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Abstract— Remaining discharge energy (RDE) indicates how
much useful energy can be extracted from a battery before
reaching the discharge limit. Future current loading on vehicle
battery systems can be predicted to increase the accuracy of
RDE estimations. This is done by using clustering techniques
to group load measurements into states, and then using a
probability-based framework, along with real-world data, to
calculate the transitional probabilities between states. Here,
an adapted K-means clustering method is used to cluster
load profile data. Markov modelling is used to produce state
transition probabilities. Two methods for load prediction are
used, which are referred to as the offline-training method and
the moving window method, where the offline-training method
has not been implemented for this application before. Additional
control logic is implemented to combine the proposed load
prediction methods to produce a new hybrid load prediction
method. This hybrid method shows improved RDE accuracy
for a generalised load case. The robustness of the proposed
technique is assessed in the presence of model errors, still
showing good accuracy when compared to state-of-charge based
calculations.

I. INTRODUCTION

Remaining discharge energy (RDE) refers to the amount
of energy that can be discharged before a battery reaches its
cut-off voltage, or a predetermined SoC value [1]. RDE can
be calculated using the equation

RDE =

∫ EoDT

t

Ut(τ) · I(τ) · dτ, (1)

where t is the current time, EoDT is the end of discharge
time, Ut is the battery terminal voltage as a function of time
τ , and I is the current as a function of time τ [1], [2].
For RDE estimation, three important features are outlined in
[1], the calculation of the end-of-discharge time, which is
defined as the time to reach the cut-off conditions; the real-
time update of battery model parameters; and forecasting
future these model parameters over a long prediction horizon.

To date, several methods for RDE estimation have been
researched [2], which can be grouped into several categories:
the direct calculation method, model-based estimation meth-
ods using filters, and prediction-based methods.

A. Direct Calculation Method
The direct calculation method uses an equation based on

the current SoC value of the battery. This equation is

RDE = Q · Unom · (SOCt − SOCEoDT ), (2)

where Q is the battery’s rated energy capacity, Unom is the
terminal nominal voltage, SOCt is the state-of-charge value
at the current time, and SOCEoDT is state-of-charge value at
the end-of-discharge time [1]–[3]. Even though this method
is straightforward to implement and has low computational
intensity, it uses a constant voltage, which cannot represent
the complex voltage responses of the system, thus will cause
large errors [2].

B. Model-based Methods

Since battery state-of-energy (SoE) can be defined as the
ratio of the battery’s remaining energy to the total available
energy, RDE can be estimated by calculating SOE. Model-
based estimation uses algorithms to estimate SoE, in a similar
manner to SoC estimation [2], [4]. Whereas SoE is a measure
of the remaining energy, SoC is a measure of remaining
capacity, so is not as useful for tasks such as remaining range
estimation [5]. SoE is calculated using

SoEt = SoEt0 −
∫ t

t0

P (τ)dτ/EN (3)

where SoEt is the SoE value at the current time t, SoEt0 is
the SoE value at the initial time t0, P is the power output
as a function of time τ , and EN is the total available energy
[2]. This calculation relies on accurate estimations of the
energy removed from the battery, which can be affected
by measurement errors, and an accurate estimation of the
maximum available energy, which changes based on the
future conditions, such as voltage and temperature [3], [6].
Additionally, model-based estimations are often based on
equivalent circuit models with OCV vs SoE curves [5], which
cannot account for dynamic condition operating conditions
[2].

C. Prediction-based Methods

Prediction-based method attempt to predict future battery
states to obtain an RDE estimation. These methods have
the advantage of being suitable for all working conditions
and can produce accurate RDE estimations by considering
future voltage responses. In [1], a method that uses real-time
battery model parameter estimation and future battery model
parameter prediction for RDE estimation is proposed.



Fig. 1: A flowchart of how the described techniques can be used to estimate
RDE.

In the literature, load prediction is often not applied to
prediction-based methods, with a priori known load pro-
files used. This would not be viable for many real-world
applications, and can only provide a limited insight to
the effectiveness of its estimation accuracy. Therefore, load
prediction is a valuable method for increasing the accuracy
of RDE estimation, and since it has not been extensively
investigated previously, there is a level of uncertainty which
can be reduced.

Methods for RDE estimation using load prediction are
proposed in [3], [7]. These involve using a moving window to
collect load data, which is clustered into distinct states, which
represent a sequence of load levels. From this, a Markov
model can be produced representing the probabilities of each
state transition occurring [3]. Two additional variables are
also defined, these being the update interval (UI), which
determines how often the RDE estimation is recalculated,
and the historical window length (HW), which determines
how much data is collected from the moving window [3].
The length of the prediction horizon used here is determined
by the time taken to reach the cut-off voltage.

A diagram showing how the discussed techniques are used
for RDE estimation is shown in figure 1, which gives an
overview of the sequence of steps needed. Using the load
data obtained, the future load can be predicted online. New
load values are produced and the amount of SoC removed
from the battery is predicted using coulomb counting. This
process is repeated until the end-of-discharge voltage is
reached. The predicted load profiles can be used with a
battery model to predict the future voltage response and
estimate RDE.

In this paper, an adapted K-means clustering technique is
used to obtain relevant cluster information from the load data.
Then, two methods for predicting the future load profiles
are discussed and compared for defined scenarios. These are
the offline-training method, which performs the clustering
and calculates the state transition probabilities offline from
a set of training load profiles, and uses this information
to predict the future load profiles online; and the moving
window method, which uses a historical window to gather

Fig. 2: A flowchart of how the proposed load prediction framework.

the load profile information and performs all the calculations
online, which is the method used in [3], [7]. A load prediction
method combining both these previous methods is proposed,
which uses rule based logic to determine the most appropriate
method to use, based on which will give the most accurate
estimation. The contributions of this paper is the comparison
between offline and online load prediction methods and the
introduction of a hybrid method load prediction method,
which uses the offline-training method and the moving
window method to estimate RDE.

The structure of this paper is as follows: the proposed load
prediction framework is introduced and discussed in Section
II; simulation results are shown and discussed in Section III;
the paper is concluded in Section IV, with future work also
outlined.

II. PROPOSED LOAD PREDICTION FRAMEWORK

The framework of the proposed hybrid load prediction
method is shown in figure 2. The framework’s online inputs
are the historical load data from the moving window; the
current load value, It; and the current SoC value, SoCt. The
offline inputs are the training load profiles. The output is the
predicted load profile.

A. K-means Clustering with Gaussian Distribution

Clustering algorithms refer to unsupervised methods for
grouping unlabelled data into structures based on their simi-
larity [8], relative to a set of defined criteria [9], [10]. Thus,
a cluster is defined as a subset of the total data set which
contains data that is comparable, in contrast with other data
points from other clusters. Many clustering techniques are
available, with K-means clustering and Gaussian mixture
modelling (GMM) being two commonly used algorithms,
which both have their distinct advantages for this application.

K-means clustering is a popular choice of algorithm [11],
that uses distance measurements to partition a set of data
points. It is easily implemented and has a high computational
speed, which allows for large data sets to be processed [12],
[13]. This is advantageous as it will allow for the data of
many load profiles to be processed.

GMM, which is used in [3], describes each cluster as a
Gaussian distribution [14]. Since the additional information
of the variances are gained using this method, a range
of values can be generated using this data. Compared to



K-means, which only produces values for cluster centres,
GMM can more closely produce the load values experienced
by electric vehicles (EVs). The disadvantage of GMM is
the computational complexity of its algorithm, which takes
significantly longer to cluster the data, compared with K-
means clustering.

The proposed method uses K-means to find the cluster
centres of the data set and a calculates the variance of
the points in each cluster, with the cluster centre as the
mean, where the cluster can be represented as a Gaussian
distribution. The steps of the proposed method are as follows:

1. Choose the number of clusters (user-defined), k, with
random starting locations.

2. Assign each data point to the closest cluster centre.
3. Relocate the cluster centres to the mean location of its

assigned data points.
4. Repeat steps 2 and 3 until there is very little change in

the cluster centre locations.
5. Calculate the variance of the data in each cluster.

B. Markov Modelling

Through clustering, load profiles can be described as a
sequence of states. This information can be used to form a
Markov model [15], with the purpose of forecasting future
states [16]. The Markov model uses transitional probability
matrices (TPMs) to provide the probabilities of certain state
transitions occurring, where only the current state is needed
to predict all future states [3], [17].

The TPM is an n-by-n matrix, where n is the number
of clusters. The rows represent the current state, and the
columns represent the possible future states, so the probabil-
ity of transitioning from state i to state j is given by Mij .
Each TPM is calculated by counting the number of times
each transition between specific values for i and j occurs,
then dividing it by the total number of times i occurs.

In the context of the two load prediction methods used
here, the input data from the moving window method
contains a number of data points the same length as the
moving window. The offline-training method uses an input
of multiple load profiles. Since whole load profiles are
considered when using this method, it can better detect
how the load values change with time. Hence, a proposed
improvement is to calculate multiple TPMs by segmenting
the training data profiles, with the length of the segments
being user-defined. For the simulations performed here, the
length used is 700 seconds with 3 clusters used, which was
decided as this was found to produced the most accurate
RDE estimation results, although changing the number of
clusters did not significantly affect the results.

C. Control Logic

To implement the hybrid load prediction method, different
scenarios need to be defined based on load profile data.
The data set used here contains around 4600 real world
measurement data of EV load profiles, based on a mixture
of urban diving patterns. For this method, two scenarios are
considered, these being a predictable load profile and an

unpredictable load profile. To categorise the data, definitions
need to be made regarding predictable and unpredictable load
profile segments and group them accordingly. A possible
approach is to obtain key performance metrics from the
segments and group them depending on how common their
metrics are. Similar processes to this have been performed
in [18] and [19] to define different driving cycles.

The method used to group the load segments is performed
by choosing relevant features from the data set, then clus-
tering the data to find the number of points assigned to
each cluster, for an arbitrarily large number of clusters. The
largest clusters represent dense regions of points with similar
characteristics, and hence, can be considered predictable.
Various features can be defined from the data of the load
segments. The load profile behaviour that is of most interest
for RDE estimation is the size of the current and how
transient the profile is. Therefore, the features used here are
the mean current and the mean of the absolute rate of change
of current.

To choose an appropriate clustering method, it is important
to assess the context in which it is needed. Non-hierarchical
clustering algorithms, such as K-means, use iterative calcu-
lations to assign all data points to cluster centres, whereas
hierarchical clustering algorithms, such as an agglomera-
tive method, initialise all points as their own cluster and
iteratively combines them [20], [21]. This is done based
on various pairwise dissimilarity metrics between two data
points in separate clusters, which include maximum distance,
minimum distance, and average distance [20]. Since the goal
of this clustering is to create large groups of data points with
similar values, and smaller groups of outliers, agglomerative
clustering with an average distance dissimilarity metric is
used, which follows the methods and toolboxes outlined in
[22].

The results from the clustering are shown in figure 3. This
method is effective at identifying dense regions of points
that can be considered predictable load segments. Using each
type of load segment, longer load profiles can be created and
labelled predictable and unpredictable. For this paper, 70 of
the generated predictable load profiles are used as the initial
training data set, as adding more than this did not affect the
RDE accuracy.

From the cluster centres, the control logic rules can be
defined. This is achieved by calculating the mean current
and the mean of the absolute rate of change of current of
the load in a moving window, then comparing these values
of the cluster centres. If the data is closer to a predictable
cluster centre, the current state can be considered predictable,
otherwise it can be considered unpredictable.

D. Battery Model

The battery model used to obtain future voltage responses
is a thermally coupled equivalent circuit model with diffusion
(TECMD), from [23]. A detailed description of the model,
in terms of its assumptions, parametrisation and dynamic
performance is provided in [23] and will not be repeated
here. For the simulations, a battery model is used to represent



Fig. 3: Distribution of data points from load profile segments, discharge
currents are negative values.

the real battery. The states (SoC, temperature etc.) will be
taken from this model and used for the voltage prediction
model. Therefore, additional robustness simulations must be
performed in the presence of model parameter errors for
the voltage prediction model to show how the proposed
framework performs in a scenario closer to a real-world
application. Additionally, for these simulation the initial SoC
is set at 85%, and the simulation is ended when the battery
voltage reaches the cut-off value.

III. SIMULATION AND DISCUSSION

To test the accuracy of the proposed framework, both
defined load profiles will be tested using the hybrid method,
as well as using purely the offline-training method and the
moving window method, against SoC direct calculation as
a reference. The purpose of this is to compare the hybrid
method’s overall accuracy against the moving-window and
offline-training methods for the whole prediction horizon, so
the RMSE will be the main metric for comparison. The lower
the RMSE, the closer the estimation is to the reference value
of RDE.

A. RDE Estimation Using Generated Load Profiles

Firstly, a preliminary test using different clustering meth-
ods was performed, so the advantage of using a Gaussian
distribution can be assessed. For this test, the direct calcu-
lation is compared against the offline-training method using
GMM, K-means and Gaussian K-means. The data is shown
in Table I, where the results show that the use of a Gaussian
distribution gives a more accurate result. Additionally, there
is no significant difference between the GMM results and
the Gaussian K-means results, and since K-means has much
greater efficiency than GMM, it is the optimal choice.

Next, a predictable load profile is tested. The results of
this are shown in figure 4. Figure 4(a) shows the specific

TABLE I: A table showing RDE RMSE of the offline-training method, for
different clustering techniques, compared against SoC direct calculation.

SoC direct
calculation

K-means GMM Gaussian
K-means

RDE RMSE
(Ws)

20.1 15.3 12.4 12.4

Fig. 4: RDE results from the proposed hybrid load prediction method, using
a predictable load profile. (a) The predictable load profile used for the RDE
estimation. (b) The calculated RDE using the above load profile, using direct
calculation, and offline-training, moving window and hybrid methods. (c)
The RDE error from the RDE estimation. Values of UI = 500 and HW =
500 were used.

load profile used. Figure 4(b) shows the RDE estimates
using the direct calculation method, as well as the offline-
training method, the moving window method, and the hybrid
method. The reference RDE is calculated by multiplying
the output voltage of the model representing the actual
battery and the current values of the load profile together.
The direct calculation values are calculated from equation
2. Figure 4(c) shows the RDE error of the methods used.
This is calculated by subtracting the RDE estimate from the
reference RDE, and the RMSE can be calculated using this.
As expected, the SoC direct calculation method performs
the worst. When comparing the load prediction methods, the
offline-training method produces a more accurate result than
the moving window method. The hybrid method performs
well, meaning that the implemented logic can correctly
identify the scenario.

The results in figure 5 show the RDE accuracy of the
proposed method, using an unpredictable profile. Once again,



Fig. 5: RDE results from the proposed hybrid load prediction method, using
an unpredictable load profile. (a) The unpredictable load profile used for the
RDE estimation. (b) The calculated RDE using the above load profile, using
direct calculation, and offline-training, moving window and hybrid methods.
(c) The RDE error from the RDE estimation. Values of UI = 500 and HW
= 500 were used.

figure 5(a) show the load profile used, and figures 5(b) and
(c) show the RDE results and RDE error results respectively.
For the profile shown, the SoC direct calculation method
shows the worst accuracy. Unlike the predictable profile, the
moving window method performs better than the offline-
training method for this type of profile. The proposed hy-
brid method performs well at distinguishing unpredictable
scenarios.

To assess the accuracy of each method for a general
case, the RDE RMSE is averaged over 40 of each profile,
with each profile being performed five times (to account for
RDE changes from the random numbers generated). The
results of this are shown in table II. For the predictable
profiles, the offline-training method provides the smallest
RDE RMSE, followed by the hybrid method, and then
the moving window method. The difference between the
offline-training results and the hybrid method is ∼18%. This
is a significant difference, which can be attributed to the
control logic, since it decides what load prediction method

is being used. If the logic was improved further, by more
rigorously defining the clusters for the different scenarios
and improving the method used for identifying the current
scenario, the accuracy would increase. For the unpredictable
profiles, the moving window method provides the greatest
accuracy. The difference between this result and the results
from the hybrid method, shows the control logic performs
better for unpredictable profiles. Overall, the accuracy of the
hybrid method performs significantly better generally, than
the other two method.

B. Robustness Evaluation of the Proposed Hybrid Method

For a real-world application of the proposed RDE estima-
tion method, uncertainties in battery model voltage response
and states will be present. To test for these, values in the
model used to obtain the future voltage are changed. These
include SoC, capacity, temperature, and internal resistance.
The results from this are shown in table III. The results
were averaged over five different load profiles. From the
table, it can be seen that SoC and capacity errors have
the largest effect on the RDE accuracy when compared to
temperature and internal resistance. This can be attributed to
the fact that these are both measurements of capacity, which
is related to how much energy can be extracted from the
battery. Additionally, it will also affect the load prediction
and voltage prediction values. The direct calculation results
are shown with no change in parameters, meaning the true
values are used. Even though this is the case, the RMSE
of the prediction-based methods are still significantly lower
than the direct calculation method.

IV. CONCLUSION

Prediction-based methods have been previously shown to
be a promising technique for increasing RDE accuracy. The
framework outlined here builds upon existing load prediction
techniques by proposing an offline-training method, which
obtains the information needed to predict future load profiles
offline. Additionally, the two load prediction methods are
combined with supervisory control logic to determine the
best method to use depending on the current scenario. Firstly,
the results from the simulations show that the SoC direct
calculation method is inaccurate when compared to the
prediction-based methods. Next, the results show that for
predictable load profiles, the offline-training method provides
the greatest accuracy, but for unpredictable load profiles,
the moving window method provides the greatest accuracy.
Overall, when considering both types of profile, the proposed
hybrid method shows the greatest accuracy. In addition,
the difference between the accuracy of the offline-training
method and the hybrid method, for the predictable load
profiles, is significant, meaning the implemented control
logic could be further improved to provide even greater
accuracy. The proposed method’s accuracy was also tested
in the presence of parameter errors. From this, it was found
that capacity and SoC errors have the largest effects on the
RDE accuracy. It was also found that even when errors are



TABLE II: A table showing RDE RMSE for the proposed methods for
predictable and unpredictable profiles.

Offline-training
Method

Moving Window
Method

Hybrid
Method

Predictable 0.54 1.01 0.65

Unpredictable 1.37 0.99 1.03

Overall 0.95 1.00 0.84

TABLE III: A table showing RDE RMSE for robustness testing using
predictable (top entries) and unpredictable profiles (bottom entries).

RDE RMSE (Wh)

No
scaling

Direct calcu-
lation

Scaling =
0.9

Scaling =
1.1

SoC 0.63 —
0.80

1.83 0.98 —
1.08

1.01 —
1.21

Capacity
(4.9 Ah)

0.63 —
0.80

1.83 0.91 —
1.02

0.95 —
1.17

Temperature
(◦C)

0.63 —
0.80

1.83 0.64 —
0.81

0.63 —
0.80

Internal
resistance
(12.5 mΩ)

0.63 —
0.80

1.83 0.62 —
0.83

0.63 —
0.82

present, the proposed method still achieves more accurate
results than the direct calculation method.

Two categories exist for further work, these being exper-
imental work and extensions to the proposed method. The
experimental work would consist of using real cells to vali-
date the proposed algorithm, along with an improved battery
model and an SoC estimation algorithm. Extensions of this
method would seek to improve the RDE accuracy. This could
be achieved by more rigorously defining additional scenarios
(only two were considered here), each with their own TPMs.
This will also require using different clustering techniques
for high dimensional data. Improvements in the accuracy
could also be achieved by improving the control logic and
its ability to identify the current scenario.
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