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Sleep and circadian rhythm disruption
alters the lung transcriptome
to predispose to viral infection

Lewis Taylor,1 Felix Von Lendenfeld,1 Anna Ashton,1 Harshmeena Sanghani,2 Simona Di Pretoro,1

Laura Usselmann,3 Maria Veretennikova,4 Robert Dallmann,3 Jane A. McKeating,5,6 Sridhar Vasudevan,2

and Aarti Jagannath1,7,*

SUMMARY

Sleep and circadian rhythm disruption (SCRD), as encountered during shift
work, increases the risk of respiratory viral infection including SARS-CoV-2. How-
ever, the mechanism(s) underpinning higher rates of respiratory viral infection
following SCRD remain poorly characterized. To address this, we investigated
the effects of acute sleep deprivation on the mouse lung transcriptome. Here
we show that sleep deprivation profoundly alters the transcriptional landscape
of the lung, causing the suppression of both innate and adaptive immune systems,
disrupting the circadian clock, and activating genes implicated in SARS-CoV-2
replication, thereby generating a lung environment that could promote viral
infection and associated disease pathogenesis. Our study provides a mechanistic
explanation of how SCRD increases the risk of respiratory viral infections
including SARS-CoV-2 and highlights possible therapeutic avenues for the pre-
vention and treatment of respiratory viral infection.

INTRODUCTION

Respiratory viral infections are among the leading causes of mortality worldwide and present a global med-

ical and economic challenge.1,2 Each year, billions of infections lead to millions of deaths, with the annual

financial burden estimated at over $100 billion in the US alone.3,4 The recent emergence of severe acute

respiratory syndrome coronavirus type 2 (SARS-CoV-2), the causative agent of COVID-19,5 has highlighted

the impact of respiratory viral infections, with more than 400 million SARS-CoV-2 infections and 5.7 million

COVID-19 deaths to date (https://coronavirus.jhu.edu/map.html). An increased understanding of the risk

factors and mechanisms driving severe respiratory disease will inform new treatment options.

Sleep and circadian disruption have been reported to cause an increased risk of respiratory infections in

mice and humans6–10 and accumulating evidence suggests that shift work and the associated sleep depri-

vation and circadian rhythmmisalignment are risk factors for COVID-19.11–16 Yet, a mechanistic explanation

of how sleep and circadian disruption causes higher rates of viral infections remains to be determined.

The immune system is under tight sleep and circadian control. The circadian clock, a molecular transcrip-

tional/translational feedback loop capable of aligning to the external day/night cycle,17,18 generates circa-

dian rhythms; 24-h oscillations in physiology and behavior such as hormone secretion, metabolism, sleep,

and immune function.19 Indeed, leukocyte trafficking, host-pathogen interaction, and immune cell activa-

tion all display diurnal rhythms.20 Furthermore, circadian differences in immune responses to vaccination,

as well as a diverse range of pathogens and pathogen-derived products are well documented.21,22 Immune

responses to Influenza A, Hepatitis A and SARS-CoV-2 vaccines,23–25 and the infectivity of multiple viruses,

including Influenza, is dependent on the time of virus challenge.26–29 Disrupting the circadian system in

experimental model systems has been reported to increase pro-inflammatory cytokine levels,30 and per-

turb immune cell function and trafficking.31 Furthermore, it can promote the replication of a wide range

of clinically important viruses including hepatitis B and C, Parainfluenza VirusType 3, Respiratory Syncytial

and Influenza A viruses, as shown in transgenic mouse models including BMAL1 KO animals,6,27,32–35

emphasizing a central role of the circadian clock in regulating viral infection.36
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Figure 1. Acute sleep deprivation profoundly alters the lung transcriptome, dampening the immune system and upregulating pathways involved

in viral infectivity

(A) WT animals were allowed to sleep ad libitum (Control) or sleep deprived (SD) between ZT0 – ZT6. Lung tissue was collected at ZT6 and subjected to RNA-

sequencing.

(B) Of the 18,325 transcripts identified, 4,523 were differentially expressed following SD, with 2,366 upregulated (SD-Up) and 2,157 downregulated (SD-

Down).
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Sleep is one of themost essential circadian regulated behaviors; however, sleep and its homeostasis can be

modified and disrupted independently from the circadian clock.37,38 Sleep disruption also leads to immune

dysfunction, reducing natural killer cell activity,39 modifying pro-inflammatory cytokine production40–43 and

blood leukocyte numbers.44 Importantly, sleep disruption impairs circadian and immune gene expression

in multiple tissues,45 including the mouse brain,46 liver,47 and lung.48,49 A similar disruption of the circadian

clock and immune system is seen in blood samples from sleep deprived human subjects.50–52 This dual

sleep and circadian rhythm disruption (SCRD) is often encountered by shift workers, particularly those

working at night, and is a well-established risk factor for respiratory viral infections. The common cold,53

Influenza,6,7,26 and indeed upper respiratory viral infections in general8,10 are all significantly increased

following SCRD. Notably, multiple recent studies have now found an association between shift work, sleep

disruption and the risk of developing severe COVID-19. Rizza et al. established a significant association be-

tween SARS-CoV-2 infection and night shift work,54 and Rowlands et al. found that shift work increases the

odds for severe COVID-19 two-fold.15 Alongside, Maidstone et al. observed that shift workers, regardless

of their occupational group, are more likely to be hospitalized with severe COVID-19; even after adjusting

for risk factors such as smoking history, obesity, and asthma.12 This is consistent with the finding that people

working night shifts irrespective of the job sector are 1.85 times more prone to SARS-CoV-2 infection.14

Furthermore, a study on healthcare workers found that each extra hour of sleep reduces the risk for con-

tracting COVID-19 by 12%, whereas workers reporting severe sleeping difficulties experience 88% higher

odds of infection.16

Despite the increased risk of respiratory viral infections in shift workers, and the established links between

sleep, circadian rhythmicity and immune function, the molecular mechanism(s) underpinning higher rates

of viral infection following SCRD remain poorly characterized. Therefore, we investigated the effects of

acute sleep deprivation on the mouse lung transcriptome and host pathways known to be important for

viral lifecycle. In particular we use SARS-CoV-2 as an exemplar, as the recent global research effort has pro-

vided a wealth of data detailing the molecular pathways regulating SARS-CoV-2 infectivity and the link be-

tween shift work and COVID-19 severity outcomes.55–58 Here we show that 6 h of sleep deprivation in mice

profoundly alters the transcriptional architecture of the lung, with a majority of differentially expressed

genes associated with host pathways that are essential for viral replication and a suppression of immune

and circadian regulated genes with blunted circadian rhythmicity. Moreover, we found that SD causes

the differential expression of several host factors implicated in SARS-CoV-2 infection, likely impacting

SARS-CoV-2 entry, replication, and trafficking. Together, these data suggest that sleep deprivation alters

the lung to provide an environment that could promote respiratory viral infection and pathogenesis.

RESULTS AND DISCUSSION

Acute sleep deprivation alters the lung transcriptome and dampens immune-associated gene

expression

To assess the effect of acute sleep deprivation on the lung transcriptome, RNA sequencing (RNA-Seq) was

performed on lung tissue isolated from control (ad libitum sleep) or 6-h sleep deprived (SD) C57BL/6 mice

(Figure 1A). Gene expression analysis identified 2,366 upregulated and 2,157 downregulated transcripts

following SD (Figures 1B and 1C and Table S1). We validated our RNA-Seq dataset using qRT-PCR and in-

dependent SD lung samples and observed highly correlated results for several top differential genes, con-

firming the robustness of our transcriptomic analysis (Figure S1). Gene ontology (GO) biological pathway

(BP) enrichment analysis of SD upregulated genes showed an enrichment in signal transduction (kinase

Figure 1. Continued

(C) Heatmap of SD differential genes.

(D) GO Biological Process (BP) enrichment analysis and term network visualization, and (E) KEGG pathway enrichment analysis of SD upregulated genes.

(F) GO BP enrichment analysis and classification of the SD downregulated terms found that 72% were immune associated, and of these 23% were terms

involving adaptive immunity, 18% innate immunity and 31% general immunity.

(G) GO BP term network visualization, and h KEGG pathway enrichment analysis of SD downregulated genes. GO BP/functional grouping is indicated by

color, number of terms/genes is indicated by node size, and edges reflect the relationships between the GO BP terms.

(I) Normalized RNA-sequencing counts of Ccl5, Tnf, Il6 and Ifng (gray – control, red – 6h sleep deprivation).

(J) Protein concentration of CCL5, TNF-a, IL-6 and IFN-g as determined by ELISA (gray – control, red – 6h sleep deprivation).

(K) Volcano plot of the significantly differential genes following SD SD-Up (red) and SD-Down (blue) genes are highlighted, with genes in gray being non-

significant. For cdata are Z score normalized per row and for j and idata aremeanG SEM n= 5–16. Statistical analysis of RNA sequencing data was conducted

using DESeq2, and genes with a BH adjusted p value of <0.05 were considered significant. For j and k statistical analysis was conducted by two-way ANOVA

with Sidak’s multiple comparisons correction. ns p > 0.05, *p < 0.05, ***p < 0.001.

ll
OPEN ACCESS

iScience 26, 105877, February 17, 2023 3

iScience
Article



activity and response to steroid hormones), as well as generic biological processes that are also implicated

in viral entry and RNA replication, such as autophagy, Golgi organization, and cellular protein localization

(Figure 1D and Table S2). Similar results were observed with Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis of SD upregulated genes, highlighting protein processing in the ER, autophagy,

and endocytosis (Figure 1E and Table S2). We also noted an enrichment for circadian rhythm genes (Fig-

ure 1E - Csnk1d, Cul1,Cry2,Csnk1e, Clock, Rora, Arntl,Npas2 and Per1). Analysis of the SD downregulated

genes found that 215 GO BP terms were significantly enriched amongst the SD downregulated genes

(adjusted p value<0.01), with 154 (72%) comprising immune system pathways. Of these, innate and adap-

tive immunity specific terms encompassed 18% and 23% respectively (Figure 1F), suggesting that SD re-

sults in widespread immune depression in the lung. Indeed, multiple immune system pathways, including

lymphocyte differentiation and proliferation, and leukocyte activation and migration, were repressed

following acute SD (Figure 1G and Table S2). KEGG pathway analysis displayed a similar enrichment for

immune associated terms in the SD downregulated gene population (Figure 1H and Table S2).

Cytokine production and chemokine signaling were also SD suppressed terms (Figures 1G and 1H). There-

fore we measured the levels of the inflammatory mediators TNF-a, IFN-g, IL-6, and CCL5 in lung homog-

enates following acute SD to understand how our transcriptome data links to protein production. Along-

side the reduced expression of Ccl5 (Figure 1I), we found a significant reduction in the abundance of CCL5

protein (Figure 1J). Furthermore, multiple chemokine receptors, including Ccr5 (the cognate receptor for

CCL5), Ccr2, Ccr3, Ccr6, Cxcr3, Cxcr5 and Cx3cr1 were downregulated following SD, strongly suggesting

that multiple aspects of chemokine signaling are impacted after SD. To examine how long this suppression

of CCL5 persists, we measured lung CCL5 levels in animals allowed 3 h of recovery sleep (RS) after SD.

Notably, RS returned CCL5 to baseline levels (Figure S2) and suggests that the immune suppression caused

by SD can be reversed once sleep is finally permitted.

In contrast, SD had no impact on Tnf, Il6, or Ifng transcript expression (Figure 1I), which were all much lower

than that of Ccl5, and resulted in no significant difference in TNF-a or IL-6 levels, and undetectable amounts

of IFN-g (Figure 1J). Although these results appear to contradict the GO BP analysis that identified the

regulation of TNF-a, IFN-g and cytokine production (Figure 1G), as the baseline level of IL-6 was very

low, and IFN-g undetectable (Figure 1J), any impact on production could only be examined in light of a

stimulus that would induce their expression. On the other hand, our data demonstrate that SD would

decrease the ability of the immune system to respond to an inflammatory insult, and therefore the full

impact of SD on a range of inflammatory processes, including mediator production, will only be unmasked

in the face of an immune challenge, such as viral infection. Indeed, Nfkbia, a major negative regulator of

pro-inflammatory transcription factor nuclear factor kappa (NF-kB), and Tle1, another NF-kB repressor,

were upregulated after SD (Figure 1K). In addition, GO BP analysis revealed 12 SD upregulated genes

implicated in the negative regulation of NF-kB, and 23 SD downregulated genes encoding positive regu-

lators of NF-kB signaling (Table S2); together suggesting that the NF-kB response would be blunted after

infection. Similarly, leukocyte migration was also an SD downregulated process. The number of immune

cells present in bronchoalveolar lavage fluid is known to be very low under baseline conditions,59,60 but

given the marked suppression of chemokine signaling detailed above, a deficit in leukocyte recruitment

to the lung in sleep deprived mice would likely occur in response to an infectious insult.

Overall, these results suggest that sleepdeprivationalters the lung transcriptome inamanner thatwould increase

susceptibility to SARS-CoV-2 infection, and ideally, this would be confirmed with a study whereby animals are

sleep deprived and then exposed to the virus and infectivity assessed. A limitation of this study is such an in vivo

assessment was not carried out. In the absence of these data, a comparison with existing datasets of infected

lungs to assess overlaps in differentially expressed genes presented an intermediary study that would support

a future in vivo infection study. Therefore, to understand how the SD lung transcriptome compares to SARS-

CoV-2 infection, we performed gene set enrichment analysis (GSEA) using the COVID-19 Drug andGene Set Li-

brary61 (Table S3). When analyzing the SD upregulated genes, the most significantly enriched gene set was the

top500genesdownregulated in themouse lung threedayspost SARS-CoV-2 infection (3DPI.), asdeterminedby

Li et al.62 (FigureS3A). Indeed, therewasa significantoverlapbetweenour SDupregulatedgenesand the top500

downregulatedgenes3DPI (FigureS3B -Fisherexact testpvalue=7.7310�26andTableS4).However, therewas

no such enrichment when comparing with the top 500 upregulated genes 3 DPI (Figure S3C). Conversely, when

testing the SD downregulated genes, the most enriched gene set was the top 500 genes upregulated in the

mouse lung 3 DPI (FiguresS3D and S3E - Fisher exact test p value = 83 10�37), with no significant overlap with
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Figure 2. Acute sleep deprivation leads to dysregulation of the circadian system in the lung

WT animals were stably entrained to a 12:12 LD cycle, and then placed into constant darkness. Lung samples were then collected at CT2, CT8, CT14 and

CT20 and RNA sequencing conducted.

(A) Heatmap of the 2,029 significantly cycling genes in the lung.

(B) A comparison with genes differentially expressed following SD with the lung circadian genes found 991 rhythmic genes that were also disrupted by SD

Network visualization of the significantly enriched GO BP terms of the (C) 3,532 genes that are non-cyclic in the mouse lung, but disrupted by SD (green), and

(D) the 991 genes that are cycling in themouse lung and disrupted by SD (blue). Each node represents a GO BP term. Related terms are grouped by color and

edges reflect the relationship between them.

(E) RNA sequencing counts of core circadian clock genes in the control and SD lung samples.

(F) PCA projection of the circadian (CT) samples in the PC space determined from 10 known circadian transcripts. The black spline represents the estimated

circadian behavior of mouse lung under constant conditions, and the graph is oriented such that the separation between the CT samples is as clear as
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the downregulated 3 DPI (FigureS3F and Table S4). In summary, the transcriptome of the lung following SD is

inversely correlated with the lung transcriptome during early-stage SARS-CoV-2 infection. This suggests that

SDskews the lung transcriptomeaway from that needed formounting anantiviral response, thereforepredispos-

ing toward infection. Indeed, Furin, which cleaves the SARS-CoV-2 spike protein and regulates particle entry,63

wasupregulated followingSD,whereas several Toll-like receptors (TLRs),which initiate innate immuneresponses,

were all downregulated, including Tlr3, Tlr7, and Tlr9 that have been shown to regulate COVID-19 pathogen-

esis64,65 (Figure1I). Together, thesefindingssuggest that in the lung,acuteSDdecreases theabilityof the immune

system to respond to infection by suppressing both the innate and adaptive immune arms and impacts multiple

pathways important for viral host cell entry, intracellular replication, and trafficking.

Acute sleep deprivation dysregulates the circadian system in the lung

To understand what may be driving these gene expression changes in the lung, we analyzed the transcrip-

tome for the over-representation of transcription factor binding sites in the promoters of genes differen-

tially regulated by SD We found 757 significantly enriched transcription factor signatures (Table S5), with

regulators of immediate-early genes (CREB1), and immune-associated genes (CEBPB, NFKB1, TCF7 and

STAT3) highly represented (Figure S4). The question as to how much the lung transcriptome changes

are actually due to stress should be addressed. Although the SD protocol we used induces relatively

less corticosterone than others,66,67 stress and the activation of the HPA axis is unavoidable during SD,68

Therefore we analyzed the transcriptome for NR3C1 binding sites in the promoters of genes differentially

regulated by sleep deprivation and found that although NR3C1 was over-represented, it was not among

the top 20 most over-represented factors which included those specific to immune function such as

TCF7, NFKB1 and STAT3, and the circadian clock (CLOCK). Therefore, stress is only a minor contributor

toward the SD-induced changes in the lung transcriptome.

Notably, our over-representation analysis found that the core circadian transcription factor, CLOCK, was the

most significantly enriched (Figure S4). As acute SD has also been previously reported to disrupt circadian rhyth-

mic gene expression in multiple peripheral tissues,45,48,49,69 we therefore examined the how sleep deprivation

impacts circadian processes in the lung. Rhythmic genes in the mouse lung were identified by sequencing

the lung transcriptome at four time points throughout the day separated by 6-h intervals (zeitgeber time(ZT)2,

ZT8, ZT14, and ZT20). We identified 2,029 significantly cycling genes in the mouse lung with a 24-h period

(JTK q-value <0.05) (Figure 2A and Table S6). Of interest, of these significantly cycling genes, 911 were also dis-

rupted by SD, highlighting that almost 50% of rhythmic genes in the lung are SD sensitive (Figure 2B and

Table S4). GO BP enrichment analysis of the 3,532 genes that were non-rhythmic, but SD-differential, revealed

immune system associated terms such as leukocyte activation andmigration (Figure 2C and Table S2), indicating

that many of these immune genes were not circadian regulated, and instead were directly impacted by SD

Notably however, GO BP analysis of genes that were both rhythmic and SD-differential showed an enrichment

for circadian regulation of gene expression, demonstrating that SD alters the circadian regulatory landscape of

the lung (Figure 2D and Table S2). Pathways regulatingmetabolism, signaling, RNAprocessing, protein folding,

and post-translational protein modification were also rhythmic and dysregulated following SD (Figure 2D), sug-

gesting a widespread disruption of normal circadian lung physiology. Indeed, several circadian transcripts were

altered following SD; these included Bmal1 (Arntl1), Clock, Per1, Cry2, and Rora (Figure 2E), suggesting that at

this point of time (ZT6, post SD), the integrity of the core molecular circadian clock, and clock-controlled gene

expression, was likely to be compromised.

This disruption to circadian rhythmicity could be examined by time course analysis of gene expression

following sleep deprivation; however, all of the information needed to quantify circadian timing is con-

tained in the phase relationships of different rhythmic genes in samples collected at a single time point.70,71

Therefore, we sought to use a bioinformatic approach to quantify the degree of circadian rhythmdisruption

in the lung caused by acute SD. Principal component analysis of the lung transcriptome allowed us to

Figure 2. Continued

possible. The control samples (black crosses) projected near to the black spline at the approximate expected location, however the SD samples (red

crosses) did not project to the same location, demonstrating that SD resulted in circadian disruption in the lung.

(G) A Support Vector Machine (SVM) approach with the linear kernel was used to find the plane which optimally separated the control and SD samples in the

3D principal component space. The samples were projected onto the normal of this plane, and a clear separation between the two groups can be seen,

which was statistically significant (Wilcoxon rank-sum test – p = 0.0022). Therefore, SD results in circadian disruption of the lung transcriptome. For adata are

Z score normalized per row and for edata are meanG SEM n = 5–6. Cycling genes were determined using MetaCycle, and genes with a BH corrected q value

of <0.05 were considered as significantly rhythmic. For f and g statistical analysis was conducted using the Wilcoxon rank-sum test.
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assess the circadian dysfunction in the lung. The principal directions of a group of 10 circadian transcripts

from our ZT transcriptomic dataset (Figure 2A) were used to project all lung samples onto a 3D space and a

spline fitted to represent the expected circadian time and behavior of the lung (Figure 2F). Any deviation

from this spline would represent an abnormal circadian landscape, and indeed, this is what we found. In

contrast to the control samples (black crosses), which fell onto the spline in the expected location, the

SD samples (red crosses) were displaced, demonstrating that SD disrupted circadian networks in the

lung (Figure 2F). To quantify the impact on the circadian transcriptome, we used a Support Vector Machine

approach to locate the plane that maximally separated the control and SD samples. As can be seen in Fig-

ure 2G, the optimal plane allowed a clear and significant separation between the SD and control groups

(Wilcoxon rank-sum test p = 0.0022; Figure 2G). Overall, these data demonstrate that acute SD alters circa-

dian regulation in the lung, and this disruption could contribute toward the increased susceptibility to res-

piratory viral infection.

Host factors implicated in SARS-CoV-2 infection are differentially expressed in the mouse

lung following sleep deprivation

Our data shows that acute SD modifies the transcriptional landscape of the lung in two keys ways to pro-

mote infection by respiratory viruses, Firstly, by suppressing the innate and adaptive immune responses,

and secondly by disrupting the normal circadian regulatory landscape and physiology of the lung. Three

independent studies by Daniloski et al.,56 Zhu et al.,58 and Wei et al.57 conducted genome-wide CRISPR

loss-of-function screens to identify genes regulating SARS-CoV-2 infection. Therefore, we used these

data to examine whether SD changes the expression of host factors required by SARS-CoV-2. Daniloski

et al., using human alveolar epithelial cells, identified 1,200 potentially relevant genes for SARS-CoV-2

replication and investigated the 50 most highly enriched.56 Of the 50, 10 were dysregulated following

SD (Figures 3A and 3D - ACTR2, ACTR3, ATL1, ATP6AP1, ATP6V0B, ATP6V0D1, PIK3C3, SFN, SPEN and

WDR81 and Table S4), of which 8 could be assigned a putative function in SARS-CoV-2 replication (Fig-

ure 3G). For example, members of the vacuolar-ATPase proton pump, (ATP6V0B, ATP6AP1, and

ATP6V0D1), implicated in activation of the SARS-CoV-2 spike protein that is required for viral entry, and

ACTR2 and ACTR3, part of the ARP2/3 complex, which functions in endosomal trafficking pathways. Zhu

et al. identified 32 genes with a potential role in viral entry,58 of which 8 were SD-differential genes

(Figures 3B and 3D and Table S4); four each being up- (NPC1, NPC2, CCDC93,WDR81) and downregulated

(COMMD8, COMMD10, ACTR2, ACTR3). All 8 genes play a role in endosomal entry, endolysosomal fusion,

or endosome recycling (Figure 3G). Cross-referencing our SD-differential genes to the 50 most enriched

host factors identified by Wei et al.57 revealed an intersection of 11 genes (Figure 3C and Table S4), 8 of

which were upregulated and associated primarily with transcriptional regulation (DPF2, JMJD6,

RAD54L2, CREBBP, RYBP, ELOA, KMT2D, SIK1 – Figure 3G). The effect of SD on the individual transcripts

that encode for these putative SARS-CoV-2 host factors across all three studies is illustrated in Figure 3D.

Taken together therefore, acute SD clearly amplifies many host factors and processes that influence mul-

tiple steps in the SARS-CoV-2 life cycle.

We next explored if SD-differential genes encode host proteins known to physically interact with SARS-CoV-2

encodedproteins. Gordon et al. interrogated human host factors that interact with 26 of the 29 SARS-CoV-2 pro-

teins.55 The authors identified 332 high confidence human-virus protein-protein interactions, of which 87 over-

lappedwith our SD-differential genes (Figures 3E and3F and Table S4). Of interest, at least 40 of the overlapping

genes have a putative function in viral replication, such as RNA processing, ER protein quality control, or intra-

cellular trafficking (Figure 3G). Furthermore, 18 of the overlapping host factors are involved inmitochondrial pro-

cesses, ubiquitination, or immune regulation, that may function in SARS-CoV-2 immune evasion (Figure 3G).

Alongside, regulators of signaling pathways, coagulation, and epigeneticmodifiers represent some of the other

dysregulated classes of interactors that likely impact SARS-CoV-2 infection. Overall, these findings demonstrate

that SD causes the differential expression of several host factors that interact with, and are implicated in, SARS-

CoV-2 infection that may potentiate virus replication.

The effect of sleep deprivation on SARS-CoV-2 life cycle genes

When taken together, our data suggest that acute SD impacts many host processes important for the viral

life cycle. Using SARS-CoV-2 as an exemplar, we propose amechanistic pathway, synthesized from the data

presented above, by which the SD-differential genes facilitate viral entry, replication, and trafficking (Fig-

ure 4). The extracellular transmembrane protease serine 4 (Tmprss4), the protease Furin, and Atp6v0b, At-

p6ap1, and Atp6v0d1 (members of the vacuolar-ATPase proton pump) all contribute toward spike protein
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activation and cleavage,72,73 and were differentially expressed following SD, suggesting an increase in virus

entry. Following intracellular capsid uncoating the viral RNA is replicated within double membrane vesi-

cles, translated by host ribosomes, and new virus particles assembled and trafficked via the Golgi/ER

pathway for release by exocytosis. All these pathways were dysregulated by SD, including transcriptional

modulation, endolysosomal fusion, endosome recycling (Figure 4).
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Figure 3. Critical host factors that interact with SARS-CoV-2, and are needed for infection, are differentially

expressed in the mouse lung after sleep deprivation

(A–C) Venn diagrams of the overlap between all SD differential genes in the mouse lung and critical host factors for viral

infection as determined by a Daniloski et al. (2021),56 b Zhu et al. (2021),58 and c Wei et al. (2021).57

(D) Volcano plot of significant SD differential genes (Up – red, Down – blue and non-significant after BH p value

correction – gray) with overlapping critical host factors highlighted (purple diamonds) and a subset labeled.

(E) The intersection between SD differential genes in the mouse lung and the SARS-CoV-2-human protein interactome as

determined by Gordon et al. (2020b).55

(F) Volcano plot of SD differential genes with overlapping SARS-CoV-2-human protein interactors highlighted (yellow

diamonds) and a subset labeled.

(G) Functional classification of the critical host factors and the SARS-CoV-2-human protein interactors that were found to

be differentially expressed in the mouse lung following SD Boxes are colored according to the functional role in viral

infectivity. Statistical significance of the overlap between SD differential genes and SARS-CoV-2 host factors and host

interactome was assessed by two-tailed Fisher exact test. n = 5–6. ERGIC = endoplasmic reticulum-Golgi apparatus

intermediate compartment.
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Thirteen genes implicated in intracellular cholesterol trafficking (Tmem97, Syt7, Npc1, Npc2, Osbpl2,

Serac1, Nus1, Vps4a, Anxa2, Lrp6, Atp6ap1, Pik3c3, and Wdr81) were differentially expressed following

SD, in line with previous findings showing SD driven disruption of cholesterol metabolism.74 This was of in-

terest to us, as three of the four cross-referenced SARS-CoV-2 host factor studies (Figure 3) identified dis-

rupted cholesterol homeostasis as a risk factor for infection. Plasma membrane cholesterol is required for

SARS-CoV-2 fusion and cell entry,75 a pathway common to most enveloped viruses. Furthermore, statins

have been found to reduce recovery time and decrease the risk for COVID-19 morbidity and mortality.76,77

How cholesterol impacts SARS-CoV-2 pathogenesis is currently unclear; however, lipid raft disruption,

modification of membrane biophysics, alteration of viral stability and maturation, and immune dysfunction

have all been suggested as potential mechanisms.78–80

Finally, SD alters post-translational protein modification that regulates multiple aspects of SARS-CoV-2

replication. For example, the viral nucleocapsid protein is phosphorylated by SRPK1, GSK-3a, and

CSNK181 and genes encoding all three kinases were differentially expressed in the lungs after SD. Palmi-

toylation of the Spike envelope glycoprotein is necessary for infectivity. Knockdown of ZDHHC5, a palmi-

toyltransferase, resulted in spike protein depalmitoylation and compromised membrane fusion and viral

entry,82 and SD resulted in increased Zdhhc5 transcripts in the lung. Overall, these findings suggest that

SD could promote SARS-CoV-2 replication by dysregulating many genes involved in its life cycle.

The effect of sleep deprivation on the anti-SARS-CoV-2 immune response and viral immune

evasion

Alongside the impact on viral replication, our data shows that SD can suppress immune associated genes

allowing viral persistence. Analysis of the SD lung transcriptome shows altered regulation of several com-

ponents of the immune system (Figure 5). The regulators of interferon production, RNF41 and TBKBP1,

are targeted by SARS-CoV-2 proteins55 and their genes were differentially expressed following SD.

Furthermore, SD caused the differential expression of the E3 ubiquitin ligases Mib1 and Trim59, which

induce and repress NF-kB, respectively,83,84 alongside the NF-kB repressor, Tle1. These proteins have

been shown to associate with SARS-CoV-2 proteins, suggesting that infection interferes with the NF-kB

pathway as an immune evasion strategy. Accumulating evidence suggests that SARS-CoV-2 exploits the

host ubiquitination machinery to evade the innate immune response,85,86 and intriguingly, six SD differ-

ential genes (Mib1, Rnf41, Usp54, Cul2, Trim59, Usp13) functionally implicated in ubiquitination, encode

proteins that interact with SARS-CoV-2 proteins.55 Severe COVID-19 is sometimes associated with syncy-

tia in the lung; multinucleated single cells formed by the fusion of SARS-CoV-2 infected cells to allow viral

genome transfer without activating the immune system.87 Recently, ANO6 has been found to regulate

syncytia formation,88 and, of interest, we found that Ano6 was upregulated following SD Finally, the

manipulation of multiple immune-linked mitochondrial functions is another approach by which respiratory

viruses including coronaviruses evade the host immune system,89 and notably we found five SD differen-

tial mitochondrial host genes (Dnajc19, Atp1b1, Dnajc11, Mrps25, and Timm29) which are known to

engage in SARS-CoV-2 protein-protein interactions.55 Taken together therefore, this highlights how acute

SD may specifically promote viral immune evasion via multiple complementary pathways.

In conclusion, this study shows that SD alters the transcriptomic landscape in the mouse lung in a manner

that could explain the increased risk of respiratory viral infections, as well as severe COVID-19, associated

with SCRD and shift work. Suppression of the immune response and promotion of SARS-CoV-2 replication

and immune evasion are among the most relevant pathways deregulated by SD. Furthermore, we found a

widespread disruption of circadian rhythmicity in the lung following sleep deprivation, which could precip-

itate and/or exacerbate the negative consequences of SCRD.

Figure 4. Involvement of differentially expressed genes after sleep deprivation in the SARS-CoV-2 life cycle

(1) SARS-CoV-2 binds ACE2 and enters via endocytosis or membrane fusion, depending on the availability of TMPRSS2/4. (2) The viral RNA genome is

released into the cytoplasm and (3–4) replicated and (5) transcribed by RdRp. (6) Viral structural proteins are translated by host ribosomes. (7–8) The virion

assembles and (9) is released. All differentially expressed genes shown (red font for SD-Up, blue font for SD-Down) apart from FURIN, TMPRSS4, GSK3A,

SRPK1, and CSNK1A1 are critical host factors overlapping with at least one of the studies from Gordon et al. (2020b),55 Daniloski et al. (2021),56 Wei et al.

(2021),57 or Zhu et al. (2021).58 Drugs targeting SD differential or viral genes mentioned are in green font. Cycling genes are denoted by a yellow

clock. ACE2 = angiotensin-converting enzyme 2, ERGIC = ER-Golgi apparatus intermediate compartment, RdRp = RNA-dependent RNA polymerase,

TMPRSS2 = transmembrane protease serine 2. Adapted from Du et al. (2009) and from ‘‘Coronavirus Replication Cycle’’ by BioRender.com. Created with

BioRender.com.
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Limitations of the study

One limitation of this study is that it only assessed the effect of acute sleep deprivation, not chronic, which

would also be very informative. Another limitation of this study was that an in vivo challenge experiment

was not undertaken. The hypotheses proposed in this study require validation by challenging mice with

SARS-CoV-2 after SD; indeed, this would be an important follow-up study. However, these findings help

explain why SCRD is associated with severe COVID-19 and could guide future efforts toward understand-

ing the mechanisms underlying SARS-CoV-2 pathogenesis. Importantly, our observations are applicable to

a wide range of respiratory viruses and may inform avenues to develop new therapeutic efforts.
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Figure 5. The effect of sleep deprivation on the anti-SARS-CoV-2 immune response and viral immune evasion

(1) The virus enters the host cell. Viral RNA is detected by (2) endosomal TLRs or (3) cytosolic RIG-I and MDA5, which activate MAVS. (4) Both recognition

events activate NF-kB and IRFs, which (5) translocate into the nucleus to (6) drive the expression of IFNs and inflammatory cytokines to amplify the antiviral

immune program, for example by priming dendritic cells to sample and display viral antigens to (7) activate naive CD8+T cells. Inside the infected host cell,

(A) viral material is broken down and displayed on the cell surface by MHC class I molecules. If the antigen is recognised by CD8+T cells (B) it induces

apoptosis of the infected host cell. All differentially expressed genes shown (red font for SD-Up, blue font for SD-Down) are involved in the acute innate

immune response against SARS-CoV-2. Genes in green-shaded text boxes are implicated in viral immune evasion, as described in Gordon et al., (2020b).55

IFN = interferon, IRF = interferon regulatory factor, MAVS = mitochondrial antiviral signaling protein, MDA5 = melanoma differentiation-associated protein

5, MHC I = major histocompatibility complex molecule class I, NF-kB = nuclear factor kappa B, RIG-I = retinoic acid-inducible gene 1. Adapted from ‘‘Acute

Immune Responses to Coronaviruses’’, by BioRender.com. Created with BioRender.com.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Aarti Jagannath (aarti.jagannath@ndcn.ox.ac.uk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All RNA-Seq data have been deposited on NCBI SRA and will be publicly available as of the date of pub-

lication. Accession numbers (Database: Bioproject PRJNA914246) are also listed in the key resources table.

No original code was used in this study. Any additional information required to reanalyse the data reported

in this paper is available from the lead contactupon request.

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Illumina TruSeq Stranded Total RNA library

prep gold kit

Illumina Cat#20020598

NextSeq 550 and a Nextseq 500/500 v2.5 75

cycle kit

Illumina Cat#20024906

KAPA library quantification kit Roche Cat#07960140001

BCA protein assay kit Life Technologies Cat#23225

Mouse TNF-alpha DuoSet ELISA R&D Systems DY410-05

Mouse IL-6 DuoSet ELISA R&D Systems DY406

Mouse IFN-gamma DuoSet ELISA R&D Systems DY485

Mouse CCL5/RANTES DuoSet ELISA R&D Systems DY478

Deposited data

Chea3 transcription factor database https://maayanlab.cloud/Enrichr/

COVID-19 Drug and Gene Set Library https://maayanlab.cloud/Enrichr/

Fastq files NCBI SRA Accession number PRJNA914246

Experimental models: Organisms/Strains

Mouse: C56Bl6/J Envigo

Oligonucleotides

Primer sequences in Table S7

Software and algorithms

Clocklab Actimetrics https://www.actimetrics.com/products/

clocklab/

Prism 8 GraphPad https://www.graphpad.com/

HISAT2 (Kim et al., 2019)90 http://daehwankimlab.github.io/hisat2/about/

FeatureCounts (Liao et al., 2014)91 http://subread.sourceforge.net/

DeSeq2 (Love et al., 2014)92 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

All studies were conducted using male C57BL/6 mice over 8 weeks of age and, unless otherwise indicated,

animals were group housed with ad libitum access to food and water under a 12:12 h light/dark cycle (100

lux from white LED lamps). All animal procedures were conducted in accordance with the UK Home Office

regulations (Guidance on the Operation of Animals(Scientific Procedures Act) 1986) and the University of

Oxford’s Policy on the Use of Animals in Scientific research, following the principles of the 3Rs. For circadian

time course analysis, lung tissue was collected at zeitgeber time (ZT)2, ZT8, ZT14, and ZT20. The premise of

this study was that COVID-19 infection outcomes are worse in shift-workers. Sleep deprivation (SD) is a core

feature of shift work, and the effects of acute SD on both brain and peripheral transcriptomes in mice has

been shown to replicate the changes seen in humans shift work-like paradigms, where humans are more

chronically sleep-deprived.50,93 Thus, we sought to profile the effects of acute SD on the lung transcrip-

tome. For the SD experiments, animals were kept awake for 6 h between ZT0 and ZT6 by providing novel

objects to elicit exploratory behaviour, as previously described.94 The animals were then sacrificed, and

lung tissue collected. Control animals were allowed to sleep ad libitum between ZT0 and ZT6. Recovery

sleep (RS) animals were sleep deprived for 6 h, as detailed above, and then allowed to sleep ad libitum

for 3 h before being sacrificed and lung tissue collected.

METHOD DETAILS

RNA extraction and RNA sequencing library preparation

Total RNA from lung tissue samples was extracted using TRIzol and the RNeasy Mini Kit (Qiagen). Lung tis-

sue was mechanically disrupted in 700 mL of TRIzol and 140 mL of chloroform was added and the sample

thoroughly mixed. Following a 3 min incubation at RT, the sample was then centrifuged for 15minat

15,000 xg, 4�C. The clear top layer was then carefully collected, mixed with an equal volume of 70% ethanol

and RNA extracted using the RNeasy Mini Kit, with on-column DNase digestion, following the manufac-

turer’s instructions. RNA was eluted in water and RNA concentration and quality were measured using a

TapeStation system (Agilent) with the High Sensitivity RNA ScreenTape assay. mRNA purification and

cDNA synthesis for the sequencing library were performed according to the Illumina Stranded mRNA

Prep protocol (20040534) using the following index kit: IDT for Illumina RNA UD Indexes Set A, Ligation

(20040553). Quality and concentration of the final libraries were checked with the KAPA Library Quantifica-

tion Kit (Roche Diagnostics) in a StepOnePlus thermal cycler (Applied Biosystems) according to manufac-

turer’s instructions. All cDNA libraries were sequenced using a paired-end strategy (read length 150 bp) on

an Illumina NovaSeq platform.

Lung protein extraction

Lung tissue was placed into an appropriate volume of tissue lysis buffer (500 mL/10 mg tissue – 100 mM Tris,

150 mM NaCl, 1 mM EGTA, 1 mM EDTA, 1% Triton-X100, 0.5% Sodium deoxycholate, pH 7.4) supple-

mented with protease inhibitors (Roche, UK), and then lysed in a glass dounce homogeniser (Sigma,

UK). The samples were incubated on ice for 10 min, vortexed, and then placed back on ice for a further

10 min before being centrifuged for 20minat 13,000 xg, 4�C. The protein concentration of the debris

free supernatant was determined using the Pierce�BCA Protein Assay Kit (Thermo Fisher scientific, Lough-

borough, UK) following the manufacturer’s protocol. The samples were then diluted to 1 mg/mL using re-

agent diluent (RD – PBS + 1% BSA), aliquoted and then stored at �80�C.

ELISA

The concentration of murine CCL5, TNF-a, IL-6 and IFN-g in total lung homogenate was determined using

DuoSet� sandwich ELISA assays (R & D systems). To begin, a 96 well MAXISORP plate (Thermo Scientific)

was coated with capture antibody, diluted to the desired working concentration in PBS, overnight at RT.

The plate was then washed by completely filling each well with wash buffer (PBS containing 0.05% tween),

followed by aspiration, four times. Plates were then blocked by the addition of 300 mL of RD per well and

incubation for 1 h at RT. The plates were then washed four times with wash buffer and 100 mL of sample or

protein standard diluted in reagent diluent was added per well and the plate incubated for 2 h at RT.

Following another wash step, detection antibody diluted in reagent diluent was added to each well and

the plate incubated for 2 h at RT. The plates were subjected to another wash step and streptavidin-HRP

added to each well and the plate incubated for 20minat RT. The plates then had one final round of washing

after which 55 mL of 1-Step Ultra TMB-ELISA solution was added to each well and the plates incubated for
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15minat RT in the dark. Finally, 55 mL of 2N H2SO4 was added to each well to stop the HRP reaction and the

absorbance at 450 nm for each well was determined using a FLUOstar OMEGA plate reader. These values

were corrected by subtracting absorbance at 570 nm. The amount of each analyte was then determined by

interpolation from the protein standard curve, taking into account the dilution factor of each sample.

qRT-PCR

Total RNA was extracted from mouse lung tissue as detailed above and cDNA was synthesized using the

qScript cDNA Synthesis Kit (Quantabio). mRNA was quantified using the QuantiFast SYBR Green PCR Kit

(Qiagen) in a StepOnePlus thermal cycler. Cycling conditions were 95 �C for 5 min, and 40 cycles of 95 �C for

10 s, 60 �C for 30 s, 72 �C for 12 s. The cycle thresholds for each gene were normalized using ActB, Gapdh,

and Rn18s as housekeeping genes following the 2^�DCt method. The primers used qRT-PCR analysis are

listed in Table S7.

Processing of RNA sequencing data

Raw RNA-Seq data processing (quality control, trimming, mapping to the genome, and read counting)

was performed using tools embedded in Galaxy (v21.05).95 The fastqsanger files containing the raw

sequencing data were uploaded to the public Galaxy server at usegalaxy.org. FastQC (v0.11.8) (https://

www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used for quality control of sequencing data.

For quality and adapter trimming, Trim Galore! (v0.6.3) (https://www.bioinformatics.babraham.ac.uk/

projects/trim_galore/) was employed to remove low-quality bases, short reads, and Illumina adapters.

Nextera transposase was specified as the adapter sequence to be trimmed and Trim Galore! was in-

structed to remove 1 bp from the 5’ end of both read 1 and 2. FastQC was rerun to assess the quality

improvement. High quality reads were then mapped to theMus musculus (mm10) reference genome using

HISAT2 (v2.1.0),90 specifying the strand information as reverse. featureCounts (v2.0.1)91 was run to quantify

the number of reads mapped to each gene. The featureCounts built-in mm10 gene annotation file was

selected and under paired-end reads options, the option to count fragments instead of reads was enabled.

The generated counts files were converted to CSV and downloaded for downstream differential gene

expression analysis in R. MultiQC (v1.9)96 was used to aggregate FastQC, HISAT2, and featureCounts

results.

Differential gene expression analysis

To identify differentially expressed genes in the SD and times series (ZT) datasets, the DESeq2 package

(v1.32.0)92 was used in R (v4.1.0). DESeq2 corrects for multiple testing using the Benjamini-Hochberg

(BH) method, and only genes with a BH adjusted p value <0.05 were considered statistically significant.

Heatmaps were drawn using the pheatmap function from the pheatmap package (v1.0.12). Volcano plots

were generated using the ggplot2 package (v.3.3.5).

To detect periodicity in the time series (ZT) data, the MetaCycle R package (v1.2.0) was used.97 The meta2d

function was run using the MetaCycle web application (MetaCycleApp) based on the shiny package

(v1.6.0). The following parameters were specified: minper = 24, maxper = 24, ARSdefaultPER = 24, cycMe-

thod = JTK, combinePvalue = fisher. Any gene with a corrected q value of <0.05 was considered signifi-

cantly rhythmic. The MetaCycleApp was downloaded from https://github.com/gangwug/MetaCycleApp.

Functional enrichment analysis

Functional enrichment analysis of SD-associated genes and cycling genes was conducted using the clus-

terProfiler R package (v4.0.0).98 GO BP and KEGG analysis was performed using the enrichGO function,

with org.Mm.eg.db (v3.13.0) as theMus musculus genome annotation (GO BP parameters - pvalueCutoff =

0.01, qvalueCutoff = 0.05, pAdjustMethod = Benjamini–Hochberg correction and KEGGparamerters - pva-

lueCutoff = 0.05). Enriched KEGG terms were visualised using a custom R script. The network interaction

between overrepresented GO BP pathways was visualized using the ClueGO application (v2.5.8)99 and

its plugin CluePedia (v1.5.8)100 within the desktop version of the Cytoscape software (v3.8.2).101 The yFiles

Organic Layout from the yFiles Layout Algorithms application (v1.1.1)102 was used to specify the design.

Transcription factor enrichment analysis was performed using Enrichr103 and the ChEA3 database. The

combined score was used to assess significance of enrichment. The SARS-CoV-2 gene set enrichment anal-

ysis was performed using Enrichr and the COVID-19 Drug and Gene Set Library.
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Principal component analysis projection of circadian and SD transcript expression

To assess the circadian behaviour of the mouse lung we used principal component analysis (PCA). We first

reduced the transcriptomic datasets to 10 circadian features, i.e., transcripts known to be highly rhythmic

across murine organ systems (Arntl, Per2, Per3, Tef, Hlf, Dbp, Nr1d1, Nr1d2, Npas2, and Dtx4).104 The resul-

tant transcript x sample matrices were log-transformed and then Z-score normalised column-wise to pre-

pare the data for dimensionality reduction. Singular value decomposition was applied to the 16 samples

collected at times ZT2, ZT8, ZT14, and ZT20 to obtain the principal directions (using the svd function in

MATLAB v2020b). All lung samples (time course and SD) were then projected onto the 3D principal compo-

nent space generated from the first three principal directions of the time course samples. The time point

means of the projected time course samples were estimated by fitting Gaussian distributions. A shape-pre-

serving cubic spline was fitted through the estimated means of the projected time course samples to

approximate the expected circadian behaviour of the mouse lung (using the csape function in MATLAB).

The Support Vector Machine approach (package gensvm v.0.1.5 in R v.4.1.1) with the linear kernel was

then used to find the equation of the plane which optimally separated the control and SD lung samples

in the 3D principal component space, and then all samples were projected onto the normal of the plane.

AWilcoxon’s rank sum test was carried out in MATLAB (ranksum function) for the projections on the normal

to determine whether the null hypothesis that the control and SD samples belonged to the same popula-

tion (same median) could be rejected.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data are expressed as mean + or G SEM, and n represents the number of independent animals or rep-

licates per group, as detailed in each figure legend. For comparisons between two groups only, a one-

tailed unpaired Student’s t-test was used. Statistical significance of gene set overlaps was assessed by

two-tailed Fisher’s exact test, assuming 21,647 total genes in the lung transcriptome as determined by

the RNA-Seq data from SD and time series analysis in this study. Correlation between the qRT-PCR and

RNA-Seq expression data was examined using two-tailed Pearson correlation analysis. Statistical testing

was performed in R, MATLAB, and GraphPad Prism 9 (v9.1.2).
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