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Abstract
In many real-world applications, designs can only be evaluated pairwise, relative to

each other. Nevertheless, in the simulation literature, almost all the ranking and selec-

tion procedures are developed based on the individual performances of each design.

This research considers the statistical ranking and selection problem when the design

performance can only be simulated pairwise. We formulate this new problem using

the optimal computing budget allocation approach and derive the asymptotic opti-

mality condition based on some approximations. The numerical study indicates that

our approach can reduce the number of simulations required to confidently identify

the best design.
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1 INTRODUCTION

Simulation is more and more widely used in evaluating dis-

crete event dynamic systems due to the increasing complex-

ity of these systems. Examples of using simulation can be

found in supervisory control (Deng & Qiu, 2015), logis-

tics and supply chain (Tako & Robinson, 2012), and vir-

tual reality (Turner et al., 2016). Although computing power

has improved significantly in recent years due to the rapid

development of information technology, efficiency is still the

bottleneck in using simulation. This is because a single simu-

lation replication of a complex system may take several hours

or days, and a large number of simulation replications are

usually needed to obtain a reliable mean performance value

(Chen & Lee, 2010). As a result, how to improve the effi-

ciency of simulation experiments remains important in the

simulation area (Xu et al., 2016).

For a discrete event dynamic system, the number of designs

(alternatives) for selection is usually fixed and finite. There-

fore, finding the design with the best expected performance

through simulation and within a limited number of simu-

lation replications essentially requires optimally allocating

these simulation replications among all the alternatives. This

problem falls into a popular research area known as rank-

ing and selection, which has received substantial attention in

recent years (Hong et al., 2021; Peng et al., 2017). In general,

there exist three major approaches for studying ranking and

selection problems, the indifference zone (IZ) approach, the

optimal computing budget allocation (OCBA), and the value

of information (VIP) approach. The IZ approach provides a

guarantee for selecting the best design with a predetermined

probability of correct selection (PCS), assuming that the

user is indifferent to performance differences below a given

threshold (Kim & Nelson, 2001; Rinott, 1978). The OCBA

approach allocates a fixed number of simulation replications

sequentially based on the performance mean and variance of

each design such that the probability of correctly selecting

the best design can be maximized (Chen et al., 2000). The

VIP approach adopts the Bayesian framework and determines

the future simulation budget allocation by maximizing the

value information such as expected improvement and knowl-

edge gradient (Chick et al., 2010; Ding et al., 2022; Frazier

et al., 2008; Peng & Fu, 2017; Ryzhov, 2016).

Research in ranking and selection has been developed

and extended in a variety of ways. For example, several

studies proposed efficient computing budget allocation rules
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for selecting the optimal subset (Chen et al., 2008; Gao &

Chen, 2016; Zhang et al., 2015). In the case of designs

with multiple performance measures, Lee et al. (2010) and

Branke and Zhang (2019) developed efficient simulation

allocation procedures for selecting the nondominated Pareto

set. For stochastic constrained simulation optimization prob-

lems, simulation budget allocation rules have been developed

in Lee et al. (2012), Hunter and Pasupathy (2013), and Xiao

et al. (2019). In the case that there exist multiple scenar-

ios for each design, robust ranking and selection procedures

have been developed from both the IZ approach and OCBA

approach (Fan et al., 2020; Gao, Xiao, et al., 2017; Xiao &

Gao, 2018). Some other extensions and applications of the

ranking and selection problem include feasibility determina-

tion (Gao & Chen, 2017; Peng et al., 2020), minimizing the

opportunity cost (Gao, Chen, & Shi, 2017), large-scale prob-

lems (Zhong & Hong, 2022), and multifidelity models (Peng

et al., 2019; Song et al., 2019).

All the above-mentioned research has made an implicit

assumption that the performance of each design can be esti-

mated individually. However, in many real-world problems,

only pairwise information is available instead of individual

performance (Groves & Branke, 2019). A common phe-

nomenon in human decision-making is the lack of transitivity

due to factors like the threshold effect, disturbance in concen-

tration, and errors of input data. As a result, pairwise compari-

son is a fundamental tool in multicriteria decision-making for

making judgments about alternatives and has wide applica-

tions connected to human activity, including manufacturing,

service industry, research, and surveys (Kou et al., 2016;

Rácz, 2022; Wang et al., 2021). For example, a round-robin

tournament is a typical pairwise comparison format in which

the winner is determined by points counting. Round-robin

tournaments not only exist in sports but also in public choice

models like voting schemes and decision rules in committees

(Harary & Moser, 1966; Ryvkin & Ortmann, 2008). The rank-

ing of NBA teams can only be estimated via playing the teams

against each other is a typical example of pairwise comparison

in sports. Another example can be found in market research, a

respondent is usually asked to indicate his preference for each

pair of brands in order to know the structure of customers’

preferences among the competing brands of a product.

Given the popularity of pairwise comparison in the real

application, different approaches have been used to rank

and select the best design (designs) for pairwise compari-

son in a noisy environment. Negahban et al. (2016) intro-

duced rank centrality algorithm for discovering scores for

items from pairwise comparisons. This algorithm constructs

a Markov chain on the pairwise observations under the

Bradley–Terry–Luce (BTL) model (Bradley & Terry, 1952),

and then returns its stationary distribution by computing the

top left eigenvector of the associated probability transition

matrix. Li et al. (2021) considered the problem of select-

ing important nodes in a random network. In this article,

Markov chains are used to characterize random networks,

and the importance of each node is described by stationary

probability. Simulation sampling is carried out on the inter-

action parameter between each pair of nodes to calculate the

transition probability and estimate the stationary probability.

Chen and Suh (2015) proposed a nearly linear-time two-stage

procedure called the Spectral MLE (maximum likelihood

estimation) for exact recovering the top k items based on

rank centrality. They assume that the pairwise comparison

outcomes are generated according to the BTL model. Chen,

Gopi, et al. (2017) and Chen, Wang, et al. (2017) assume

that each comparison has noise constrained by the strongly

stochastically transitive model (Fishburn, 1973), and present

a linear time algorithm for selecting the top k items. Heckel

et al. (2019) proposed an active ranking algorithm partition-

ing the items into sets of prespecified size, where ranking is

based on the Borda score and does not make any assump-

tions on the pairwise comparison probabilities. Compared

to the parametric models that often fail in real-world pair-

wise comparison data (Ballinger & Wilcox, 1997), using the

Borda score does not need to make any assumptions. Shah and

Wainwright (2018) prove that the Borda score has three good

properties including simplicity, optimality, and robustness.

Recently, the work in Groves and Branke (2019) proposed two

active sampling methods that adapted the OCBA framework

and knowledge gradient framework to the pairwise sampling

setting to select the top-m designs based on the Borda score.

Thus, this work adopts the Borda score as the performance

measure in developing the simulation budget allocation rules.

In this research, we consider this ranking and selection

problem with pairwise comparisons. The performance of

each design cannot be estimated individually by simulation.

Instead, we only have the pairwise comparison information

between two alternatives via simulation. Thus, the number of

simulation replications needed for a single output increases

from k to k(k − 1)∕2 given that there are designs for compar-

isons. Since the pairwise comparison information can only

be obtained from simulation, a good estimation needs multi-

ple simulation replications. The objective of this research is

to derive an efficient computing budget allocation rule that

distributes a fixed and finite number of simulation replica-

tions such that we select the best design or top m designs as

accurately as possible.

The contribution of this research is threefold. First, we

formulate the pairwise comparison ranking and selection

problem as an optimal computing budget allocation model

based on the performance measure of the Borda score. Sec-

ond, we extended the research in Groves and Branke (2019)

by developing an easily implementable asymptotically opti-

mal allocation rule. Finally, the proposed pairwise compari-

son simulation procedure broadens the use of simulation in

decision making and market research where only pairwise

information is available.

The rest of the article is organized as follows. Section 2 for-

mulates the new optimal budget computing allocation model.

Section 3 derives the asymptotically optimal allocation rule.
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XIAO ET AL. 3

Section 4 considers the problem of selecting the top m
designs. In Section 5, a heuristic sequential simulation

algorithm is proposed, and numerical experiments are carried

out. Finally, we conclude this research in Section 6.

2 PROBLEM FORMULATION

We consider the problem of selecting the best design from

a finite number of k alternatives, which can be represented

by the set x = {x1, x2, … ., xk}. The best design is defined

as the design with the minimum performance. However, the

performance of any design xi, i = 1, 2, … , k is unknown

and cannot be estimated individually. Instead, for each pair

of designs
{

xi, xj
}

, Xi,j is a random variable representing the

result of the comparison between the two designs. Let 𝜇i,j
denote the expected outcome of a “pairwise comparison,” that

is, 𝜇i,j = E
(
Xi,j

)
. For example, in decision-making, the expert

is asked to indicate the preference of two alternatives numer-

ically. The numerical preference is usually denoted by a real

number from −100 to 100, that is, Xi,j can take any value

from −100 to 100. Thus, Xi,j denotes how much alternative i
is better than alternative j.

In the case of pairwise comparison, we use the Borda score

Si to denote the performance of the design xi (Borda, 1784),

that is,

Si =
∑

j≠i
𝜇i,j. (1)

To facilitate the presentation, we use the following nota-

tions.

T the total number of simulation replications

Xi,j,t the output of the tth simulation replication for

pairwise comparison between xi and xj, where

i, j ∈ {1, 2, … , k} and i ≠ j
𝜇i,j the mean for Xi,j, that is, E

(
Xi,j,t

)
= E

(
Xi,j

)
= 𝜇i,j

𝜎

2

i,j the variance for Xi,j

Xi,j Xi,j =
(
1∕ni,j

)∑ni,j

t=1
Xi,j,t denotes the sample mean

of Xi,j
Si the sum of the sample mean of Xi,j for all j ≠ i, that

is, Si =
∑

j≠i Xi,j
ni,j the number of simulation replications allocated to

the pair of designs
{

xi, xj
}

We make the following assumptions in developing the

model.

Assumption 1 Comparing xi to xj has the

same effect as comparing xj to xi, that is,

Xj,i = −Xi,j.

Assumption 1 states that performing a single replication of

simulation on a pair of designs
{

xi, xj
}

affects the estimation

of the Borda scores of both designs. Thus, we restrict that

ni,j = 0 if i > j or i = j.

Assumption 2 The simulation output

samples are normally distributed. They are

identically distributed and independent from

replication to replication, as well as independent

across different pairs of designs.

Assumption 2 is commonly used in the area of simulation

since the normality assumption can always be met if batch

means are used due to the well-known central limit theorem.

Although this assumption can be removed, the Borda score

which is a sum of random variables, the distribution of the

Borda score may be unknown if the simulation output samples

are non-normal distribution.

Assumption 3 The outcomes of the pairwise

comparisons need not be transitive. It means

that from A better than B, B better than C, we

cannot get A better than C.

In practice, there are many examples where pairwise com-

parisons are transitive. For instance, comparing the output

of different production lines, the protein content of different

milk, the lifetime of different electronical devices. However,

due to the threshold effects, disturbance in concentration,

errors of input data, and other factors, the lack of transitiv-

ity in pairwise comparison is a common phenomenon. There

are some traditional examples like finding the full ranking of

teams in a tournament, identifying the best player in online

video games, and even in rock-paper-scissors games. The

analytic hierarchy process is often used in multi-attribute

decision-making in the fields of manufacturing, service

industry, research, surveys, and some others, in which pair-

wise comparisons between elements form a judgment matrix.

Theoretically, the judgment matrix is required to be consis-

tent. However, in practice, the lack of transitivity is common

(Kou et al., 2016; Rácz, 2022; Wang et al., 2021). Recently,

the internet era has led to a variety of applications involving

pairwise comparisons. For example, recommender systems

for rating movies, books, images, and other items (Aggar-

wal, 2016; Chen, Gopi, et al., 2017; Chen, Wang, et al., 2017),

peer grading for ranking students in massive open online

courses (MOOCs) (Piech et al., 2013; Shah et al., 2013),

and so on. The transitivity of preferences is one of the most

important assumptions in the recommender system research.

However, the intransitive relations have also been widely

observed in practice (Chen, Gopi, et al., 2017, Chen, Wang,

et al., 2017). This assumption is important in formulating this

pairwise ranking and selection problem. Otherwise, the pair-

wise ranking and selection problem can reduce to the original

OCBA problem (Chen et al., 2000).

The OCBA framework is developed based on Bayesian

setting. (Chen, 1996; Chen et al., 2000; Chen et al., 2008).

We formulate the new optimal budget computing alloca-

tion problem using the Bayesian framework, where the

mean of the simulation output for each pair of designs,

𝜇i,j, is assumed unknown and treated as a random variable.

After the simulation is performed, a posterior distribution
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4 XIAO ET AL.

for the unknown mean 𝜇i,j is constructed based on two

pieces of information: (i) prior knowledge about 𝜇i,j, and

(ii) simulation output. We introduce ̃Xi,j denotes the poste-

rior estimate of 𝜇i,j, and ̃Si denotes the sum of the poste-

rior estimate of 𝜇i,j for all j ≠ i. As in Chen (1996), we

assume that the unknown mean 𝜇i,j has a conjugate nor-

mal prior distribution and consider non-informative prior

distributions, which implies that no prior knowledge is

available about the performance of any pairwise compari-

son before conducting the simulation. Thus, the posterior

distribution of 𝜇i,j is ̃Xi,j∼N
(

Xi,j, 𝜎
2

i,j∕ni,j

)
, and the pos-

terior distribution of Si is ̃Si∼N
(∑

j,j≠i Xi,j,
∑

j,j≠i 𝜎
2

i,j∕ni,j

)

(DeGroot, 1970).

In this problem, the objective is to select the design

with the minimum performance. Note that the design with

the minimum performance has the largest Borda score. Let

the random variable 𝜇i denote the unknown performance of

the design xi for each i ∈ {1, 2, … , k}. Without loss of gen-

erality, we assume that 𝜇1 < 𝜇2 < … < 𝜇k. Based on the

definition of the Borda score, 𝜇1 < 𝜇2 < … < 𝜇k results

in S1 > S2 > … > Sk, where Si is the Borda score of the

design xi for each i ∈ {1, 2, … , k}. Given a fixed number

of simulation replications, the best design cannot be selected

with certainty. A commonly used performance measure is the

PCS. A correct selection occurs when the posterior estimate

of Borda score of the true best design is better than that of any

other design. Then,

PCS1 = P

{ k⋂

i=2

(
̃S1 >

̃Si
)
}

. (2)

The selection problem is

max PCS1

s.t.
∑

i<j
ni,j = T , i = 1, … , k − 1, j = 2, … , k

ni,j ≥ 0, for all i and j. (3)

In this research, we ignore the minor technicalities associ-

ated with ni,j being not integer. The major difficulty of solving

the optimization model in (3) is that PCS1 is computationally

intractable. To deal with this issue, we give an approximation

on PCS1.

Theorem 1 The PCS1 in (2) is lower bounded
by

APCS1 = 1 − P
(
̃S1 ≤ c1

)
−

k∑

i=2

P
(
̃Si ≥ c1

)
,

where c1 is a constant defined as c1 =
(S1 + S2) ∕2.

Proof For a constant c1,

PCS1 = P

{ k⋂

i=2

(
̃S1 >

̃Si
)
}

≥ P

[
(
̃S1 > c1

)
∩

( k⋂

i=2

̃Si < c1

)]

≥ P
(
̃S1 > c1

)
+

k∑

i=2

P
(
̃Si < c1

)
− (k − 1)

= 1 − P
(
̃S1 ≤ c1

)
−

k∑

i=2

P
(
̃Si ≥ c1

)
= APCS1

▪

In this research, we consider the following optimization

model instead of the model given in (3).

max APCS1

s.t.
∑

i<j
ni,j = T , i = 1, … , k − 1, j = 2, … , k

ni,j ≥ 0, for all i and j. (4)

This problem falls into the OCBA framework. It maximizes

the approximated PCS by determining the optimal alloca-

tion of the simulation replications ni,j (the decision variables).

Although it is an approximated PCS, it is much more compu-

tationally tractable compared with (3). Further development

of simulation budget allocation is then based on (4).

3 SELECTION PROCEDURE

This section aims to derive the asymptotically optimal allo-

cation rule based on (4) and suggests a sequential allocation

algorithm to implement the proposed rule.

3.1 Asymptotical optimality condition

Based on Assumptions 1–3, ̃Si is normally distributed as

̃Si∼N
(∑

j,j≠i Xi,j,
∑

j,j≠i 𝜎
2

i,j∕ni,j

)
.

Then, we have

P
(
̃S1 ≤ c1

)
= Φ

⎛
⎜
⎜
⎝

(

c1 −
k∑

j=2

X1,j

)/
√√√√

k∑

j=2

(
𝜎

2

1,j∕n1,j

)⎞
⎟
⎟
⎠
,

(5)

P
(
̃Si ≥ c1

)
= Φ

⎛
⎜
⎜
⎝

(

−c1 +
∑

j,j≠i
Xi,j

)/√∑

j,j≠i

(
𝜎

2

i,j∕ni,j

)⎞
⎟
⎟
⎠

= Φ
⎛
⎜
⎜
⎝

(

−c1+
∑

j,j≠i
Xi,j

)/√∑

j,j>i

(
𝜎

2

i,j∕ni,j

)
+

∑

j,j<i

(
𝜎

2

i,j∕nj,i

)⎞
⎟
⎟
⎠
.

(6)

Thus,

APCS1 = 1 − Φ
⎛
⎜
⎜
⎝

(

c1 −
k∑

j=2

X1,j

)/
√√√√

k∑

j=2

(
𝜎

2

1,j∕n1,j

)⎞
⎟
⎟
⎠

−
k∑

i=2

Φ
⎛
⎜
⎜
⎝

(

−c1+
∑

j,j≠i
Xi,j

)/√∑

j,j>i

(
𝜎

2

i,j∕ni,j

)
+
∑

j,j<i

(
𝜎

2

i,j∕nj,i

)⎞
⎟
⎟
⎠
.

(7)
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XIAO ET AL. 5

Before deriving the optimality condition, we first present

two lemmas that are needed in deriving the asymptotical

optimality condition.

Lemma 1 (Gao & Chen, 2016) Consider
ai, bj, ci, dj ∈ R with ai, bj > 0 and ci, dj
< 0. Suppose that

∑
𝜂

1

i=1
ai exp(cin) =

∑
𝜂

2

j=1

bj exp
(
djn

)
for 𝜂1, 𝜂2 > 1 as n → ∞. Then

maxi∈{1,… ,𝜂
1} ci = maxj∈{1,… ,𝜂

2} dj.

Lemma 2 The optimization problem defined
in (4) is asymptotically concave as the total
computing budget T goes to infinity, where
APCS1 is given in (7).

Proof See Appendix A.
▪

Given the concavity, we can use the Karush–Kuhn–Tucker

(KKT) conditions to solve the optimization problem in (4),

whose objective function APCS1 is given by (7).

Theorem 2 Let 𝛼i,j = ni,j∕T for all i < j
and i, j ∈ {1, 2, … , k} denote the propor-
tion of simulation budget allocated to a pair
of designs (i, j). Let Si =

∑
j,j≠i Xi,j denote the

sample mean of Borda score of the design
xi for each i ∈ {1, 2, … , k}. Let Ri =(

c1 − Si

)2

∕2

(∑
j,j>i 𝜎

2

i,j∕𝛼i,j +
∑

j,j<i 𝜎
2

i,j∕𝛼j,i

)

for each i ∈ {1, 2, … , k}. The optimization
problem defined in (4) is asymptotically opti-
mized if for any two pairs of designs

(
i, i′

)
and(

l, l′
)

as the total computing budget T goes to
infinity, we have

lim
T→∞

min {Ri,Ri′} = lim
T→∞

min {Rl,Rl′} , (8)

where l < l′; i < i′; i, i′, l, l′ ∈ {1, 2, … , k}.
According to the law of large numbers, the
sample mean Xi,j converges to the mean
𝜇i,j in probability. Then, Ri converges to
(
c1−

∑
j,j≠i 𝜇i,j

)2

∕2

(∑
j,j>i 𝜎

2

i,j∕𝛼i,j +
∑

j,j<i 𝜎
2

i,j∕

𝛼j,i

)
in probability.

Proof Let F be the Lagrangian function with

Lagrange multipliers 𝜆1 and vi,j, i < j and i, j ∈
{1, 2, … , k}. That is,

F = 1 − Φ
⎛
⎜
⎜
⎝

(

c1 −
k∑

j=2

X1,j

)/
√√√√

k∑

j=2

𝜎

2

1,j

n1,j

⎞
⎟
⎟
⎠

−
k∑

i=2

Φ
⎛
⎜
⎜
⎝

(

−c1 +
∑

j,j≠i
Xi,j

)/
√√√√∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

⎞
⎟
⎟
⎠

− 𝜆1

(
∑

i<j
ni,j − T

)

−
∑

i<j
i,j∈{1,… ,k}

vi,jni,j.

▪

The stationarity conditions can be stated as follows.

For i = 1, i′ ≠ 1, i < i′,

𝜕F
𝜕n1,i′

= 𝜙
⎛
⎜
⎜
⎝

(

c1 −
k∑

j=2

X1,j

)/
√√√√

k∑

j=2

(
𝜎

2

1,j∕n1,j

)⎞
⎟
⎟
⎠

×
⎡
⎢
⎢
⎣
−1

2

(

c1 −
k∑

j=2

X1,j

)( k∑

j=2

𝜎

2

1,j

n1,j

)− 3

2

𝜎

2

1,i′n
−2

1,i′

⎤
⎥
⎥
⎦

+ 𝜙

⎛
⎜
⎜
⎝

(
∑

j,j≠i′
Xi′,j − c1

)/
√√√√∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

⎞
⎟
⎟
⎠

×
⎡
⎢
⎢
⎣

1

2

(

c1−
∑

j,j≠i′
Xi′,j

)(
∑

j,j>i′

𝜎

2

i′,j

ni′,j
+
∑

j,j<i′

𝜎

2

i′,j

nj,i′

)− 3

2

𝜎

2

i′,1n−2

1,i′

⎤
⎥
⎥
⎦

= 𝜆1 + v1,i′ . (10)

For i ≠ 1, i′ ≠ 1, i < i′

𝜕F
𝜕ni,i′

= 𝜙
⎛
⎜
⎜
⎝

(

−c1 +
∑

j,j≠i
Xi,j

)/
√√√√∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

⎞
⎟
⎟
⎠

×
⎡
⎢
⎢
⎣

1

2

(

c1 −
∑

j,j≠i
Xi,j

)(
∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

)− 3

2

𝜎

2

i,i′n
−2

i,i′

⎤
⎥
⎥
⎦

+ 𝜙

⎛
⎜
⎜
⎝

(
∑

j,j≠i′
Xi′,j − c1

)/
√√√√∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

⎞
⎟
⎟
⎠

×
⎡
⎢
⎢
⎣

1

2

(

c1−
∑

j,j≠i′
Xi′,j

)(
∑

j,j>i′

𝜎

2

i′,j

ni′,j
+
∑

j,j<i′

𝜎

2

i′,j

nj,i′

)− 3

2

𝜎

2

i′,in
−2

i,i′

⎤
⎥
⎥
⎦

= 𝜆1 + vi,i′ (11)

The complementary slackness conditions can be stated as

follows.

vi,jni,j = 0, for all i < j. (12)

As ni,j, i < j are in the denominator in Equation (10) and

(11), they cannot be zero. Then in Equation (12), it must hold

that vi,j = 0 for all i < j. Thus, the KKT conditions can be

simplified as follows.

For i = 1, i′ ≠ 1, i < i′,

𝜕F
𝜕n1,i′

= 𝜙
⎛
⎜
⎜
⎝

(

c1 −
k∑

j=2

X1,j

)/
√√√√

k∑

j=2

(
𝜎

2

1,j∕n1,j

)⎞
⎟
⎟
⎠

×
⎡
⎢
⎢
⎣
−1

2

(

c1 −
k∑

j=2

X1,j

)( k∑

j=2

𝜎

2

1,j

n1,j

)− 3

2

𝜎

2

1,i′n
−2

1,i′

⎤
⎥
⎥
⎦

+ 𝜙

⎛
⎜
⎜
⎝

(
∑

j,j≠i′
Xi′,j − c1

)/
√√√√∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

⎞
⎟
⎟
⎠

×
⎡
⎢
⎢
⎣

1

2

(

c1 −
∑

j,j≠i′
Xi′,j

)(
∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

)− 3

2

𝜎

2

i′,1n−2

1,i′

⎤
⎥
⎥
⎦

= 𝜆1. (13)
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6 XIAO ET AL.

For i ≠ 1, i′ ≠ 1, i < i′

𝜕F
𝜕ni,i′

= 𝜙
⎛
⎜
⎜
⎝

(

−c1 +
∑

j,j≠i
Xi,j

)/
√√√√∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

⎞
⎟
⎟
⎠

×
⎡
⎢
⎢
⎣

1

2

(

c1 −
∑

j,j≠i
Xi,j

)(
∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

)− 3

2

𝜎

2

i,i′n
−2

i,i′

⎤
⎥
⎥
⎦

+ 𝜙

⎛
⎜
⎜
⎝

(
∑

j,j≠i′
Xi′,j − c1

)/
√√√√∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

⎞
⎟
⎟
⎠

×
⎡
⎢
⎢
⎣

1

2

(

c1 −
∑

j,j≠i′
Xi′,j

)(
∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

)− 3

2

𝜎

2

i′,in
−2

i,i′

⎤
⎥
⎥
⎦

= 𝜆1 (14)

To analyze optimality, we consider the following three

cases.

Case 1 For
(
1, i′

)
and

(
1, l′

)
, i′ ≠ l′, i′, l′ > 1.

From (13), using the Lemma 1, as T →∞,

max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
c1 −

∑k
j=2

X1,j

)2

-2

(
∑k

j=2

𝜎

2

1,j

𝛼
1,j

) ,

(
−c1 +

∑
j,j≠i′ Xi′,j

)2

−2

(
∑

j,j>i′
𝜎

2

i′ ,j

𝛼i′ ,j
+

∑
j,j<i′

𝜎

2

i′ ,j

𝛼j,i′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

= max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
c1−

∑k
j=2

X1,j

)2

-2

(
∑k

j=2

𝜎

2

1,j

𝛼
1,j

) ,

(
−c1 +

∑
j,j≠l′ Xl′,j

)2

−2

(
∑

j,j>l′
𝜎

2

l′ ,j

𝛼l′ ,j
+

∑
j,j<l′

𝜎

2

l′ ,j

𝛼j,l′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

(15)

Case 2 For
(
i, i′

)
≠
(
l, l′

)
, i, i′, l, l′ ≠ 1, i < i′,

l < l′. From (14), using the Lemma 1, as T →
∞,

max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−
(∑

j,j≠i Xi,j − c1

)2
/

2

∑
j,j>i

𝜎

2

i,j

𝛼i,j
+

∑
j,j<i

𝜎

2

i,j

𝛼j,i

,

−
(∑

j,j≠i′ Xi′,j − c1

)2
/

2

∑
j,j>i′

𝜎

2

i′ ,j

𝛼i′ ,j
+

∑
j,j<i′

𝜎

2

i′ ,j

𝛼j,i′

⎫
⎪
⎪
⎬
⎪
⎪
⎭

= max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−
(∑

j,j≠l Xl,j − c1

)2
/

2

∑
j,j>l

𝜎

2

l,j

𝛼l,j
+

∑
j,j<l

𝜎

2

l,j

𝛼j,l

,

−
(∑

j,j≠l′ Xl′,j − c1

)2
/

2

∑
j,j>l′

𝜎

2

l′ ,j

𝛼l′ ,j
+

∑
j,j<l′

𝜎

2

l′ ,j

𝛼j,l′

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

(16)

Case 3 For
(
1, i′

)
and

(
l, l′

)
, i′, l, l′ >

1, l < l′. From (13) and (14), using the

Lemma 1, as T → ∞,

max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
c1 −

∑k
j=2

X1,j

)2

−2

(
∑k

j=2

𝜎

2

1,j

𝛼
1,j

) ,

(
−c1 +

∑
j,j≠i′ Xi′,j

)2

−2

(
∑

j,j>i′
𝜎

2

i′ ,j

𝛼i′ ,j
+

∑
j,j<i′

𝜎

2

i′ ,j

𝛼j,i′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

= max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

−
(∑

j,j≠l Xl,j − c1

)2
/

2

∑
j,j>l

𝜎

2

l,j

𝛼l,j
+

∑
j,j<l

𝜎

2

l,j

𝛼j,l

,

−
(∑

j,j≠l′ Xl′,j − c1

)2
/

2

∑
j,j>l′

𝜎

2

l′ ,j

𝛼l′ ,j
+

∑
j,j<l′

𝜎

2

l′ ,j

𝛼j,l′

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

(17)

Let Si =
∑

j,j≠i Xi,j denote the sam-

ple mean of the Borda score of a design

xi for each i ∈ {1, 2, … , k}. Let Ri =(
c1 − Si

)2

∕2

(∑
j,j>i 𝜎

2

i,j∕𝛼i,j +
∑

j,j<i 𝜎
2

i,j∕𝛼j,i

)

for each i ∈ {1, 2, … , k}. The equalities in

(15)–(17) can be simplified to

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

limT→∞ max {−R1,−Ri′} = limT→∞

max {−R1,−Rl′} , i′ ≠ l′, i′, l′ ∈ {2, 3, … , k}
limT→∞ max {−Ri,−Ri′} = limT→∞

max {−Rl,−Rl′} , i, l, i′, l′ ∈ {2, 3, … , k},
(
i, i′

)
≠

(
l, l′

)
, i < i′, l < l′

limT→∞ max {−R1,−Ri′} = limT→∞

max {−Rl,−Rl′} , l, i′, l′ ∈ {2, 3, … , k}, l < l′,

(18)

which is equivalent to

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

limT→∞ min {R1,Ri′} = limT→∞

min {R1,Rl′} , i′ ≠ l′, i′, l′ ∈ {2, 3, … , k}
limT→∞ min {Ri,Ri′} = limT→∞

min {Rl,Rl′} , i, l, i′, l′ ∈ {2, 3, … , k},
(
i, i′

)
≠

(
l, l′

)
, i < i′, l < l′

limT→∞ min {R1,Ri′} = limT→∞

min {Rl,Rl′} , l, i′, l′ ∈ {2, 3, … , k}, l < l′

. (19)

Summarizing the three cases, we can obtain

the equality in (8).

Remark 1 Note that (13) and (14) correspond

to the KKT conditions of the concave opti-

mization problem in (4). The optimal allocation

is achieved asymptotically if solutions satisfy-

ing (13) and (14) are implemented. Theorem 2

provides useful insights on characterizing the

optimality condition for the problem (4).

Let Si =
∑

j,j≠i Xi,j denote the sample mean of the

Borda score of a design xi for each i ∈ {1, 2, … , k}.

Let Ri =
(

c1 − Si

)2

∕2

(∑
j,j>i 𝜎

2

i,j∕𝛼i.j +
∑

j,j<i 𝜎
2

i,j∕𝛼j,i

)
for
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XIAO ET AL. 7

each i ∈ {1, 2, … , k}. R1 is the rate function of proba-

bility P
(
̃S1 ≤ c1

)
and Ri is the rate function of probabil-

ity P
(
̃Si ≥ c1

)
(Glynn & Juneja, 2004). As the total sim-

ulation budget T goes to infinity, it shows an exponential

decaying rate in which the probability of a wrong compar-

ison ̃Si ≥ c1 (or ̃S1 ≤ c1) goes to zero. This research

considers pairwise comparison, where min {Ri,Ri′} denotes

the minimum convergence rate for a pair of designs xi
and xi′. The optimality condition indicates that the simula-

tion budget allocated to each pair of designs is such that

the resulting minimum convergence rates are all equal for

each pair of designs, where there are k(k − 1)∕2 pairs of

designs.

Remark 2 Assumption 2 states that the simu-

lation output samples are normally distributed.

This assumption is commonly used in the rank-

ing and selection literature. Based on the law

of large numbers, the normality assumption can

always be met if batch means are used. How-

ever, this assumption can be removed if we

adopt the large deviation theory to derive the

optimality conditions for determining the opti-

mal allocation rule as shown in Glynn and

Juneja (2004). Using the large deviation the-

ory, we can derive a more general optimality

condition. However, the rate function can be

difficult to estimate for some underlying dis-

tributions. The optimal allocation rule derived

based on the normality assumption is easy

to estimate and implement. Further, the opti-

mality condition given in Theorem 2 can be

easily extended to the case where the under-

lying distribution is non-normal even though

the results are derived based on the normality

assumption.

3.2 Sequential simulation procedure

Based on the optimality condition above, we present a sequen-

tial simulation budget allocation procedure to implement

the optimality condition in Theorem 4. In each iteration,

we determine the pair of designs that results in the mini-

mum convergence rate and provide a small incremental bud-

get Δ to this pair of designs. That is, we find
(
i∗, i∗′

)
=

argmin(i,i′),i<i′,i,i′∈{1,2,… ,k} min {Ri,Ri′}, and increase ni∗,i∗′

by Δ.

Note that the conclusion above has implicitly assumed that

we know Ri for each i ∈ {1, 2, … , k}. In practice, they are

unknown and need to be estimated. Thus, we need to sim-

ulate each pair of designs initially, and estimate Ri. Let ̂Ri
denote the estimate of Ri. In the following iterations, the sim-

ulation is allocated based on the proposed allocation rule in

Theorem 4. We name it as OCBA-PC (pairwise comparison

OCBA) procedure.

BOX 1. OCBA-PC procedure

1. Specify the total simulation budget T ,

the initial number of simulation replica-

tions n0 and the incremental budget Δ.

Let the iteration counter 𝜌 ← 1. Per-

form n0 replications to each of k(k − 1)∕2

pairs of designs. n𝜌i,j = n0 for all i, j ∈
{1, 2, … , k}, i < j.

2. Calculate the sample mean Xi,j and sam-

ple variance 𝜔
2

i,j for all i, j ∈ {1, 2, … , k},
i < j.

3. while
∑

i<j n𝜌i,j ≤ T
4. Calculate the estimated Borda score Si

based on Xi,j for all i ∈ {1, 2, … , k}.
5. Estimate c1 = S1 + S2 and calculate

̂Ri based on c1, Si and 𝜔

2

i,j for all i ∈
{1, 2, … , k}.

6. Find the pair
(
i∗, i∗′

)
=

argmin(i,i′),i<i′,i,i′∈{1,2,… ,k} min

{
̂Ri, ̂Ri′

}

that has the minimum convergence rate.

7. Provide min

{
Δ,T −

∑
i<j n𝜌i,j

}
replica-

tions to the pair of designs
(
i∗, i∗′

)
, n𝜌+1

i∗,i∗′ =

n𝜌i∗,i∗′ +min

{
Δ,T −

∑
i<j n𝜌i,j

}
.

8. Update Xi,j and 𝜔

2

i,j for all i, j ∈
{1, 2, … , k}, i < j.

9. 𝜌 ← 𝜌 + 1.

10. end while

11. Select the design with the largest Borda

score.

Remark 3 In the algorithm above, n0 is the ini-

tial number of replications allocated to each pair

of designs. Since no information on the design

performance is available before simulation, the

goal of simulating each pair of designs n0 times

is to obtain the initial sample information. The

value of n0 is usually set to be 5–15 depend-

ing on the specific problem. Δ is the number

of replications increased per iteration. A large

Δ may result in an excessive allocation to some

pair of designs, but a small Δ increases the iter-

ations for simulation. Note that c1, which is set

to be S1+S2, is unknown. In this sequential sim-

ulation algorithm, we let c1 = S1 + S2 as an

estimate. In the later iterations, c1 is updated as

Si, i = 1, 2, … , k are updated.

4 EXTENSION TO THE SUBSET
SELECTION PROBLEM

In ranking and selection, besides selecting the single design,

selecting the optimal subset is also an important problem that
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8 XIAO ET AL.

is well studied. In this section, we extend the pairwise ranking

and selection procedure to the problem of selecting the top m
designs from a finite number of k alternatives. Let Ω denote

the set of top m designs. The top m subset selection problem

is finding the set

Ω =
{

xp| min
p∈Ω

Sp > max
q∉Ω

Sq, p, q ∈ {1, 2, … , k}, ∣ Ω ∣= m
}
.

(20)

Without loss of generality, we still assume that S1 > S2 >

… > Sk. Let ̃S(1) > ̃S(2) > … >
̃S(k) denote the ordered

realization of the posterior estimate of the Borda scores.

Thus, correct selection occurs if {(1), (2), … , (m)} =
{1, 2, … ,m}. Thus, we can define the PCS as

PCSm = P

{ m⋂

p=1

k⋂

q=m+1

̃Sp > ̃Sq

}

. (21)

The objective of this section is to maximize this PCSm given

the total computing budget T .

max PCSm

s.t.
∑

i<j
ni,j = T , i = 1, … , k − 1, j = 2, … , k

ni,j ≥ 0, for all i and j. (22)

Due to the same difficulty as we face in Section 3, we

develop a lower bound on PCSm.

Theorem 3 The PCSm in (21) is lower
bounded by

APCSm = 1 −
m∑

p=1

P
(
̃Sp ≤ cm

)
−

k∑

q=m+1

P
(
̃Sq ≥ cm

)
, (23)

where cm = (Sm + Sm+1) ∕2.

Proof For a constant cm,

PCSm = P

{ m⋂

p=1

k⋂

q=m+1

̃Sp > ̃Sq

}

≥ P

[( m⋂

p=1

{
̃Sp > cm

}
)

∩

( k⋂

q=m+1

{
̃Sq < cm

}
)]

≥

m∑

p=1

P
(
̃Sp > cm

)
+

k∑

q=m+1

P
(
̃Sq < cm

)
− (k − 1)

= 1 −
m∑

p=1

P
(
̃Sp ≤ cm

)
−

k∑

q=m+1

P
(
̃Sq ≥ cm

)

= APCSm. (24)▪

According to (5) and (6),

APCSm = 1−
m∑

p=1

Φ
⎛
⎜
⎜
⎝

(

cm−
∑

j,j≠p
Xp,j

)/
√√√√∑

j,j>p

𝜎

2

p,j

np,j
+
∑

j,j<p

𝜎

2

p,j

nj,p

⎞
⎟
⎟
⎠

−
k∑

q=m+1

Φ
⎛
⎜
⎜
⎝

(

−cm +
∑

j,j≠q
Xq,j

)/
√√√√∑

j,j>q

𝜎

2

q,j

nq,j
+

∑

j,j<q

𝜎

2

q,j

nj,q

⎞
⎟
⎟
⎠
.

(25)

Similar to Section 3, we consider the following optimiza-

tion model instead of the model given in (22).

max APCS

s.t.
∑

i<j
ni,j = T , i = 1, … , k − 1, j = 2, … , k

ni,j ≥ 0, for all i and j. (26)

Lemma 3 The optimization problem defined
in (26) is asymptotically concave as the total
computing budget T goes to infinity, where
APCS is given in (23).

Proof The proof of Lemma 3 is similar to the

proof of Lemma 2. We ignore the proof to avoid

repetition.

Given the concavity, we can use the KKT

conditions to solve the problem (26). ▪

Theorem 4 Let 𝛼i,j = ni,j∕T for all i < j
and i, j ∈ {1, 2, … , k} denote the propor-
tion of simulation budget allocated to a pair
of designs (i, j). Let Si =

∑
j,j≠i Xi,j denote

the sample mean of the Borda score of a
design xi for each i ∈ {1, 2, … , k}. Let Gi =(

cm − Si

)2

∕2

(∑
j,j>i 𝜎

2

i,j∕𝛼i,j +
∑

j,j<i 𝜎
2

i,j∕𝛼j,i

)

for each i ∈ {1, 2, … , k}. The optimization
problem in (26) is asymptotically optimized if
for any two pairs of designs

(
i, i′

)
and

(
l, l′

)
as

the total computing budget T goes to infinity,
we have

lim
T→∞

min {Gi,Gi′} = lim
T→∞

min {Gl,Gl′} , (27)

where i < i′, l < l′, i, i′, l, l′ ∈ {1, 2, … , k}.
According to the law of large numbers, the
sample mean Xi,j converges to the mean
𝜇i,j in probability. Then, Ri converges to
(

c1−
∑

j,j≠i 𝜇i,j

)2

∕2

(∑
j,j>i 𝜎

2

i,j∕𝛼i,j +
∑

j,j<i 𝜎
2

i,j∕

𝛼j,i

)
in probability.

Proof See Appendix B. ▪

It is interesting to note that the optimality condition in

Theorem 4 is exactly the same as that in Theorem 2 except

that a different constant threshold cm is used. Thus, we can

conclude that the optimality condition applies to the selection

of the top m designs no matter the value of m. Therefore, the

OCBA-PC procedure can also be used for implementing the

asymptotical optimality condition in Theorem 4.

5 NUMERICAL EXPERIMENTS

To test the effectiveness of the proposed OCBA-PC

procedure, we compare OCBA-PC with equal allocation
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XIAO ET AL. 9

TABLE 1 Parameter setting for different experiments

Experiments m k Distribution of design i

1 Equal variance 1 10 N
(
i, 82

)

2 Equal variance 3 10 N
(
i, 82

)

3 Increasing variance 1 10 N
(
i, (i + 4)2

)

4 Increasing variance 3 10 N
(
i, (i + 4)2

)

5 Decreasing variance 1 10 N
(
i, (15 − i)2

)

6 Decreasing variance 3 10 N
(
i, (15 − i)2

)

7 Large scale 1 50 N
(
i, 82

)

8 Large scale 5 50 N
(
i, 82

)

9 Exponential distribution 1 10 exp (1∕i)

10 Exponential distribution 3 10 exp (1∕i)

11 Uniform distribution 1 10 Uniform (i − 10, i + 10)

12 Uniform distribution 3 10 Uniform (i − 10, i + 10)

FIGURE 1 PCS comparison for Experiment 1.

FIGURE 2 PCS comparison for Experiment 2.

FIGURE 3 PCS comparison for Experiment 3.

FIGURE 4 PCS comparison for Experiment 4.

FIGURE 5 PCS comparison for Experiment 5.
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10 XIAO ET AL.

FIGURE 6 PCS comparison for Experiment 6.

FIGURE 7 PCS comparison for Experiment 7.

(EA), proportional to variance (PTV), and the POCBAm

proposed in Groves and Branke (2019) in a series of experi-

ments. EA and PTV are commonly chosen as benchmarking

procedures due to their simplicity. POCBAm is a recently pro-

posed allocation rule that aims to select the top m designs

through pairwise comparisons. In our experiments, EA allo-

cates the same number of simulation replications to each pair

of designs. PTV allocates the number of simulation replica-

tions to each pair of designs proportionally to their variances.

Both EA and PTV are implemented sequentially. POCBAm

is implemented based on the POCBAm procedure given in

Groves and Branke (2019).

In all experiments, the PCS is estimated by counting the

number of times that the desired designs are correctly selected

out of 5000 independent applications of each procedure. PCS

is then obtained by dividing this number by 5000, denoting

FIGURE 8 PCS comparison for Experiment 8.

FIGURE 9 PCS comparison for Experiment 9.

the frequency of correct selection. The initial number of sim-

ulation replications n0 is 5 for all experiments. Note that n0

is the initial number of simulation replications allocated to

each pair of designs. Thus, the total budget spent during the

first iteration of simulation depends on the number of designs

in that experiment. The incremental budget Δ is 10 for all

experiments except experiments 7 and 8, where Δ is set to be

50 since the problem scale is large. In the case when there

are multiple pairs of designs with the same minimum rate

during an iteration, the Δ replications are equally distributed

among all such pairs. The performance distributions of each

design in the 12 experiments we conducted are shown in

Table 1.

In Table 1, m = 1 means selecting the best design,

while m > 1 refers to the top subset selection. The per-

formance of each design cannot be simulated individually.
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XIAO ET AL. 11

FIGURE 10 PCS comparison for Experiment 10.

FIGURE 11 PCS comparison for Experiment 11.

We only have the simulation outcome of pairwise com-

parison. We have carried out experiments under different

settings. The PCS comparison of the four simulation pro-

cedures are shown in Figures 1–12 for experiments 1–12,

respectively.

The numerical results in Figures 1–12 show that the PCS

increases with increasing the simulation budget in all experi-

ments. In particular, we can see that the proposed OCBA-PC

procedure outperforms POCBAm, PTV, and EA in all exper-

iments. Comparing Figures 7–8 with other figures, we find

that the advantage of using OCBA-PC becomes more signif-

icant when the number of designs is larger. OCBA-PC can

perform better than PTV and EA because it concentrates on

those critical pairs of designs that allow the desired design

(subset) to be selected more accurately. In the case of a large

FIGURE 12 PCS comparison for Experiment 12.

number of designs, more budget is wasted on those noncrit-

ical pairs. This is why the PCS of OCBA-PC is much larger

than that of EA and PTV given the same number of simula-

tion budget in Experiments 7 and 8. In all experiments, we

see that OCBA-PC performs slightly better than POCBAm

proposed in Groves and Branke (2019), which is a heuristic

allocation rule. This demonstrates the importance of deriving

an asymptotically optimal allocation rule.

6 CONCLUSIONS

Motivated by the restriction of only having access to pair-

wise comparisons in many real-life problems, this research

proposes an efficient ranking and selection procedure when

the performance of designs can only be simulated pairwise

instead of individually. We formulate this new ranking and

selection problem using the optimal computing budget allo-

cation framework and derive the asymptotical optimality

conditions for selecting the best design and the top sub-

set respectively. We devise a sequential budget allocation

algorithm to implement the asymptotical optimality condition

of the allocation rule. The numerical experiments confirm

that the proposed OCBA-PC rule can improve the probability

of correctly selecting the best design or the top subset given

the same simulation budget compared with other rules from

the literature.
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APPENDIX A

Proof APCS1 given in Theorem 1 is concave if and only if the second order derivative matrices of−P
(
̃S1 ≤ c1

)

and −
∑k

i=2
P
(
̃Si ≥ c1

)
are negative semidefinite for all possible values of ni,j, i = 1, … , k − 1, j = 2, … , k, i < j.

Based on the derivation in (5), we let

f = −P
(
̃S1 ≤ c1

)
= −Φ

⎛
⎜
⎜
⎝

(

c1 −
k∑

j=2

X1,j

)/
√√√√

k∑

j=2

(
𝜎

2

1,j∕n1,j

)⎞
⎟
⎟
⎠
. (A1)

The first order derivative of f is

∇f =
(

𝜕f
𝜕n1,2

, … ,

𝜕f
𝜕n1,k

,

𝜕f
𝜕n2,3

, … ,

𝜕f
𝜕n2,k

, … ,

𝜕f
𝜕nk−1,k

)
,

where the first k−1 terms 𝜕f∕𝜕n1,2, … , 𝜕f∕𝜕n1,k are nonzero, the other terms are all zeros, and for i = 2, 3, … , k,

we have

𝜕f
𝜕n1,i

= −1

2
𝜙

⎛
⎜
⎜
⎝

(

c1 −
k∑

j=2

X1,j

)/
√√√√

k∑

j=2

(
𝜎

2

1,j∕n1,j

)⎞
⎟
⎟
⎠

×

(

c1 −
k∑

j=2

X1,j

)

×

( k∑

j=2

(
𝜎

2

1,j∕n1,j

))− 3

2

𝜎

2

1,in
−2

1,i . (A2)

Since only the first k − 1 terms in ∇f are nonzero, the second order derivative of f can be expressed as

∇2f =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜕

2f
𝜕n

1,2
𝜕n

1,2

· · · 𝜕

2f
𝜕n

1,2
𝜕n

1,k
0 0 · · · 0

𝜕

2f
𝜕n

1,3
𝜕n

1,2

· · · 𝜕

2f
𝜕n

1,3
𝜕n

1,k
0 0 · · · 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝜕

2f
𝜕n

1,k𝜕n
1,2

· · · 𝜕

2f
𝜕n

1,k𝜕n
1,k

0 0 · · · 0

0 · · · 0 0 0 · · · 0

⋮ ⋱ 0 ⋮ ⋮ ⋱ ⋮

0 … 0 0 0 · · · 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let 𝜕
2f∕𝜕2n1,i denote an arbitrary diagonal nonzero term in ∇2f , and 𝜕

2f∕𝜕n1,i𝜕n1,l denote an arbitrary

non-diagonal nonzero term in ∇2f , where i ≠ l, i, l ∈ {2, 3, … , k}. From (A2) we have

𝜕

2f
𝜕

2n1,i
= 1

4

(

c1 −
k∑

j=2

X1,j

)

× 𝜙
⎛
⎜
⎜
⎝

(

c1 −
k∑

j=2

X1,j

)/
√√√√

k∑

j=2

𝜎

2

1,j

n1,j

⎞
⎟
⎟
⎠
×
⎡
⎢
⎢
⎣

( k∑

j=2

(
𝜎

2

1,j∕n1,j

))−7∕2

𝜎

4

1,in
−4

1,i

⎤
⎥
⎥
⎦

×
⎡
⎢
⎢
⎣

(

c1 −
k∑

j=2

X1,j

)2

− 3

( k∑

j=2

(
𝜎

2

1,j∕n1,j

))

+ 4

( k∑

j=2

(
𝜎

2

1,j∕n1,j

))2

𝜎

−2

1,i n1,i

⎤
⎥
⎥
⎦
, (A3)

𝜕

2f
𝜕n1,i𝜕n1,l

= 1

4

(

c1 −
k∑

j=2

X1,j

)

× 𝜙
⎛
⎜
⎜
⎝

(

c1 −
k∑

j=2

X1,j

)/
√√√√

k∑

j=2

𝜎

2

1,j

n1,j

⎞
⎟
⎟
⎠
×
⎡
⎢
⎢
⎣

( k∑

j=2

(
𝜎

2

1,j∕n1,j

))−7∕2

𝜎

2

1,i × n−2

1,i × 𝜎
2

1,l × n−2

1,l

⎤
⎥
⎥
⎦

×
⎡
⎢
⎢
⎣

(

c1 −
k∑

j=2

X1,j

)2

− 3

( k∑

j=2

(
𝜎

2

1,j∕n1,j

))⎤
⎥
⎥
⎦
. (A4)

For further consideration, we make an equivalent transformation to ∇2f ,

∇2f = a × A + b × B,
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XIAO ET AL. 15

where

a = 1

4

(

c1 −
k∑

j=2

X1,j

)

× 𝜙
⎛
⎜
⎜
⎝

(

c1 −
k∑

j=2

X1,j

)/
√√√√

k∑

j=2

𝜎

2

1,j

n1,j

⎞
⎟
⎟
⎠

×

( k∑

j=2

(
𝜎

2

1,j∕n1,j

))−7∕2

×
⎡
⎢
⎢
⎣

(

c1 −
k∑

j=2

X1,j

)2

− 3

( k∑

j=2

(
𝜎

2

1,j∕n1,j

))⎤
⎥
⎥
⎦

,

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜎

4

1,2
n−4

1,2
· · · 𝜎2

1,2
× n−2

1,2
× 𝜎2

1,k × n−2

1,k 0 0 · · · 0

𝜎

2

1,3
× n−2

1,3
× 𝜎2

1,2
× n−2

1,2
· · · 𝜎2

1,3
× n−2

1,3
× 𝜎2

1,k × n−2

1,k 0 0 · · · 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝜎

2

1,k × n−2

1,k × 𝜎
2

1,2
× n−2

1,2
· · · 𝜎

4

1,kn−4

1,k 0 0 · · · 0

0 · · · 0 0 0 · · · 0

⋮ ⋱ 0 ⋮ ⋮ ⋱ ⋮

0 … 0 0 0 · · · 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

b =

(

c1 −
k∑

j=2

X1,j

)

× 𝜙
⎛
⎜
⎜
⎝

(

c1 −
k∑

j=2

X1,j

)

∕

√√√√
k∑

j=2

𝜎

2

1,j

n1,j

⎞
⎟
⎟
⎠
×

( k∑

j=2

(
𝜎

2

1,j∕n1,j

))−3∕2

,

B =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜎

2

1,2
n−3

1,2
· · · 0 0 0 · · · 0

0 · · · 0 0 0 · · · 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

0 · · · 𝜎2

1,kn−3

1,k 0 0 · · · 0

0 · · · 0 0 0 · · · 0

⋮ ⋱ 0 ⋮ ⋮ ⋱ ⋮

0 … 0 0 0 · · · 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

To prove that the second order derivative matrix of−P
(
̃S1 ≤ c1

)
is negative semidefinite, we only need to prove

that a and b are nonpositive, and both A and B are positive semidefinite.

Since S1 =
∑k

j=2
X1,j, S1 converges to S1 when the total simulation budget T goes to infinity. As defined in

Theorem 1, c1 = (S1 + S2) ∕2. Thus, c1 −
∑k

j=2
X1,j is equivalent to

(S1
+S

2)
2

− S1 when T goes to infinity. Based on

the definition of Borda score and the assumption in Section 2, we know that S1 > S2. Therefore, c1−
∑k

j=2
X1,j < 0

when T goes to infinity. Furthermore, it is easy to see that

𝜙

⎛
⎜
⎜
⎝

(

c1 −
k∑

j=2

X1,j

)/
√√√√

k∑

j=2

𝜎

2

1,j

n1,j

⎞
⎟
⎟
⎠
> 0,

and ( k∑

j=2

(
𝜎

2

1,j∕n1,j

))−3∕2

> 0,

( k∑

j=2

(
𝜎

2

1,j∕n1,j

))−7∕2

> 0.

Let n1,j = 𝛼1,jT where 𝛼1,j denotes the proportion of simulation budget allocated to the pair of designs 1 and j.
Then,

(

c1 −
k∑

j=2

X1,j

)2

− 3 ×
k∑

j=2

(
𝜎

2

1,j∕n1,j

)
≥ 0

is equivalent to
(

c1 −
k∑

j=2

X1,j

)2

− (3∕T) ×
k∑

j=2

(
𝜎

2

1,j∕𝛼1,j

)
≥ 0. (A5)
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16 XIAO ET AL.

(A5) follows if we let

T ≥ 3 ×
k∑

j=2

(
𝜎

2

1,j∕𝛼1,j

)(

c1 −
k∑

j=2

X1,j

)2

.

Thus, we have proven that both a and b are nonpositive when T goes to infinity.

A matrix is positive semidefinite if and only if all of its principal minors are nonnegative.

For matrix A, the first order principal minors are made up of each diagonal element individually. It is easy to

see that 𝜎
4

1,in
−4

1,i > 0, i = 2, 3, … , k. Thus, all of its first order principal minors are nonnegative. Because any two

rows of matrix A are proportional to each other, for all principal minors above second order, any two rows are also

proportional to each other. Thus, all principal minors above second order of matrix A are equal to zero.

Matrix B is a diagonal matrix and all terms on the diagonal are nonnegative. Obviously, all of its first order

principal minors are not less than zero. Because B is a diagonal matrix, all of its principal minors above second

order are also triangular determinants, and the diagonal elements of the principal minors are part of matrix B.

Thus the principal minors above second order of B are nonnegative.

Thus, we have proven that both A and B are positive semidefinite. Then, we can conclude that ∇2f is a negative

semidefinite matrix.

Following almost the same procedure, we can prove that the second order derivative matrix of −P
(
̃Si ≥ c1

)
is

a negative semidefinite for each i = 2, 3, .., k. Then, we can conclude that the second order derivative matrix of

APCS1 is negative semidefinite. ▪

APPENDIX B

Let F be the Lagrangian function with Lagrange multiplier 𝜆 and 𝜉i,j, i < j and i, j ∈ {1, 2, … , k}. That is,

F = 1 −
∑

p∈Ω
Φ

⎛
⎜
⎜
⎝

(

cm −
∑

j,j≠p
Xp,j

)/
√√√√∑

j,j>p

𝜎

2

p,j

np,j
+

∑

j,j<p

𝜎

2

p,j

nj,p

⎞
⎟
⎟
⎠

−
∑

q∉Ω
Φ

⎛
⎜
⎜
⎝

(

−cm +
∑

j,j≠q
Xq,j

)/
√√√√∑

j,j>q

𝜎

2

q,j

nq,j
+

∑

j,j<q

𝜎

2

q,j

nj,q

⎞
⎟
⎟
⎠
− 𝜆

(
∑

i<j
ni,j − T

)

−
∑

i<j
i,j∈{1,… ,k}

𝜉i,jni,j.

The stationarity conditions can be stated as follows.

For i ∈ Ω, i′ ∉ Ω, i < i′,

𝜕F
𝜕ni,i′

= 𝜙
⎛
⎜
⎜
⎝

(

cm −
∑

j,j≠i
Xi,j

)/
√√√√∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

⎞
⎟
⎟
⎠

×
⎡
⎢
⎢
⎣
−1

2

(

cm −
∑

j,j≠i
Xi,j

)(
∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

)−3∕2

𝜎

2

i,i′n
−2

i,i′

⎤
⎥
⎥
⎦

+ 𝜙

⎛
⎜
⎜
⎝

(

−cm +
∑

j,j≠i′
Xi′,j

)/
√√√√∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

⎞
⎟
⎟
⎠

×
⎡
⎢
⎢
⎣

1

2

(

cm −
∑

j,j≠i′
Xi′,j

)(
∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

)−3∕2

𝜎

2

i′,in
−2

i,i′

⎤
⎥
⎥
⎦

= 𝜆 + 𝜉i,i′ . (B1)

For i ∈ Ω, i′ ∈ Ω, i < i′,

𝜕F
𝜕ni,i′

= 𝜙
⎛
⎜
⎜
⎝

(

cm −
∑

j,j≠i
Xi,j

)/
√√√√∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

⎞
⎟
⎟
⎠
×
⎡
⎢
⎢
⎣
−1

2

(

cm −
∑

j,j≠i
Xi,j

)(
∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

)−3∕2

𝜎

2

i,i′n
−2

i,i′

⎤
⎥
⎥
⎦

+ 𝜙

⎛
⎜
⎜
⎝

(

cm −
∑

j,j≠i′
Xi′,j

)/
√√√√∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

⎞
⎟
⎟
⎠
×
⎡
⎢
⎢
⎣
−1

2

(

cm −
∑

j,j≠i′
Xi′,j

)(
∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

)−3∕2

𝜎

2

i′,in
−2

i,i′

⎤
⎥
⎥
⎦

= 𝜆 + 𝜉i,i′ . (B2)
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XIAO ET AL. 17

For i ∉ Ω, i′ ∉ Ω, i < i′,

𝜕F
𝜕ni,i′

= 𝜙
⎛
⎜
⎜
⎝

(

−cm +
∑

j,j≠i
Xi,j

)/
√√√√∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

⎞
⎟
⎟
⎠
×
⎡
⎢
⎢
⎣

1

2

(

cm −
∑

j,j≠i
Xi,j

)(
∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

)−3∕2

𝜎

2

i,i′n
−2

i,i′

⎤
⎥
⎥
⎦

+ 𝜙

⎛
⎜
⎜
⎝

(

−cm +
∑

j,j≠i′
Xi′,j

)/
√√√√∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

⎞
⎟
⎟
⎠
×
⎡
⎢
⎢
⎣

1

2

(

cm −
∑

j,j≠i′
Xi′,j

)(
∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

)− 3

2

𝜎

2

i′,in
−2

i,i′

⎤
⎥
⎥
⎦

= 𝜆 + 𝜉i,i′ . (B3)

The complementary slackness conditions can be stated as follows.

𝜉i,jni,j = 0, for all i < j. (B4)

As ni,j, i < j are in the denominator in Equations (B1)–(B3), they cannot be zero. Then in Equation (B4), it must hold that

𝜉i,j = 0 for all i < j. Thus, the KKT conditions can be simplified as follows.

For i ∈ Ω, i′ ∉ Ω, i < i′,

𝜕F
𝜕ni,i′

= 𝜙
⎛
⎜
⎜
⎝

(

cm −
∑

j,j≠i
Xi,j

)/
√√√√∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

⎞
⎟
⎟
⎠
×
⎡
⎢
⎢
⎣
−1

2

(

cm −
∑

j,j≠i
Xi,j

)(
∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

)−3∕2

𝜎

2

i,i′n
−2

i,i′

⎤
⎥
⎥
⎦

+ 𝜙

⎛
⎜
⎜
⎝

(

−cm +
∑

j,j≠i′
Xi′,j

)/
√√√√∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

⎞
⎟
⎟
⎠
×
⎡
⎢
⎢
⎣

1

2

(

cm −
∑

j,j≠i′
Xi′,j

)(
∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

)−3∕2

𝜎

2

i′,in
−2

i,i′

⎤
⎥
⎥
⎦

= 𝜆. (B5)

For i ∈ Ω, i′ ∈ Ω, i < i′,

𝜕F
𝜕ni,i′

= 𝜙
⎛
⎜
⎜
⎝

(

cm −
∑

j,j≠i
Xi,j

)/
√√√√∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

⎞
⎟
⎟
⎠
×
⎡
⎢
⎢
⎣
−1

2

(

cm −
∑

j,j≠i
Xi,j

)(
∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

)−3∕2

𝜎

2

i,i′n
−2

i,i′

⎤
⎥
⎥
⎦

+ 𝜙

⎛
⎜
⎜
⎝

(

cm −
∑

j,j≠i′
Xi′,j

)/
√√√√∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

⎞
⎟
⎟
⎠
×
⎡
⎢
⎢
⎣
−1

2

(

cm −
∑

j,j≠i′
Xi′,j

)(
∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

)−3∕2

𝜎

2

i′,in
−2

i,i′

⎤
⎥
⎥
⎦

= 𝜆. (B6)

For i ∉ Ω, i′ ∉ Ω, i < i′,

𝜕F
𝜕ni,i′

= 𝜙
⎛
⎜
⎜
⎝

(

−cm +
∑

j,j≠i
Xi,j

)/
√√√√∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

⎞
⎟
⎟
⎠
×
⎡
⎢
⎢
⎣

1

2

(

cm −
∑

j,j≠i
Xi,j

)(
∑

j,j>i

𝜎

2

i,j

ni,j
+

∑

j,j<i

𝜎

2

i,j

nj,i

)−3∕2

𝜎

2

i,i′n
−2

i,i′

⎤
⎥
⎥
⎦

+ 𝜙

⎛
⎜
⎜
⎝

(

−cm +
∑

j,j≠i′
Xi′,j

)/
√√√√∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

⎞
⎟
⎟
⎠
×
⎡
⎢
⎢
⎣

1

2

(

cm −
∑

j,j≠i′
Xi′,j

)(
∑

j,j>i′

𝜎

2

i′,j

ni′,j
+

∑

j,j<i′

𝜎

2

i′,j

nj,i′

)− 3

2

𝜎

2

i′,in
−2

i,i′

⎤
⎥
⎥
⎦

= 𝜆. (B7)

There are six cases about the relationship between the simulation replications allocated to any two pairs of designs.

Case 1 For
(
i, i′

)
≠

(
l, l′

)
, i, l ∈ Ω, i′, l′ ∉ Ω, i < i′, l < l′. From (B5), using the Lemma 1, as T →∞, we have

max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
cm −

∑
j,j≠i Xi,j

)2

−2

(
∑

j,j>i
𝜎

2

i,j

𝛼i,j
+

∑
j,j<i

𝜎

2

i,j

𝛼j,i

) ,

(
−cm +

∑
j,j≠i′ Xi′,j

)2

−2

(
∑

j,j>i′
𝜎

2

i′ ,j

𝛼i′ ,j
+

∑
j,j<i′

𝜎

2

i′ ,j

𝛼j,i′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

= max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
cm −

∑
j,j≠l Xl,j

)2

−2

(
∑

j,j>l
𝜎

2

l,j

𝛼l,j
+

∑
j,j<l

𝜎

2

l,j

𝛼j,l

) ,

(
−cm +

∑
j,j≠l′ Xl′,j

)2

−2

(
∑

j,j>l′
𝜎

2

l′ ,j

𝛼l′ ,j
+

∑
j,j<l′

𝜎

2

l′ ,j

𝛼j,l′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.
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Case 2 For
(
i, i′

)
≠

(
l, l′

)
, i, l, i′, l′ ∈ Ω, i < i′, l < l′, from (B6), using the Lemma 1, as T →∞, we have

max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
cm −

∑
j,j≠i Xi,j

)2

−2

(
∑

j,j>i
𝜎

2

i,j

𝛼i,j
+

∑
j,j<i

𝜎

2

i,j

𝛼j,i

) ,

(
cm −

∑
j,j≠i′ Xi′,j

)2

−2

(
∑

j,j>i′
𝜎

2

i′ ,j

𝛼i′ ,j
+

∑
j,j<i′

𝜎

2

i′ ,j

𝛼j,i′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

= max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
cm −

∑
j,j≠l Xl,j

)2

−2

(
∑

j,j>l
𝜎

2

l,j

𝛼l,j
+

∑
j,j<l

𝜎

2

l,j

𝛼j,l

) ,

(
cm −

∑
j,j≠l′ Xl′,j

)2

−2

(
∑

j,j>l′
𝜎

2

l′ ,j

𝛼l′ ,j
+

∑
j,j<l′

𝜎

2

l′ ,j

𝛼j,l′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

Case 3 For
(
i, i′

)
≠

(
l, l′

)
, i, l, i′, l′ ∉ Ω, i < i′, l < l′, from (B7), using the Lemma 1, as T →∞, we have

max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
−cm +

∑
j,j≠i Xi,j

)2

−2

(
∑

j,j>i
𝜎

2

i,j

𝛼i,j
+

∑
j,j<i

𝜎

2

i,j

𝛼j,i

) ,

(
−cm +

∑
j,j≠i′ Xi′,j

)2

−2

(
∑

j,j>i′
𝜎

2

i′ ,j

𝛼i′ ,j
+

∑
j,j<i′

𝜎

2

i′ ,j

𝛼j,i′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

= max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
−cm +

∑
j,j≠l Xl,j

)2

−2

(
∑

j,j>l
𝜎

2

l,j

𝛼l,j
+

∑
j,j<l

𝜎

2

l,j

𝛼j,l

) ,

(
−cm +

∑
j,j≠l′ Xl′,j

)2

−2

(
∑

j,j>l′
𝜎

2

l′ ,j

𝛼l′ ,j
+

∑
j,j<l′

𝜎

2

l′ ,j

𝛼j,l′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

Case 4 For
(
i, i′

)
and

(
l, l′

)
, i ∈ Ω, i′, l, l′ ∉ Ω, i < i′, l < l′. From (B5) and (B7), using the Lemma 1, as

T → ∞, we have

max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
cm −

∑
j,j≠i Xi,j

)2

−2

(
∑

j,j>i
𝜎

2

i,j

𝛼i,j
+

∑
j,j<i

𝜎

2

i,j

𝛼j,i

) ,

(
−cm +

∑
j,j≠i′ Xi′,j

)2

−2

(
∑

j,j>i′
𝜎

2

i′ ,j

𝛼i′ ,j
+

∑
j,j<i′

𝜎

2

i′ ,j

𝛼j,i′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

= max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
−cm +

∑
j,j≠l Xl,j

)2

−2

(
∑

j,j>l
𝜎

2

l,j

𝛼l,j
+

∑
j,j<l

𝜎

2

l,j

𝛼j,l

) ,

(
−cm +

∑
j,j≠l′ Xl′,j

)2

−2

(
∑

j,j>l′
𝜎

2

l′ ,j

𝛼l′ ,j
+

∑
j,j<l′

𝜎

2

l′ ,j

𝛼j,l′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

Case 5 For
(
i, i′

)
and

(
l, l′

)
, i, l, l′ ∈ Ω, i′ ∉ Ω, i < i′, l < l′. From (B5) and (B6), using the Lemma 1, as

T → ∞, we have

max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
cm −

∑
j,j≠i Xi,j

)2

−2

(
∑

j,j>i
𝜎

2

i,j

𝛼i,j
+

∑
j,j<i

𝜎

2

i,j

𝛼j,i

) ,

(
−cm +

∑
j,j≠i′ Xi′,j

)2

−2

(
∑

j,j>i′
𝜎

2

i′ ,j

𝛼i′ ,j
+

∑
j,j<i′

𝜎

2

i′ ,j

𝛼j,i′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

= max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
cm −

∑
j,j≠l Xl,j

)2

−2

(
∑

j,j>l
𝜎

2

l,j

𝛼l,j
+

∑
j,j<l

𝜎

2

l,j

𝛼j,l

) ,

(
cm −

∑
j,j≠l′ Xl′,j

)2

−2

(
∑

j,j>l′
𝜎

2

l′ ,j

𝛼l′ ,j
+

∑
j,j<l′

𝜎

2

l′ ,j

𝛼j,l′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.
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Case 6 For
(
i, i′

)
and

(
l, l′

)
, i, i′ ∈ Ω, l, l′ ∉ Ω, i < i′, l < l′. From (B6) and (B7), using the Lemma 1, as

T → ∞, we have

max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
cm −

∑
j,j≠i Xi,j

)2

−2

(
∑

j,j>i
𝜎

2

i,j

𝛼i,j
+

∑
j,j<i

𝜎

2

i,j

𝛼j,i

) ,

(
cm −

∑
j,j≠i′ Xi′,j

)2

−2

(
∑

j,j>i′
𝜎

2

i′ ,j

𝛼i′ ,j
+

∑
j,j<i′

𝜎

2

i′ ,j

𝛼j,i′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

= max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
−cm +

∑
j,j≠l Xl,j

)2

−2

(
∑

j,j>l
𝜎

2

l,j

𝛼l,j
+

∑
j,j<l

𝜎

2

l,j

𝛼j,l

) ,

(
−cm +

∑
j,j≠l′ Xl′,j

)2

−2

(
∑

j,j>l′
𝜎

2

l′ ,j

𝛼l′ ,j
+

∑
j,j<l′

𝜎

2

l′ ,j

𝛼j,l′

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

Summarizing the six cases, we can obtain the equality in Theorem 4.
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