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Abstract
In this paper we apply Aubry-Mather theory for equilibria of 1D Hamil-

tonian lattice systems and the theory of invariant ordered circles to in-
vestigate the depinning transition of travelling waves for particle chains.
Assume A < B are two critical values such that the particle chain has
three homogeneous equilibria if the driving force F ∈ (A,B). It is already
known that there exist transition thresholds F−

c ≤ F+
c of the driving force

such that the particle chain has stationary fronts but no travelling fronts for
F−
c ≤ F ≤ F+

c and travelling fronts but no stationary fronts if A < F < F−
c

or F+
c < F < B.

The novelty of our approach is that we prove the transition threshold F+
c

(F−
c ) coincides with the upper (lower) limit of the upper (lower) depinning

force as the rotation number tends to zero from the right. Based on this
conclusion, we demonstrate that when the driving force F ∈ (F−

c , F+
c ),

besides stationary fronts there are various kinds of equilibria with rotation
numbers close to zero such that the spatial shift map has positive topological
entropy on the set of equilibria. Furthermore, we give a necessary and
sufficient condition for the absence of propagation failure, i.e., F−

c = F+
c , in

terms of a minimal foliation. Finally we show that F±
c are continuous with

respect to potential functions in C1 topology.
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1 Introduction
The existence of a depinning transition for travelling waves is thought to be a

distinct feature of spatially discrete media. There is a large amount of research
work on existence, uniqueness, and stability of travelling waves with various nonlin-
earities for lattice systems. Mallet-Paret [28](see also Carpio et al. [14]) employed
a global continuation method to obtain the existence, uniqueness, and continu-
ous dependence on parameters of travelling waves for bistable nonlinearities, while
Zinner [38] relied on a fixed point theorem and Hankerson and Zinner [21] used
the idea of an integer-valued Lyapunov function.

Travelling waves were also studied by Chow, Mallet-Paret, and Shen for lattice
dynamical systems and coupled map lattices [16]. Chen, Guo, and Wu investigated
travelling waves in more general cases for which the reference equilibria support-
ing wave propagation are periodic, not just homogeneous [15]. In [1], Al Haj,
Forcadel, and Monneau studied a model not covered by Mallet-Paret’s work [28].
The Frenkel-Kontorova model with an inertial term was considered by Forcadel,
Ghorbel, and Walha [19]. For the conservative case of the Frenkel-Kontorova chain,
that is, without damping term, Buffoni, Schwetlick, and Zimmer [10, 11] studied
the travelling heteroclinic waves connecting one well of the on-site potential to the
other.

We focus in this paper on the depinning transition of fronts between two homo-
geneous equilibria for particle chains with potential function h with range r ≥ 1,
paying particular attention to treat r > 1, as follows.

Let r ≥ 1 and h : Rr+1 → R be a C2 function satisfying hypotheses (H1)-(H4)
specified in Section 2.1. Let x = (xn) ∈ RZ be a configuration with xn denoting
the position of the n-th particle. We denote by W (x) the formal energy of the
particle chain with potential function h:

W (x) =
∑
n∈Z

h(xn, · · · , xn+r).

The equations of motion of the particle chain are taken to be

ẋn = −∂nW (x) + F, (1.1)

where

∂nW (x) =
r+1∑
j=1

∂jh(xn+1−j, · · · , xn+r+1−j)

denotes the partial derivative of W with respect to the variable xn, and F ∈ R is
an external driving force.
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Let V (x) = h(x, · · · , x). Then V (x + 1) = V (x), x ∈ R. We always assume in
this paper that V ′(x) has three zeros u1 = 0 < u2 < u3 = 1, and there exist e1
and e2 with u1 < e1 < u2 < e2 < u3 such that (see Figure 1)

−V ′′(ui) < 0, i = 1, 3, −V ′′(u2) > 0, V ′′(ei) = 0, i = 1, 2,

and
−V ′′(x) < 0, x ∈ (u1, e1) ∪ (e2, u

3), −V ′′(x) > 0, x ∈ (e1, e2).

x x

−V ′(x)
−V ′(x) + F

−B

−A

−B + F

−A+ F

e1
e2

u1(F )

u2(F )

u3(F )u1

u2
u3

Figure 1: The graph of −V ′(x) and −V ′(x) + F .

Let A = V ′(e2) < 0 and B = V ′(e1) > 0. Then for A < F < B, −V ′(x)+F also
has three zeros u1(F ) < u2(F ) < u3(F ) = u1(F ) + 1 satisfying −V ′′(ui(F )) < 0
for i = 1, 3, −V ′′(u2(F )) > 0, and for A < F1 < F2 < B,

u1(F1) < u1(F2) < u2(F2) < u2(F1) < u3(F1) < u3(F2). (1.2)

Let ui(F ) = ui(F ) · 1 (i = 1, 2, 3) denote the homogeneous equilibria of sys-
tem (1.1), where 1 denotes the configuration with each component being 1.

If we take in particular the potential function

h(x1, x2) =
1

2
(x2 − x1)

2 +
k

4π2
cos 2πx1,

then we have the classical tilted Frenkel-Kontorova model [3].
We restrict attention in this paper to a particular class of fronts, as follows.
A travelling front of (1.1) is a solution of form xn(t) = u(n − ct) with c 6= 0,

where the profile function u : R → (u1(F ), u3(F )) is C1 smooth with u′(s) > 0,
s ∈ R, and satisfies

−cu′(s) = −∂1h(u(s), · · · , u(s+ r))− · · · − ∂r+1h(u(s− r), · · · , u(s)) + F (1.3)

and
lim

s→−∞
u(s) = u1(F ), lim

s→∞
u(s) = u3(F ). (1.4)
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A stationary front is an equilibrium x = (xn) of (1.1) of form xn = u(n), where
u : R → (u1(F ), u3(F )) is strictly increasing and satisfies (1.4).

It has already been obtained, see [28] (or [14] for linear and nearest-neighbor
coupling), that there exist transition thresholds F−

c ≤ F+
c of the driving force such

that the particle chain has stationary fronts but no travelling fronts for F−
c ≤ F ≤

F+
c and travelling fronts but no stationary fronts if A < F < F−

c or F+
c < F < B.

We associate the transition thresholds F±
c with the depinning force for fronts

of the driven particle chain, which is a physical quantity describing the transition
from pinning to sliding for particle systems, see [3, 18, 27, 36] and the references
therein. By analogy to [3], depinning of a front can be expected generically to be
a saddle-node of invariant circle (SNIC) bifurcation [5].

The upper (lower) depinning force F+
d (p/q) (F−

d (p/q)) for spatially periodic
equilibria of (1.1) is defined to be (see Section 2.3) the critical value of the driving
force below (beyond) which there exists a (p, q)-periodic equilibrium and beyond
(below) which there is none; see [36] for the details of discussions on depinning
force. Our first conclusion is that the transition threshold F+

c (F−
c ) is identical

to the upper (lower) limit of the upper (lower) depinning force as the rotation
number approaches zero from the right.

Theorem A.

F−
c = lim inf

n→+∞
F−
d (1/n) ≥ A and F+

c = lim sup
n→+∞

F+
d (1/n) ≤ B. (1.5)

A stationary or travelling front can be regarded as a heteroclinic connection
joining two stable equilibria u1(F ) and u3(F ) for the spatial shift map. However,
an added difficulty arises due to the presence of the intermediate equilibrium u2(F ),
and overcoming the difficulties presented by this equilibrium is a significant task,
as remarked by Mallet-Paret [28], see also [1]. In Section 4, we use a result in
monotone dynamical systems [37] to show that u2(F ) does not but u1(F ) does lie
in an invariant ordered circle (IOC, see Section 2.4 for the definition) so that u1(F )
and u3(F ) are neighboring homogeneous equilibria on this IOC, guaranteeing the
existence of heteroclinic connections from u1(F ) to u3(F ).

If F−
c < F+

c , we say that pinning occurs for F ∈ [F−
c , F

+
c ] or the particle chain

admits propagation failure. The front is pinned and cannot propagate, i.e., there
are no travelling fronts, when the driving force F lies in [F−

c , F
+
c ], which is called

the pinning interval or propagation failure interval. In [25] Keener proved that
the discrete Nagumo equation admits propagation failure provided the diffusion
coefficient is small enough. Propagation failure in discrete media has attracted
much attention, see [12, 16, 22, 23, 28, 33] and the references therein.

Hoffman and Mallet-Paret [22] proposed a generic condition on the nonlin-
earity for occurrence of propagation failure for high-dimensional lattice systems.
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A “depinning criterion” was also provided by Carpio and Bonilla [13] using the
smallest eigenvalue of an operator for chains of linearly coupled overdamped os-
cillators. Hupkes, Pelinovsky, and Sandstede [23] presented an explicit criterion
that can determine whether propagation failure occurs or not: Roughly speaking,
if there is a smooth one-parameter branch of “translationally invariant” stationary
fronts when the detuning parameter a = a∗, then there are no stationary fronts
for a 6= a∗, and hence no propagation failure. We remark that this is a sufficient
condition, see [33] for Pelinovsky’s alternative proof. Here we give for particle
chains a necessary and sufficient condition for no propagation failure.

Theorem B. F−
c = F+

c if and only if the equation

∂1h(u(s), · · · , u(s+ r)) + · · ·+ ∂r+1h(u(s− r), · · · , u(s)) = 0 (1.6)

has a strictly increasing and continuous solution u : R → (0, 1) satisfying

lim
s→−∞

u(s) = 0, and lim
s→+∞

u(s) = 1. (1.7)

Remark: Moser [30] called a connected, strictly ordered, and shift-invariant fam-
ily of equilibria of (1.1) with F = 0 a minimal foliation, and he proved the solutions
in this family are minimizers (see Section 2.1), see also Theorem 10.1 in [31] and
Theorem (7.7) in [7]. We actually show that F−

c = F+
c if and only if there exists

a minimal foliation consisting of homogeneous and heteroclinic minimizers, see
Remark 1 following the proof of Theorem B.

One natural question is how many equilibria there are in the region of propaga-
tion failure besides the homogeneous equilibria and the stationary fronts. Keener [25]
proved for the discrete Nagumo equation with small diffusion coefficient, the prop-
agation is blocked by a family of non-monotone stationary solutions. Bates and
Chmaj obtained similar results for a discrete convolution model by applying the
Implicit Function Theorem [8]. For coupled map lattices, Chow and Shen [17]
studied the relation between propagation failure and spatial topological chaos.
We remark that our approach is different from the perturbation method. We even
obtain the existence of equilibria with rotation numbers in an interval including
0, see the discussion following the proof of Theorem C in Section 6.

Theorem C. Assume F−
c < F+

c and F−
c < F < F+

c . Then the spatial shift map
has positive topological entropy on the set of equilibria of (1.1).

To the best of our knowledge, there is no conclusion concerning continuous
dependence of the transition thresholds F±

c on parameters. The following con-
clusion is based on the continuous dependence of the depinning force on system
parameters [36].
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Theorem D. F±
c are continuous with respect to h in C1 topology.

Now we explain why it is useful to apply techniques from Aubry-Mather theory,
and its extension to the theory of invariant ordered circles, to discuss the depinning
transition of travelling waves for driven particle chains. An equilibrium x = (xn)
of (1.1) satisfies a difference equation (2.4) from which we define a homeomorphism
F∆ : R2r → R2r (see Section 2.5). Let a∗ = (a, · · · , a), b∗ = (b, · · · , b) ∈ R2r denote
two fixed points of F∆, where a = u1(F ), b = a+1 are two zeros of −V ′(x)+F = 0.
A stationary front corresponds to a heteroclinic orbit of F∆ connecting a∗ to b∗.
Therefore, in order to show the existence of stationary fronts of (1.1), it suffices to
establish the existence of heteroclinic orbits connecting a∗ to b∗.

If the range r = 1 then it is relatively easy to detect the intersection of the
unstable manifold of a∗ and the stable manifold of b∗, but for r > 1 it is not
so straightforward. The advantage of the Aubry-Mather theory is to guarantee
heteroclinic connections without assuming intersection of invariant manifolds or
applying a perturbation method. For F = 0, there always exists a minimizer, so an
equilibrium, forming a heteroclinic connection between two neighboring periodic
minimizers with the same rotation number, see, for example, Section 5 in [7] or
Theorem 13.5 in [29] for monotone twist maps, or [32] for general Hamiltonian
lattices.

We should emphasize that for the driven particle chains, i.e., F 6= 0, we do not
have minimizers. Nevertheless, there are invariant ordered circles (IOCs) for the
temporal dynamics for each F ∈ R. In particular (see Section 2.4), there is an
IOC containing a heteroclinic connection between two neighboring homogeneous
equilibria of (1.1) on the same IOC, leading to the existence of stationary or
travelling fronts.

We remark that we do not consider the existence, uniqueness, and continuous
(smooth) dependence on system parameters of the travelling speed c and mono-
tone solution u = P (s) of (1.3) and (1.4). It is by constructing suitable IOCs
containing heteroclinic configurations that we prove Theorem A, from which we
actually obtain the existence of the depinning transition thresholds F±

c . Mean-
while, it is the relation between F±

c and the depinning force that makes it possible
for us to use the tools developed in [35, 36] to derive spatial chaos of the shift
map on the set of equilibria, a necessary and sufficient condition for the absence
of propagation failure, and continuous dependence of F±

c on system parameters.

2 Preliminaries
2.1 The Aubry-Mather Theory
Hypotheses: We assume that the C2 potential function h satisfies the following

6



hypotheses. We remark that these hypotheses are standard for the discussion of
lattice Aubry-Mather theory [26, 31, 32].

(H1) h(ξ1 + 1, · · · , ξr+1 + 1) = h(ξ1, · · · , ξr+1);
(H2) max1≤i≤j≤r+1 ‖∂i,jh‖sup ≤ K;
(H3) h is bounded from below and h(ξ1, · · · , ξr+1) → ∞ if |ξ2 − ξ1| → ∞;
(H4) Twist condition:

∂1,kh(ξ1, · · · , ξr+1) ≤ −λ < 0 for 2 ≤ k ≤ r+1, and ∂i,kh(ξ1, · · · , ξr+1) ≤ 0 for k 6= i.

We say that B ⊂ Z is a connected component of Z if B consists of consecutive
integers. We denote by B = [i0 − r, i1] an arbitrary finite connected component of
Z with i1 ≥ i0, int(B) = [i0, i1] the interior of B, B̄ = [i0 − r, i1 + r] its closure,
∂B = B̄ \ int(B) the boundary of B. Let

WB(x) =
∑
i∈B

h(xi, · · · , xi+r),

which is a function of coordinates of x with indices in B̄. Denote by supp(v) the
support of v = (vi) ∈ RZ, i.e., supp(v) = {i ∈ Z | vi 6= 0}.

Definition 2.1. A configuration x is called a minimizer if WB(x) ≤ WB(x+v)
for all finite connected components B ⊂ Z and all v with supp(v) ⊂ int(B).

For configurations x = (xi) and y = (yi) ∈ RZ, we say x ≤ y if xi ≤ yi for all
i ∈ Z, x < y if x ≤ y and x 6= y, and x � y if xi < yi for all i ∈ Z. Similarly for
≥, >, and �. Two configurations x 6= y are said to be ordered if x ≤ y or x ≥ y,
to be strictly ordered if x � y or x � y. For elements in Rn (n ≥ 1), we define
≤, <,�,≥, >,� as above.

Let {τk,l| k, l ∈ Z} denote the translation group on RZ defined by

(τk,lx)i = xi−k + l, i ∈ Z.

A configuration x is said to be (p, q)-periodic if τq,px = x, where p and q > 0 are
integers. A configuration x is said to be Birkhoff if for all k, l ∈ Z, either τk,lx ≤ x
or τk,lx ≥ x. We denote by Bp,q the set of Birkhoff (p, q)-periodic configurations
and B all Birkhoff configurations.

If x = (xi) is Birkhoff, then [7, 20] there is a unique ω = ω(x) ∈ R, called the
rotation number of x, such that

|xi − xj − (i− j)ω| ≤ 1, for all i, j ∈ Z. (2.1)
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Let Bω denote the set of Birkhoff configurations with rotation number ω. Then Bω

is closed in the topology of pointwise convergence. Moreover, the rotation number
ω(x) depends continuously [7, 20] on x ∈ B.

We denote by Mp,q the set of (p, q)-periodic Birkhoff minimizers and Mω the
set of Birkhoff minimizers with rotation number ω. It is clear that each minimizer
is an equilibrium of (1.1) with F = 0. Under the conditions (H1)-(H4) of h, we
have [26, 31, 32]
Lemma 2.2. Mp,q 6= ∅ and Mω 6= ∅ for each ω ∈ R\Q, and Mω is totally
ordered for irrational ω.

Let B[a,b] = ∪α∈[a,b]Bα. The following lemma is obtained by Tychonoff’s Theo-
rem. We refer to [20, 31, 34] for a full proof.
Lemma 2.3. For −∞ < a < b < +∞, B[a,b]/〈1〉 is compact in the topology of
pointwise convergence.

2.2 Gradient Flow and Strict Monotonicity
We need to study the solutions of (1.1) with initial conditions in Banach space

X =

{
x ∈ RZ

∣∣∣∣∣ ‖x‖ =
∑
n∈Z

2−|n||xn| <∞

}
.

The condition (H2) of h ensures the existence of a unique solution x(t) of (1.1)
with x(0) ∈ X for all t ∈ R so that we can define a flow {ϕt

F}t∈R on X . The
periodic condition (H1) makes it possible to consider {ϕt

F} in X /〈1〉. Moreover,
ϕt
F commutes with τk,l:

ϕt
F (τk,lx) = τk,l(ϕ

t
Fx), for all t ∈ R, and k, l ∈ Z. (2.2)

The twist condition (H4) of h guarantees the strict monotonicity of ϕt
F for t > 0,

i.e., x < y implies ϕt
Fx � ϕt

Fy for all t > 0.
Lemma 2.4. Let x = (xi) and y = (yi) ∈ RZ. Assume xi0 = yi0 for some
i0 ∈ Z and xi ≤ yi for i ∈ [i0− r, i0+ r]. Then it follows that ∂i0W (y) ≤ ∂i0W (x).
Furthermore, if there is k ∈ [i0− r, i0+r]\{i0} such that xk < yk, then ∂i0W (y) <
∂i0W (x).

Proof: It is easy to check that

−∂i0W (x) = −
r+1∑
j=1

∂jh(xi0+1−j, · · · , xi0+r+1−j)

is strictly increasing in xi0+i for i = −r, · · · , r, i 6= 0, by twist condition (H4).
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2.3 Lower and Upper Depinning Force
In this section we define for rational numbers the lower and upper depinning

force for the driven particle chain (1.1).
Let p and q > 0 be relatively prime integers, and

Ap,q = {F ∈ R | ∃x ∈ Bp,q such that F = ∂iW (x), i ∈ Z}.

We know that 0 ∈ Ap,q by Lemma 2.2 and hence Ap,q is nonempty.

Lemma 2.5. Ap,q is compact.

Proof: Since ∂iW (x) is continuous with respect to x and Bp,q/〈1〉 is compact
by Lemma 2.3, then Ap,q is bounded.

To prove Ap,q is closed, let Fn ∈ Ap,q and Fn → F as n → ∞. We shall
show that F ∈ Ap,q. Indeed, for each Fn, there exists xn = (xni ) ∈ Bp,q such that
xn0 ∈ [0, 1], n ≥ 1, and Fn = ∂iW (xn), for all i ∈ Z. Then an accumulation point
x ∈ Bp,q of {xn} satisfies ∂iW (x) = F , for all i ∈ Z, implying F ∈ Ap,q.

Lemma 2.6. Let x ≤ x be two (p, q)-periodic configurations, one of which is
Birkhoff. Assume ∂iW (x) ≤ F ≤ ∂iW (x) for all i ∈ Z. Then there exists a
Birkhoff (p, q)-periodic configuration y such that ∂iW (y) = F for all i ∈ Z.

Proof: This is a straightforward consequence of Theorem 4.2 together with
Addenda 4.3 and 4.4 in [2].

Definition 2.7. Define the upper and lower depinning force respectively as

F+
d (p/q) = supAp,q ≥ 0 and F−

d (p/q) = inf Ap,q ≤ 0. (2.3)

Lemma 2.8. [F−
d (p/q), F+

d (p/q)] = Ap,q.

Proof: It suffices to show “⊂”. Indeed, assume F−
d (p/q) ≤ F ≤ F+

d (p/q).
Then there exist x,x ∈ Bp,q such that

∂iW (x) = F−
d (p/q) ≤ F ≤ F+

d (p/q) = ∂iW (x), i ∈ Z.

We assume x ≤ x by the periodicity assumption (H1). Then from Lemma 2.6 we
deduce the existence of x ∈ Bp,q satisfying ∂iW (x) = F for all i ∈ Z, and hence
F ∈ Ap,q.

Lemma 2.9. Assume F ∈ R and there exists (p, q)-periodic configuration x such
that −∂iW (x) + F ≤ 0 (≥ 0) for all i ∈ Z. Then F+

d (p/q) ≥ F (F−
d (p/q) ≤ F ).
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Proof: Assume F−
d (p/q) ≤ F . Then there exists x ∈ Bp,q such that

∂iW (x) = F−
d (p/q) ≤ F ≤ ∂iW (x), i ∈ Z.

We assume x ≤ x by the periodicity assumption (H1). Then from Lemma 2.6 we
obtain the existence of y ∈ Bp,q satisfying ∂iW (y) = F for all i ∈ Z, implying
F ∈ Ap,q, and hence F ≤ F+

d (p/q). The other conclusion is proved similarly.
We mention that one can also define F±

d (ω) for irrational ω as in [36], but we
do not need them in this paper.

2.4 Invariant Ordered Circles (IOCs)
A solution x(t) = (xn(t)) of (1.1) is said to be a uniform sliding solution if

xn(t) = u (nω + νt) , for n ∈ Z, where ν 6= 0 and the C1 function u : R → R
satisfies u(t + 1) = u(t) + 1, t ∈ R. Uniform sliding solutions are special form
of travelling waves with the profile function u (also called the dynamical hull
function). The parameter ω indicates the mean spacing of particles and ν the
average velocity.

Proposition 2.10. For F−
d (p/q) ≤ F ≤ F+

d (p/q), there exist for (1.1) Birkhoff
equilibria in Bp,q and there are no (p, q)-periodic equilibria when F > F+

d (p/q) or
F < F−

d (p/q). Moreover, for F > F+
d (p/q) (F < F−

d (p/q)) there exists a uniform
sliding solution x(t) ∈ Bp,q with the average velocity ν > 0 (< 0).

Baesens and MacKay [3] proved this in the case that h has two variables, i.e.,
r = 1. We remark that the proof for the general case r > 1 is the same as that of
Theorem 3.1 in [4] which depends upon the strict monotonicity.

Let x = (xn) ∈ X and denote ẋ = (ẋn). We say that ẋ ≥ 0 (� 0,≤ 0,� 0)
for (1.1) if ẋn = −∂nW (x) + F ≥ 0 (> 0,≤ 0, < 0) for all n ∈ Z.

For each uniform sliding solution x(t) = (xn(t)) ∈ Bp,q, it follows that ẋ(t) � 0
(� 0) for all t ∈ R if F > F+

d (p/q) (< F−
d (p/q)). Also, each uniform sliding

solution is invariant for all translations τk,l, k, l ∈ Z.

Definition 2.11. Suppose g : R → X is continuous and satisfies g(s + 1) =
g(s) + 1. We say the image ℓ = g(R) is a strictly ordered circle if g(s1) � g(s2)
for s1 < s2. A strictly ordered circle is called an invariant ordered circle (IOC) if
it is invariant both for {τk,l} and the flow ϕt

F of (1.1) for all t ∈ R.

We should remark that IOCs for (1.1) without driving force are called ghost
circles [20, 31]. It’s clear that an IOC ℓ is a nonempty closed set in B with
p0(ℓ) = R, where p0 denotes the projection from RZ to R: p0(x) = x0 for x = (xn).
Its quotient by τ0,1 is homeomorphic to a circle. Moreover, thanks to the invariance
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of ℓ for τk,l for k, l ∈ Z, there exists a lift of a circle homeomorphism G with rotation
number ω such that for each x = (xn) ∈ ℓ, xn = Gn(x0) for all n ∈ Z, i.e., an IOC
ℓ can be expressed as

ℓ = {x = (xn) | xn = Gn(x0), x0 ∈ R},

and hence ℓ ⊂ Bω.

Proposition 2.12. For p/q ∈ Q in lowest terms and F ∈ R, there exists
for (1.1) an IOC ℓ ⊆ Bp,q. Moreover, for F ∈ [F−

d (p/q), F+
d (p/q)], there exists on

ℓ at least one Birkhoff (p, q)-periodic equilibrium of (1.1). If ω ∈ R\Q and F ∈ R,
there exists for (1.1) an IOC ℓ ⊆ Bω.

For the case r = 1, the above proposition was proved in [35] using the Schauder
fixed point theorem. The proof for the general case r > 1 is the same and we omit
the proof here.

We remark that for F > F+
d (p/q) (F < F−

d (p/q)), the IOC ℓ obtained by the
above proposition is exactly a uniform sliding solution with average velocity ν > 0
(< 0), and hence ẋ � 0 (� 0) for each x ∈ ℓ.

The Hausdorff metric is defined by setting [24]

d(A,B) = sup{d(x,B) | x ∈ A}+ sup{d(A, y) | y ∈ B}

for any two closed sets A, B in a metric space X. Then we have the following
conclusion (see [24]): The Hausdorff metric on the closed subsets of a compact
metric space defines a compact topology.

Assume that ωn ∈ [a, b] with ωn → ω ∈ [a, b], and Fn → F ≥ 0. Let ℓn ⊂ Bωn

be IOCs for (1.1) with the driving force being Fn.
We remark that on bounded subsets of B[a,b], the topology induced by the norm

‖ · ‖ is equivalent to the pointwise convergence topology, see [34]. It follows from
Lemma 2.3 that there is a subsequence of ℓ̂n = ℓn/〈1〉, not relabeled, converging
to a closed set ℓ̂ of B[a,b]/〈1〉 in the Hausdorff metric defined for compact sets in
B[a,b]/〈1〉.

Note that ℓn is periodic with period 1 and ℓ̂n is in fact a segment in ℓn. We
lift ℓ̂ to ℓ by periodicity along 1. Then ℓn → ℓ as n → ∞ in the Hausdorff metric
and hence for each x ∈ ℓ, there exists a sequence of points xn ∈ ℓn such that
limn→∞ ‖xn − x‖ = 0 which is equivalent to xn → x as n → ∞ in the pointwise
convergence topology.

Proposition 2.13. Let (ωn, Fn) → (ω, F ) as n → ∞ and assume that {ℓn} ⊆
Bωn are IOCs of (1.1) with driving force Fn. Then there exist a subsequence
{ℓni

} ⊆ {ℓn} and an IOC ℓ ⊆ Bω for (1.1) such that ℓni
→ ℓ in the Hausdorff

metric.
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The case r = 1 was proved in [35], see Lemma 3.9 in [35]. The proof for the
general case r > 1 is totally the same.

Remark: For F > F+
d (p/q), we know from Proposition 2.10 that there exists a

uniform sliding solution x(t) = (xn(t)) with ẋn(t) > 0 for all n ∈ Z and t ∈ R.
In fact, ℓF = {x(t) | t ∈ R} is an IOC for (1.1) with F > F+

d (p/q). Letting
F → F+

d (p/q) and applying Proposition 2.13 we obtain an IOC ℓ for (1.1) with
driving force F+

d (p/q) such that for each z ∈ ℓ, ż ≥ 0 for (1.1) with F = F+
d (p/q).

Similarly, we have an IOC ℓ′ such that ż ≤ 0 for (1.1) with F = F−
d (p/q) for each

z ∈ ℓ′.

2.5 A Criterion for Positive Topological Entropy
Let ∆ : R2r+1 → R be defined as

∆(x−r, · · · , x0, · · · , xr) = −∂0W (x) = −
r+1∑
j=1

∂jh(x1−j, · · · , xr+1−j)

= −∂1h(x0, · · · , xr)− · · · − ∂r+1h(x−r, · · · , x0).

Then the function ∆ is C1 and satisfies the following properties owing to our
assumptions (H1)-(H4).

(C1) ∆(x−r, · · · , x0, · · · , xr) is strictly increasing for the xj except x0,
(C2) ∆(x−r + 1, · · · , xr + 1) = ∆(x−r, · · · , xr),
(C3) limx−r→±∞ ∆(x−r, · · · , xr) = ±∞ and limxr→±∞ ∆(x−r, · · · , xr) = ±∞.
Note that an equilibrium x = (xn) ∈ RZ of (1.1) is now a solution of the

monotone recurrence relation defined by (see [2])

∆(xn−r, · · · , xn, · · · , xn+r) + F = 0, for n ∈ Z. (2.4)

By virtue of (C1) and (C3), we can solve (2.4) for xn+r if (xn−r, · · · , xn+r−1) is
given. Therefore we define a continuous map F∆ from R2r to R2r by

F∆(xn−r, · · · , xn+r−1) = (xn−r+1, · · · , xn+r).

The map F∆ is a homeomorphism of R2r onto itself since we can solve (2.4) for
xn−r if (xn−r+1, · · · , xn+r) is given. Taking into account the periodicity property
(C2), we define a homeomorphism φ∆ on the 2r-dimensional cylinder S1 × R2r−1

which is a generalization of the class of monotone twist maps of the annulus or
two-dimensional cylinder [2].

Let S̃ denote the set of solutions of (2.4), i.e., the set of equilibria of (1.1),
S = S̃/〈1〉, and σ = τ−1,0/〈1〉. Then the system generated by σ on S, i.e., the
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spatial shift map on the set of equilibria of the driven particle chain (1.1), is
equivalent to that by φ∆ on the 2r-dimensional cylinder.

Let α > 0. A configuration x = (xn) is said to be an α-pseudo solution of (2.4)
if

|∆(xn−r, · · · , xn, · · · , xn+r) + F | ≤ α for n ∈ Z.

A configuration x = (xn) is said to be a supersolution (subsolution) of (2.4) if

∆(xn−r, · · · , xn, · · · , xn+r) + F ≤ 0 (≥ 0) for n ∈ Z.

Assume x = (xn) and x = (xn) are a supersolution and subsolution of (1.1)
respectively. It is said they exchange rotation numbers if

lim inf
n→+∞

xn
n

≥ ω2, lim sup
n→−∞

xn
n

≤ ω1, lim sup
n→+∞

xn
n

≤ ω1, lim inf
n→−∞

xn
n

≥ ω2, (2.5)

hold for some ω1 < ω2, see Section 6 in [2].
A criterion proposed by Angenent in [2] shows that if there exist a supersolution

and a subsolution of (2.4) exchanging rotation numbers, then the homeomorphism
φ∆ defined by (2.4), or σ on S, has positive topological entropy, see Theorem 7.1
in [2].

3 Depinning Thresholds
Let F±

c be defined by (1.5). Then F−
c ≤ 0 ≤ F+

c . We shall show that F−
c ≥ A is

the depinning threshold from travelling (c > 0) to stationary fronts, and F+
c ≤ B

from stationary to travelling fronts (c < 0).
We should mention that the limits limn→+∞ F±

d (1/n) exist. In fact, for each
rational p/q, the limits of F±

d (ω) as ω approaches p/q from the left or right exist,
see [6], but we do not need such results in this paper.

Let a and b be two distinct solutions of −V ′(x) + F = 0.

Definition 3.1. An equilibrium x = (xn) of (1.1) is said to be heteroclinic if
xn → a as n→ −∞ and xn → b as n→ +∞.

We also say that a configuration x = (xn) is heteroclinic if xn → a as n→ −∞
and xn → b as n → +∞. Note that a∗ = (a, · · · , a), b∗ = (b, · · · , b) ∈ R2r are
two fixed points of F∆ defined in Section 2.5. Moreover, the orbit corresponding
to the heteroclinic equilibrium x = (xn) is a heteroclinic orbit asymptotic to a∗ as
n→ −∞ and b∗ as n→ +∞. As we shall see in Section 5, there is a close relation
between heteroclinic equilibria and stationary fronts of (1.1).
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Theorem 3.2. (i) For F̄ ∈ [F−
c , F

+
c ], there exists an IOC ℓ for (1.1) with

F = F̄ such that there is a heteroclinic equilibrium between any two neighboring
homogeneous equilibria on ℓ.
(ii) For F̄ ∈ [F+

c , B) ((A,F−
c ]), there exists an IOC ℓ such that for each z ∈ ℓ,

ż ≥ 0 (≤ 0) for (1.1) with F = F̄ , and either it is a homogeneous equilibria, or it
is heteroclinic connecting two neighboring homogeneous equilibria.

Proof: (i) Let F̄ ∈ [0, F+
c ] and Fn → F̄ as n→ ∞. The proof for F̄ ∈ [F−

c , 0]
is similar. We know that there is a sequence of positive integers {qn} such that
limn→∞ F+

d (1/qn) = F+
c . If F̄ = F+

c , take Fn = F+
d (1/qn). If 0 ≤ F̄ < F+

c , then
take Fn = F̄ . In either case we have F−

d (1/qn) ≤ Fn ≤ F+
d (1/qn) for n large

enough, say n ≥ n0.
Let ℓn ⊂ B1,qn be IOCs for (1.1) with F = Fn due to Proposition 2.12. Thanks

to Proposition 2.13, there is an IOC ℓ which is an accumulation point of {ℓn} in
Hausdorff metric for (1.1) with F = F̄ , and each element on ℓ has rotation number
zero. Moreover, we have τ1,0y ≤ y for each y ∈ ℓn (n ≥ n0) since y is Birkhoff
with rotation number 1/qn > 0, implying that τ1,0x ≤ x for each x ∈ ℓ since it is
a limit in product topology of yn ∈ ℓn.

Since there exists at least one (1, qn)-periodic equilibrium yn ∈ ℓn for (1.1)
with F = Fn by Proposition 2.12, we have an equilibrium on ℓ for (1.1) with
F = F̄ which is an accumulation point of {yn}. Furthermore, there is at least one
homogeneous equilibrium on ℓ. Indeed, for any equilibrium y ∈ ℓ, it follows that
y − 1 ≤ τk,0y ≤ y since y has rotation number 0, hence the limit limk→∞ τk,0y is
a homogeneous equilibrium on ℓ. This also proves F+

c ≤ B.
It is not possible that ℓ is composed of homogeneous equilibria since we only

have two, u1(F̄ ) and u2(F̄ ), in one period. We therefore assume u1(F̄ ) and u3(F̄ )
are two neighboring homogeneous equilibria on ℓ (the proof for the case that u1(F̄ )
and u2(F̄ ) are neighboring is similar).

Let xn = (xni ) ∈ ℓn ⊂ B1,qn be Birkhoff (1, qn)-periodic equilibria of (1.1) with
F = Fn. Then xni → −∞ as i → −∞ and xni → +∞ as i → +∞. Therefore, for
each n ≥ 1, there exists i(n) such that

xni ≤ u1(F̄ ) + ε0 for i < i(n) and xni(n) > u1(F̄ ) + ε0,

where ε0 = (u3(F̄ )− u1(F̄ ))/2 = 1/2.
Let x̃n = τ−i(n),0x

n ∈ ℓn. Then

x̃ni ≤ u1(F̄ ) + ε0 for i < 0 and x̃n0 > u1(F̄ ) + ε0.

Consequently, there exists a convergent subsequence of {x̃n} with limit x = (xi) ∈
ℓ which is an equilibrium of (1.1) with F = F̄ such that

xi ≤ u1(F̄ ) + ε0 < u3(F̄ ) for i < 0 and x0 ≥ u1(F̄ ) + ε0,
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implying u1(F̄ ) � x � u3(F̄ ) since they are strictly ordered on ℓ.
It remains to show that xi → u1(F̄ ) as i → −∞ and xi → u3(F̄ ) as i →

+∞. Assume xi → e < u3(F̄ ) as i → +∞. Then one can check that e · 1 is
a homogeneous equilibrium between u1(F̄ ) and u3(F̄ ), yielding a contradiction
since we assume they are neighboring homogeneous equilibria on ℓ. The proof
for xi → u1(F̄ ) as i → −∞ is similar. Therefore, there exists a heteroclinic
equilibrium connecting any two neighboring homogeneous equilibria on ℓ.

(ii) Let F+
c ≤ F̄ < B and Fn → F̄ as n → ∞. We have a sequence of positive

integers {qn} such that limn→∞ F+
d (1/qn) = F+

c . If F̄ = F+
c , take Fn = F+

d (1/qn).
Take Fn = F̄ if F̄ > F+

c . Then we always have Fn ≥ F+
d (1/qn) for n ≥ n0. From

the remark following Proposition 2.13 we obtain the IOCs ℓn for (1.1) with F = Fn

such that ż ≥ 0 for (1.1) with F = Fn for each z ∈ ℓn, n ≥ n0. Let ℓ denote the
IOC obtained by Proposition 2.13 of (1.1) with F = F̄ . Then for each x ∈ ℓ,
we have ẋ ≥ 0 for (1.1) with F = F̄ since it is the limit of yn ∈ ℓn in product
topology.

Let x ∈ ℓ. Then τ1,0x ≤ x. The reason is the same as in the proof of part
(i). Since each element on ℓ has rotation number 0, then x − 1 ≤ τk,0x ≤ x for
k ≥ 1. It then follows that limk→∞ τk,0x = y ∈ ℓ is homogeneous. Let y(t) be
the solution with y(0) = y of (1.1) with F = F̄ . Then y(t) ∈ ℓ, ẏ(t) ≥ 0, and
y(t) is homogeneous for t ∈ R. If there is no homogeneous equilibrium on ℓ, then
ℓ = {y(t) | t ∈ R}, implying each configuration on ℓ is homogeneous and hence
z = e1 · 1, where e1 satisfies −V ′(e1) + B = 0 (see Figure 1), lies on ℓ. Note that

żi = −∂iW (z) + F̄ ≥ 0 for i ∈ Z,

since z ∈ ℓ. On the other hand,

żi = −∂iW (z) + F̄ = −V ′(e1) + F̄ < −V ′(e1) + B = 0,

yielding a contradiction. Consequently, there is at least one homogeneous equilib-
rium on ℓ.

Assume u1(F̄ ) and u2(F̄ ) are two neighboring homogeneous equilibria on ℓ
(the proof is similar for the case u2(F̄ ) and u3(F̄ ) are neighboring or u1(F̄ ) and
u3(F̄ ) are neighboring). We prove by contradiction that there is no homogeneous
configuration on the segment of ℓ between u1(F̄ ) and u2(F̄ ).

Assume y ∈ ℓ is homogeneous and u1(F̄ ) � y � u2(F̄ ). Then the solution
y(t) with y(0) = y of (1.1) with driving force F̄ lies on ℓ for t ∈ R. Furthermore,
u1(F̄ ) � y(t) � u2(F̄ ) for t ∈ R and y(t) → u1(F̄ ) as t→ −∞ and y(t) → u2(F̄ )
as t→ ∞, leading to a contradiction by considering e1 ·1 as above. Consequently,
either x ∈ ℓ is a homogeneous equilibrium, or it is heteroclinic connecting two
neighboring homogeneous equilibria. The proof for F ∈ (A,F−

c ] is similar.
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4 The “Unstable” Equilibrium
Let

hF (x1, · · · , xr+1) = h(x1, · · · , xr+1)− Fx1,

and
W F (x) =

∑
j∈Z

hF (xj, · · · , xj+r).

Then the driven particle system (1.1) is exactly

ẋi = −∂iW F (x), i ∈ Z. (4.1)

In this section, we always assume n > 2r + 1. Let F ∈ (A,B). Denote for
simplicity a = u2(F ), where u2(F ) is the intermediate zero of −V ′(x) + F = 0
with −V ′′(u2(F )) > 0 (see Figure 1). Let

αi,j(x) = −∂i,jW F (x), i, j ∈ Z.

Then αi,j(x) = 0 for j > i + r or j < i − r. Meanwhile, one can check that for
0 ≤ m ≤ r,

αi,i+m(x) = −
r+1−m∑
k=1

∂k,k+mh(xi+1−k, · · · , xi+r+1−k),

αi,i−m(x) = −
r+1−m∑
k=1

∂k+m,kh(xi+1−m−k, · · · , xi+r+1−m−k),

and hence
αi,i+m(x) = αi+m,i(x) > 0 for i ∈ Z, 1 ≤ m ≤ r, (4.2)

since h is C2 satisfying the twist condition (H4). Let

αi,j = αi,j(u
2(F )), i ∈ Z, j ∈ Z.

Then we have αi,j = αi+1,j+1 for i, j ∈ Z. One can check that for each i ∈ Z,
i+r∑

j=i−r

αi,j = −
r+1∑
j=1

r+1∑
i=1

∂i,jh(a, · · · , a) = −V ′′(a) > 0. (4.3)

Let An = (ai,j) be an n× n matrix with

ai,j = αi,j, 1 ≤ i ≤ n, 1 ≤ i− r ≤ j ≤ i+ r ≤ n,

ai,j = αi,j−n, 1 ≤ i ≤ n, i+ r < j ≤ n,

ai,j = αi,j+n, 1 ≤ i ≤ n, 1 ≤ j < i− r.

(4.4)
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Then the off-diagonal elements of An are non-negative and An is symmetric due
to (4.2). Meanwhile, the sum of the elements in each row is µ0 = −V ′′(a) > 0
thanks to (4.3). Then the biggest eigenvalue of An is µ0 > 0 with eigenvector
(1, · · · , 1) ∈ Rn.

Letting the elements in the upper right corner and lower left corner in An be
zero, we construct an n× n symmetric matrix An = (āi,j) as follows.

āi,j = ai,j, for 1 ≤ i ≤ n, 1 ≤ i− r ≤ j ≤ i+ r ≤ n, otherwise āi,j = 0.

We shall show that the biggest eigenvalue of An is positive provided n is large
enough. Let λnn ≤ λnn−1 ≤ · · · ≤ λn1 denote the eigenvalues of An.

Lemma 4.1. λn1 → µ0 as n→ ∞.

Proof: From the Perron-Frobenius Theorem it follows that µ0 is the biggest
eigenvalue of An for all n > 2r+1 with corresponding eigenvector (1, · · · , 1) ∈ Rn.
Note that An is a leading principal submatrix of A2n. We deduce by Cauchy’s
interlacing theorem that λn1 ≤ µ0. Meanwhile, for 2r + 1 < n1 < n2, An1 is
a leading principal submatrix of An2 . We deduce again by Cauchy’s interlacing
theorem that λn1

1 ≤ λn2
1 , implying the limit limn→∞ λn1 = λ0 exists. We claim that

λ0 = µ0.
Indeed, if λ0 < µ0, then there exists ε0 > 0 such that λn1 ≤ µ0−ε0 for n > 2r+1,

and hence µ0 is in the resolvent set of An. Consequently, for each ξ̄ ∈ Rn, there
exists η̄ ∈ Rn such that

(µ0In − An)η̄ = ξ̄,

where In denotes the identity of the Euclidean space Rn with norm ‖ · ‖n.
There exists an orthonormal matrix Pn of order n such that

P−1
n AnPn = diag(λnn, · · · , λn1 ).

Let
η̃ = P−1

n η̄ and ξ̃ = P−1
n ξ̄.

Then

P−1
n (µ0In − An)Pnη̃ = ξ̃, hence diag(µ0 − λnn, · · · , µ0 − λn1 )η̃ = ξ̃.

Note that µ0 − λni ≥ ε0, i = 1, · · · , n. Then ε0‖η̃‖n ≤ ‖ξ̃‖n, implying

‖η̄‖n = ‖η̃‖n ≤ ‖ξ̃‖n/ε0 = ‖ξ̄‖n/ε0. (4.5)

Let
η̂ = (1/

√
n, · · · , 1/

√
n) ∈ Rn, and (µ0In − An)η̂ = ξ̂.
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Then ‖η̂‖n = 1. Since Anη̂ = µ0η̂, then

ξ̂ = (An − An)η̂ = (ζ̄1, · · · , ζ̄r, 0, · · · , 0, ζ̂1, · · · , ζ̂r),

where

ζ̄1 = (a1,n−r+1 + · · ·+ a1,n)/
√
n, · · · , ζ̂r = (an,1 + · · ·+ an,r)/

√
n.

Note that |ai,j| ≤ K for i, j ∈ {1, · · · , n} by (4.4) and the hypothesis (H2). Then

‖ξ̂‖2n = ζ̄21 + · · ·+ ζ̄2r + ζ̂21 + · · ·+ ζ̂2r ≤ 2r3K2/n.

It then follows from (4.5) that

1 = ‖η̂‖n ≤ ‖ξ̂‖n/ε0 ≤ rK
√
2r/(

√
nε0),

leading to a contradiction for sufficiently large n.
Let a∗ = (a, · · · , a) ∈ Rn, where a = u2(F ). Define for u = (u1, · · · , un) ∈ Rn

W
F

n (u) = hF (a, · · · , a, u1) + · · ·+ hF (a, u1, · · · , ur) + hF (u1, · · · , ur+1)

+ · · ·+ hF (un−r+1, · · · , un, a) + · · ·+ hF (un, a, · · · , a),

and consider the truncated system

u̇i = −∂iW
F

n (u), i = 1, · · · , n. (4.6)

Note that a∗ is an equilibrium of (4.6). Let −D2W
F

n (a
∗) denote the Hessian

matrix at a∗. Then it coincides with An by simple calculations. We then deduce
that a∗ is an unstable equlibrium of system (4.6) for n large enough by Lemma 4.1.
Note that An is irreducible by (4.2). Then by the Perron-Frobenius Theorem the
eigenvector v = (v1, · · · , vn) ∈ Rn corresponding to the biggest eigenvalue λn1 > 0
is strictly positive, i.e., vi > 0 for i = 1, · · · , n.

Note also that system (4.6) is strongly monotone by the twist condition (H4).
We have the following conclusion owing to the results in Section 5, Chapter 2,
in [37].

Lemma 4.2. Let n be large enough such that λn1 > 0. Then there exists a
neighborhood U ⊂ Rn of a∗ such that for each u ∈ U with u � a∗ (u � a∗), it
follows that u(t) � u (u(t) � u) for t > 0, where u(t) is a solution of (4.6) with
initial value u(0) = u.

Theorem 4.3. Let A < F < B and ℓ be an IOC obtained by Theorem 3.2.
Then u2(F ) 6∈ ℓ.
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Proof: We prove by contradiction. Assume u2(F ) ∈ ℓ. Let n be large enough
such that a∗ ∈ Rn is an equilibrium of system (4.6) with the Hessian matrix An

at a∗ having a positive eigenvalue λn1 > 0, the corresponding eigenvector being
strictly positive.

From Lemma 4.2 we deduce the existence of a neighborhood U ⊂ Rn of a∗ such
that for each u ∈ U with u� a∗, u(t) � u for t > 0, in which u(t) is a solution of
the truncated system (4.6) with the initial value u(0) = u.

Let F−
c ≤ F < B. Then we deduce by Theorem 3.2 the existence of a het-

eroclinic configuration z = (zi) ∈ ℓ such that ż ≥ 0 (= 0 if F−
c ≤ F ≤ F+

c )
for (1.1), z � u2(F ) and u = (z1, · · · , zn) ∈ U . Since zi < a = u2(F ) for
i = −r, · · · , n, · · · , n+r, and −∂iW F (z) ≥ 0 for i ∈ Z, we derive by the monotonic-
ity (see Lemma 2.4) that −∂iW

F

n (u) > 0 for i = 1, implying u1(t) > u1(0) = z1 for
0 < t ≤ t0 with t0 small, in which u(t) = (u1(t), · · · , un(t)) is a solution of (4.6)
with u(0) = u. This is a contradiction to Lemma 4.2 since u � a∗. The case for
A < F < F−

c is proved by choosing z � u2(F ). This completes the proof.

5 Stationary and Travelling Fronts
To prove our conclusions, we need to associate the existence of IOCs of (1.1)

with travelling and stationary fronts.

Lemma 5.1. Equation (1.6) has a strictly increasing and continuous solution u
satisfying (1.7) if and only if there exists an IOC for (1.1) with F = 0 consisting
of homogeneous equilibria 0, 1, and heteroclinic equilibria connecting 0 to 1.

Proof: Let ℓ be the IOC for (1.1) with F = 0 consisting of 0, 1, and hete-
roclinic equilibria connecting 0 to 1. Let y = (yn) ∈ ℓ be a heteroclinic equilib-
rium. Note that we have a strictly increasing and continuous function G satisfying
G(t+ 1) = G(t) + 1 for t ∈ R such that

ℓ = {x = (xn) | xn = Gn(t), n ∈ Z, t ∈ R}.

Since 0, 1 ∈ ℓ, G(0) = 0, G(1) = 1. Meanwhile, yn = Gn(y0) for n ∈ Z.
Note that yn < yn+1, n ∈ Z. Define η : (0, 1) → (−∞,+∞) as follows. Let

η(y0) = 0, η(yn) = n, for n ∈ Z,
η(t) = (t− y0)/(y1 − y0), for t ∈ (y0, y1),

η(t) = η(G−n(t)) + n, for t ∈ (yn, yn+1), n ∈ Z, n 6= 0.

Then η is strictly increasing and continuous, and satisfies limt→0 η(t) = −∞, and
limt→1 η(t) = +∞.
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Let u(s) = η−1(s) for s ∈ (−∞,+∞). Then u : R → (0, 1) is a strictly increas-
ing and continuous function satisfying (1.7) and yn = u(n), n ∈ Z. Furthermore,
for each s ∈ R, from the definition of η it follows that

u(s+ n) = Gn(u(s)) for n ∈ Z.

Let s ∈ R, x0 = u(s), and xn = u(s + n), n ∈ Z. Then x = (xn) ∈ ℓ satisfies
0 � x � 1 and is a stationary front of (1.1), implying that the function u
satisfies (1.6) and (1.7).

Assume there exists a strictly increasing and continuous function u satisfy-
ing (1.6) and (1.7). Let η : (0, 1) → R denote a strictly increasing and continuous
function satisfying limt→0 η(t) = −∞, and limt→1 η(t) = +∞. We remark that
such a function exists. For n ∈ Z, let

gn(s) = u(n+ η(s)), s ∈ (0, 1), gn(0) = 0, gn(1) = 1,

and
gn(s

′) = gn(s) + k, where s′ = s+ k, k ∈ Z, s ∈ [0, 1).

Then we have a continuous function g : R → X , g(s) = (gn(s)), the image of
which, ℓ = {g(s) | s ∈ R} is a strictly ordered circle. Meanwhile, each element on
ℓ is an equilibrium of (1.1) with F = 0, and hence ℓ in invariant for the gradient
flow of (1.1) with F = 0. It remains to show that ℓ is invariant for τk,l for k, l ∈ Z.

Indeed, for each s ∈ (0, 1), let s̃ ∈ (0, 1) such that η(s̃) = η(s) − k. Let
s′ = s̃+ l. Then τk,lg(s) = g(s′), implying ℓ is invariant for τk,l. Note also that the
intermediate homogeneous equilibrium u2 6∈ ℓ since gn(s) 6= gn+1(s) for s ∈ (0, 1).
Therefore, ℓ is an IOC for (1.1) with F = 0 consisting of 0, 1, and heteroclinic
equilibria connecting 0 to 1.

Lemma 5.2. If there exists an IOC ℓ for (1.1) such that u1(F ),u3(F ) ∈ ℓ, and
there is a heteroclinic equilibrium y on ℓ connecting u1(F ) to u3(F ), then y is a
stationary front.

Proof: The proof is similar to the first part of that of the above lemma, with
0 and 1 being replaced by u1(F ) and u3(F ) respectively.

Lemma 5.3. System (1.1) has a travelling front with the profile function u
satisfying (1.3) with c < 0 (c > 0) and (1.4) if and only if there exists an IOC
ℓ for (1.1) such that u1(F ),u3(F ) ∈ ℓ and for each z ∈ ℓ\{u1(F ),u3(F )}, z is
heteroclinic connecting u1(F ) to u3(F ) and satisfying ż � 0 (� 0) for (1.1).

Proof: Assume there is a travelling front with the profile function u satisfy-
ing (1.3) with c < 0 (the proof for c > 0 is similar) and (1.4). The construction of
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a continuous function g : R → X is the same as that in the proof of Lemma 5.1
using the profile function u with 0 and 1 being replaced by u1(F ) and u3(F ) re-
spectively. Then ℓ = {g(s) | s ∈ R} is a strictly ordered circle invariant for τk,l,
k, l ∈ Z. It remains to check the invariance of ℓ for the flow ϕt

F of (1.1).
Indeed, if we denote by x(t) = (xn(t)) the travelling front, i.e., xn(t) = u(n−ct),

then for each z ∈ ℓ\{u1(F ),u3(F )}, there is s ∈ (u1(F ), u3(F )), such that

zn = gn(s) = u(n+ η(s)) = u(n− ct0) = xn(t0), where t0 = −η(s)/c.

As a consequence, ϕt
Fz = x(t0 + t) ∈ ℓ since

xn(t0 + t) = u(n− c(t0 + t)) = u(n+ η(s′)) = gn(s
′),

where s′ ∈ (u1(F ), u3(F )) such that η(s′) = −c(t0 + t). This implies that ℓ is
invariant for ϕt

F for all t ∈ R. Moreover, zn → u1(F ) as n → −∞, zn → u3(F ) as
n→ +∞, and ż = ẋ(t0) � 0 since ẋn(t0) = −cu′(n− ct0) > 0 for all n ∈ Z.

Assume there exists an IOC ℓ for (1.1) such that u1(F ),u3(F ) ∈ ℓ and for each
z ∈ ℓ\{u1(F ),u3(F )}, z is heteroclinic connecting u1(F ) to u3(F ), and ż � 0
for (1.1). Let x0 ∈ ℓ\{u1(F ),u3(F )} and x(t) be the solution of (1.1) with initial
value x(0) = x0.

Since ℓ is invariant for ϕt
F (t ∈ R) and τk,l, k, l ∈ Z, then x(t) ∈ ℓ for all t ∈ R

and τ−1,0x(0) ∈ ℓ. Note that ℓ is in fact composed of two equilibria u1(F ), u3(F ),
and the solution {x(t) | t ∈ R}. Furthermore, x(t) → u1(F ) as t → −∞ and
x(t) → u3(F ) as t → +∞ in product topology. Since x(0) is left asymptotic to
u1(F ) and right asymptotic to u3(F ), implying τ−1,0x(0) � x(0), then there exists
T > 0 such that τ−1,0x(0) = x(T ). Meanwhile, from (2.2) we have τ−1,0x(t) =
x(t + T ) for all t ∈ R, i.e., xn+1(t) = xn(t + T ) and hence xn(t) = x0(t + nT ) for
all t ∈ R and n ∈ Z.

Let c = −1/T < 0 and u(s) = x0(Ts) for s ∈ R. Then u is C1 smooth with
u′(s) > 0 and satisfies (1.3) and (1.4). Moreover, xn(t) = u(n− ct) for n ∈ Z and
t ∈ R and hence x(t) is a travelling front solution.

Lemma 5.4. If there exists an IOC ℓF such that u1(F ),u3(F ) ∈ ℓF and for each
z ∈ ℓF\{u1(F ),u3(F )}, z is heteroclinic connecting u1(F ) to u3(F ) and satisfying
ż ≥ 0 (≤ 0) for (1.1), then there is no heteroclinic equilibrium of (1.1) with driving
force F1 > F (F1 < F ) connecting u1(F1) to u3(F1).

Proof: Denote v1 = u1(F ), v1 = u1(F ), u1 = u1(F1), and u1 = u1(F1) for
simplicity. Then v3 = v1 + 1, v3 = v1 + 1, u3 = u3(F1) = u1 + 1 and u3 = u1 + 1.
We know that v1 and v3 are two homogeneous equilibria of (1.1) with driving force
F , and u1 and u3 are two homogeneous equilibria of (1.1) with driving force F1,
satisfying v1 � u1 � v3 � u3 by (1.2).
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We prove the case F1 > F by contradiction (the proof for F1 < F is similar).
Assume there exists heteroclinic equilibrium x = (xn) of (1.1) with driving force
F1 > F connecting u1 to u3., i.e., xn → u1 as n→ −∞, and xn → u3 as n→ +∞.

Meanwhile, there exists a lift of a circle homeomorphism G such that

ℓF = {w = (wn) |wn = Gn(w0), n ∈ Z, w0 ∈ R},

G(v1) = v1, G(v3) = (v3). Let w0 ∈ (v1, v3) and w = (wn) ∈ ℓF , where
wn = Gn(w0), n ∈ Z. Then wn → v1 as n → −∞ and wn → v3 as n → +∞.
Consequently, there exist n1 < n2 < n3 such that

wn < xn for n ≤ n1, wn2 > xn2 , and wn < xn for n ≥ n3.

Let

J = {v1 < s ≤ w0 |Gn(s) ≤ xn, n1 ≤ n ≤ n3}, and s1 = sup J.

Since Gn(s) → v1 as s→ v1 uniformly for n1 ≤ n ≤ n3 and G is continuous in R,
the set J is nonempty. Let

z = (zn) ∈ ℓF , where zn = Gn(s1), n 6= 0, z0 = s1.

Then it follows that there exists m ∈ Z with n1 < m < n3, such that

zm = xm, zm−i ≤ xm−i, and zm+i ≤ xm+i, 1 ≤ i ≤ r.

We deduce by Lemma 2.4 together with ż ≥ 0 for (1.1) that

0 ≤ −∂mW (z) + F < −∂mW (z) + F1 ≤ −∂mW (x) + F1 = 0,

since x is an equilibrium of (1.1) with driving force F1, a contradiction.

Corollary 5.5. Let F ∈ (A,F−
c ) ∪ (F+

c , B). Then there is no heteroclinic
equilibrium of (1.1) connecting u1(F ) to u3(F ).

Proof: This follows from Theorem 3.2, Theorem 4.3, and Lemma 5.4.

6 Proof of Main Conclusions
Proof of Theorem A:

Let F±
c be defined by (1.5) and F−

c < F < F+
c . Then by Theorem 3.2 we

have F−
c ≥ A, F+

c ≤ B, and an IOC ℓF for (1.1) such that u1(F ),u3(F ) ∈ ℓF but
u2(F ) 6∈ ℓF due to Theorem 4.3. Meanwhile, there exists a heteroclinic equilibrium
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z ∈ ℓF connecting u1(F ) to u3(F ), leading to the existence of a stationary front
by Lemma 5.2.

If there exist travelling fronts, then from Lemma 5.3, we obtain an IOC ℓ
for (1.1) such that u1(F ),u3(F ) ∈ ℓ and for each z ∈ ℓ\{u1(F ),u3(F )}, ż �
0 (� 0) for (1.1), implying immediately by Lemma 5.4 F+

c ≤ F (F ≤ F−
c )

since (1.1) with driving force F+
c (F−

c ) has heteroclinic equilibrium by Theorem 3.2,
a contradiction. Consequently, there are stationary fronts but no travelling fronts
for (1.1) with F ∈ (F−

c , F
+
c ).

Let F+
c < F < B. Then we have an IOC ℓF by Theorem 3.2 such that for each

z ∈ ℓ, ż ≥ 0. Meanwhile, from Theorem 4.3, we know that u2(F ) 6∈ ℓF , implying
that u1(F ),u3(F ) ∈ ℓF and each z ∈ ℓF\{u1(F ),u3(F )} is heteroclinic connecting
u1(F ) to u3(F ) by Theorem 3.2. Moreover, we deduce by Corollary 5.5 that ż � 0
for each z ∈ ℓF\{u1(F ),u3(F )}, and hence we obtain the existence of travelling
fronts by Lemma 5.3 and nonexistence of stationary fronts by Corollary 5.5. The
proof for the case A < F < F−

c is similar. Therefore, the critical values F±
c defined

by (1.5) are identical to those obtained in [28], which characterize the depinning
transition from travelling (c > 0) to stationary fronts, and stationary to travelling
(c < 0) fronts.
Proof of Theorem B:

Assume u : R → (0, 1) is a strictly increasing and continuous function satis-
fying (1.6) and (1.7). Then we deduce by Lemma 5.1 the existence of an IOC ℓ
for (1.1) with F = 0 such that u1(0),u3(0) ∈ ℓ, u2(0) 6∈ ℓ, and ż = 0 for each z ∈ ℓ.
If F+

c > 0, then by Theorem 3.2 there exists a heteroclinic equilibrium connecting
u1(F+

c ) to u3(F+
c ), a contradiction to Lemma 5.4. Therefore, F−

c = F+
c = 0.

Assume F+
c = F−

c . Then F+
c = 0 since F−

c ≤ 0 and F+
c ≥ 0. Let {qn} be a

sequence of positive integers such that limn→∞ F+
d (1/qn) = F+

c = 0. Let ℓn ⊂ B1,qn

denote IOCs for (1.1) with F = F+
d (1/qn) ≥ 0 such that (see the remark following

Proposition 2.13) for each y ∈ ℓn, ẏ ≥ 0 for (1.1) with F = F+
d (1/qn). Let ℓ denote

a lift of an accumulation point of ℓn/〈1〉 in the Hausdorff metric. Then ℓ is an IOC
of (1.1) with F = 0 by Proposition 2.13, and for each x ∈ ℓ, ẋ ≥ 0 for (1.1) with
F = 0. We shall show in what follows that each x ∈ ℓ is an equilibrium of (1.1)
with F = 0, i.e., −∂nW (x) = 0 for all n ∈ Z.

The strategy is similar to that in the first part of the proof of Theorem B
in [36]. Assume there exists x′ ∈ ℓ and i0 ∈ Z such that ∂i0W (x′) < 0. Then
owing to the continuity of ℓ, there exists a neighborhood U ⊂ X of x′ such that
∂i0W (x) < 0 for all x ∈ U ∩ ℓ, implying∫

ℓ/⟨1⟩
∂i0W (x)dxi0 < 0. (6.1)

Thanks to the translation-invariance of ℓ, i.e., τ−j+1,0ℓ = ℓ, we make a trans-
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formation of variables, z = τ−j+1,0x, i.e., zi = xi+j−1 for i ∈ Z, to calculate the
integral for 1 ≤ j ≤ r + 1,∫

ℓ/⟨1⟩
∂jh(xi0 , · · · , xi0+j−1, · · · , xi0+r)dxi0+j−1

=

∫
τ−j+1,0(ℓ/⟨1⟩)

∂jh(zi0+1−j, · · · , zi0 , · · · , zi0+r+1−j)dzi0

=

∫
τ−j+1,0ℓ/⟨1⟩

∂jh(zi0+1−j, · · · , zi0 , · · · , zi0+r+1−j)dzi0

=

∫
ℓ/⟨1⟩

∂jh(xi0+1−j, · · · , xi0 , · · · , xi0+r+1−j)dxi0 .

Note that

∂i0W (x) =
r+1∑
j=1

∂jh(xi0+1−j, · · · , xi0 , · · · , xi0+r+1−j).

Due to the periodicity hypothesis (H1) and the fact τ0,1ℓ = ℓ, we derive that

0 =

∫
ℓ/⟨1⟩

dh(xi0 , · · · , xi0+r) =
r+1∑
j=1

∫
ℓ/⟨1⟩

∂jh(xi0 , · · · , xi0+j−1, · · · , xi0+r)dxi0+j−1

=
r+1∑
j=1

∫
ℓ/⟨1⟩

∂jh(xi0+1−j, · · · , xi0 , · · · , xi0+r+1−j)dxi0 =
∫
ℓ/⟨1⟩

∂i0W (x)dxi0 ,

which is a contradiction to (6.1).
Therefore, each x ∈ ℓ is an equilibrium of (1.1) with F = 0. Furthermore,

we deduce that u2(0) 6∈ ℓ by Theorem 4.3 and hence ℓ is composed of u1(0),
u3(0), and heteroclinic equilibria connecting u1(0) to u3(0). Consequently, we
have by Lemma 5.1 and its proof a strictly increasing and continuous function u
satisfying (1.6) and (1.7).
Remark 1: By the above proof we know that F−

c = F+
c if and only if there exists

an IOC ℓ for (1.1) with F = 0 such that each z ∈ ℓ is an equilibrium of (1.1) with
F = 0, and hence ℓ is a minimal foliation since it is connected, strictly ordered,
and invariant for shifts {τk,l}. Moreover, each z ∈ ℓ is a minimizer according to
Theorem 10.1 in [31] or Lemma 3.8 in [36].
Remark 2: If we restrict our attention to the case r = 1, then the projection of
the IOC ℓ with each z ∈ ℓ being an equilibrium of (1.1) obtained for F−

c = F+
c is

a homotopically non-trivial invariant circle with rotation number 0 consisting of
fixed points and their right-going separatices on the cylinder for the corresponding

24



twist map. Here we give an example of twist maps showing the existence of the
invariant circle consisting of fixed points and heteroclinic orbits. Let

f(x) = x+ k sin 2πx, k ∈ (0, 1/(2π)), and ψ(x) = f(x) + f−1(x)− 2x, x ∈ R.

Construct a twist map Ψ : (x, y) 7→ (x′, y′) by x′ = x + y + ψ(x), y′ = y + ψ(x).
Then one can check that Ψ has invariant circles

Γ1 = {(x, y) | y = x− f−1(x), x ∈ R}, and Γ2 = {(x, y) | y = x− f(x), x ∈ R},

and the restrictions of Ψ on Γ1 and Γ2 are f and f−1, respectively. Let Γ be the
union of the piece on Γ1 for x ∈ [0, 1/2] and the piece on Γ2 for x ∈ [1/2, 1]. Then
Γ is an invariant circle consisting of fixed points and their right-going separatices.

Proof of Theorem C:
Let 0 < α < min{F+

c −F, F −F−
c } and take F1 = F +α and F2 = F −α. From

Theorems 3.2 and 4.3, we deduce the existence of an IOC ℓF1 for (1.1) with driving
force F1 and a heteroclinic equilibrium x = (xn) ∈ ℓF1 such that xn → u1(F1) as
n→ −∞ and xn → u3(F1) as n→ +∞. Then for each δ > 0, there exists N1 > 2r
such that

|xn − u1(F1)| < δ for n ≤ −N1 and |xn − u3(F1)| < δ for n ≥ N1.

Let q1 = 2N1 + 2r. We construct an α-pseudo solution x̄ = (x̄i) of (2.4) with
driving force F1 as follows. Let

x̄i =


u1(F1), i < −N1 − r,

xi, −N1 − r ≤ i ≤ N1 + r − 1,

(τ kq1,1x)i, −N1 − r + kq1 ≤ i ≤ N1 + r − 1 + kq1, k ≥ 1.

Then one can check that x̄ is an α-pseudo solution of (2.4) with driving force F1

provided δ is small enough, implying

∆(x̄i−r, · · · , x̄i+r) + F = ∆(x̄i−r, · · · , x̄i+r) + F1 + F − F1 ≤ 0, i ∈ Z,

and hence x̄ is a supersolution of (2.4) with driving force F satisfying

lim
i→−∞

(x̄i − x̄0)/i = 0 and lim
i→+∞

(x̄i − x̄0)/i = 1/q1.

Similarly, there exists an IOC ℓF2 for (1.1) with driving force F2 and a het-
eroclinic equilibrium y = (yn) ∈ ℓF2 such that yn → u1(F2) as n → −∞ and
yn → u3(F2) as n→ +∞. Then for each δ > 0, there exists N2 > 2r such that

|yn − u1(F2)| < δ for n ≤ −N2 and |yn − u3(F2)| < δ for n ≥ N2.
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Let q2 = 2N2 + 2r and

xi =


u1(F2), i > N2 + r,

yi, −N2 − r + 1 ≤ i ≤ N2 + r,

(τ k−q2,−1y)i, −N2 − r + 1− kq2 ≤ i ≤ N2 + r − kq2, k ≥ 1.

Then one can also check that x = (xi) is an α-pseudo solution of (2.4) with driving
force F2 if δ is small enough, implying

∆(xi−r, · · · , xi+r) + F = ∆(xi−r, · · · , xi+r) + F2 + F − F2 ≥ 0, i ∈ Z,

and hence x is a subsolution of (2.4) satisfying

lim
i→−∞

(xi − x0)/i = 1/q2 and lim
i→+∞

(xi − x0)/i = 0.

Taking ω1 = 0 < min{1/q1, 1/q2} = ω2, we obtain a supersolution and a subsolu-
tion of (2.4) exchanging rotation numbers, implying positive topological entropy
for σ on S by Theorem 7.1 in [2].
Remark: Since we have constructed a supersolution and a subsolution of (2.4)
exchanging rotation numbers 0 and ω2 > 0, then we deduce by Theorem 6.1 in [2]
that for each ω ∈ [0, ω2], there exists a Birkhoff solution of (2.4) with rotation
number ω, i.e., an equilibrium of (1.1) with F−

c < F < F+
c .

Proof of Theorem D:
Let p/q ∈ Q in lowest terms and denote by F±

d (p/q, h) the lower and upper
depinning force depending on the potential function h for (1.1). We first show that
F±
d (p/q, h) are continuous with respect to h in C1 topology.

Let h, h̃ be two potential functions satisfying the assumptions (H1)-(H4). We
shall show that for each ε > 0, there exists δ > 0 independent of p/q such that

|F+
d (p/q, h)− F+

d (p/q, h̃)| < ε, if ‖h− h̃‖C1 < δ.

From Lemma 2.8 we deduce the existence of x, x̃ ∈ Bp,q such that

−∂iW (x, h) + F+
d (p/q, h) = 0 and − ∂iW (x̃, h̃) + F+

d (p/q, h̃) = 0, i ∈ Z.

We claim that there exists i0 ∈ Z such that

−∂i0W (x̃, h) ≥ −∂i0W (x, h).

Otherwise, we have for all i ∈ Z,

−∂iW (x̃, h) + F+
d (p/q, h) < −∂iW (x, h) + F+

d (p/q, h) = 0,
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and hence by the periodicity ∂i+qW (x̃, h) = ∂iW (x̃, h) for all i ∈ Z, we have some
c > 0 such that

−∂iW (x̃, h) + F+
d (p/q, h) + c ≤ 0, for all i ∈ Z,

a contradiction to Lemma 2.9.
Meanwhile, we have

|∂i0W (x̃, h̃)− ∂i0W (x̃, h)| < δ′ = (r + 1)δ since ‖h− h̃‖C1 < δ,

and hence

F+
d (p/q, h̃)− δ′ = ∂i0W (x̃, h̃)− δ′ < ∂i0W (x̃, h) ≤ ∂i0W (x, h) = F+

d (p/q, h).

Similarly we have if ‖h− h̃‖C1 < δ

F+
d (p/q, h)− δ′ < F+

d (p/q, h̃), implying |F+
d (p/q, h)− F+

d (p/q, h̃)| < δ′.

Taking δ < ε/(r+1) we show the continuity of F+
d (p/q, h) with respect to h in C1

topology. The proof for F−
d is similar. We remark that δ is independent of p/q.

Note that F+
c (h) = lim supn→∞ F+

d (1/n, h). Meanwhile, for each ε > 0, there
exists 0 < δ < ε/(r + 1) such that

|F+
d (1/n, h)− F+

d (1/n, h̃)| < ε,

implying |F+
c (h) − F+

c (h̃)| ≤ ε provided ‖h − h̃‖C1 < δ. Consequently, F+
c is

continuous with respect to h in C1 topology. The proof for F−
c is similar.

7 Discussions
1. Our approach also applies to general lattice systems not generated by potential
functions:

ẋn = ∆(xn−k, · · · , xn, · · · , xn+l) + F,

where ∆ : Rk+l+1 → R is C1 satisfying (C1)-(C3) in Section 2.5 and some other
assumptions to guarantee the existence, uniqueness, and continuous dependence
on system parameters of global solutions of the above system. We define lower
and upper depinning force as in Section 2.3. This time the nonemptiness of Ap,q

is not from the Aubry-Mather theory. It is obtained by Theorem 9.1 in [2] and
it is not necessary that 0 ∈ Ap,q. Meanwhile, we also have IOCs for each F ∈ R
owing to the periodicity and monotonicity conditions. Therefore, most of the
main conclusions hold true for the above general lattice systems, including some
dissipative systems.
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2. We should mention that the context here of periodic potential is a special
case of the bistable potential treated by many authors, but the periodic case allows
to consider (p, q)-periodic equilibria, which do not exist in the general bistable case.

3. The stationary and travelling fronts are sometimes called kink solutions.
We can also investigate the depinning transition of anti-kink solutions using the
approach of this paper. A travelling wave solution x(t) = (xn(t)) is said to be anti-
kink if xn(t) = u(n−ct) with c 6= 0 and the profile function u : R → (u1(F ), u3(F ))
being C1 smooth, u′(s) < 0 for s ∈ R, and satisfying (1.3) and (1.4) with u1(F )
and u3(F ) interchanged. An equilibrium x = (xn) of (1.1) is said to be anti-kink
if there exists a strictly decreasing function u satisfying (1.4) interchanging u1(F )
and u3(F ) such that xn = u(n) for n ∈ Z.

We define

F̂−
c = lim inf

n→+∞
F−
d (−1/n) and F̂+

c = lim sup
n→+∞

F+
d (−1/n).

Then conclusions similar to those in Theorems A, B, C, and D hold true if we
are concerned with the depinning transition of anti-kink equilibria and travelling
waves of (1.1).

If max{F̂−
c , F

−
c } < F < min{F̂+

c , F
+
c }, then there are neither kink nor anti-

kink travelling fronts, leading to yet more equilibria having a rotation interval with
0 in the interior.
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