for the operator Fε given in (B.1) is
nonincreasing as ε ↘ 0. Define Wt = limε→0 Wε

t . Then

Wt = lim
ε→0

E

[∫ ∞

t

(
Us(W

ε
s )ρ + ε�ϑ

s

)
ds

∣
∣
∣
∣Ft

]

= lim
ε→0

E

[∫ ∞

t

hEZ(Us,W
ε
s )ds

∣
∣
∣
∣Ft

]

+ lim
ε→0

E

[∫ ∞

t

ε�ϑ
s ds

∣
∣
∣
∣Ft

]

= E

[∫ ∞

t

hEZ(Us,Ws)ds

∣
∣
∣
∣Ft

]

,

where the last line follows from monotone convergence and the fact that hEZ was
chosen so that we have limw→w0 hEZ(u,w) = hEZ(w,w0) even for (u,w0) = (0,0)

and for (u,w0) = (∞,∞). Furthermore, we also have W ∈ I(hEZ,U) because
E[∫ ∞

0 UsW
ρ
s ds] = W0 ≤ Wε

0 < ∞. Uniqueness follows from Corollary 5.9 since
hEZ satisfies (v↓). �

Appendix C: Existence and uniqueness of a generalised utility
process

To prove Theorem 6.5, we first introduce a generalisations of supermartingales (see
Snell [13, Definition 1.2]). (We focus on the supermartingale case, but the submartin-
gale case is symmetric.)

Definition C.1 A (−∞,∞]-valued process M = (Mt)t≥0 is called a generalised su-
permartingale if M−

t ∈ L1 for all t ≥ 0, M is adapted and Ms ≥ E [Mt |Fs] for all
t ≥ s ≥ 0.

Remark C.2 Since M−
t ∈ L1 (Mt is quasi-integrable), the conditional expectation

E [Mt |Fs] exists and is unique, even if Mt /∈ L1.
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Compared to an (ordinary) supermartingale, a generalised supermartingale need
not have Mt ∈ L1 for all t ≥ 0. In particular, one can have Ms = +∞ ≥ E [Mt |Fs].
We next need to generalise this notion even further (Mertens [9] referred to the fol-
lowing processes simply as supermartingales).

Definition C.3 A generalised supermartingale is called a generalised optional strong
supermartingale if it is optional and for all bounded pairs of stopping times τ1 ≤ τ2,
we have M−

τ2
∈ L1 and E[Mτ2 |Fτ1 ] ≤ Mτ1 .

Remark C.4 Note that every càdlàg supermartingale is an optional strong supermar-
tingale by the optional sampling theorem.

Proposition C.5 A generalised optional strong supermartingale M that is either
bounded above or below is almost surely làdlàg and for a.e. ω, the path t �→ Mt(ω)

is right-continuous outside a countable set.

Proof Suppose first that M is bounded below by a constant K and define the contin-
uous bijection f : [K,∞] → [1 − e−K,1] by f (x) := 1 − e−x with the convention
that e−∞ = 0. It follows from Jensen’s inequality (note that f −1 is convex) that

Mτ1 ≥ E[Mτ2 |Fτ1 ] = E[(f −1 ◦ f )(Mτ2) |Fτ1 ] ≥ f −1(
E[f (Mτ2) |Fτ1 ]

)
.

Consequently, if M̃ = f (M), then for all bounded pairs of stopping times τ1 ≤ τ2,

M̃τ1 = f (Mτ1) ≥ E[f (Mτ2) |Fτ1 ] = E[M̃τ2 |Fτ1]
and M̃ is a bounded optional strong supermartingale. Hence it is làdlàg (see for ex-
ample Dellacherie and Meyer [1, Theorem A1.4]). Moreover, it has a Mertens de-
composition (see for example [1, Theorem A1.20]) given by M̃ = Ñ − Ã, where
Ñ = (Ñt )t≥0 is a càdlàg local martingale and Ã = (Ãt )t≥0 is a nondecreasing adapted
làdlàg process. Since a nondecreasing làdlàg function is (right-)continuous up to a
countable set, it follows that for a.e. ω, the path t �→ M̃t (ω) is right-continuous out-
side a countable set. Then, using that f −1 is continuous, it follows that M is làdlàg
and for a.e. ω, the path t �→ Mt(ω) is right-continuous outside a countable set.

When M is bounded above, we use the concave function g(x) = 1 − ex . �

The following results are generalised versions of the backward martingale con-
vergence theorem (BMCT) and Hunt’s lemma. Their proofs are straightforward ex-
tensions of classical results and may be found in Jerome [5, Proposition C.6 and
Lemma C.7].

Proposition C.6 We suppose that X is a [0,∞]-valued random variable and let

F ⊇ F0 ⊇ F−1 ⊇ F−2 ⊇ · · ·
be a nonincreasing sequence of sub-σ -algebras and set F−∞ := ⋂∞

k=1 F−k . Then
limn→∞ E[X |F−n] = E[X |F−∞] P-a.s.
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Lemma C.7 Let (Xn)n∈N be a nondecreasing sequence of [0,∞]-valued random
variables with limn→∞ Xn = X P-a.s. Let F ⊇ F0 ⊇ F−1 ⊇ F−2 ⊇ · · · be a non-
increasing sequence of sub-σ -algebras and set F−∞ := ⋂∞

k=1 F−k . Then we have
limn→∞ E[Xn |F−n] = E[X |F−∞] P-a.s.

We may now prove Theorem 6.5, the central result of Sect. 6.

Proof of Theorem 6.5 We only prove the case that (Cn)n∈N is a nondecreasing se-
quence and V ⊆ R+. When (Cn)n∈N is a nonincreasing sequence and V ⊆ R−, the
argument is symmetric. Since (Cn)n∈N is nondecreasing, so is (V n)n∈N by Corol-
lary 5.10. Then V † = limn→∞ V n exists and V n ≤ V † for each n ∈ N. Further, for
any bounded stopping times τ1 and τ2 with τ1 ≤ τ2 P-a.s.,

V †
τ1

= lim
n→∞E

[∫ τ2

τ1

g(s,ω,Cn
s ,V n

s )ds + V n
τ2

∣
∣
∣
∣Fτ1

]

≥ lim
n→∞E

[∫ τ2

τ1

g(s,ω,Cn
s ,V †

s )ds + V n
τ2

∣
∣
∣
∣Fτ1

]

= E

[∫ τ2

τ1

g(s,ω,Cs,V
†
s )ds + V †

τ2

∣
∣
∣
∣Fτ1

]

. (C.1)

It follows that V †
τ1

≥ E[V †
τ2

|Fτ1] so that V † is a nonnegative generalised optional
strong supermartingale. Hence by Proposition C.5, it is làdlàg. Combining the in-
equality E[V †

τ2
|Fτ1 ] ≥ E[V †

τ2+ |Fτ1] with (C.1), we obtain

V †
τ1

≥ E

[∫ τ2

τ1

g(s,ω,Cs,V
†
s )ds + V

†
τ2+

∣
∣
∣
∣Fτ1

]

.

Furthermore, since V ⊆ R+, lim inft→∞ V
†
t+ ≥ 0 a.s. and V † is a supersolution.

Now take any other nondecreasing sequence (C̃n)n∈N whose limit equals C. Let
Ṽ n be the utility process for C̃n and Ṽ † = limn→∞ Ṽ n. Using that Ṽ n ∈UI(g,C) is
a subsolution for (g,C) because g satisfies (c↑), we may apply Theorem 5.8 and de-
duce that V †

τ ≥ Ṽ n
τ for all finite stopping times τ . Taking limits gives that V †

τ ≥ Ṽ †
τ .

Repeating the argument with the roles of V † and Ṽ † reversed, we find that Ṽ †
τ ≥ V †

τ

for all finite stopping times τ . Therefore V † and Ṽ † are optional processes that agree
for all finite stopping times, and so they agree up to indistinguishability (see for ex-
ample [10, Theorem 3.2]).

Next, we show that V † is the minimal supersolution for C. Let V be any super-
solution. Then, since V n ∈ UI(g,C) is a subsolution associated to (g,C), we have
V t ≥ V n

t for all t ≥ 0 by Theorem 5.8. Taking limits gives V t ≥ V
†
t .

Finally, we show that V † is càdlàg. To this end, it suffices to show that the right-
continuous process (V

†
t+)t≥0 is also a supersolution because then the supermartingale

property of V † implies that

V
†
τ+ = E[V †

τ+|Fτ ] ≤ E[V †
τ |Fτ ] = V †

τ
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for each bounded stopping time, and thus by the minimality of V †, we may conclude
that (V

†
t )t≥0 = (V

†
t+)t≥0 up to indistinguishability.

To show that (V
†
t+)t≥0 is indeed a supersolution, fix bounded stopping times τ1

and τ2 with τ1 ≤ τ2. We first assume that there is δ > 0 such that τ1 + δ ≤ τ2. Then
for each ε < δ, by the fact that V † is a supersolution and a generalised optional strong
supermartingale,

V
†
τ1+ε ≥ E

[∫ τ2

τ1+ε

g(s,ω,Cs,V
†
s )ds + V

†
τ2+

∣
∣
∣
∣Fτ1+ε

]

.

Taking the limit as ε → 0 and using the fact that for a.e. ω, the path t �→ V
†
t (ω) is

right-continuous outside a countable set by Proposition C.5, we get by Hunt’s lemma
in the form of Lemma C.7 that

V
†
τ1+ ≥ E

[∫ τ2

τ1

g(s,ω,Cs,V
†
s+)ds + V

†
τ2+

∣
∣
∣
∣Fτ1

]

. (C.2)

If τ2 is general, set τ δ
2 := τ2 ∨ (τ1 + δ) for δ > 0. Then applying (C.2) for τ δ

2 gives

V
†
τ1+1{τ2≥τ1+δ} ≥ E

[∫ τ δ
2

τ1

g(s,ω,Cs,V
†
s+)ds + V

†
τ δ

2 +

∣
∣
∣
∣Fτ1

]

1{τ2≥τ1+δ}

= E

[∫ τ2

τ1

g(s,ω,Cs,V
†
s+)ds + V

†
τ2+

∣
∣
∣
∣Fτ1

]

1{τ2≥τ1+δ}.

Taking the limit as δ → 0, the monotone convergence theorem gives

V
†
τ1+1{τ2>τ1} ≥ E

[∫ τ2

τ1

g(s,ω,Cs,V
†
s+)ds + V

†
τ2+

∣
∣
∣
∣Fτ1

]

1{τ2>τ1}.

Since trivially V
†
τ1+1{τ2=τ1} = E[∫ τ2

τ1
g(s,ω,Cs,V

†
s+)ds + V

†
τ2+ |Fτ1 ]1{τ2=τ1}, we

conclude that

V
†
τ1+ ≥ E

[∫ τ2

τ1

g(s,ω,Cs,V
†
s+)ds + V

†
τ2+

∣
∣
∣
∣Fτ1

]

. �

Appendix D: Additional proofs omitted from the main text

Proof of Proposition 6.8 Suppose V ⊆ R+; the case V ⊆ R− follows by a symmetric
argument.

Let (C2,n) be a nondecreasing sequence of processes in E (g) with limit C2 and
let C1,n := C2,n ∧ C1. Then (C1,n) is a monotone sequence which approximates C1.
Furthermore, let V 1,n ∈ UI(g,C1,n) ⊆ UI(g,C2,n) and V 2,n ∈ UI(g,C2,n) be the
utility processes for C1,n and C2,n, respectively. Then if V 1,† and V 2,† are the
generalised solutions associated to C1 and C2, it follows from Theorem 6.5 that
V 1,† = limn→∞ V 1,n and V 2,† = limn→∞ V 2,n.
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As C2,n ≥ C1,n and g satisfies (c ↑), g(t,ω,C
2,n
t , V

2,n
t ) ≥ g(t,ω,C

1,n
t , V

2,n
t ) for

almost all (t,ω). Hence for all finite stopping times τ1 ≤ τ2,

V 2,n
τ1

= E

[

V
2,n
τ2+ +

∫ τ2

τ1

g(s,ω,C2,n
s ,V 2,n

s )ds

∣
∣
∣
∣Fτ1

]

≥ E

[

V
2,n
τ2+ +

∫ τ2

τ1

g(s,ω,C1,n
s ,V 2,n

s )ds

∣
∣
∣
∣Fτ1

]

.

Since also lim inft→∞ V
2,n
t+ ≥ 0 P-a.s., V 2,n satisfies the definition of a supersolu-

tion for the pair (g,C1,n). Hence Theorem 5.8 gives V 2,n
τ1

≥ V 1,n
τ1

P-a.s. for all finite
stopping times τ1. Letting n → ∞ establishes the result. �
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